1. Field of the Invention
The present invention relates to resource virtualization. In one example, the present invention relates to methods and apparatus for efficiently implementing virtualization, allocation, redundancy, and management of resources used to connect servers to packet based networks such as Internet Protocol (IP) networks.
2. Description of Related Art
Conventional servers connect to packet networks such as IP networks using port adapters such as network interface cards (NICs). Each NIC is connected to an IP network port. If many servers are connected to an IP network, a large number of NICs and IP network ports are required. A large number of NICs and IP network ports are required even though many NICs and ports remain underutilized, particularly when high availability is configured.
In many implementations, multiple NICs are included in each server to provide for redundancy and load sharing. In some instances, one NIC is configured as the active NIC while another NIC is configured as a redundant NIC. When an active NIC fails, the server devotes processing resources in order to effectively switchover to using the redundant NIC. However, having multiple NICs in each server can lead to even less efficient resource utilization and drain processing resources during failover.
Techniques and mechanisms for sharing resources such as NICs and providing high availability connections to IP networks are limited. In many instances, conventional mechanisms still lead to underutilization and resource inflexibility. Network administration issues also remain complicated with a need for a large number of NICs and network ports. Consequently, it is desirable to provide methods and apparatus for efficiently providing high availability and I/O aggregation to servers connected to packet based networks.
Methods and apparatus are provided for virtualizing port adapter resources such as network interface cards (NICs) used to connect servers to packet based networks. Resources are offloaded from individual servers onto a resource virtualization switch. Servers connected to the resource virtualization switch using an I/O bus connection share access to NICs. Redundancy can be provided using multipathing mechanisms implemented at individual servers or high availability mechanisms implemented at the resource virtualization switch. Switchover can occur between ports on the same port adapter, between ports on separate adapters, or between ports on separate resource virtualization switches.
In one embodiment, a resource virtualization switch coupled to a network is provided. The resource virtualization switch includes multiple network interfaces, multiple I/O bus ports, and a resource virtualization switch platform. The multiple I/O bus ports are connected to multiple servers. The resource virtualization switch platform is associated with the multiple network interfaces. The resource virtualization switch platform is operable to map communications from the first server and the second server onto the first network interface.
In another embodiment, a method for providing resources to multiple servers is provided. An I/O bus connection is provided between a resource virtualization switch and at least a first server and a second server. The first server and the second server are associated with separate address spaces. Communications are received from the first server and the second server at the resource virtualization switch. Communications from the first server and the second server are mapped onto a first port adapter associated with the resource virtualization switch. Communications from the first server and the second server are transmitted onto a network using the first port adapter.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which are illustrative of specific embodiments of the present invention.
Reference will now be made in detail to some specific examples of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
For example, the techniques of the present invention will be described in the context of Peripheral Control Interface (PCI) Express and Internet Protocol (IP) networks. However, it should be noted that the techniques of the present invention can be applied to a variety of different standards and variations to PCI Express and IP networks. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
Furthermore, techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments can include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. For example, a processor is used in a variety of contexts. However, it will be appreciated that multiple processors can also be used while remaining within the scope of the present invention unless otherwise noted.
A server or computing system generally includes one or more processors, memory, as well as other peripheral components and peripheral interfaces such as network interface cards (NICs), host bus adapters (HBAs), hardware accelerators, graphics accelerators, disks, etc. To increase processing power, servers are often aggregated as blades in a rack or as servers in a server farm or data center and interconnected using various network backbones or backplanes. In some examples, each server includes a NIC configured to allow communication over an IP network. The IP network also typically includes network routers allowing routing of traffic between various network nodes. To provide fault-tolerance, individual servers are often configured with redundant resources.
For example, a server may include redundant port adapters to allow for continued operation in the event of port adapter failure. Each server may also have multiple processors or multiple hardware accelerators to provide for fault tolerance. However, providing redundant resources in each server in a server rack or server farm can be expensive. A server farm including 40 individual systems and 40 adapters would require typically an additional 40 adapters for redundancy on each particular system. Redundancy can typically only be provided in a rigid and inflexible manner. Providing high availability for resources in server environments can be highly inefficient and costly.
Because resources such as peripheral components and peripheral interfaces are assigned on a per server or a per processor basis, other servers do not typically have access to these resources. In order to provide adequate resources for each server, resources are typically over-provisioned. That is, more bandwidth is provided than is typically needed. For example, some currently available NICs are arranged to provide 1 Gb/s of bandwidth. However, typical servers rarely use that amount. More network interface bandwidth is allocated than is typically used simply to handle worst-case or expected worst-case scenarios.
Resources are over-provisioned resulting in overall waste and low utilization. Resource assignment on a per server or a per processor basis also limits the ability to reconstruct or reconfigure a resource environment. For example, a system administrator may want to dynamically allocate unused NIC resources to other servers needing bandwidth. Conventional configurations do not allow efficient reassignment. Conventional NICs are also not hot pluggable, resulting in longer downtimes during server administrative operations such as upgrades.
Having a number of disparate servers also increases the complexity associated with individual system management. Servers typically have to be individually administered without the benefit of centralized administration. Oftentimes, servers would be equipped with graphics cards and I/O subsystems to allow for system administrator access.
Conventional architectures create resource usage inefficiency, server management inefficiency, fault tolerance limitations, and reconfiguration inflexibility, along with a number of other drawbacks. Consequently, the techniques of the present invention provide for resource virtualization, more efficient utilization of resources, and high availability. According to various embodiments, each server no longer has access to a physical peripheral component or a physical peripheral interface such as a NIC, but instead has access to logical or virtual resources.
In some embodiments, resources such as NICs are removed from individual servers and aggregated at a resource virtualization server or resource virtualization switch. In one example, the resource virtualization switch creates an on-demand provisioned and traffic engineered data center by seamlessly integrating with existing hardware and software infrastructure. The resource virtualization switch receives requests from individual servers over a bus interface such as PCI Express and determines what resources to provide to handle individual requests. Any device allowing sharing of multiple resources such as interfaces and components between multiple servers connected over an I/O bus interface is referred to herein as a resource virtualization switch or resource virtualization server. For example, a first server may request to transmit data over a local area network. The request is routed to the resource virtualization switch that then determines how to handle the request. In one example, the request is forwarded to the NIC corresponding to the first server.
Access to resources such as I/O and hardware acceleration resources remains at the bus level. Any mechanism allowing interconnection of components in a computer system is referred to herein as a bus. Examples of buses include PCI, PCI Express, Vesa Local Bus (VLB), PCMCIA, and AGP. For example, master components (e.g. processors) initiate transactions such as read and write transactions over buses with slave components (e.g. memory) that respond to the read and write requests. Buses are typically associated with a memory space to allow for use of the read and write transactions. Any device having one or more processors that are able to access a shared memory address space is referred to herein as a server, computer, or computing system.
In one example, a server includes multiple processors that can all access a shared virtual or physical memory space. Although each processor may own separate cache lines, each processor has access to memory lines in the memory address space. A server or computing system generally includes one or more processors, memory, as well as other peripheral components and peripheral interfaces such as network interface cards (NICs), hardware accelerators, host bus adapters (HBAs), graphics accelerators, disks, etc. A processor can communicate with a variety of entities including an IP network.
According to various embodiments, NICs are included in a resource virtualization switch connected to multiple servers using a bus interface such as PCI Express. The bus interface provides a low latency, high bandwidth connection between the multiple servers and the NIC in the resource virtualization switch. The resource virtualization switch aggregates several server memories into a unified memory or an aggregated memory address view to allow sharing of a physical fibre channel NIC among several servers. In one example, a resource virtualization switch can aggregate multiple servers into the same I/O port. If a NIC has a capacity of 1 Gbps and one server uses only 250 Mbps, the remaining 750 Mbps can be distributed to the other servers so that the entire bandwidth capacity is used. Resources can be more effectively allocated in this manner.
High availability can be provided in a variety of manners. High availability is provided to allow switchovers to a different port on a port adapter, to a different port on a separate port adapter on the same resource virtualization switch, and to a different port on a separate resource virtualization switch. Consequently, failover support is provided in the event of link failure, I/O port failure, PCI-Express link failure, or resource virtualization switch failure. According to various embodiments, failover remains application independent and no restarting or rebinding is required at the application level.
An administrator can provision and partition resources at the resource virtualization switch based on particular needs and requirements. Quality of service (QOS) and traffic engineering schemes can be implemented at the bus level. In a conventional architecture, quality of service (QoS) and traffic engineering are available only at the network level and not at the bus level. Traffic associated with particular devices or servers can be given priority or guaranteed bandwidth. The total amount of resources can be decreased while increasing resource utilization. The resource virtualization mechanism can be introduced into existing server racks and farms with little disruption to system operation.
In some examples, mapping of traffic-engineered flows is performed based on PCIe traffic class and virtual channels. The resource virtualization mechanism can classify flows and provision bandwidth. Other features such as scatter gather, zero copy on receive, TCP/IP and UDP check sum offload can also be performed by a resource virtualization mechanism.
The various NICs 107, 119, and 129 are also associated with IP addresses and media access control (MAC) addresses. Each server and associated NIC encapsulates data into IP packets for transmission to a network router 141. Encapsulation may involve adding appropriate Telnet Control Protocol (TCP) and IP headers and addresses. Each NIC is also configured to remove TCP/IP headers and addresses and provide data to an associated processor over a system bus when IP packets are received from an IP network.
To provide for reliability, servers 101, 111, and 121 may include multiple NICs to allow effective switchover in the event one NIC fails. Furthermore, many servers may have redundant lines physically connecting the various NICs to the network router 141. The resource allocation and system management inefficiencies are magnified by the physical complexities of routing redundant lines. Although only NICs are noted, each server 101, 111, and 121 may also include host bus adapters (HBAs) and hardware accelerators.
An I/O bus switch 241 may be a standalone entity, integrated within a particular server, or provided with a resource virtualization switch 251. According to various embodiments, components such as HBA 253, NIC 255, and hardware accelerator 257, can be offloaded from servers 201, 211, and 221 onto a resource virtualization switch 251. The resources including NIC 243 and NIC 245 are maintained in a shared and virtualized manner on a resource virtualization switch 251. Links can be provided between the resource virtualization switch and external switches such as a network switch. According to various embodiments, the resource virtualization switch 251 includes control logic that drives a NIC 253 connected to an external network independently from server 201, 211, and 221. In some instances, NIC initialization and management processes may be implemented by a resource virtualization switch 251 control plane even before any servers 201, 211, and 221 are connected to the resource virtualization switch.
According to various embodiments, a series of servers is connected to the resource virtualization switch using a PCI Express bus architecture. In some cases, a PCI Express bridge is used to increase compatibility with some existing systems. However, a PCI Express bridge is not necessarily needed. By using a resource virtualization switch, the number of resources and links can be significantly reduced while increasing allocation efficiency.
According to various embodiments, the separate servers 301, 311, and 321 are connected to a resource virtualization switch using an I/O bus. In one embodiment, an I/O bus interconnect 351 such as an I/O bus switch is used to connect the separate servers to external entities such as an IP network. The I/O bus interconnect 351 is associated with logic that allows aggregation of the memory address spaces 303, 313, and 323. Any logical address space that includes the memory address spaces of multiple computer systems or servers is referred to herein as an aggregated memory address space. In one embodiment, an aggregated memory address space is managed by an I/O bus switch or by a resource virtualization switch.
When a transaction occurs in a memory address space 313, the resource virtualization switch can identify the transaction as a server 311 transaction. The memory address space regions can be used to classify traffic. For example, data received from a server 311 in memory address space 313 can be assigned a particular identifier for transmission onto an IP network. When a reply to the transmission is received from the IP network, the exchange identifier is used to determine which server the resource virtualization switch forwards the reply to. In one example, a table listing server identifiers, memory address spaces, and source and destination address pairs is maintained by a resource virtualization switch. When a server writes a data block to a resource virtualization switch, an optional server identifier is assigned to IP packets for transmitting that data block. Reply messages with the same server identifier can then be appropriately forwarded to the originating server. It will be recognized that a variety of parameters other than server identifiers can be used to classify traffic.
It should also be noted that each server 301, 311, and 321 may be embodied in separate computer cases. In other examples, each server may be embodied in a card, a blade, or even a single integrated circuit (IC) device or portion of an IC device. Techniques for performing interconnection can be implemented on one or more application specific integrated circuits (ASICs) and/or programmable logic devices (PLDs). The entire interconnection mechanism can be provided on a server, a card, a chip, or on a processor itself.
In some examples, the transport layer protocols use the network layer Internet Protocol (IP) 431 associated with a device driver. The device driver may be a network interface card (NIC) driver 441 associated with the Internet Control Message Protocol (ICMP) 445 and the Internet Group Management Protocol (IGMP) 443. The device driver 441 is configured to allow kernel access to a peripheral such as a network interface card (NIC). In typical implementations, the NIC is included as a component on the server. However, including a resource such as a NIC on a server can be inefficient.
In some examples, the device driver is replaced with a modified device driver 541 or a virtual device driver 541 that may be associated with the Internet Control Message Protocol (ICMP) 545 and the Internet Group Management Protocol (IGMP) 543. Any device driver configured to drive a resource virtualization switch is referred to herein as a modified or virtual device driver. The modified or virtual device driver 541 is configured to allow kernel access to a virtual peripheral. The kernel continues to operate as though it has access to a peripheral such as a NIC card included in the server. That is, the kernel may continue to operate as though the NIC can be accessed directly over the bus without using a resource virtualization switch.
However, the virtual device driver supplied is actually driving access to an I/O bus switch 551 and an associated resource virtualization switch. The I/O bus switch 551 and associated resource virtualization switch can then perform processing to determine how to handle the request to access a particular resource such as a NIC. In some examples, the resource virtualization switch can apply traffic shaping or prioritization schemes to various requests.
Applications may continue to use a conventional network technology such as TCP/IP and a virtual NIC driver 551 can automatically modify data to allow transmission on an I/O bus such as PCI Express. Hardware accelerators such as eXtensible Markup Language (XML) accelerators, security accelerators, digital signal processors (DSPs), and graphics accelerators can be virtualized while allowing rapid and efficient access in a secure local bus environment. Mainframe access using KVM can be shared. Quality of service and traffic engineering can be applied at the bus level. Furthermore, resources can be flexibly provisioned and reconfigured. Multiple VNICs can be assigned to a single application to allow for path redundancy in the event that a single NIC fails.
data bus width;
physical address;
types of interrupts that may be serviced;
size of the receive buffer ring;
buffer threshold;
types of data that can be received
In some embodiments, a NIC driver typically includes a send driver and a receive driver. A send driver initiates a transmission whenever the upper level software passes data to the driver. If the driver is unable to transmit the packet immediately, the supplied packet is queued in a transmit-pending buffer associated with a NIC. However, in an implementation using VNICs, the supplied packet is transmitted immediately over an I/O bus to a resource virtualization switch. In some instances, the resource virtualization switch queues the packet in a transmit-pending buffer or in a queue associated with the initiating server. After forwarding the packet, the send driver operates in conjunction with an interrupt service routing (ISR) and interrupts the processor to signal the end of transmission and indicate status to the processor.
A receive driver conventionally transfers data received from a network to the memory of the host. Typically, network data is received on a receive buffer ring associated with a NIC card and transferred to memory upon accessing an ISR. However, since a NIC is moved from a server onto a resource virtualization switch, the VNIC driver receives data directly from an I/O bus. The VNIC driver is interrupt driven and arbitrates for access to the I/O bus connecting the host to the resource virtualization switch. When access is available, the resource virtualization switch reads buffer rings or descriptor queues associated with a resource virtualization switch and transfers data into its own receive buffer ring. It can then proceed to interrupt the host processor to transfer data into host memory or directly transfer data into host memory and interrupt the host processor with status information when the transfer is complete.
Consequently, when a server is writing to a corresponding VNIC, the server will write descriptors into the buffer/descriptor ring of corresponding VNIC. In one example, virtual NICs 721 and 723 are included in a VNIC chip coupled to NIC 731. VNICs 721 and 723 each have buffer/descriptor rings accessible by servers bound to those particular VNICs. Similarly, servers may be bound to VNICs 725 and 727 included in a separate VNIC chip and coupled to NIC 733. Each VNIC chip can be coupled to multiple servers, depending on the number of available VNIC chip ports. In one example, a VNIC chip has 4 ports connected to four separate servers over a PCI Express bus. Each VNIC chip can be coupled to separate conventionally available NICs or can have NIC functionality integrated within each chip.
When a data sequence is received from a server 701 at a VNIC 721, information identifying the server associated with the data sequence is mapped with server 701 and maintained in a database associated with VNIC 721. The NIC 731 then forwards the data onto an IP network with information identifying a particular exchange sequence, conversation, port number, or originating server. According to various embodiments, the server 701 and VNIC 721 communicate using conventional bus arbitration mechanisms available on a PCI Express bus. NICs 731 and 733 communicate with external network entities in the same manner conventional NICs communicate.
The server platform 811 is associated with memory 819 and a processor subsystem 813, a power subsystem 815, and a storage subsystem 817. In some embodiments, the server platform 811 includes tables with information mapping various servers connected through the I/O bus switch 821 and various port adapter resources and network interfaces. The processor subsystem 813 is configured to manage port adapter resource as though the port adapters and network interfaces 881-887 were included in individual servers. In one example, the processor subsystem 813 is configured to initialize an IP network connection regardless of whether servers have been connected to the server platform 811.
According to various embodiments, the I/O bus switch 821 supports flexible virtual channel configuration, high availability, and dynamic port configurations. Examples of I/O bus switches include the PCI Express switch PEX 8532 available from PLX Technology, Inc. of Sunnyvale, Calif. and the PCI Express switch PES-48G available from IMC Semiconductor of Agoura Hills, Calif.
In one embodiment, a VNIC chip or VN chip 851 is coupled to the I/O Bus switch 821. The VN chip 851 has I/O ports 871-877 such as PCI Express interfaces coupled to the I/O bus switch 821. The VN chip 851 also has a connection with the processor subsystem 813 and a series of network interfaces 881-887 connecting the VN chip 851 to external network entities. In other examples, the VN chip may not include NIC interfaces and instead may be connected to conventional NICs.
The VN chip 851 includes classifier logic 857, a queue manager 855, and a buffer manager 853. According to various embodiments, the classifier logic 857 includes parse and lookup logic configured to identify information such as a packet destination server and priority. Classifier logic can also be used to filter incoming data or apply traffic policing policies. In some instances, classifier logic can be used to block packets in order to implement a firewall. In one embodiment, classifier logic 857 parses a packet and uses the information in the packet to identify entries in lookup tables. The data is then buffered. Buffer manager 853 manages data in memory associated with the VN chip 851. Queue manager 855 manages descriptors for data posted. A descriptor can include a reference to a memory location, a length, a source port, and a multicast count, as well as other parameters.
In one example, classifier logic 857 determines that the packet received is a high priority packet and should be placed in a high priority queue by the buffer manager 853. Parameters provided may include a pointer, a length, a source port, a multicast count, and a queue identifier. The data is then placed into memory and information referencing the data such as a pointer and a length is posted into a buffer ring or a descriptor ring. When a connected server successfully arbitrates for bus access, the server reads the buffer ring or descriptor ring and obtains the data from memory associated with the VN chip. According to various embodiments, the server reads the data directly into its own memory.
Each individual server may also include descriptor queues. As will be appreciated, the servers connected to the I/O Bus Switch including the resource virtualization switch arbitrate for access to the I/O Bus. When access is obtained, data can be read from memory associated with one of the server based on the information provided in the descriptor queues.
More information about descriptors is provided in U.S. patent application Ser. No. 11/086,117 by Ariel Cohen, Shreyas Shah, and Raymond Lim filed on Mar. 21, 2005 and titled COMMUNICATION BETWEEN COMPUTER SYSTEMS OVER AN INPUT/OUTPUT (I/O) BUS, the entirety of which is incorporated by reference for all purposes.
Redundancy mechanisms are also provided to allow continued operation in the event that a NIC or other resource fails or a resource virtualization switch itself fails. Redundancy mechanisms can be managed by a VNIC device or VN chip, a resource virtualization switch, or by the individual servers themselves.
The techniques and mechanisms of the present invention contemplate providing multipathing using VNICs. In one embodiment, multiple VNIC device drivers 911 and 913 are configured on a server 901. Multiple VNIC device drivers 915 and 917 are configured on server 903. The server performs protocols such as link aggregation or IP multipathing to achieve redundancy. The VNIC device drivers are associated with different VNICs and NICs and possibly different resource virtualization switches. In one embodiment, a server 901 includes an active VNIC driver 911 associated with resource virtualization switch 923. If the NIC in resource virtualization switch 923 fails, or the resource virtualization switch 923 itself fails, the standby VNIC driver 913 can take over operation. The VNIC driver on the server gets an indicator that a VNIC, NIC, or NIC port is down. Switchover can occur after a period of inactivity, interrupts, or after failure to receive heartbeat indicators. The driver propagates this information to the IP routing layer where all routes that correspond to that device are deleted. If there is a redundant configuration available, such as a redundant driver, the IP routing layer replaces the original outgoing interface with the new redundant interface. The traffic is then forwarded using the standby VNIC driver.
By providing multiple VNIC device drivers with each server, port failure, failure, and resource virtualization switch failure can all be handled without excessive detriment to higher layer applications. However, each VNIC driver may be associated with NICs that have different IP addresses and MAC addresses. However, protocols such as link aggregation and IP multipathing require processing resources from the server. Processing resources may or may not be readily available. Furthermore, because the redundant NIC used has a different IP and MAC address, route updates may take a longer period of time.
According to various embodiments, active NIC 1021 and standby NIC 1023 may have the same configuration including the same MAC address and the same IP address. In other examples, the MAC addresses and the IP addresses may not be the same. Conventional NICs all have globally unique MAC addresses. Manufacturers of NICs request blocks of addresses from a central authority to ensure that no two conventional NICs have the same address to avoid conflicts. However, the VN chip of the present invention allows multiple NICs with the same IP and MAC addresses. Conflicts are avoided because one of the NICs with the same MAC and IP addresses is held inactive.
The control logic associated with the resource virtualization switch monitors the active NIC 1021. In one embodiment, failover is initiated if heartbeat signals are not received from an active NIC after a predetermined period of time. Classifier logic tables can be updated to reflect the new binding of VNICs 1011, 1013, 1015, and 1017 to standby NIC 1023. In some cases, the IP and MAC addresses of the active NIC 1021 and the standby NIC 1023 are exactly the same, and the standby NIC 1023 can assume operation of the active NIC seamlessly. In some embodiments, the MAC addresses of the NICs are different.
Protocols such as the address resolution protocol (ARP) can be used to facilitate failover and allow external network entities to learn IP MAC address associations. ARP maps IP network addresses to the hardware addresses. An external network entity broadcasts a packet that requests the identity of the owner of a particular IP address, such as the IP address used by the now failed NIC 1021. The redundant NIC 1023 will check its IP address and respond with its MAC address. The external network entity learns that the IP address is now associated with the NIC with the new MAC address. Communications over the IP network now use the new MAC address of standby NIC 1023. A number of variations to ARP can also be used.
As noted above, a server is bound to a particular VNIC and uses a buffer/descriptor ring associated with the VNIC to transmit data to a resource virtualization switch. To provide a redundant VNIC to a server, a redundant set of buffer/descriptor queues are provided but left unused. The NIC bound to the redundant VNIC is similarly left unused by the server, although the NIC may be used by a separate server. When failure of a NIC is detected, typically through the failure to receive heartbeat messages, failover is initiated. A new set of buffer/descriptor queues are provided and the server begins to write to the new set of buffer/descriptor queues.
Although a limited number of switchover techniques are described above, it should be recognized that a wide number of variations are possible. By offloading resources such as NICs onto one or more resource virtualization switches and by providing one or more virtual NIC drivers on each server, resources can be dynamically mapped to different servers based on need.
At 1213, classifier logic tables are updated to terminate at the new port. New buffer/descriptor rings may also be provided for the connected servers at 1215. As noted above, each VNIC is associated with buffer/descriptor rings that allow I/O bus connected servers to communicate with the resource virtualization switch and external network entities. At 1217, the server begins to write data into the new buffer/descriptor rings. The buffer/descriptor rings also allow the resource virtualization switch to provide data to each connected server over the I/O bus.
Port adapter failure may also be detected at 1203. When a port adapter itself fails, this may be detected by a VN chip associated with a resource virtualization switch or may be detected by the control plane of the resource virtualization switch itself. In some examples, a redundant VNIC bound to a new port adapter can be provided in the same manner as described in 1211 to 1217. However, the VNIC can be also be bound to a redundant port adapter. That is, the same buffer/descriptor ring associated with the currently active VNIC can continue to be used while the new VNIC is dynamically bound to a new port adapter. The new port adapter may have the exact same configuration as the old port adapter. The server can continue writing to the same buffer descriptor ring without knowledge of any port or port adapter failure.
The resource virtualization switch itself may also fail at 1205. If the resource virtualization switch itself fails, a protocol such as a conventional multipathing protocol prompts switchover to a redundant VNIC driver 1231. According to various embodiments, redundant VNIC drivers are coupled to redundant VNICs on separate resource virtualization switches. The redundant resource virtualization switch now handles traffic originally handled by the failed resource virtualization switch. Although packet drops and server involvement is minimized, in some instances, packets may have to be retransmitted using TCP/IP retransmission capabilities.
Resource virtualization switches can also support additional features.
Consequently, the techniques and mechanisms of the present invention provide traffic engineering outside of the network switch environment. In one embodiment, traffic engineering functionality 1309 is provided at servers 1301 and 1307. Traffic engineering 1313 is also integrated into an I/O fabric 1311. Traffic engineering 1325 is also implemented at VNICs 1321 and 1323. VNICs 1321 and 1323 are connected to Ethernet ports 1331 and 1333 that allow connection to network switches. Consequently, traffic engineering is permitted all the way down to the user application level. Flows can be assigned priorities and policies to allow endpoint to endpoint traffic engineering. Flow counters are used to support charge back based upon user, application and departments. Traffic redirection, passive monitoring, intrusion detection and prevention are all supported. Mapping application flows and providing QoS from the network connection to an application in a server allows support of application service level agreements. It should be noted that an individual server can also be a guest operating system or a virtual machine. Virtual resources connecting servers to an external network can also be provisioned based on policy considerations. PCI Express resources such as bus bandwidth and latency can also be provisioned based on policy considerations.
In one embodiment, security accelerators 1427 and 1429 are provided with VNICs 1421 and 1423 in a resource virtualization switch. Servers 1401 and 1407 are connected to an I/O fabric 1411. VNICs 1421 and 1423 are connected to Ethernet ports 1431 and 1433 that allow connection to network switches. However, communications within the protected zone 1451 are secure because servers 1401 and 1407 have access to security accelerators 1427 and 1429. Consequently, end to end security is provided by protecting information locally as well as externally at network switches.
In addition, although exemplary techniques and devices are described, the above-described embodiments may be implemented in a variety of manners, media, and mechanisms. For instance, instructions and data for implementing the above-described invention may be stored on a disk drive, a hard drive, a floppy disk, a server computer, or a remotely networked computer. Hardware used to implement various techniques may be embodied as racks, cards, integrated circuited devices, or portions of semiconductor chips. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
This application claims priority from U.S. Provisional Patent Application No. 60/590,450 titled METHODS AND APPARATUS FOR RESOURCE VIRTUALIZATION, filed on Jul. 22, 2004 by Shreyas Shah, Subramanian Vinod, R. K. Anand, and Ashok Krishnamurthi, the entirety of which is incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5621913 | Tuttle et al. | Apr 1997 | A |
5754948 | Metze | May 1998 | A |
5815675 | Steele et al. | Sep 1998 | A |
5898815 | Bluhm et al. | Apr 1999 | A |
6003112 | Tetrick | Dec 1999 | A |
6145028 | Shank et al. | Nov 2000 | A |
6247086 | Allingham | Jun 2001 | B1 |
6253334 | Amdahl et al. | Jun 2001 | B1 |
6308282 | Huang et al. | Oct 2001 | B1 |
6314525 | Mahalingham et al. | Nov 2001 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6377992 | Plaza Fernändez et al. | Apr 2002 | B1 |
6393483 | Latif et al. | May 2002 | B1 |
6418494 | Shatas et al. | Jul 2002 | B1 |
6430191 | Klausmeier et al. | Aug 2002 | B1 |
6466993 | Bonola | Oct 2002 | B1 |
6470397 | Shah et al. | Oct 2002 | B1 |
6578128 | Arsenault et al. | Jun 2003 | B1 |
6594329 | Susnow | Jul 2003 | B1 |
6628608 | Lau et al. | Sep 2003 | B1 |
6708297 | Bassel | Mar 2004 | B1 |
6725388 | Susnow | Apr 2004 | B1 |
6757725 | Frantz et al. | Jun 2004 | B1 |
6804257 | Benayoun et al. | Oct 2004 | B1 |
6823458 | Lee et al. | Nov 2004 | B1 |
6898670 | Nahum | May 2005 | B2 |
6931511 | Weybrew et al. | Aug 2005 | B1 |
6963946 | Dwork et al. | Nov 2005 | B1 |
6970921 | Wang et al. | Nov 2005 | B1 |
7046668 | Pettey et al. | May 2006 | B2 |
7093265 | Jantz et al. | Aug 2006 | B1 |
7096308 | Main et al. | Aug 2006 | B2 |
7103064 | Pettey et al. | Sep 2006 | B2 |
7103888 | Cayton et al. | Sep 2006 | B1 |
7111084 | Tan et al. | Sep 2006 | B2 |
7120728 | Krakirian et al. | Oct 2006 | B2 |
7127445 | Mogi et al. | Oct 2006 | B2 |
7143227 | Maine | Nov 2006 | B2 |
7159046 | Mulla et al. | Jan 2007 | B2 |
7171434 | Ibrahim et al. | Jan 2007 | B2 |
7171495 | Matters et al. | Jan 2007 | B2 |
7188209 | Pettey et al. | Mar 2007 | B2 |
7203842 | Kean | Apr 2007 | B2 |
7209439 | Rawlins et al. | Apr 2007 | B2 |
7213246 | van Rietschote et al. | May 2007 | B1 |
7219183 | Pettey et al. | May 2007 | B2 |
7240098 | Mansee | Jul 2007 | B1 |
7260661 | Bury et al. | Aug 2007 | B2 |
7269168 | Roy et al. | Sep 2007 | B2 |
7281030 | Davis | Oct 2007 | B1 |
7281077 | Woodral | Oct 2007 | B2 |
7281169 | Golasky et al. | Oct 2007 | B2 |
7307948 | Infante et al. | Dec 2007 | B2 |
7308551 | Arndt et al. | Dec 2007 | B2 |
7334178 | Aulagnier | Feb 2008 | B1 |
7345689 | Janus et al. | Mar 2008 | B2 |
7346716 | Bogin et al. | Mar 2008 | B2 |
7360017 | Higaki et al. | Apr 2008 | B2 |
7366842 | Acocella et al. | Apr 2008 | B1 |
7386637 | Arndt et al. | Jun 2008 | B2 |
7412536 | Oliver et al. | Aug 2008 | B2 |
7421710 | Qi et al. | Sep 2008 | B2 |
7424529 | Hubis | Sep 2008 | B2 |
7433300 | Bennett et al. | Oct 2008 | B1 |
7457897 | Lee et al. | Nov 2008 | B1 |
7457906 | Pettey et al. | Nov 2008 | B2 |
7493416 | Pettey | Feb 2009 | B2 |
7502884 | Shah et al. | Mar 2009 | B1 |
7509436 | Rissmeyer | Mar 2009 | B1 |
7516252 | Krithivas | Apr 2009 | B2 |
7602774 | Sundaresan et al. | Oct 2009 | B1 |
7609723 | Munguia | Oct 2009 | B2 |
7634650 | Shah et al. | Dec 2009 | B1 |
7711789 | Jnagal et al. | May 2010 | B1 |
7782869 | Chitlur Srinivasa | Aug 2010 | B1 |
7783788 | Quinn et al. | Aug 2010 | B1 |
7792923 | Kim | Sep 2010 | B2 |
7793298 | Billau et al. | Sep 2010 | B2 |
7821973 | McGee et al. | Oct 2010 | B2 |
7836332 | Hara et al. | Nov 2010 | B2 |
7843907 | Abou-Emara et al. | Nov 2010 | B1 |
7849153 | Kim | Dec 2010 | B2 |
7870225 | Kim | Jan 2011 | B2 |
7933993 | Skinner | Apr 2011 | B1 |
7937447 | Cohen et al. | May 2011 | B1 |
7941814 | Okcu et al. | May 2011 | B1 |
8041875 | Shah et al. | Oct 2011 | B1 |
8180872 | Marinelli et al. | May 2012 | B1 |
8180949 | Shah et al. | May 2012 | B1 |
8185664 | Lok et al. | May 2012 | B1 |
8195854 | Sihare | Jun 2012 | B1 |
8200871 | Rangan et al. | Jun 2012 | B2 |
8228820 | Gopal Gowda et al. | Jul 2012 | B2 |
8261068 | Raizen et al. | Sep 2012 | B1 |
8285907 | Chappell et al. | Oct 2012 | B2 |
8291148 | Shah et al. | Oct 2012 | B1 |
8392645 | Miyoshi | Mar 2013 | B2 |
8397092 | Karnowski | Mar 2013 | B2 |
8443119 | Limaye et al. | May 2013 | B1 |
8458306 | Sripathi | Jun 2013 | B1 |
20010032280 | Osakada et al. | Oct 2001 | A1 |
20020023151 | Iwatani | Feb 2002 | A1 |
20020065984 | Thompson et al. | May 2002 | A1 |
20020069245 | Kim | Jun 2002 | A1 |
20020152327 | Kagan et al. | Oct 2002 | A1 |
20030007505 | Noda et al. | Jan 2003 | A1 |
20030028716 | Sved | Feb 2003 | A1 |
20030051076 | Webber | Mar 2003 | A1 |
20030081612 | Goetzinger et al. | May 2003 | A1 |
20030093501 | Carlson et al. | May 2003 | A1 |
20030099254 | Richter | May 2003 | A1 |
20030110364 | Tang et al. | Jun 2003 | A1 |
20030126315 | Tan et al. | Jul 2003 | A1 |
20030126320 | Liu et al. | Jul 2003 | A1 |
20030126344 | Hodapp, Jr. | Jul 2003 | A1 |
20030131182 | Kumar et al. | Jul 2003 | A1 |
20030172149 | Edsall et al. | Sep 2003 | A1 |
20030200315 | Goldenberg et al. | Oct 2003 | A1 |
20030208614 | Wilkes | Nov 2003 | A1 |
20030212755 | Shatas et al. | Nov 2003 | A1 |
20030226018 | Tardo et al. | Dec 2003 | A1 |
20030229645 | Mogi et al. | Dec 2003 | A1 |
20040003141 | Matters et al. | Jan 2004 | A1 |
20040003154 | Harris et al. | Jan 2004 | A1 |
20040008713 | Knight et al. | Jan 2004 | A1 |
20040025166 | Adlung et al. | Feb 2004 | A1 |
20040030857 | Krakirian et al. | Feb 2004 | A1 |
20040034718 | Goldenberg et al. | Feb 2004 | A1 |
20040057441 | Li et al. | Mar 2004 | A1 |
20040078632 | Infante et al. | Apr 2004 | A1 |
20040081145 | Harrekilde-Petersen et al. | Apr 2004 | A1 |
20040107300 | Padmanabhan et al. | Jun 2004 | A1 |
20040123013 | Clayton et al. | Jun 2004 | A1 |
20040139237 | Rangan et al. | Jul 2004 | A1 |
20040151188 | Maveli et al. | Aug 2004 | A1 |
20040160970 | Dally et al. | Aug 2004 | A1 |
20040172494 | Pettey et al. | Sep 2004 | A1 |
20040179529 | Pettey et al. | Sep 2004 | A1 |
20040218579 | An | Nov 2004 | A1 |
20040225719 | Kisley et al. | Nov 2004 | A1 |
20040225764 | Pooni et al. | Nov 2004 | A1 |
20040233933 | Munguia | Nov 2004 | A1 |
20040236877 | Burton | Nov 2004 | A1 |
20050010688 | Murakami et al. | Jan 2005 | A1 |
20050033878 | Pangal et al. | Feb 2005 | A1 |
20050039063 | Hsu et al. | Feb 2005 | A1 |
20050044301 | Vasilevsky et al. | Feb 2005 | A1 |
20050050191 | Hubis | Mar 2005 | A1 |
20050080923 | Elzur | Apr 2005 | A1 |
20050080982 | Vasilevsky et al. | Apr 2005 | A1 |
20050091441 | Qi et al. | Apr 2005 | A1 |
20050111483 | Cripe et al. | May 2005 | A1 |
20050114569 | Bogin et al. | May 2005 | A1 |
20050114595 | Karr et al. | May 2005 | A1 |
20050120160 | Plouffe et al. | Jun 2005 | A1 |
20050141425 | Foulds | Jun 2005 | A1 |
20050160251 | Zur et al. | Jul 2005 | A1 |
20050182853 | Lewites et al. | Aug 2005 | A1 |
20050188239 | Golasky et al. | Aug 2005 | A1 |
20050198410 | Kagan et al. | Sep 2005 | A1 |
20050198523 | Shanbhag et al. | Sep 2005 | A1 |
20050232285 | Terrell et al. | Oct 2005 | A1 |
20050238035 | Riley | Oct 2005 | A1 |
20050240621 | Robertson et al. | Oct 2005 | A1 |
20050240932 | Billau et al. | Oct 2005 | A1 |
20050262269 | Pike | Nov 2005 | A1 |
20060007937 | Sharma | Jan 2006 | A1 |
20060010287 | Kim | Jan 2006 | A1 |
20060013240 | Ma et al. | Jan 2006 | A1 |
20060045098 | Krause | Mar 2006 | A1 |
20060050693 | Bury et al. | Mar 2006 | A1 |
20060059400 | Clark et al. | Mar 2006 | A1 |
20060092928 | Pike et al. | May 2006 | A1 |
20060129699 | Kagan et al. | Jun 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060168286 | Makhervaks et al. | Jul 2006 | A1 |
20060168306 | Makhervaks et al. | Jul 2006 | A1 |
20060179178 | King | Aug 2006 | A1 |
20060182034 | Klinker et al. | Aug 2006 | A1 |
20060184711 | Pettey et al. | Aug 2006 | A1 |
20060193327 | Arndt et al. | Aug 2006 | A1 |
20060212608 | Arndt et al. | Sep 2006 | A1 |
20060224843 | Rao et al. | Oct 2006 | A1 |
20060233168 | Lewites et al. | Oct 2006 | A1 |
20060242332 | Johnsen et al. | Oct 2006 | A1 |
20060253619 | Torudbakken et al. | Nov 2006 | A1 |
20060282591 | Krithivas | Dec 2006 | A1 |
20060292292 | Brightman et al. | Dec 2006 | A1 |
20070050520 | Riley | Mar 2007 | A1 |
20070067435 | Landis et al. | Mar 2007 | A1 |
20070101173 | Fung | May 2007 | A1 |
20070130295 | Rastogi et al. | Jun 2007 | A1 |
20070220170 | Abjanic et al. | Sep 2007 | A1 |
20070286233 | Latif et al. | Dec 2007 | A1 |
20080025217 | Gusat et al. | Jan 2008 | A1 |
20080082696 | Bestler | Apr 2008 | A1 |
20080159260 | Vobbilisetty et al. | Jul 2008 | A1 |
20080192648 | Galles | Aug 2008 | A1 |
20080225877 | Yoshida | Sep 2008 | A1 |
20080270726 | Elnozahy et al. | Oct 2008 | A1 |
20080301692 | Billau et al. | Dec 2008 | A1 |
20080307150 | Stewart et al. | Dec 2008 | A1 |
20090307388 | Tchapda | Dec 2009 | A1 |
20100088432 | Itoh | Apr 2010 | A1 |
20100138602 | Kim | Jun 2010 | A1 |
20100195549 | Aragon et al. | Aug 2010 | A1 |
20100293552 | Allen et al. | Nov 2010 | A1 |
20110153715 | Oshins et al. | Jun 2011 | A1 |
20110154318 | Oshins et al. | Jun 2011 | A1 |
20120079143 | Krishnamurthi et al. | Mar 2012 | A1 |
20120144006 | Wakamatsu et al. | Jun 2012 | A1 |
20120158647 | Yadappanavar et al. | Jun 2012 | A1 |
20120163376 | Shukla et al. | Jun 2012 | A1 |
20120163391 | Shukla et al. | Jun 2012 | A1 |
20120166575 | Ogawa et al. | Jun 2012 | A1 |
20120167080 | Vilayannur et al. | Jun 2012 | A1 |
20120209905 | Haugh et al. | Aug 2012 | A1 |
20120239789 | Ando et al. | Sep 2012 | A1 |
20120304168 | Raj Seeniraj et al. | Nov 2012 | A1 |
20130031200 | Gulati et al. | Jan 2013 | A1 |
20130080610 | Ando | Mar 2013 | A1 |
20130138758 | Cohen et al. | May 2013 | A1 |
20130138836 | Cohen et al. | May 2013 | A1 |
20130179532 | Tameshige et al. | Jul 2013 | A1 |
Entry |
---|
Figueiredo et al, “Resource Virtualization Renaissance”, May 2005, IEEE Computer Society, pp. 28-31. |
Ajay V. Bhatt, “Creating a Third Generation I/O Interconnect,” Intel ® Developer Network for PCI Express* Architecture, www.express-lane.org, printed on Aug. 22, 2005, pp. 1-11. |
Wikipedia's article on ‘Infiniband’ from Aug. 2010. |
U.S. Appl. No. 11/083,258, Final Office Action mailed on Feb. 2, 2009, 13 pages. |
U.S. Appl. No. 11/083,258, Final Office Action mailed on Jun. 10, 2010, 15 pages. |
U.S. Appl. No. 11/083,258, Final Office Action mailed on Oct. 26, 2012, 30 pages. |
U.S. Appl. No. 11/083,258, Non-Final Office Action mailed on Jul. 11, 2008, 12 pages. |
U.S. Appl. No. 11/083,258, Non-Final Office Action mailed on Nov. 12, 2009, 13 pages. |
U.S. Appl. No. 11/083,258, Non-Final Office Action mailed on Mar. 28, 2011, 14 pages. |
U.S. Appl. No. 11/083,258, Non-Final Office Action mailed on Apr. 25, 2012, 30 pages. |
U.S. Appl. No. 11/086,117, Final Office Action mailed on Dec. 23, 2008, 11 pages. |
U.S. Appl. No. 11/086,117, Final Office Action mailed on Dec. 10, 2009, 18 pages. |
U.S. Appl. No. 11/086,117, Non-Final Office Action mailed on May 6, 2009, 12 pages. |
U.S. Appl. No. 11/086,117, Non-Final Office Action mailed on Jul. 22, 2008, 13 pages. |
U.S. Appl. No. 11/086,117, Non-Final Office Action mailed on Jul. 22, 2010, 24 pages. |
U.S. Appl. No. 11/086,117, Notice of Allowance mailed on Dec. 27, 2010, 15 pages. |
U.S. Appl. No. 11/179,085, Final Office Action mailed on Oct. 30, 2007, 13 pages. |
U.S. Appl. No. 11/179,085, Non-Final Office Action mailed on May 31, 2007, 14 pages. |
U.S. Appl. No. 11/179,085, Notice of Allowance mailed on Aug. 11, 2008, 4 pages. |
U.S. Appl. No. 11/179,085, Pre Appeal Brief Request mailed on Jan. 24, 2008, 6 pages. |
U.S. Appl. No. 11/179,085, Preliminary Amendment mailed on May 27, 2008, 9 pages. |
U.S. Appl. No. 11/179,085, Response to Non-final Office Action filed on Aug. 10, 2007, 8 pages. |
U.S. Appl. No. 11/179,085, filed Jul. 11, 2005. |
U.S. Appl. No. 11/179,437, Final Office Action mailed on Jan. 8, 2009, 13 pages. |
U.S. Appl. No. 11/179,437, Non-Final Office Action mailed on May 8, 2008, 11 pages. |
U.S. Appl. No. 11/179,437, Notice of Allowance mailed on Jun. 1, 2009, 8 pages. |
U.S. Appl. No. 11/179,437, U.S. Patent Application mailed on Jul. 11, 2005. |
U.S. Appl. No. 11/184,306, Non-Final Office Action mailed on Apr. 10, 2009, 5 pages. |
U.S. Appl. No. 11/184,306, Notice of Allowance mailed on Aug. 10, 2009, 4 pages. |
U.S. Appl. No. 11/200,761, Final Office Action mailed on Jul. 9, 2010, 22 pages. |
U.S. Appl. No. 11/200,761, Final Office Action mailed on Aug. 13, 2009, 22 pages. |
U.S. Appl. No. 11/200,761, Non-Final Office Action mailed on Jun. 11, 2013, 21 pages. |
U.S. Appl. No. 11/200,761, Non-Final Office Action mailed on Aug. 31, 2012, 21 pages. |
U.S. Appl. No. 11/200,761, Non-Final Office Action mailed on Jan. 20, 2010, 22 pages. |
U.S. Appl. No. 11/200,761, Non-Final Office Action mailed on Mar. 12, 2009, 22 pages. |
U.S. Appl. No. 11/200,761, Office Action mailed on Feb. 7, 2013, 22 pages. |
U.S. Appl. No. 11/200,761, filed Aug. 9, 2005, 32 pages. |
U.S. Appl. No. 11/222,590, Non-Final Office Action mailed on Mar. 21, 2007, 6 pages. |
U.S. Appl. No. 11/222,590, Notice of Allowance mailed on Sep. 18, 2007, 5 pages. |
U.S. Appl. No. 12/250,842, Allowed Claims mailed on Jun. 10, 2011. |
U.S. Appl. No. 12/250,842, Non-Final Office Action mailed on Aug. 10, 2010, 9 pages. |
U.S. Appl. No. 12/250,842, Notice of Allowance mailed on Feb. 18, 2011, 5 pages. |
U.S. Appl. No. 12/250,842, Notice of Allowance mailed on Jun. 10, 2011, 5 pages. |
U.S. Appl. No. 12/250,842, Response to Non-Final Office Action filed on Nov. 19, 2010, 8 pages. |
U.S. Appl. No. 12/250,842, filed Oct. 14, 2008. |
U.S. Appl. No. 12/544,744, Final Office Action mailed on Feb. 27, 2013 27 pages. |
U.S. Appl. No. 12/544,744, Non-Final Office Action mailed on Jun. 6, 2012, 26 pages. |
U.S. Appl. No. 12/862,977, Non-Final Office Action mailed on Mar. 1, 2012, 8 pages. |
U.S. Appl. No. 12/862,977, Non-Final Office Action mailed on Aug. 29, 2012, 9 pages. |
U.S. Appl. No. 12/862,977, Notice of Allowance mailed on Feb. 7, 2013, 11 pages. |
U.S. Appl. No. 12/890,498, Non-Final Office Action mailed on Nov. 3, 2011, 10 pages. |
U.S. Appl. No. 12/890,498, Non-Final Office Action mailed on May 21, 2013, 22 pages. |
U.S. Appl. No. 13/229,587, Non-Final Office Action mailed on Oct. 6, 2011, 4 pages. |
U.S. Appl. No. 13/229,587, Notice of Allowance mailed on Jan. 19, 2012, 5 pages. |
U.S. Appl. No. 13/229,587, Response to Non-Final Office Action filed on Jan. 4, 2012, 4 pages. |
U.S. Appl. No. 13/445,570, Notice of Allowance mailed on Jun. 20, 2012, 5 pages. |
Kesavan et al., “Active CoordinaTion (ACT)—Toward Effectively Managing Virtualized Multicore Clouds”, IEEE, 2008. |
Liu et al., “High Performance RDMA-Based MPI Implementation over InfiniBand”, ICS'03, San Francisco, ACM, Jun. 23-26, 2003, 10 pages. |
Poulton , “Xsigo—Try it out, I dare you!”, Nov. 16, 2009. |
Ranadive et al., “IBMon: Monitoring VMM-Bypass Capable InfiniBand Devices using Memory Introspection”, ACM, 2009. |
Wong et al., “Effective Generation of Test Sequences for Structural Testing of Concurrent Programs”, IEEE International Conference of Complex Computer Systems (ICECCS'05), 2005,. |
Xu et al., “Performance Virtualization for Large-Scale Storage Systems”, IEEE, 2003, 10 pages. |
U.S. Appl. No. 11/083,258, Advisory Action mailed on Jan. 24, 2013, 3 pages. |
U.S. Appl. No. 11/200,761, Final Office Action mailed on Jan. 9, 2014, 23 pages. |
U.S. Appl. No. 11/083,258, Non-Final Office Action, mailed Sep. 18, 2013, 35 pages. |
Number | Date | Country | |
---|---|---|---|
20130145072 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
60590450 | Jul 2004 | US |