Traditional genome editing methods introduce a double-stranded DNA break (DSB) at a genomic target locus (14). The cellular response to a DSB lesion primarily proceeds through nonhomologous end joining (NHEJ) and related processes (15). Although NHEJ usually rejoins the two ends flanking the DSB, under typical genome editing conditions DSBs are continuously reintroduced, eventually resulting in the accumulation of insertions and deletions (indels) or translocations at the site of the DSB and disruption of the corresponding genomic locus (16). Actively dividing cells can also respond to DSBs by initiating homology-directed repair (HDR) in the presence of a donor DNA template containing homology to the regions surrounding the DSB, which allows researchers to more precisely and predictably manipulate genomes than is possible through NHEJ (17). HDR-dependent genome editing is limited by low efficiency arising from competition with NHEJ outcomes, and from the dependence of HDR on mitosis (18).
The development of base editing, which enables the direct, irreversible conversion of a C:G base pair to a T:A base pair in a programmable manner without requiring HDR or the introduction of a DSB, was recently reported (1). Base editors contain a single-stranded DNA-specific cytidine deaminase enzyme tethered to a catalytically impaired Cas9 protein and a base excision repair inhibitor (1, 4, 9, 10). The Cas9 variant binds a genomic locus of interest, programmed by a corresponding guide RNA. Formation of the protein:RNA:DNA ternary “R-loop” complex (19) exposes a small (˜5-nt) window of single-stranded DNA that serves as a substrate for the tethered cytidine deaminase enzyme. Cytidines within this window may be hydrolytically deaminated to uracils, resulting in G:U intermediates.
Base excision repair (BER) is the cell's primary response to G:U mismatches and is initiated by excision of the uracil by uracil N-glycosylase (UNG)(20). In an effort to protect the edited G:U intermediate from excision by UNG, an 83-amino acid uracil glycosylase inhibitor (UGI) was fused directly to the C-terminus of catalytically dead Cas9 (dCas9) (1). To manipulate cellular DNA mismatch repair systems into preferentially replacing the G in the G:U mismatch with an A, the Ala 840 amino acid in dCas9 was reverted to His, enabling the Cas9 protein to nick the DNA strand opposite the newly formed uracil, resulting in much more efficient conversion of the G:U intermediate to desired A:U and A:T products (1). Combining these two engineering efforts resulted in BE3, a single protein having a three-part fusion of the APOBEC1 cytidine deaminase enzyme tethered through a 16-amino acid linker to S. pyogenes dCas9(A840H), which is covalently linked to UGI through a 4-amino acid linker(1). Subsequent to this report, the scientific community has used BE3 and related base editors for a wide variety of applications including plant genome editing, in vivo mammalian genome editing, targeted mutagenesis, and knockout studies (2-13). The scope of base editing was expanded as described by reporting BE3 variants with altered PAM requirements (4), narrowed editing windows (4), reduced off-target editing (10), and small molecule dependence (21).
The programmable conversion of target C:G base pairs to T:A base pairs without inducing double-stranded DNA breaks or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases (1) was recently developed. Over the past year, third-generation base editors (e.g., BE3) and related technologies have been successfully used by many researchers in a wide range of organisms (2-13). At some loci, base editors such as BE3 give rise to undesired byproducts in which the target C:G base pair is converted into a G:C or A:T base pair, rather than the desired T:A product (2, 3, 6-8). Thus, there is a need to generate base editors that have improved performance, for example, base editors that have improved editing efficiency, improved product purity, and/or yield lower indel frequency.
Provided herein are new base editors that convert C:G base pairs to T:A base pairs with greater efficiency, higher product purity, and/or reduced indel frequencies than previously described base editors (e.g., BE3). Some aspects of the disclosure are based on the discovery that base editors fused to a protein that binds to the ends of double strand breaks, for example, the Gam protein of bacteriophage Mu, minimize the formation of undesired indels during base editing, and further increase product purity. Thus, the disclosure provides new base editors comprising proteins (e.g., Gam) that minimize the formation of indels that result from double strand breaks (DSBs).
Determinants of base editing product purity, which establish that UNG activity is required for the formation of undesired byproducts, are described herein. By analyzing individual DNA sequencing reads, it was discovered that blocking UNG access to the uracil intermediate is important for target loci in which a single C is within the editing window in order to minimize undesired products. Using these insights, a fourth-generation base editor, BE4 (e.g., SaBE4), was generated that performs base editing with higher efficiency and greatly improved product purity compared to previously described base editors including BE3. Further, additional base editors (e.g., BE3-Gam and BE4-Gam) were generated, which incorporate the dsDNA end-binding protein Gam to minimize the formation of undesired indels during base editing, and to further increase product purity.
As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.
The term “nucleic acid programmable DNA binding protein” or “napDNAbp” refers to a protein that associates with a nucleic acid (e.g., DNA or RNA), such as a guide nucleic acid (e.g., gRNA), that guides the napDNAbp to a specific nucleic acid sequence, for example, by hybridinzing to the target nucleic acid sequence. For example, a Cas9 protein can associate with a guide RNA that guides the Cas9 protein to a specific DNA sequence is has complementary to the guide RNA. In some embodiments, the napDNAbp is a class 2 microbial CRISPR-Cas effector. In some embodiments, the napDNAbp is a Cas9 domain, for example, a nuclease active Cas9, a Cas9 nickase (nCas9), or a nuclease inactive Cas9 (dCas9). Examples of nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute. It should be appreciated, however, that nucleic acid programmable DNA binding proteins also include nucleic acid programmable proteins that bind RNA. For example, the napDNAbp may be associated with a nucleic acid that guides the napDNAbp to an RNA. Other nucleic acid programmable DNA binding proteins are also within the scope of this disclosure, though they may not be specifically described in this disclosure.
In some embodiments, the napDNAby is an “RNA-programmable nuclease” or “RNA-guided nuclease.” The terms are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA(s) that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is also used to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as a single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (i.e., directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. In some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821 (2012), the entire contents of which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases And Uses Thereof,” and U.S. Provisional Patent Application Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2), and may be referred to as an “extended gRNA.” For example, an extended gRNA will bind two or more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example, Cas9 (Csnl) from Streptococcus pyogenes (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663 (2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607 (2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821 (2012), the entire contents of each of which are incorporated herein by reference.
Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to target, in principle, any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al., Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al., RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research (2013); Jiang, W. et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).
The term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casnl nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of which is hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti et al., J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase.
A nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) Cell. 28; 152(5):1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)). In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more amino acid changes compared to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.
In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, or at least 1300 amino acids in length. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO:1 (nucleotide); SEQ ID NO:2 (amino acid)).
LLFGSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR
MGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPV
ENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFIKDDS
IDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT
KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR
EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY
PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT
LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ
TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK
In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:3 (nucleotide) and/or SEQ ID NO: 4 (amino acid):
LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNWRQLLNAKLITQRKFDNLT
KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR
EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY
PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT
LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ
TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK
In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 5 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 6 (amino acid).
LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNWRQLLNAKLITQRKFDNLT
KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR
EVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKY
PKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEIT
LANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ
TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEK
In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1), Listeria innocua (NCBI Ref: NP_472073.1), Campylobacter jejuni (NCBI Ref: YP_002344900.1) or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 2.
In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and/or H840A mutation. dCas9 (D10A and H840A):
ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHER
QELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKK1VIKN
In some embodiments, the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided in SEQ ID NO: 6, or at corresponding positions in any of the amino acid sequences provided in SEQ ID NOs: 11-260. Without wishing to be bound by any particular theory, the presence of the catalytic residue H840 restores the activity of the Cas9 to cleave the non-edited (e.g., non-deaminated) strand containing a G opposite the targeted C. Restoration of H840 (e.g., from A840) does not result in the cleavage of the target strand containing the C. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a G to A change on the non-edited strand. Briefly, the C of a C-G basepair can be deaminated to a U by a deaminase, e.g., an APOBEC deamonase. Nicking the non-edited strand, having the G, facilitates removal of the G via mismatch repair mechanisms. UGI inhibits UDG, which prevents removal of the U.
In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H820, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 6) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 6. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 6) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 6, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.
In some embodiments, Cas9 fusion proteins as provided herein comprise the full-length amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.
In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1).
The term “deaminase” or “deaminase domain,” as used herein, refers to a protein or enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase domain, catalyzing the hydrolytic deamination of cytosine to uracil. In some embodiments, the deaminase or deaminase domain is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occurring deaminase from an organism that does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase from an organism.
The term “Gam protein,” as used herein, refers generally to proteins capable of binding to one or more ends of a double strand break of a double stranded nucleic acid (e.g., double stranded DNA). In some embodiments, the Gam protein prevents or inhibits degradation of one or more strands of a nucleic acid at the site of the double strand break. In some embodiments, a Gam protein is a naturally-occurring Gam protein from bacteriophage Mu, or a non-naturally occurring variant thereof.
The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nuclease, a deaminase, a recombinase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.
The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a Cas9 domain (e.g., a Cas9 nickase) and a nucleic acid editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and a catalytic domain of a nucleic-acid editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a Cas9 domain (e.g., a Cas9 nickase) and a Gam protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.
The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).
The term “nucleic acid editing domain,” as used herein refers to a protein or enzyme capable of making one or more modifications (e.g., deamination of a cytidine residue) to a nucleic acid (e.g., DNA or RNA). Exemplary nucleic acid editing domains include, but are not limited to a deaminase, a nuclease, a nickase, a recombinase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments the nucleic acid editing domain is a deaminase (e.g., a cytidine deaminase, such as an APOBEC or an AID deaminase).
The term “proliferative disease,” as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasms. Malignant neoplasia is also referred to as cancer.
The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.
The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development.
The term “target site” refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase, (e.g., a Gam-nCas9-deaminase fusion protein provided herein).
The terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.
The term “pharmaceutical composition,” as used herein, refers to a composition that can be administrated to a subject in the context of treatment of a disease or disorder. In some embodiments, a pharmaceutical composition comprises an active ingredient, e.g., a nuclease or a nucleic acid encoding a nuclease, and a pharmaceutically acceptable excipient.
The term “base editor (BE),” or “nucleobase editor (NBE),” as used herein, refers to an agent comprising a polypeptide that is capable of making a modification to a base (e.g., A, T, C, G, or U) within a nucleic acid sequence (e.g., DNA or RNA). In some embodiments, the base editor is capable of deaminating a base within a nucleic acid. In some embodiments, the base editor is capable of deaminating a base within a DNA molecule. In some embodiments, the base editor is capable of deaminating a cytosine (C) in DNA. In some embodiments, the base editor is a fusion protein comprising a Gam protein, a nucleic acid programmable DNA binding protein (napDNAbp), and a cytidine deaminase domain. In some embodiments, the base editor comprises a Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2c3, or Argonaute protein fused to a cytidine deaminase. In some embodiments, the base editor comprises a Cas9 nickase (nCas9) fused to a cytidine deaminase. In some embodiments, the base editor comprises a nuclease-inactive Cas9 (dCas9) fused to a cytidine deaminase. In some embodiments, the base editor is fused to a protein that binds to one or more ends of a double strand break in a double stranded nucleic acid (e.g., DNA or RNA). In some embodiments, the base editor is fused to an inhibitor of base excision repair, for example, a UGI domain. In some embodiments, the base editor comprises a Gam protein, fused to a CasX protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a CasY protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a Cpf1 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a C2c1 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a C2c2 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to a C2c3 protein, which is fused to a cytidine deaminase. In some embodiments, the base editor comprises a Gam protein, fused to an Argonaute protein, which is fused to a cytidine deaminase.
The term “uracil glycosylase inhibitor” or “UGI,” as used herein, refers to a protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme.
The term “Cas9 nickase,” as used herein, refers to a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position H840 of SEQ ID NO: 6, or a corresponding mutation in any of SEQ ID NOs: 11-260. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 8. Such a Cas9 nickase has an active HNH nuclease domain and is able to cleave the non-targeted strand of DNA, i.e., the strand bound by the gRNA. Further, such a Cas9 nickase has an inactive RuvC nuclease domain and is not able to cleave the targeted strand of the DNA, i.e., the strand where base editing is desired.
Exemplary Cas9 nickase (Cloning vector pPlatTET-gRNA2; Accession No. BAV54124).
Some aspects of this disclosure provide fusion proteins that comprise a domain capable of binding to one or more ends of a double strand break of a nucleic acid (e.g., a Gam protein); a domain capable of binding to a nucleotide sequence (e.g., a Cas9, or a Cpf1 protein) and an enzyme domain, for example, a DNA-editing domain, such as, e.g., a deaminase domain. The deamination of a nucleobase by a deaminase can lead to a point mutation at the respective residue, which constitutes nucleic acid editing. Fusion proteins comprising a Gam protein, or variant thereof, a napDNAbp domain, or variant thereof, and a DNA editing domain, or variant thereof, can thus be used for the targeted editing of nucleic acid sequences. Such fusion proteins are useful for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject. Such fusion proteins are useful for targeted editing of DNA that generate fewer indels (e.g., <0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.5%, or 1% indels) than other base editors (e.g., BE3 or BE4). Typically, the Cas9 domain of the fusion proteins described herein does not have full nuclease activity but instead is a Cas9 nickase, a Cas9 fragment, or a nuclease-inactive Cas9 domain (dCas9). Methods for the use of Cas9 fusion proteins as described herein are also provided.
Some aspects of the disclosure are based on the discovery that fusing BE3 or BE4 to Gam, a bacteriophage Mu protein that binds double-stranded DNA breaks, greatly reduces indel formation during base editing, in most cases to below 0.5%. BE4 and BE4-Gam represent the state-of-the-art in C:G to T:A base editing.
Fusion Proteins Comprising Gam
Some aspects of the disclosure provide fusion proteins comprising a Gam protein. Some aspects of the disclosure provide base editors that further comprise a Gam protein. Base editors are known in the art and have been described previously, for example, in U.S. Patent Application Publication Nos.: US-2015-0166980, published Jun. 18, 2015; US-2015-0166981, published Jun. 18, 2015; US-2015-0166984, published Jun. 18, 2015; US-2015-01669851, published Jun. 18, 2015; US-2016-0304846, published Oct. 20, 2016; US-2017-0121693-A1, published May 4, 2017; and PCT Application publication Nos.: WO2015089406, published Jun. 18, 2015; and WO2017070632, published Apr. 27, 2017; the entire contents of each of which are hereby incorporated by reference. A skilled artisan would understand, based on the disclosure, how to make and use base editors that further comprise a Gam protein.
In some embodiments, the disclosure provides fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp) and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a cytidine deaminase domain and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a UGI domain and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp), a cytidine deaminase domain and a Gam protein. In some embodiments, the disclosure provides fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp), a cytidine deaminase domain a Gam protein and a UGI domain.
In some embodiments, the Gam protein is a protein that binds to double strand breaks in DNA and prevents or inhibits degradation of the DNA at the double strand breaks. In some embodiments, the Gam protein is encoded by the bacteriophage Mu, which binds to double stranded breaks in DNA. Without wishing to be bound by any particular theory, Mu transposes itself between bacterial genomes and uses Gam to protect double stranded breaks in the transposition process. Gam can be used to block homologous recombination with sister chromosomes to repair double strand breaks, sometimes leading to cell death. The survival of cells exposed to UV is similar for cells expression Gam and cells where the recB is mutated. This indicates that Gam blocks DNA repair (Cox, 2013). The Gam protein can thus promote Cas9-mediated killing (Cui et al., 2016). GamGFP is used to label double stranded breaks, although this can be difficult in eukaryotic cells as the Gam protein competes with similar eukaryotic protein Ku (Shee et al., 2013).
Gam is related to Ku70 and Ku80, two eukaryotic proteins involved in non-homologous DNA end-joining (Cui et al., 2016). Gam has sequence homology with both subunits of Ku (Ku70 and Ku80), and can have a similar structure to the core DNA-binding region of Ku. Orthologs to Mu Gam are present in the bacterial genomes of Haemophilus influenzae, Salmonella typhi, Neisseria meningitidis and the enterohemorrhagic O157:H7 strain of E. coli (d'Adda di Fagagna et al., 2003). Gam proteins have been described previously, for example, in COX, Proteins pinpoint double strand breaks. eLife. 2013; 2: e01561.; CUI et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 2016 May 19; 44(9):4243-51. doi: 10.1093/nar/gkw223. Epub 2016 Apr. 8.; D′ADDA DI FAGAGNA et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. 2003 January; 4(1):47-52.; and SHEE et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. 2013 Oct. 29; 2:e01222. doi: 10.7554/eLife.01222; the contents of each of which are incorporated herein by reference.
In some embodiments, the Gam protein is a protein that binds double strand breaks in DNA and prevents or inhibits degradation of the DNA at the double strand breaks. In some embodiments, the Gam protein is a naturally occurring Gam protein from any organism (e.g., a bacterium), for example, any of the organisms provided herein. In some embodiments, the Gam protein is a variant of a naturally-occurring Gam protein from an organism. In some embodiments, the Gam protein does not occur in nature. In some embodiments, the Gam protein is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring Gam protein. In some embodiments, the Gam protein is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any of the Gam proteins provided herein (e.g., SEQ ID NO: 9). Exemplary Gam proteins are provided below. In some embodiments, the Gam protein comprises any of the Gam proteins provided herein (e.g., SEQ ID NO: 9). In some embodiments, the Gam protein is a truncated version of any of the Gam proteins provided herein. In some embodiments, the truncated Gam protein is missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 N-terminal amino acid residues relative to a full-length Gam protein. In some embodiments, the truncated Gam protein may be missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 C-terminal amino acid residues relative to a full-length Gam protein. In some embodiments, the Gam protein does not comprise an N-terminal methionine.
In some embodiments, the Gam protein comprises an amino acid sequence that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95, 98%, 99%, or 99.5% identical to any of the Gam proteins provided herein. In some embodiments, the Gam protein comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more mutations compared to any one of the Gam Proteins provided herein. In some embodiments, the Gam protein comprises an amino acid sequence that has at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, or at least 170, identical contiguous amino acid residues as compared to any of the Gam proteins provided herein. In some embodiments, the Gam protein comprises the amino acid sequence of any of the Gam proteins provided herein. In some embodiments, the Gam protein comprises the amino acid sequence of SEQ ID NO: 9. In some embodiments, the Gam protein consists of the any of the Gam proteins provided herein (e.g., SEQ ID NO: 9). In some embodiments, the Gam protein comprises the amino acid sequence of SEQ ID NO: 10 (i.e., contains an N-terminal methionine residue). In some embodiments, the Gam protein comprises the amino acid sequence of any one of SEQ ID NOs: 261-283.
>WP_001107937.1 MULTISPECIES: host-nuclease inhibitor protein Gam [Enterobacteriaceae]>EJL11163.1 bacteriophage Mu Gam like family protein [Shigella sonnei str. Moseley]>CSO81529.1 host-nuclease inhibitor protein [Shigella sonnei]>OCE38605.1 host-nuclease inhibitor protein Gam [Shigella sonnei]>SJK50067.1 host-nuclease inhibitor protein [Shigella sonnei]>SJK19110.1 host-nuclease inhibitor protein [Shigella sonnei]>SIY81859.1 host-nuclease inhibitor protein [Shigella sonnei]>S1134359.1 host-nuclease inhibitor protein [Shigella sonnei]>SJK07688.1 host-nuclease inhibitor protein [Shigella sonnei]>SJI95156.1 host-nuclease inhibitor protein [Shigella sonnei]>SIY86865.1 host-nuclease inhibitor protein [Shigella sonnei]>S1167303.1 host-nuclease inhibitor protein [Shigella sonnei]>SJJ18596.1 host-nuclease inhibitor protein [Shigella sonnei]>SIX52979.1 host-nuclease inhibitor protein [Shigella sonnei]>SJDO5143.1 host-nuclease inhibitor protein [Shigella sonnei]>SJD37118.1 host-nuclease inhibitor protein [Shigella sonnei]>SJE51616.1 host-nuclease inhibitor protein [Shigella sonnei]
>WP_001107936.1 MULTISPECIES: host-nuclease inhibitor protein Gam [Enterobacteriaceae]>EGI94970.1 host-nuclease inhibitor protein gam [Shigella boydii 5216-82]>CSR34065.1 host-nuclease inhibitor protein [Shigella sonnei]>CSQ65903.1 host-nuclease inhibitor protein [Shigella sonnei]>CSQ94361.1 host-nuclease inhibitor protein [Shigella sonnei]>SJK23465.1 host-nuclease inhibitor protein [Shigella sonnei]>SJB59111.1 host-nuclease inhibitor protein [Shigella sonnei]>SJI55768.1 host-nuclease inhibitor protein [Shigella sonnei]>SJI56601.1 host-nuclease inhibitor protein [Shigella sonnei]>SJJ20109.1 host-nuclease inhibitor protein [Shigella sonnei]>SJJ54643.1 host-nuclease inhibitor protein [Shigella sonnei]>SJI29650.1 host-nuclease inhibitor protein [Shigella sonnei]>SIZ53226.1 host-nuclease inhibitor protein [Shigella sonnei]>SJA65714.1 host-nuclease inhibitor protein [Shigella sonnei]>SJJ21793.1 host-nuclease inhibitor protein [Shigella sonnei]>SJD61405.1 host-nuclease inhibitor protein [Shigella sonnei]>SJJ14326.1 host-nuclease inhibitor protein [Shigella sonnei]>SIZ57861.1 host-nuclease inhibitor protein [Shigella sonnei]>SJD58744.1 host-nuclease inhibitor protein [Shigella sonnei]>SJD84738.1 host-nuclease inhibitor protein [Shigella sonnei]>SJJ51125.1 host-nuclease inhibitor protein [Shigella sonnei]>SJDO1353.1 host-nuclease inhibitor protein [Shigella sonnei]>SJE63176.1 host-nuclease inhibitor protein [Shigella sonnei]
>WP_065226797.1 host-nuclease inhibitor protein Gam [Escherichia coli]>AN088858.1 host-nuclease inhibitor protein Gam [Escherichia coli]>AN089006.1 host-nuclease inhibitor protein Gam [Escherichia coli]
Nucleic Acid Programmable DNA Binding Proteins
Some aspects of the disclosure provide nucleic acid programmable DNA binding proteins, which may be used to guide a protein, such as a base editor, to a specific nucleic acid (e.g., DNA or RNA) sequence. It should be appreciated that any of the fusion proteins (e.g., base editors) provided herein may include any nucleic acid programmable DNA binding protein (napDNAbp). For example, any of the fusion proteins described herein that include a Cas9 domain, can use another napDNAbp, such as CasX, CasY, Cpf1, C2c1, C2c2, C2c3, and Argonaute, in place of the Cas9 domain. Nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute. One example of a nucleic acid programmable DNA-binding protein that has a different PAM specificity than Cas9 is Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpf1). Similar to Cas9, Cpf1 is also a class 2 CRISPR effector. It has been shown that Cpflmediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN (SEQ ID NO: 284), or YTN). Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells. Cpf1 proteins are known in the art and have been described previously, for example, Yamano et al., “Crystal structure of Cpf1 in complex with guide RNA and target DNA.” Cell (165) 2016, p. 949-962; the entire contents of which are incorporated herein by reference.
Also useful in the present compositions and methods are nuclease-inactive Cpf1 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA-binding protein domain. The Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alpha-helical recognition lobe of Cas9. It was shown in Zetsche et al., Cell, 163, 759-771, 2015 (which is incorporated herein by reference) that, the RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpf1 (SEQ ID NO: 753) inactivate Cpf1 nuclease activity. In some embodiments, the dead Cpf1 (dCpf1) comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 285. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions, that inactivate the RuvC domain of Cpf1, may be used in accordance with the present disclosure.
In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a Cpf1 protein. In some embodiments, the Cpf1 protein is a Cpf1 nickase (nCpf1). In some embodiments, the Cpf1 protein is a nuclease inactive Cpf1 (dCpf1). In some embodiments, the Cpf1, the nCpf1, or the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 285-292 or 293-303. In some embodiments, the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 285-292, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 376. In some embodiments, the dCpf1 protein comprises an amino acid sequence of any one SEQ ID NOs: 285-292. It should be appreciated that Cpf1 from other species may also be used in accordance with the present disclosure.
D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 D917A (SEQ ID NO: 286)(A917, E1006, and D1255 are bolded and
D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 E1006A (SEQ ID NO: 287)(D917, A1006, and D1255 are bolded
D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 D1255A (SEQ ID NO: 288)(D917, E1006, and A1255 are bolded
A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 D917A/E1006A (SEQ ID NO: 289)(A917, A1006, and D1255 are
D
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 D917A/D1255A (SEQ ID NO: 290)(A917, E1006, and A1255 are
A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 E1006A/D1255A (SEQ ID NO: 291)(D917, A1006, and A1255 are
A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
Francisella novicida Cpf1 D917A/E1006A/D1255A (SEQ ID NO: 292)(A917, A1006, and
A
ANGAYHIGLKGLMLLGRIKNNQEGKKLNLVIKNEEYFEFVQNRNN
In some embodiments, the nucleic acid programmable DNA binding protein is a Cpf1 protein from an Acidaminococcus species (AsCpf1). Cpf1 proteins form Acidaminococcus species have been described previously and would be apparent to the skilled artisan. Exemplary Acidaminococcus Cpf1 proteins (AsCpf1) include, without limitation, any of the AsCpf1 proteins provided herein
In some embodiments, the nucleic acid programmable DNA binding protein is a Cpf1 protein from a Lachnospiraceae species (LbCpf1). Cpf1 proteins form Lachnospiraceae species have been described previously have been described previously and would be apparent to the skilled artisan. Exemplary Lachnospiraceae Cpf1 proteins (LbCpf1) include, without limitation, any of the LbCpf1 proteins provided herein.
In some embodiments, the Cpf1 protein is a crippled Cpf1 protein. As used herein a “crippled Cpf1” protein is a Cpf1 protein having diminished nuclease activity as compared to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand more efficiently than the non-target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited resides. In some embodiments, the crippled Cpf1 protein preferentially cuts the non-target strand more efficiently than the target strand. For example, the Cpf1 protein preferentially cuts the strand of a duplexed nucleic acid molecule in which a nucleotide to be edited does not reside. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5% more efficiently than it cuts the non-target strand. In some embodiments, the crippled Cpf1 protein preferentially cuts the target strand at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 80%, 90%, or at least 100% more efficiently than it cuts the non-target strand.
In some embodiments, a crippled Cpf1 protein is a non-naturally occurring Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises one or more mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 mutations relative to a wild-type Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R836A mutation mutation as set forth in SEQ ID NO: 295, or in a corresponding amino acid in another Cpf1 protein. It should be appreciated that a Cpf1 comprising a homologous residue (e.g., a corresponding amino acid) to R836A of SEQ ID NO: 295 could also be mutated to achieve similar results. In some embodiments, the crippled Cpf1 protein comprises a R1138A mutation as set forth in SEQ ID NO: 295, or in a corresponding amino acid in another Cpf1 protein. In some embodiments, the crippled Cpf1 protein comprises an R912A mutation mutation as set forth in SEQ ID NO: 293, or in a corresponding amino acid in another Cpf1 protein. Without wishing to be bound by any particular theory, residue R838 of SEQ ID NO: 295 (LbCpf1) and residue R912 of SEQ ID NO: 293 (AsCpf1) are examples of corresponding (e.g., homologous) residues. For example, a portion of the alignment between SEQ ID NO: 293 and 295 shows that R912 and R838 are corresponding residues.
In some embodiments, any of the Cpf1 proteins provided herein comprises one or more amino acid deletions. In some embodiments, any of the Cpf1 proteins provided herein comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid deletions. Without wishing to be bound by any particular theory, there is a helical region in Cpf1, which includes residues 661-667 of AsCpf1 (SEQ ID NO: 293), that may obstruct the function of a deaminase (e.g., APOBEC) that is fused to the Cpf1. This region comprises the amino acid sequence KKTGDQK (SEQ ID NO: 300). Accordingly, aspects of the disclosure provide Cpf1 proteins comprising mutations (e.g., deletions) that disrupt this helical region in Cpf1. In some embodiments, the Cpf1 protein comprises one or more deletions of the following residues in SEQ ID NO: 293, or one or more corresponding deletions in another Cpf1 protein: K661, K662, T663, G664, D665, Q666, and K667. In some embodiments, the Cpf1 protein comprises a T663 and a D665 deletion in SEQ ID NO: 293, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K662, T663, D665, and Q666 deletion in SEQ ID NO: 293, or corresponding deletions in another Cpf1 protein. In some embodiments, the Cpf1 protein comprises a K661, K662, T663, D665, Q666 and K667 deletion in SEQ ID NO: 293, or corresponding deletions in another Cpf1 protein.
In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a nucleic acid programmable DNA binding protein that does not require a canonical (NGG) PAM sequence in the target sequence. In some embodiments, the napDNAbp is an Argonaute protein. One example of such a nucleic acid programmable DNA binding protein is an Argonaute protein from Natronobacterium gregoryi (NgAgo). NgAgo is a ssDNA-guided endonuclease. NgAgo binds 5′-phosphorylated ssDNA of ˜24 nucleotides (gDNA) in length to guide it to a target site and makes DNA double-strand breaks at the gDNA site. In contrast to Cas9, the NgAgo-gDNA system does not require a protospacer-adjacent motif (PAM). Using a nuclease inactive NgAgo (dNgAgo) can greatly expand the bases that may be targeted. The characterization and use of NgAgo have been described in Gao et al., Nat. Biotechnol., 2016 July; 34(7):768-73. PubMed PMID: 27136078; Swarts et al., Nature 507(7491) (2014):258-61; and Swarts et al., Nucleic Acids Res. 43(10) (2015):5120-9, each of which is incorporated herein by reference. The sequence of Natronobacterium gregoryi Argonaute is provided in SEQ ID NO: 304.
In some embodiments, the napDNAbp is an Argonaute protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring Argonaute protein. In some embodiments, the napDNAbp is a naturally-occurring Argonaute protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NO: 304. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NO: 304.
In some embodiments, the napDNAbp is a prokaryotic homolog of an Argonaute protein. Prokaryotic homologs of Argonaute proteins are known and have been described, for example, in Makarova K., et al., “Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements”, Biol. Direct. 2009 Aug. 25; 4:29. doi: 10.1186/1745-6150-4-29, is incorporated herein by reference. In some embodiments, the napDNAbp is a Marinitoga piezophila Argunaute (MpAgo) protein. The CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5′-phosphorylated guides. The 5′ guides are used by all known Argonautes. The crystal structure of an MpAgo-RNA complex shows a guide strand binding site comprising residues that block 5′ phosphate interactions. This data suggests the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide. See, e.g., Kaya et al., “A bacterial Argonaute with noncanonical guide RNA specificity”, Proc Natl Acad Sci USA. 2016 Apr. 12; 113(15):4057-62, the entire contents of which are hereby incorporated by reference). It should be appreciated that other Argonaute proteins may be used in any of the fusion proteins (e.g., base editors) described herein, for example, to guide a deaminase (e.g., cytidine deaminase) to a target nucleic acid (e.g., ssRNA).
In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, C2c1, C2c2, and C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. Cas9 and Cpf1 are Class 2 effectors. In addition to Cas9 and Cpf1, three distinct Class 2 CRISPR-Cas systems (C2c1, C2c2, and C2c3) have been described by Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, Mol. Cell, 2015 Nov. 5; 60(3): 385-397, the entire contents of which are herein incorporated by reference. Effectors of two of the systems, C2c1 and C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, C2c2 contains an effector with two predicted HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-independent, unlike production of CRISPR RNA by C2c1. C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage. Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single-stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpf1. See, e.g., East-Seletsky, et al., “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection”, Nature, 2016 Oct. 13; 538(7624):270-273, the entire contents of which are hereby incorporated by reference. In vitro biochemical analysis of C2c2 in Leptotrichia shahii has shown that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave ssRNA targets carrying complementary protospacers. Catalytic residues in the two conserved HEPN domains mediate cleavage. Mutations in the catalytic residues generate catalytically inactive RNA-binding proteins. See e.g., Abudayyeh et al., “C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector,” Science, 2016 Aug. 5; 353(6299), the entire contents of which are hereby incorporated by reference.
The crystal structure of Alicyclobaccillus acidoterrastris C2c1 (AacC2c1) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See, e.g., Liu et al., “C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism”, Mol. Cell, 2017 Jan. 19; 65(2):310-322, incorporated herein by reference. The crystal structure has also been reported for Alicyclobacillus acidoterrestris C2c1 bound to target DNAs as ternary complexes. See, e.g., Yang et al., “PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease”, Cell, 2016 Dec. 15; 167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC2c1, both with target and non-target DNA strands, have been captured independently positioned within a single RuvC catalytic pocket, with C2c1-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between C2c1 ternary complexes and previously identified Cas9 and Cpf1 counterparts demonstrate the diversity of mechanisms used by CRISPR-Cas9 systems.
In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a C2c1, a C2c2, or a C2c3 protein. In some embodiments, the napDNAbp is a C2c1 protein. In some embodiments, the napDNAbp is a C2c2 protein. In some embodiments, the napDNAbp is a C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the napDNAbp is a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 305-307. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 305-307. It should be appreciated that C2c1, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.
acidoterrestris (strain ATCC49025 / DSM 3922/ CIP 106132 / NCIMB 13137 / GD3B)
In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a Cas9 from archaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, the napDNAbp is CasX or CasY, which have been described in, for example, Burstein et al., “New CRISPR-Cas systems from uncultivated microbes.” Cell Res. 2017 Feb. 21. doi: 10.1038/cr.2017.21, which is incorporated herein by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp) and are within the scope of this disclosure.
In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein is a CasX or CasY protein. In some embodiments, the napDNAbp is a CasX protein. In some embodiments, the napDNAbp is a CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp is a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 308-310. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 308-310. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.
Cas9 Domains of Nucleobase Editors
Some aspects of the disclosure provide fusion proteins comprising a Cas9 domain. Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nuclease inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises any one of the amino acid sequences as set forth in SEQ ID NOs: 6 or 11-260. In some embodiments the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 6 or 11-260. In some embodiments, the Cas9 domain comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 6 or 11-260. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 6 or 11-260.
In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10× mutation and a H840× mutation of the amino acid sequence set forth in SEQ ID NO: 6, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth in SEQ ID NO: 6, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 311 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).
Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 6 or 11-260. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at leat 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 6 or 11-260.
In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840 of SEQ ID NO: 6, or a mutation in any of SEQ ID NOs: 11-260. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 674. In some embodiments the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10 of SEQ ID NO: 6, or a corresponding mutation in any of SEQ ID NOs: 11-260. In some embodiments the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.
Cas9 Domains with Reduced PAM Exclusivity
Some aspects of the disclosure provide Cas9 domains that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion proteins provided herein may need to be placed at a precise location, for example where a target base is placed within a 4 base region (e.g., a “deamination window”), which is approximately 15 bases upstream of the PAM. See Komor, A. C., et al., “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” Nature 523, 481-485 (2015); and Kleinstiver, B. P., et al., “Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition” Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference.
In some embodiments, the Cas9 domain is a Cas9 domain from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n). In some embodiments, the SaCas9 comprises the amino acid sequence SEQ ID NO: 313. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 313, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for N. In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 313, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a NNGRRT (SEQ ID NO: 312) PAM sequence. In some embodiments, the SaCas9 domain comprises one or more of a E781X, a N967X, and a R1014X mutation of SEQ ID NO: 313, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 313, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation of SEQ ID NO: 313, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 313-315. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 313-315. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 313-315.
H
IIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG.
In some embodiments, the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 316. In some embodiments, the SpCas9 comprises a D9X mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the SpCas9 comprises a D9A mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 316, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 316, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 316, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 316, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 316-320. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 316-320. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 316-320.
High Fidelity Base Editors
Some aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain that has high fidelity. Additional aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain (e.g., a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 6, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 321. In some embodiments, the fusion protein comprises the amino acid sequence as set forth in SEQ ID NO: 322. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B. P., et al. “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” Nature 529, 490-495 (2016); and Slaymaker, I. M., et al. “Rationally engineered Cas9 nucleases with improved specificity.” Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.
It should be appreciated that the base editors provided herein, for example, base editor 2 (BE2) or base editor 3 (BE3), may be converted into high fidelity base editors by modifying the Cas9 domain as described herein to generate high fidelity base editors, for example, high fidelity base editor 2 (HF-BE2) or high fidelity base editor 3 (HF-BE3). In some embodiments, base editor 2 (BE2) comprises a deaminase domain, a dCas9, and a UGI domain. In some embodiments, base editor 3 (BE3) comprises a deaminase domain, anCas9 domain and a UGI domain.
Deaminase Domains of the Fusion Proteins
Some aspects of the disclosure provide fusion proteins comprising one or more nucleic acid editing domains (e.g., deaminase domains). In some embodiments, the nucleic acid editing domain can catalyze a C to U base change. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a vertebrate deaminase. In some embodiments, the deaminase is an invertebrate deaminase. In some embodiments, the deaminase is a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse deaminase. In some embodiments, the deaminase is a human deaminase. In some embodiments, the deaminase is a rat deaminase, e.g., rAPOBEC1. In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDA1). In some embodiments, the deaminase is a human APOBEC3G (SEQ ID NO: 333). In some embodiments, the deaminase is a fragment of the human APOBEC3G (SEQ ID NO: 356). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 355). In some embodiments, the deaminase is a fragment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 333 (SEQ ID NO: 357).
In some embodiments, the nucleic acid editing domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any of the deaminase domains provided herein. In some embodiments, the nucleic acid editing domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 323-361. In some embodiments, the nucleic acid editing domain comprises the amino acid sequence of any one of SEQ ID NOs: 323-361.
Deaminase Domains that Modulate the Editing Window of Base Editors
Some aspects of the disclosure are based on the recognition that modulating the deaminase domain catalytic activity of any of the fusion proteins provided herein, for example by making point mutations in the deaminase domain, affect the processivity of the fusion proteins (e.g., base editors). For example, mutations that reduce, but do not eliminate, the catalytic activity of a deaminase domain within a base editing fusion protein can make it less likely that the deaminase domain will catalyze the deamination of a residue adjacent to a target residue, thereby narrowing the deamination window. The ability to narrow the deamination window may prevent unwanted deamination of residues adjacent of specific target residues, which may decrease or prevent off-target effects.
In some embodiments, any of the fusion proteins provided herein comprises a deaminase domain (e.g., a cytidine deaminase domain) that has reduced catalytic deaminase activity. In some embodiments, any of the fusion proteins provided herein comprises a deaminase domain (e.g., a cytidine deaminase domain) that has a reduced catalytic deaminase activity as compared to an appropriate control. For example, the appropriate control may be the deaminase activity of the deaminase prior to introducing one or more mutations into the deaminase. In other embodiments, the appropriate control may be a wild-type deaminase. In some embodiments, the appropriate control is a wild-type apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the appropriate control is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, or an APOBEC3H deaminase. In some embodiments, the appropriate control is an activation induced deaminase (AID). In some embodiments, the appropriate control is a cytidine deaminase 1 from Petromyzon marinus (pmCDA1). In some embodiments, the deaminase domain may be a deaminase domain that has at least 1%, at least 5%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% less catalytic deaminase activity as compared to an appropriate control.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121X, H122X, R126X, R126X, R118X, W90X, W90X, and R132X of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase, wherein X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316X, D317X, R320X, R320X, R313X, W285X, W285X, R326X of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase, wherein X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a H121R and a H122R mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126A mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R118A mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90A mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R132E mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R126E mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E and a R132E mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R132E mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y, R126E, and R132E mutation of rAPOBEC1 (SEQ ID NO: 349), or one or more corresponding mutations in another APOBEC deaminase.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a D316R and a D317R mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320A mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R313A mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285A mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R326E mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R320E mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E and a R326E mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R326E mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y, R320E, and R326E mutation of hAPOBEC3G (SEQ ID NO: 333), or one or more corresponding mutations in another APOBEC deaminase.
Some exemplary suitable nucleic-acid editing domains, e.g., deaminases and deaminase domains that can be fused to Cas9 domains according to aspects of this disclosure are provided below. It should be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localization sequence, without nuclear export signal, cytoplasmic localizing signal).
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCH
MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGCH
MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGCHV
MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGCHV
MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRWLRPAATQDPVSPPRSLL
DAFRTLGL
RSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSL
SMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKRPFQKGLCSLW
MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKYH
PEM
RFLRWFHKWRQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVARLY
MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQV
YSKLKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDVATFLAEDPKVTLTI
MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKLY
PEAKDHPEMKELHWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKVTLTIF
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQV
YSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTI
LYFLGKIHSWNLDRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHISLHILASRIYTHNRFG
INEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPQ
CPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGASVKIMGYKDFV
In some embodiments, fusion proteins as provided herein comprise the full-length amino acid of a nucleic acid editing enzyme, e.g., one of the sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length sequence of a nucleic acid editing enzyme, but only a fragment thereof. For example, in some embodiments, a fusion protein provided herein comprises a fragment of a nucleic acid editing enzyme. Exemplary nucleic acid editing domains (e.g. cytidine deaminases) are provided herein, and additional suitable sequences of such domains will be apparent to those of skill in the art.
Additional suitable nucleic-acid editing enzyme sequences, e.g., deaminase enzyme and domain sequences, that can be used according to aspects of this invention, e.g., that can be fused to a nuclease-inactive Cas9 domain, will be apparent to those of skill in the art based on this disclosure. In some embodiments, such additional enzyme sequences include deaminase enzyme or deaminase domain sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar to any of the sequences provided herein.
Uracil Glycosylase Inhibitor Fusion Proteins
Some aspects of the disclosure relate to fusion proteins that comprise a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the fusion protein comprises a nucleic acid programmable DNA binding protein, a cytidine deaminase domain, a Gam protein and a UGI domain. In some embodiments, any of the fusion proteins provided herein that comprise a nucleic acid programmable DNA binding protein (e.g., a Cas9 domain), a cytidine deaminase, and a Gam protein may be further fused to a UGI domain either directly or via a linker. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of U:G heteroduplex DNA may be responsible for the decrease in nucleobase editing efficiency in cells. For example, uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. As demonstrated in the Examples below, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Thus, this disclosure contemplates a fusion protein comprising a napDNAbp, a cytidine deaminase domain, and a Gam protein, further fused to a UGI domain. This disclosure also contemplates a fusion protein comprising a Cas9 nickase-nucleic acid editing domain fused to a cytidine deaminase, and a Gam protein, which is further fused to a UGI domain. It should be understood that the use of a UGI domain may increase the editing efficiency of a nucleic acid editing domain that is capable of catalyzing a C to U change. For example, fusion proteins comprising a UGI domain may be more efficient in deaminating C residues.
In some embodiments, a UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 362. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 362. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence of any of the UGI domains provided herein. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 362. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 362 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 362. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 362. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 362. In some embodiments, the UGI comprises the following amino acid sequence:
Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of each are incorporated herein by reference.
It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. Additionally, any proteins that block or inhibit base-excision repair as also within the scope of this disclosure. In some embodiments, a protein that binds DNA is used. In another embodiment, a substitute for UGI is used. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Envinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 363). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 364). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 365). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that is homologous to any one of SEQ ID NOs: 363-365 or 366-376. In some embodiments, a uracil glycosylase inhibitor is a protein that is at least 50% identical, at least 55% identical at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 98% identical, at least 99% identical, or at least 99.5% identical to any one of SEQ ID NOs: 363-365 or 366-376.
Fusion Proteins
Some aspects of the disclosure provide fusion proteins comprising (i) a nucleic acid programmable DNA binding protein (napDNAbp), (ii) a cytidine deaminase domain and (iii) a Gam protein. In some embodiments, the fusion protein further comprises a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the nucleic acid programmable DNA binding protein is any of the nucleic acid programmable DNA binding proteins, or variants thereof, provided herein (e.g., nCas9). In some embodiments, the napDNAbp is a Cas9 domain. Any of the Cas9 domains (e.g., a nuclease active Cas9 protein, a nuclease-inactive dCas9 protein, or a Cas9 nickase protein) disclosed herein may be the napDNAbp of any of the fusion proteins, or variants thereof, provided herein. In some embodiments, the cytidine deaminase domain is any of the cytidine deaminase domainss, or variants thereof, provided herein. In some embodiments, the cytidine deaminase domain is an APOBEC cytidine deaminase domain (e.g. rAPOBEC1). In some embodiments, the Gam protein is any of the Gam proteins, or variants thereof, provided herein. In some embodiments, the Gam protein is a Gam from bacteriophage Mu. In some embodiments, the UGI domain is any of the UGI domains, or variants thereof, provided herein. In some embodiments, the UGI domain comprises an amino acid sequence that is at least 80% (e.g., 85%, 90%, 95%, 98%, or 98%) identical to SEQ ID NO: 362. In some embodiments, the UGI domain comprises the amino acid sequence of SEQ ID NO: 362.
Some aspects of the disclosure provide fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp) a cytidine deaminase domain and a Gam protein. In some embodiments, any of the fusion proteins provided herein are base editors. In some embodiments, the napDNAbp is a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, aC2c3 domain, or an Argonaute domain. In some embodiments, the napDNAbp is any napDNAbp provided herein. In some embodiments, the napDNAbp is a Cas9 domain, which may be any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein. In some embodiments, any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein may be fused with any of the cytidine deaminases provided herein. In some embodiments, the fusion protein comprises the structure:
In some embodiments, the fusion protein further comprises a UGI domain. In some embodiments, the fusion protein further comprises one or more (e.g., 2, 3, 4, or 5) UGI domains. In some embodiments, the UGI domain is any of the UGI domains, or variants thereof, provided herein. In some embodiments, the fusion protein comprises the structure:
In some embodiments, the fusion protein further comprises a second UGI domain. In some embodiments, the second UGI domain is any of the UGI domains, or variants thereof, provided herein. In some embodiments, the second UGI domain is the same as the UGI domain. In some embodiments, the second UGI domain is different from the UGI domain. In some embodiments, the fusion protein comprises the structure:
In some embodiments, the fusion proteins provided herein, for example any of the fusion proteins comprising the above structures, do not include a linker sequence. In some embodiments, a linker is present between any of the proteins or domains provided herein. In some embodiments, the “-” used in the structures above indicates the presence of an optional linker. In some embodiments, the “-” may be any of the linkers provided herein. In some embodiments, the Gam protein and the cytidine deaminase domain are fused via any of the linkers provided herein. In some embodiments, the Gam protein and the napDNAbp are fused via any of the linkers provided herein. In some embodiments, the Gam protein and the UGI domain are fused via any of the linkers provided herein. In some embodiments, the Gam protein and the second UGI domain are fused via any of the linkers provided herein.
In some embodiments, the cytidine deaminase domain and the Gam protein are fused via any of the linkers provided herein. In some embodiments, the cytidine deaminase domain and the napDNAbp are fused via any of the linkers provided herein. In some embodiments, the cytidine deaminase domain and the UGI domain are fused via any of the linkers provided herein. In some embodiments, the cytidine deaminase domain and the second UGI domain are fused via any of the linkers provided herein. In some embodiments, the napDNAbp and the Gam protein are fused via any of the linkers provided herein. In some embodiments, the napDNAbp and the cytidine deaminase domain are fused via any of the linkers provided herein. In some embodiments, the napDNAbp and the UGI domain are fused via any of the linkers provided herein. In some embodiments, the napDNAbp and the second UGI domain are fused via any of the linkers provided herein. In some embodiments, the UGI domain and the Gam protein are fused via any of the linkers provided herein. In some embodiments, the UGI domain and the cytidine deaminase domain are fused via any of the linkers provided herein. In some embodiments, the UGI domain and the napDNAbp domain are fused via any of the linkers provided herein. In some embodiments, the UGI domain and the second UGI domain are fused via any of the linkers provided herein. In some embodiments, the second UGI domain and the Gam protein are fused via any of the linkers provided herein. In some embodiments, the second UGI domain and the cytidine deaminase domain are fused via any of the linkers provided herein. In some embodiments, the second UGI domain and the napDNAbp domain are fused via any of the linkers provided herein. In some embodiments, the second UGI domain and the UGI domain are fused via any of the linkers provided herein.
For example, in some embodiments the domains and/or proteins described above are fused via any of the linkers provided below in the section entitled “Linkers”. In some embodiments, any of the domains and/or proteins provided herein are fused via a linker that comprises between 1 and 200 amino acids. In some embodiments, any of the domains and/or proteins provided herein are fused via a linker that comprises or consists of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, or more amino acids in length. In some embodiments, any of the domains and/or proteins provided herein are fused via a linker that comprises from 1 to 5, 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 80, 1 to 100, 1 to 150, 1 to 200, 5 to 10, 5 to 20, 5 to 30, 5 to 40, 5 to 60, 5 to 80, 5 to 100, 5 to 150, 5 to 200, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 80, 10 to 100, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 80, 20 to 100, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 80, 30 to 100, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 80, 40 to 100, 40 to 150, 40 to 200, 50 to 60 50 to 80, 50 to 100, 50 to 150, 50 to 200, 60 to 80, 60 to 100, 60 to 150, 60 to 200, 80 to 100, 80 to 150, 80 to 200, 100 to 150, 100 to 200, or 150 to 200 amino acids in length. In some embodiments, any of the domains and/or proteins provided herein are fused via a linker that comprises 4, 9, 10, 16, or 32, amino acids in length. In some embodiments, any of the domains and/or proteins provided herein are fused via a linker that comprises the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 377), SGGS (SEQ ID NO: 378), SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 379), SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 380), or GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPS EGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGGSGGS (SEQ ID NO: 381). In some embodiments, any of the domains and/or proteins provided herein are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 377), which may also be referred to as the XTEN linker. In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 382). In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO:383). In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGSSG GS (SEQ ID NO: 384). In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPG TSTEPSEGSAPGTSESATPESGPGSEPATS (SEQ ID NO: 385). In some embodiments, the linker is 10 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSGGSGGS (SEQ ID NO: 386)
In some embodiments, the Gam protein and the cytidine deaminase domain of any of the fusion proteins provided herein are fused via a linker comprising from 10-20 amino acids in length. In some embodiments, the Gam protein and the cytidine deaminase domain of any of the fusion proteins provided herein are fused via a linker comprising 16 amino acids in length. In some embodiments, the Gam protein and the cytidine deaminase domain of any of the fusion proteins provided herein are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 377).
In some embodiments, the cytidine deaminase domain and the napDNAbp of any of the fusion proteins provided herein are fused via a linker comprising from 10-20 amino acids in length, or from 25-40 amino acids in length. In some embodiments, the cytidine deaminase domain and the napDNAbp of any of the fusion proteins provided herein are fused via a linker comprising 16 or 32 amino acids in length. In some embodiments, the cytidine deaminase domain and the napDNAbp of any of the fusion proteins provided herein are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 377) or SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 380).
In some embodiments, the napDNAbp and the UGI domain of any of the fusion proteins provided herein are fused via a linker comprising from 1-8 amino acids in length, or from 4-15 amino acids in length. In some embodiments, the napDNAbp and the UGI domain of any of the fusion proteins provided herein are fused via a linker comprising 4, 9 or 10 amino acids in length. In some embodiments, the napDNAbp and the UGI domain of any of the fusion proteins provided herein are fused via a linker comprising the amino acid sequence SGGSGGSGGS (SEQ ID NO: 386) or SGGS (SEQ ID NO: 378).
In some embodiments, the UGI domain and the second UGI domain of any of the fusion proteins provided herein are fused via a linker comprising from 2-15 amino acids in length. In some embodiments, the UGI domain and the second UGI domain of any of the fusion proteins provided herein are fused via a linker comprising 9 or 10 amino acids in length. In some embodiments, the UGI domain and the second UGI domain of any of the fusion proteins provided herein are fused via a linker comprising the amino acid sequence SGGSGGSGGS (SEQ ID NO: 386).
Linkers
In certain embodiments, linkers may be used to link any of the proteins or protein domains described herein. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.
In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 2-100 amino acids in length, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 377), which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence SGGS (SEQ ID NO: 378). In some embodiments, a linker comprises (SGGS)n (SEQ ID NO: 387), (GGGS)n (SEQ ID NO: 388), (GGGGS)n (SEQ ID NO: 389), (G)n, (EAAAK)n (SEQ ID NO: 390), (GGS)n (SEQ ID NO:391), SGSETPGTSESATPES (SEQ ID NO: 377), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, a linker comprises SGSETPGTSESATPES (SEQ ID NO: 377), and SGGS (SEQ ID NO: 378). In some embodiments, a linker comprises SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 379). In some embodiments, a linker comprises SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 380). In some embodiments, a linker comprises GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPS EGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGGSGGS (SEQ ID NO: 381). In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 382). In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO: 383). In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGSSG GS (SEQ ID NO: 384). In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAPG TSTEPSEGSAPGTSESATPESGPGSEPATS (SEQ ID NO: 385). It should be appreciated that any of the linkers provided herein may be used to link a Gam protein and a cytidine deaminase domain, a cytidine deaminase domain and a napDNAbp, a napDNAbp and a UGI domain, and/or a UGI domain and a second UGI domain in any of the fusion proteins provided herein.
NLS
Some aspects of the disclosure provide fusion proteins (e.g., any of the fusion proteins provided herein) that comprise one or more NLSs. The term “nuclear localization sequence” or “NLS” refers to an amino acid sequence that promotes import of a protein into the cell nucleus, for example, by nuclear transport. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank et al., international PCT application, PCT/EP2000/011690, filed Nov. 23, 2000, published asWO/2001/038547 on May 31, 2001, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In some embodiments, the NLS is a bipartite nuclear localization sequence (BPNLS), e.g., KRTADGSEFEPKKKRKV (SEQ ID NO: 405). In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 392), MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 393), or KRTADGSEFEPKKKRKV (SEQ ID NO: 405).
In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI domain. In some embodiments, the NLS is fused to the C-terminus of the UGI domain. In some embodiments, the NLS is fused to the N-terminus of the napDNAbp. In some embodiments, the NLS is fused to the C-terminus of the napDNAbp. In some embodiments, the NLS is fused to the N-terminus of the cytidine deaminase domain. In some embodiments, the NLS is fused to the C-terminus of the cytidine deaminase domain. In some embodiments, the NLS is fused to the N-terminus of the Gam protein. In some embodiments, the NLS is fused to the C-terminus of the Gam protein. In some embodiments, the NLS is fused to the N-terminus of the second UGI domain. In some embodiments, the NLS is fused to the C-terminus of the second UGI domain. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. In some embodiments, the NLS comprises an amino acid sequence PKKKRKV (SEQ ID NO: 392), MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 393), or KRTADGSEFEPKKKRKV (SEQ ID NO: 405).
Some aspects of the disclosure provide fusion proteins that are capable of editing a base within a nucleic acid molecule (e.g., DNA or RNA). In some embodiments, any of the fusion proteins provided herein are base editors. Exemplary base editors are provided below. For Example, the amino acid sequences of BE3, BE4, BE3-Gam and BE4-Gam, which are described in the Examples, are provided below. In some embodiments, the fusion protein comprises an amino acid sequence that is at least at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence of any of the fusion proteins provided herein. In some embodiments, a fusion protein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of BE3-Gam or BE4-Gam, provided below. In some embodiments, the fusion protein comprises the amino acid sequence of BE3-Gam or BE4-Gam, provided below.
Exemplary Base Editors:
Amino acid sequences of exemplary base editors (e.g., for BE3-Gam, BE4, and BE4-Gam) are provided below. Domains of the below base editors are identified, for the purposes of clarity, using text formatting. Gam is indicated in bold text, linkers are indicated by underlining, the cytidine deaminase domain (e.g., APOBEDC1) is indicated in italics, the napDNAbp (e.g., nCas9) is indicated in unformatted text, the UGI domain is indicated in bold italics, and the NLS is indicated in double underlining. It should be appreciated that amino acid sequences provided herein, for example base editors, cytidine deaminases, napDNAbps, Gam proteins, and UGI domains need not include an N-terminal methionine (M) residue. Accordingly, the disclosure contemplates any of the proteins provided herein absent an N-terminal M residue.
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVE
VNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRNR
QGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCHLGLPPC
LNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGSETPGTSESATPESDKKYSIGLAI
SGGS
PKKKRKV
MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFA
ARIAPIKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRVRPPSVSIR
GMDAVMETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFE
QEAGI
SGSETPGTSESATPES
SSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEIN
WGGRHSIWRHTSQNTNKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSR
YPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRY
PHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGSET
PGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA
SGGS
PKKKRKV
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHV
EVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPRN
RQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCIILGLPP
CLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGGSSGGSSGSETPGTSESATPESS
GGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLF
SGGSGGSGGS
SGGS
PKKKRK
MAKPAKRIKSAAAAYVPQNRDAVITDIKRIGDLQREASRLETEMNDAIAEITEKFA
ARIAPIKTDIETLSKGVQGWCEANRDELTNGGKVKTANLVTGDVSWRVRPPSVSIR
GMDAVMETLERLGLQRFIRTKQEINKEAILLEPKAVAGVAGITVKSGIEDFSIIPFE
QEAGI
SGSETPGTSESATPES
SSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEIN
WGGRHSIWRHTSQNTNKHVEVNFIEKETTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSR
YPHVTLFIYIARLYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRY
PHLWVRLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKSGGSS
GGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKV
SGGSGGSGGS
SGGS
PKKKRK
The description of exemplary embodiments of the above disclosure is provided for illustration purposes only and not meant to be limiting. Additional fusion proteins and methods of using the same, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.
UNG Activity is Required for Byproduct Formation
It was hypothesized that undesired base editing byproducts arise during base excision repair due to the formation and error-prone resolution of abasic sites within the uracil-containing DNA strand. This hypothesis predicts that the product purity of base editing in cells lacking uracil Nglycosylase (UNG) should be greatly improved. To test this prediction, HAP1 cells (a haploid human cell line) and HAP1 UNG-cells were nucleofected with plasmids encoding BE3 and sgRNAs targeting the EMX1, FANCF, HEK2, HEK3, HEK4, or RNF2 loci (see
Fusion with Gam Further Reduces Indel Frequencies and Improves Product Purity
For some genome editing applications, the formation of indels confounds research or poses safety risks. It was therefore sought to further decrease indel frequencies that arise from base editing. It was hypothesized that the majority of base editing-induced indels occur as a result of DNA-(apurinic or apyrimidinic site) lyase (AP lyase), a BER enzyme that converts abasic sites into ssDNA nicks (25). Since base editors nick the strand opposite the U, cleavage of the glycosidic bond by UNG followed by processing of the resulting AP site by AP lyase would result in a DSB, which promotes indel formation. This model is consistent with the observation of greatly reduced indel frequencies in UNG knockout cells (
BE3-Gam decreased indel frequencies relative to BE3 at all six genomic loci tested by an average of 1.7±0.3-fold (
BE4-Gam exhibited greatly decreased indel frequencies relative to BE4 at all genomic loci tested, with an average decrease of 3.3±0.8-fold (
For base editing applications in which minimizing indel production is critical, BE4-Gam or BE3-Gam may be preferred (
Collectively, these developments advance the state-of-the-art in programmable C:G to T:A base pair conversion, and thereby increase the utility and applicability of base editing. Findings also suggest that Gam has the potential to be repurposed to minimize indel formation in other genome editing applications. Finally, relationships among uracil incorporation, UNG activity, and cellular DNA repair outcomes illuminated in this study may guide future efforts to understand or manipulate eukaryotic DNA repair.
Cloning of Plasmids
All plasmids in this study were generated by USER cloning using Phusion U Hot Start polymerase (Thermo Fisher). Deaminase and SSB genes were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies), and Target-AID was obtained from Addgene (plasmid #79620). Protein sequences are listed in the Supplementary Notes.
Cell Culture
HEK293T (ATCC CRL-3216) cells were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with 10% (v/v) fetal bovine serum (FBS), at 37° C. with 5% CO2. HAP1 (Horizon Discovery C631) and HAP1 UNG-(Horizon Discovery HZGHC001531c012) were maintained in Iscove's Modified Dulbecco's Medium plus GlutaMax (ThermoFisher Scientific) supplemented with 10% (v/v) fetal bovine serum (FBS), at 37° C. with 5% CO2.
Transfections
HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately 75% confluency. Briefly, 750 ng of BE and 250 ng of sgRNA expression plasmids were transfected using 1.5 μL of Lipofectamine 2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol. HAP1 and HAP1 UNG-cells were nucleofected using the SE Cell Line 4DNucleofector™ X Kit S (Lonza) according to the manufacturer's protocol. Briefly, 4×105 cells were nucleofected with 300 ng of BE and 100 ng of sgRNA expression plasmids using the 4DNucleofector™ program DZ-113.
High-Throughput DNA Sequencing of Genomic DNA Samples
Transfected cells were harvested after 3 d and the genomic DNA was isolated by incubating cells in lysis buffer (10 mM Tris-HCl pH 8.0, 0.05% SDS, 25 μg/mL proteinase K) at 37° C. for 1 hr followed by 80° C. for 30 min. Genomic regions of interest were amplified by PCR with flanking HTS primer pairs as previously described 6,1. PCR amplification was carried out with Phusion high-fidelity DNA polymerase (ThermoFisher) according to the manufacturer's instructions and as previously described. Purified DNA was amplified by PCR with primers containing sequencing adaptors. The products were gel-purified and quantified using the QuantiT™ PicoGreen dsDNA Assay Kit (ThermoFisher) and KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described.
Data Analysis
Sequencing reads were automatically demultiplexed using MiSeq Reporter (IIlumina), and individual FASTQ files were analyzed with a custom Matlab script as previously described (1). Each read was pairwise aligned to the appropriate reference sequence using the Smith-Waterman algorithm. Base calls with a Q-score below 31 were replaced with Ns and were thus excluded in calculating nucleotide frequencies. This treatment yields an expected MiSeq basecalling error rate of approximately 1 in 1,000. Aligned sequences in which the read and reference sequence contained no gaps were stored in an alignment table from which base frequencies could be tabulated for each locus.
Indel frequencies were quantified with the previously described Matlab script 5,6,1. Briefly, sequencing reads were scanned for exact matches to two 10-bp sequences that flank both sides of a window in which indels might occur. If no exact matches were located, the read was excluded from analysis. If the length of this indel window exactly matched the reference sequence the read was classified as not containing an indel. If the indel window was two or more bases longer or shorter than the reference sequence, then the sequencing read was classified as an insertion or deletion, respectively.
In order to evaluate interdependency (linkage disequilibrium) between the base editing outcomes at the multiple target cytidines within an editing window, target site sequences from BE treated cells were analyzed by a custom Python script (Supplementary Note 1). Briefly, sequencing reads were scanned for exact matches to two 7-bp sequences that flank each side of the protospacer. If the intervening region was not exactly 20-bp, then it was excluded further analysis. The protospacer sequences were further filtered into four groups based upon the identity of the nucleotide at the position with the most non-T editing outcomes (the primary target C). For each of these four groups as well as the entire pool, we tallied the nucleotide abundance at each of the 20 positions within the protospacer.
napDNAbp Complexes with Guide RNAs
Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a nucleic acid (e.g., DNA or RNA) bound to the napDNAbp of any of the fusion proteins provided herein. Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA bound to a Cas9 domain (e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase) of fusion protein.
In some embodiments, the guide RNA is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3′ end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the guide RNA is complementary to a sequence associated with a disease or disorder.
Methods of Using Fusion Proteins
Some aspects of the disclosure provide methods for using the fusion proteins (e.g., base editors) provided herein. Some aspects of this disclosure provide methods of using the fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with any of the fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with at least one gRNA as provided herein. In some embodiments, the 3′ end of the target sequence is not immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3′ end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.
In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the fusion protein, or the complex results in a correction of the point mutation. In some embodiments, the target DNA sequence comprises a T→C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder. In some embodiments, the target DNA sequence encodes a protein and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon. In some embodiments, the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon. In some embodiments, the deamination of the mutant C results in the codon encoding the wild-type amino acid. In some embodiments, the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder. In some embodiments, the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), desmin-related myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB1 protein, a mutant HRAS protein, or a mutant p53 protein.
Some embodiments provide methods for using the base editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a Cas9 DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.
In some embodiments, the purpose of the methods provide herein is to restore the function of a dysfunctional gene via genome editing. The fusion proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the fusion proteins provided herein, e.g., the fusion proteins comprising a Cas9 domain and a nucleic acid deaminase domain can be used to correct any single point T to C or A to G mutation. In the first case, deamination of the mutant C back to U corrects the mutation, and in the latter case, deamination of the C that is base-paired with the mutant G, followed by a round of replication, corrects the mutation.
An exemplary disease-relevant mutation that can be corrected by the provided fusion proteins in vitro or in vivo is the H1047R (A3140G) polymorphism in the PI3KCA protein. The phosphoinositide-3-kinase, catalytic alpha subunit (PI3KCA) protein acts to phosphorylate the 3-OH group of the inositol ring of phosphatidylinositol. The PI3KCA gene has been found to be mutated in many different carcinomas, and thus it is considered to be a potent oncogene. In fact, the A3140G mutation is present in several NCI-60 cancer cell lines, such as, for example, the HCT116, SKOV3, and T47D cell lines, which are readily available from the American Type Culture Collection (ATCC).38
In some embodiments, a cell carrying a mutation to be corrected, e.g., a cell carrying a point mutation, e.g., an A3140G point mutation in exon 20 of the PI3KCA gene, resulting in a H1047R substitution in the PI3KCA protein, is contacted with an expression construct encoding a base editing fusion protein and an appropriately designed sgRNA targeting the fusion protein to the respective mutation site in the encoding PI3KCA gene. Control experiments can be performed where the sgRNAs are designed to target the fusion enzymes to non-C residues that are within the PI3KCA gene. Genomic DNA of the treated cells can be extracted, and the relevant sequence of the PI3KCA genes PCR amplified and sequenced to assess the activities of the fusion proteins in human cell culture.
It will be understood that the example of correcting point mutations in PI3KCA is provided for illustration purposes and is not meant to limit the instant disclosure. The skilled artisan will understand that the instantly disclosed DNA-editing fusion proteins can be used to correct other point mutations and mutations associated with other cancers and with diseases other than cancer including other proliferative diseases.
The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of a Gam protein, a napDNAbp and a cytidine deaminase domain also have applications in “reverse” gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating Trp (TGG), Gln (CAA and CAG), or Arg (CGA) residues to premature stop codons (TAA, TAG, TGA) can be used to abolish protein function in vitro, ex vivo, or in vivo.
The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a base editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a PI3KCA point mutation as described above, an effective amount of a base editor fusion protein that corrects the point mutation or introduces a deactivating mutation into the disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.
The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation, cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria—e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene (T>C mutation)—see, e.g., McDonald et al., Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS)—e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX (T>C mutation)—see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK)—e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 (T>C mutation)—see, e.g., Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic obstructive pulmonary disease (COPD)—e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of α1-antitrypsin or residue 78 in the unprocessed form or a homologous residue (T>C mutation)—see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number P01011 in the UNIPROT database; Charcot-Marie-Toot disease type 4J—e.g., isoleucine to threonine mutation at position 41 or a homologous residue in
It will be apparent to those of skill in the art that in order to target a base editor fusion protein as disclosed herein to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 398), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9 fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting Cas9 fusion proteins to specific target sequences are provided below. Exemplary guide RNA structures, including guide RNA backbone sequences, are described, for example, in Jinek M, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-812; Mali P, et al. (2013) Cas9 as a versatile tool for engineering biology. Nature Methods, 10, 957-963; Li J F, et al. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotech, 31, 688-691; Hwang W Y, et al. (2013) Efficient in vivo genome editing using RNA-guided nucleases. Nat Biotechnol, 31, 227-229; Cong L, et al. (2013) Multiplex genome engineering using CRIPSR/Cas systems. Science, 339, 819-823; Cho S W, et al. (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 31, 230-232; Jinek M J, et al. (2013) RNA-programmed genome editing in human cells. eLIFE, 2:e00471; DiCarlo J E, et al. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucl Acids Res, 41, 4336-4343; Qi L S, et al. (2013) Repruposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 152, 1173-1183; and Briner A E, et al. (2014) Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell, 56, 333-339; each of which is incorporated herein by reference.
Base Editor Efficiency
Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An “indel”, as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is greater than 1:1. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 200:1, at least 300:1, at least 400:1, at least 500:1, at least 600:1, at least 700:1, at least 800:1, at least 900:1, or at least 1000:1, or more. The number of intended mutations and indels may be determined using any suitable method, for example the methods used in the below Examples.
In some embodiments, the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid. In some embodiments, the region is at a nucleotide targeted by a base editor or a region within 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides of a nucleotide targeted by a base editor. In some embodiments, any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%. The number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor. In some embodiments, an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.
Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations. In some embodiments, a intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to generate the intended mutation. In some embodiments, the intended mutation is a mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a point mutation that generates a stop codon, for example, a premature stop codon within the coding region of a gene. In some embodiments, the intended mutation is a mutation that eliminates a stop codon. In some embodiments, the intended mutation is a mutation that alters the splicing of a gene. In some embodiments, the intended mutation is a mutation that alters the regulatory sequence of a gene (e.g., a gene promotor or gene repressor). In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is greater than 1:1. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 150:1, at least 200:1, at least 250:1, at least 500:1, or at least 1000:1, or more. It should be appreciated that the characteristics of the base editors described in the “Base Editor Efficiency” section, herein, may be applied to any of the fusion proteins, or methods of using the fusion proteins provided herein.
Methods for Editing Nucleic Acids
Some aspects of the disclosure provide methods for editing a nucleic acid. In some embodiments, the method is a method for editing a nucleobase of a nucleic acid (e.g., a base pair of a double-stranded DNA sequence). In some embodiments, the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor (e.g., any of the fusion proteins provided herein) and a guide nucleic acid (e.g., gRNA), wherein the target region comprises a targeted nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, and d) cutting no more than one strand of said target region, where a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase; and the method results in less than 20% (e.g., less than 15%, 10%, 5%, 1%, 0.5% or 0.1%) indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, the first nucleobase is a cytosine. In some embodiments, the second nucleobase is a deaminated cytosine, or a uracil. In some embodiments, the third nucleobase is a guanine. In some embodiments, the fourth nucleobase is an adenine. In some embodiments, the first nucleobase is a cytosine, the second nucleobase is a deaminated cytosine, or a uracil, the third nucleobase is a guanine, and the fourth nucleobase is an adenine. In some embodiments, the method results in less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the method further comprises replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair (e.g., C:G->T:A). In some embodiments, the fifth nucleobase is a thymine. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended basepaires are edited.
In some embodiments, the ratio of intended products to unintended products in the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the base editor comprises a Cas9 domain. In some embodiments, the first base is cytosine, and the second base is not a G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the first base is cytosine. In some embodiments, the second base is not a G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base excision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the base editor comprises UGI activity. In some embodiments, the base editor comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair is within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the method is performed using any of the base editors provided herein. In some embodiments, a target window is a deamination window
In some embodiments, the disclosure provides methods for editing a nucleotide. In some embodiments, the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence. In some embodiments, the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) cutting no more than one strand of said target region, wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase, and the second nucleobase is replaced with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited basepair, wherein the efficiency of generating the intended edited basepair is at least 5%. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended basepaires are edited. In some embodiments, the method causes less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the ratio of intended product to unintended products at the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the first base is cytosine. In some embodiments, the second nucleobase is not G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base excision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the nucleobase editor comprises UGI activity. In some embodiments, the nucleobase edit comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair occurs within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the nucleobase editor is any one of the base editors provided herein.
Pharmaceutical Compositions
In some embodiments, any of the fusion proteins, gRNAs, and/or complexes described herein are provided as part of a pharmaceutical composition. In some embodiments, the pharmaceutical composition comprises any of the fusion proteins provided herein. In some embodiments, the pharmaceutical composition comprises any of the complexes provided herein. In some embodiments, the pharmaceutical composition comprises a ribonucleoprotein complex comprising an RNA-guided nuclease (e.g., Cas9) that forms a complex with a gRNA and a cationic lipid. In some embodiments pharmaceutical composition comprises a gRNA, a nucleic acid programmable DNA binding protein, a cationic lipid, and a pharmaceutically acceptable excipient. Pharmaceutical compositions may optionally comprise one or more additional therapeutically active substances.
In some embodiments, compositions provided herein are administered to a subject, for example, to a human subject, in order to effect a targeted genomic modification within the subject. In some embodiments, cells are obtained from the subject and contacted with a any of the pharmaceutical compositions provided herein. In some embodiments, cells removed from a subject and contacted ex vivo with a pharmaceutical composition are re-introduced into the subject, optionally after the desired genomic modification has been effected or detected in the cells. Methods of delivering pharmaceutical compositions comprising nucleases are known, and are described, for example, in U.S. Pat. Nos. 6,453,242; 6,503,717; 6,534,261; 6,599,692; 6,607,882; 6,689,558; 6,824,978; 6,933,113; 6,979,539; 7,013,219; and 7,163,824, the disclosures of all of which are incorporated by reference herein in their entireties. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals or organisms of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, domesticated animals, pets, and commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.
Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient(s) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.
Pharmaceutical formulations may additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, Md., 2006; incorporated in its entirety herein by reference) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. See also PCT application PCT/US2010/055131 (Publication number WO2011053982 A8, filed Nov. 2, 2010), incorporated in its entirety herein by reference, for additional suitable methods, reagents, excipients and solvents for producing pharmaceutical compositions comprising a nuclease. Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure.
In some embodiments, compositions in accordance with the present invention may be used for treatment of any of a variety of diseases, disorders, and/or conditions, including but not limited to one or more of the following: autoimmune disorders (e.g. diabetes, lupus, multiple sclerosis, psoriasis, rheumatoid arthritis); inflammatory disorders (e.g. arthritis, pelvic inflammatory disease); infectious diseases (e.g. viral infections (e.g., HIV, HCV, RSV), bacterial infections, fungal infections, sepsis); neurological disorders (e.g. Alzheimer's disease, Huntington's disease; autism; Duchenne muscular dystrophy); cardiovascular disorders (e.g. atherosclerosis, hypercholesterolemia, thrombosis, clotting disorders, angiogenic disorders such as macular degeneration); proliferative disorders (e.g. cancer, benign neoplasms); respiratory disorders (e.g. chronic obstructive pulmonary disease); digestive disorders (e.g. inflammatory bowel disease, ulcers); musculoskeletal disorders (e.g. fibromyalgia, arthritis); endocrine, metabolic, and nutritional disorders (e.g. diabetes, osteoporosis); urological disorders (e.g. renal disease); psychological disorders (e.g. depression, schizophrenia); skin disorders (e.g. wounds, eczema); blood and lymphatic disorders (e.g. anemia, hemophilia); etc.
Kits, Vectors, Cells
Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding any of the fusion proteins provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
Some aspects of this disclosure provide polynucleotides encoding a fusion protein (e.g., base editor) as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
Some aspects of this disclosure provide cells comprising a any of the fusion proteins provided herein, a nucleic acid molecule encoding any of the fusion proteins provided herein, a complex comprising any of the fusion proteins provided herein and the gRNA, and/or a vector as provided herein.
The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional variations of the exemplary compostions and methods described in detail above, are also embraced by this disclosure.
This disclosure provides Cas9 variants in which one or more of the amino acid residues identified (e.g., by an asterisk) are mutated as described herein. In some embodiments, the D10 and H840 residues are mutated, e.g., to an alanine residue, and the Cas9 variants provided include one or more additional mutations of the amino acid residues identified by an asterisk as provided herein. In some embodiments, the D10 residue is mutated, e.g., to an alanine residue, and the Cas9 variants provided include one or more additional mutations of the amino acid residues (e.g., identified by an asterisk) as provided herein.
A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues can be identified in other Cas9 domains, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT(accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11,-1; End-Gap penalties −5,-1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.
An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 11|WP_010922251|gi 499224711|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 12|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 13|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 14|5AW_A|gi 924443546|Staphylococcus Aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and 1329 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue. A similar approach can be employed to determine homologous amino acid residues suitable for mutation based on the amino acid mutations of Cas9 domains identified herein.
YSIGLD*IGTNSVGWAVITDEYKVPSKKFKVIGNTDRHSIKKNLI--GALLFDSG--ETAEATRIKRTARRRYT
YSIGLD*IGTNSVGWAVITDDYKVPAKENEVLGNTDKKYIKKNLL--GALLFDSG--ETAEATRIKRTARRRYT
YILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRIFKEANVENNEGRRSKRGARRLKR
KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD
KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD
KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRIFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD
ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN
The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NO: 11 are mutated as described herein. The residues in Cas9 sequences other than SEQ ID NO: 11 that correspond to the residues identified in SEQ ID NO: 11 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences other than SEQ ID NO: 11 that correspond to mutations identified in SEQ ID NO: 11 herein, e.g., mutations of residues 10, 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 840, 1219, and 1329 in SEQ ID NO: 11, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in 51 for the four aligned sequences above are D10A for S2, D9A for S3, and D13A for S4; the corresponding mutations for H840A in 51 are H850A for S2, H842A for S3, and H560 for S4; the corresponding mutation for X1219V in 51 are X1228V for S2, X1226 for S3, and X903V for S4, and so on.
A total of 250 Cas9 sequences (SEQ ID NOs: 11-260) from different species were aligned using the same algorithm and alignment parameters outlined above, and is provided in Patent Publication No. WO2017/070633, published Apr. 27, 2017, entitled “Evolved Cas9 domains For Gene Editing”; the entire contents of which are incorporated herein by reference. Additional suitable Cas9 homologues, as well as performing alignments of homologues, will be apparent to those of ordinary skill in the art based on this disclosure and knowledge in the field, and are within the scope of the present disclosure.
Cas9 variants with one or more mutations in amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 11 are provided herein. In some embodiments, the Cas9 variants provided herein comprise mutations corresponding to the D10A and the H840A mutations in SEQ ID NO: 11, resulting in a nuclease-inactive dCas9, and at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations of amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 11.
Cas9 variants with one or more mutations in amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 11 are provided herein. In some embodiments, the Cas9 variants provided herein comprise mutations corresponding to the D10A mutations in SEQ ID NO: 11, resulting in a partially nuclease-inactive dCas9, wherein the Cas9 can nick the non-target strand but not the targeted strand, and at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations of amino acid residues homologous to amino acid residues 122, 137, 182, 262, 294, 409, 480, 543, 660, 694, 1219, and 1329 of SEQ ID NO: 11.
Additional suitable Cas9 sequences in which amino acid residues homologous to residues 50, 86, 115, 108, 141, 175, 217, 230, 257, 261, 262, 267, 274, 284, 294, 331, 319, 324, 341, 388, 405, 409, 435, 461, 466, 480, 510, 522, 543, 548, 593, 653, 673, 694, 711, 712, 715, 772, 777, 798, 811, 839, 847, 955, 967, 991, 1063, 1139, 1199, 1207, 1219, 1224, 1227, 1229, 1256, 1264, 1296, 1318, 1356, and/or 1362 of SEQ ID NO: 11 can be identified are known to those of skill in the art. See, e.g., Supplementary Table S2 and Supplementary Figure S2 of Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems, Nucl. Acids Res. 2013, doi: 10.1093/nar/gkt1074, which are incorporated herein by reference in their entirety. Cas9 variants of the sequences provided herein or known in the art comprising one or more mutations, e.g., at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as provided herein, e.g., of one or more amino acid residue that is homologous to amino acid residues 50, 86, 115, 108, 141, 175, 217, 230, 257, 261, 262, 267, 274, 284, 294, 331, 319, 324, 341, 388, 405, 409, 435, 461, 466, 480, 510, 522, 543, 548, 593, 653, 673, 694, 711, 712, 715, 772, 777, 798, 811, 839, 847, 955, 967, 991, 1063, 1139, 1199, 1207, 1219, 1224, 1227, 1229, 1256, 1264, 1296, 1318, 1356, and/or 1362 in SEQ ID NO: 9 are provided by this disclosure, for example, Cas9 variants comprising a A262T, K294R, S4091, E480K, E543D, M6941, and/or E1219V mutation.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.
Articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes “or” between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
It is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.
In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.
This application is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2018/048969, filed Aug. 30, 2018, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application, U.S. Ser. No. 62/661,974, filed Apr. 24, 2018, and to U.S. Provisional Application, U.S. Ser. No. 62/551,938, filed Aug. 30, 2017, each of which is incorporated herein by reference.
This invention was made with government support under HR0011-17-2-0049, EB022376 and GM118062 awarded by DARPA and National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/048969 | 8/30/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/139645 | 7/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4182449 | Kozlow | Jan 1980 | A |
4186183 | Steck et al. | Jan 1980 | A |
4217344 | Vanlerberghe et al. | Aug 1980 | A |
4235871 | Papahadjopoulos et al. | Nov 1980 | A |
4261975 | Fullerton et al. | Apr 1981 | A |
4485054 | Mezei et al. | Nov 1984 | A |
4501728 | Geho et al. | Feb 1985 | A |
4663290 | Weis et al. | May 1987 | A |
4737323 | Martin et al. | Apr 1988 | A |
4774085 | Fidler | Sep 1988 | A |
4797368 | Carter et al. | Jan 1989 | A |
4837028 | Allen | Jun 1989 | A |
4873316 | Meade et al. | Oct 1989 | A |
4880635 | Janoff et al. | Nov 1989 | A |
4889818 | Gelfand et al. | Dec 1989 | A |
4897355 | Eppstein et al. | Jan 1990 | A |
4906477 | Kurono et al. | Mar 1990 | A |
4911928 | Wallach | Mar 1990 | A |
4917951 | Wallach | Apr 1990 | A |
4920016 | Allen et al. | Apr 1990 | A |
4921757 | Wheatley et al. | May 1990 | A |
4946787 | Eppstein et al. | Aug 1990 | A |
4965185 | Grischenko et al. | Oct 1990 | A |
5017492 | Kotewicz et al. | May 1991 | A |
5047342 | Chatterjee | Sep 1991 | A |
5049386 | Eppstein et al. | Sep 1991 | A |
5079352 | Gelfand et al. | Jan 1992 | A |
5139941 | Muzyczka et al. | Aug 1992 | A |
5173414 | Lebkowski et al. | Dec 1992 | A |
5223409 | Ladner et al. | Jun 1993 | A |
5244797 | Kotewicz et al. | Sep 1993 | A |
5270179 | Chatterjee | Dec 1993 | A |
5374553 | Gelfand et al. | Dec 1994 | A |
5405776 | Kotewicz et al. | Apr 1995 | A |
5436149 | Barnes | Jul 1995 | A |
5449639 | Wei et al. | Sep 1995 | A |
5496714 | Comb et al. | Mar 1996 | A |
5512462 | Cheng | Apr 1996 | A |
5580737 | Polisky et al. | Dec 1996 | A |
5614365 | Tabor et al. | Mar 1997 | A |
5658727 | Barbas et al. | Aug 1997 | A |
5668005 | Kotewicz et al. | Sep 1997 | A |
5677152 | Birch et al. | Oct 1997 | A |
5767099 | Harris et al. | Jun 1998 | A |
5780053 | Ashley et al. | Jul 1998 | A |
5830430 | Unger et al. | Nov 1998 | A |
5834247 | Comb et al. | Nov 1998 | A |
5835699 | Kimura | Nov 1998 | A |
5851548 | Dattagupta et al. | Dec 1998 | A |
5855910 | Ashley et al. | Jan 1999 | A |
5962313 | Podsakoff et al. | Oct 1999 | A |
5981182 | Jacobs, Jr. et al. | Nov 1999 | A |
6057153 | George et al. | May 2000 | A |
6063608 | Kotewicz et al. | May 2000 | A |
6156509 | Schellenberger | Dec 2000 | A |
6183998 | Ivanov et al. | Feb 2001 | B1 |
6429298 | Ellington et al. | Aug 2002 | B1 |
6453242 | Eisenberg et al. | Sep 2002 | B1 |
6479264 | Louwrier | Nov 2002 | B1 |
6503717 | Case et al. | Jan 2003 | B2 |
6534261 | Cox, III et al. | Mar 2003 | B1 |
6589768 | Kotewicz et al. | Jul 2003 | B1 |
6599692 | Case et al. | Jul 2003 | B1 |
6607882 | Cox, III et al. | Aug 2003 | B1 |
6610522 | Kotewicz et al. | Aug 2003 | B1 |
6689558 | Case | Feb 2004 | B2 |
6824978 | Cox, III et al. | Nov 2004 | B1 |
6933113 | Case et al. | Aug 2005 | B2 |
6979539 | Cox, III et al. | Dec 2005 | B2 |
7013219 | Case et al. | Mar 2006 | B2 |
7078208 | Smith et al. | Jul 2006 | B2 |
7163824 | Cox, III et al. | Jan 2007 | B2 |
7479573 | Chu et al. | Jan 2009 | B2 |
7595179 | Chen et al. | Sep 2009 | B2 |
7670807 | Lampson et al. | Mar 2010 | B2 |
7794931 | Breaker et al. | Sep 2010 | B2 |
7919277 | Russell et al. | Apr 2011 | B2 |
7993672 | Huang et al. | Aug 2011 | B2 |
8067556 | Hogrefe et al. | Nov 2011 | B2 |
8361725 | Russell et al. | Jan 2013 | B2 |
8394604 | Liu et al. | Mar 2013 | B2 |
8440431 | Voytas et al. | May 2013 | B2 |
8440432 | Voytas et al. | May 2013 | B2 |
8450471 | Voytas et al. | May 2013 | B2 |
8492082 | De Franciscis et al. | Jul 2013 | B2 |
8546553 | Terns et al. | Oct 2013 | B2 |
8569256 | Heyes et al. | Oct 2013 | B2 |
8586363 | Voytas et al. | Nov 2013 | B2 |
8680069 | de Fougerolles et al. | Mar 2014 | B2 |
8691750 | Constien et al. | Apr 2014 | B2 |
8697359 | Zhang | Apr 2014 | B1 |
8697853 | Voytas et al. | Apr 2014 | B2 |
8709466 | Coady et al. | Apr 2014 | B2 |
8728526 | Heller | May 2014 | B2 |
8748667 | Budzik et al. | Jun 2014 | B2 |
8758810 | Okada et al. | Jun 2014 | B2 |
8759103 | Kim et al. | Jun 2014 | B2 |
8759104 | Unciti-Broceta et al. | Jun 2014 | B2 |
8771728 | Huang et al. | Jul 2014 | B2 |
8790664 | Pitard et al. | Jul 2014 | B2 |
8795965 | Zhang | Aug 2014 | B2 |
8822663 | Schrum et al. | Sep 2014 | B2 |
8846578 | McCray et al. | Sep 2014 | B2 |
8900814 | Yasukawa et al. | Dec 2014 | B2 |
8993233 | Zhang et al. | Mar 2015 | B2 |
8999641 | Zhang et al. | Apr 2015 | B2 |
9023594 | Liu et al. | May 2015 | B2 |
9068179 | Liu et al. | Jun 2015 | B1 |
9163284 | Liu et al. | Oct 2015 | B2 |
9181535 | Liu et al. | Nov 2015 | B2 |
9228207 | Liu et al. | Jan 2016 | B2 |
9234213 | Wu | Jan 2016 | B2 |
9267127 | Liu et al. | Feb 2016 | B2 |
9322006 | Liu et al. | Apr 2016 | B2 |
9322037 | Liu et al. | Apr 2016 | B2 |
9340799 | Liu et al. | May 2016 | B2 |
9340800 | Liu et al. | May 2016 | B2 |
9359599 | Liu et al. | Jun 2016 | B2 |
9388430 | Liu et al. | Jul 2016 | B2 |
9394537 | Liu et al. | Jul 2016 | B2 |
9458484 | Ma et al. | Oct 2016 | B2 |
9512446 | Joung et al. | Dec 2016 | B1 |
9526724 | Oshlack et al. | Dec 2016 | B2 |
9526784 | Liu et al. | Dec 2016 | B2 |
9534210 | Park et al. | Jan 2017 | B2 |
9580698 | Xu et al. | Feb 2017 | B1 |
9637739 | Siksnys et al. | May 2017 | B2 |
9737604 | Liu et al. | Aug 2017 | B2 |
9738693 | Telford et al. | Aug 2017 | B2 |
9771574 | Liu et al. | Sep 2017 | B2 |
9783791 | Hogrefe et al. | Oct 2017 | B2 |
9816093 | Donohoue et al. | Nov 2017 | B1 |
9840538 | Telford et al. | Dec 2017 | B2 |
9840690 | Karli et al. | Dec 2017 | B2 |
9840699 | Liu et al. | Dec 2017 | B2 |
9840702 | Collingwood et al. | Dec 2017 | B2 |
9850521 | Braman et al. | Dec 2017 | B2 |
9873907 | Zeiner et al. | Jan 2018 | B2 |
9879270 | Hittinger et al. | Jan 2018 | B2 |
9932567 | Xu et al. | Apr 2018 | B1 |
9938288 | Kishi et al. | Apr 2018 | B1 |
9944933 | Storici et al. | Apr 2018 | B2 |
9982279 | Gill et al. | May 2018 | B1 |
9999671 | Liu et al. | Jun 2018 | B2 |
10059940 | Zhong | Aug 2018 | B2 |
10077453 | Liu et al. | Sep 2018 | B2 |
10113163 | Liu et al. | Oct 2018 | B2 |
10150955 | Lambowitz et al. | Dec 2018 | B2 |
10167457 | Liu et al. | Jan 2019 | B2 |
10179911 | Liu et al. | Jan 2019 | B2 |
10189831 | Arrington et al. | Jan 2019 | B2 |
10202658 | Parkin et al. | Feb 2019 | B2 |
10227581 | Liu et al. | Mar 2019 | B2 |
10323236 | Liu et al. | Jun 2019 | B2 |
10336997 | Liu et al. | Jul 2019 | B2 |
10358670 | Janulaitis et al. | Jul 2019 | B2 |
10392674 | Liu et al. | Aug 2019 | B2 |
10407697 | Doudna et al. | Sep 2019 | B2 |
10465176 | Liu et al. | Nov 2019 | B2 |
10508298 | Liu et al. | Dec 2019 | B2 |
10597679 | Liu et al. | Mar 2020 | B2 |
10612011 | Liu et al. | Apr 2020 | B2 |
10682410 | Liu et al. | Jun 2020 | B2 |
10704062 | Liu et al. | Jul 2020 | B2 |
10745677 | Maianti | Aug 2020 | B2 |
10858639 | Liu et al. | Dec 2020 | B2 |
10912833 | Liu et al. | Feb 2021 | B2 |
10947530 | Liu et al. | Mar 2021 | B2 |
10954548 | Liu et al. | Mar 2021 | B2 |
20030082575 | Schultz et al. | May 2003 | A1 |
20030087817 | Cox et al. | May 2003 | A1 |
20030096337 | Hillman et al. | May 2003 | A1 |
20030108885 | Schultz et al. | Jun 2003 | A1 |
20030119764 | Loeb et al. | Jun 2003 | A1 |
20030167533 | Yadav et al. | Sep 2003 | A1 |
20030203480 | Kovesdi et al. | Oct 2003 | A1 |
20040003420 | Kuhn et al. | Jan 2004 | A1 |
20040115184 | Smith et al. | Jun 2004 | A1 |
20040203109 | Lal et al. | Oct 2004 | A1 |
20050136429 | Guarente et al. | Jun 2005 | A1 |
20050222030 | Allison | Oct 2005 | A1 |
20050260626 | Lorens et al. | Nov 2005 | A1 |
20060088864 | Smolke et al. | Apr 2006 | A1 |
20060104984 | Littlefield et al. | May 2006 | A1 |
20060246568 | Honjo et al. | Nov 2006 | A1 |
20070264692 | Liu et al. | Nov 2007 | A1 |
20070269817 | Shapero | Nov 2007 | A1 |
20080051317 | Church et al. | Feb 2008 | A1 |
20080124725 | Barrangou et al. | May 2008 | A1 |
20080182254 | Hall et al. | Jul 2008 | A1 |
20080220502 | Schellenberger et al. | Sep 2008 | A1 |
20090130718 | Short | May 2009 | A1 |
20090215878 | Tan et al. | Aug 2009 | A1 |
20090234109 | Han et al. | Sep 2009 | A1 |
20100076057 | Sontheimer et al. | Mar 2010 | A1 |
20100093617 | Barrangou et al. | Apr 2010 | A1 |
20100104690 | Barrangou et al. | Apr 2010 | A1 |
20100273857 | Thakker et al. | Oct 2010 | A1 |
20100305197 | Che | Dec 2010 | A1 |
20100316643 | Eckert et al. | Dec 2010 | A1 |
20110016540 | Weinstein et al. | Jan 2011 | A1 |
20110059160 | Essner et al. | Mar 2011 | A1 |
20110059502 | Chalasani | Mar 2011 | A1 |
20110104787 | Church et al. | May 2011 | A1 |
20110177495 | Liu et al. | Jul 2011 | A1 |
20110189776 | Terns et al. | Aug 2011 | A1 |
20110217739 | Terns et al. | Sep 2011 | A1 |
20110301073 | Gregory et al. | Dec 2011 | A1 |
20120129759 | Liu et al. | May 2012 | A1 |
20120141523 | Castado et al. | Jun 2012 | A1 |
20120244601 | Bertozzi et al. | Sep 2012 | A1 |
20120270273 | Zhang et al. | Oct 2012 | A1 |
20130059931 | Petersen-Mahrt et al. | Mar 2013 | A1 |
20130117869 | Duchateau et al. | May 2013 | A1 |
20130130248 | Haurwitz et al. | May 2013 | A1 |
20130158245 | Russell et al. | Jun 2013 | A1 |
20130165389 | Schellenberger et al. | Jun 2013 | A1 |
20130309720 | Schultz et al. | Nov 2013 | A1 |
20130344117 | Mirosevich et al. | Dec 2013 | A1 |
20130345064 | Liu et al. | Dec 2013 | A1 |
20140004280 | Loomis | Jan 2014 | A1 |
20140005269 | Ngwuluka et al. | Jan 2014 | A1 |
20140017214 | Cost | Jan 2014 | A1 |
20140018404 | Chen et al. | Jan 2014 | A1 |
20140044793 | Goll et al. | Feb 2014 | A1 |
20140065711 | Liu et al. | Mar 2014 | A1 |
20140068797 | Doudna et al. | Mar 2014 | A1 |
20140127752 | Zhou et al. | May 2014 | A1 |
20140141094 | Smyth et al. | May 2014 | A1 |
20140141487 | Feldman et al. | May 2014 | A1 |
20140179770 | Zhang et al. | Jun 2014 | A1 |
20140186843 | Zhang et al. | Jul 2014 | A1 |
20140186958 | Zhang et al. | Jul 2014 | A1 |
20140201858 | Ostertag et al. | Jul 2014 | A1 |
20140234289 | Liu et al. | Aug 2014 | A1 |
20140248702 | Zhang et al. | Sep 2014 | A1 |
20140273037 | Wu | Sep 2014 | A1 |
20140273226 | Wu | Sep 2014 | A1 |
20140273230 | Chen et al. | Sep 2014 | A1 |
20140295556 | Joung et al. | Oct 2014 | A1 |
20140295557 | Joung et al. | Oct 2014 | A1 |
20140342456 | Mali et al. | Nov 2014 | A1 |
20140342457 | Mali et al. | Nov 2014 | A1 |
20140342458 | Mali et al. | Nov 2014 | A1 |
20140349400 | Jakimo et al. | Nov 2014 | A1 |
20140356867 | Peter et al. | Dec 2014 | A1 |
20140356956 | Church et al. | Dec 2014 | A1 |
20140356958 | Mali et al. | Dec 2014 | A1 |
20140356959 | Church et al. | Dec 2014 | A1 |
20140357523 | Zeiner et al. | Dec 2014 | A1 |
20140377868 | Joung et al. | Dec 2014 | A1 |
20150010526 | Liu et al. | Jan 2015 | A1 |
20150031089 | Lindstrom | Jan 2015 | A1 |
20150031132 | Church et al. | Jan 2015 | A1 |
20150031133 | Church et al. | Jan 2015 | A1 |
20150044191 | Liu et al. | Feb 2015 | A1 |
20150044192 | Liu et al. | Feb 2015 | A1 |
20150044772 | Zhao | Feb 2015 | A1 |
20150050699 | Siksnys et al. | Feb 2015 | A1 |
20150056177 | Liu et al. | Feb 2015 | A1 |
20150056629 | Guthrie-Honea | Feb 2015 | A1 |
20150064138 | Lu et al. | Mar 2015 | A1 |
20150064789 | Paschon et al. | Mar 2015 | A1 |
20150071898 | Liu et al. | Mar 2015 | A1 |
20150071899 | Liu et al. | Mar 2015 | A1 |
20150071900 | Liu et al. | Mar 2015 | A1 |
20150071901 | Liu et al. | Mar 2015 | A1 |
20150071902 | Liu et al. | Mar 2015 | A1 |
20150071903 | Liu et al. | Mar 2015 | A1 |
20150071906 | Liu et al. | Mar 2015 | A1 |
20150079680 | Bradley et al. | Mar 2015 | A1 |
20150079681 | Zhang | Mar 2015 | A1 |
20150098954 | Hyde et al. | Apr 2015 | A1 |
20150118216 | Liu et al. | Apr 2015 | A1 |
20150132269 | Orkin et al. | May 2015 | A1 |
20150140664 | Byrne et al. | May 2015 | A1 |
20150159172 | Miller et al. | Jun 2015 | A1 |
20150165054 | Liu et al. | Jun 2015 | A1 |
20150166980 | Liu et al. | Jun 2015 | A1 |
20150166981 | Liu et al. | Jun 2015 | A1 |
20150166982 | Liu et al. | Jun 2015 | A1 |
20150166984 | Liu et al. | Jun 2015 | A1 |
20150166985 | Liu et al. | Jun 2015 | A1 |
20150191744 | Wolfe et al. | Jul 2015 | A1 |
20150197759 | Xu et al. | Jul 2015 | A1 |
20150211058 | Carstens | Jul 2015 | A1 |
20150218573 | Loque et al. | Aug 2015 | A1 |
20150225773 | Farmer et al. | Aug 2015 | A1 |
20150252358 | Maeder et al. | Sep 2015 | A1 |
20150275202 | Liu et al. | Oct 2015 | A1 |
20150307889 | Petolino et al. | Oct 2015 | A1 |
20150315252 | Haugwitz et al. | Nov 2015 | A1 |
20150344549 | Muir et al. | Dec 2015 | A1 |
20160015682 | Cawthorne et al. | Jan 2016 | A2 |
20160017393 | Jacobson et al. | Jan 2016 | A1 |
20160017396 | Cann et al. | Jan 2016 | A1 |
20160032292 | Storici et al. | Feb 2016 | A1 |
20160032353 | Braman et al. | Feb 2016 | A1 |
20160040155 | Maizels et al. | Feb 2016 | A1 |
20160046952 | Hittinger et al. | Feb 2016 | A1 |
20160046961 | Jinek et al. | Feb 2016 | A1 |
20160046962 | May et al. | Feb 2016 | A1 |
20160053272 | Wurtzel et al. | Feb 2016 | A1 |
20160053304 | Wurtzel et al. | Feb 2016 | A1 |
20160074535 | Ranganathan et al. | Mar 2016 | A1 |
20160076093 | Shendure et al. | Mar 2016 | A1 |
20160090603 | Carnes et al. | Mar 2016 | A1 |
20160090622 | Liu et al. | Mar 2016 | A1 |
20160115488 | Zhang et al. | Apr 2016 | A1 |
20160138046 | Wu | May 2016 | A1 |
20160186214 | Brouns et al. | Jun 2016 | A1 |
20160200779 | Liu et al. | Jul 2016 | A1 |
20160201040 | Liu et al. | Jul 2016 | A1 |
20160201089 | Gersbach et al. | Jul 2016 | A1 |
20160206566 | Lu et al. | Jul 2016 | A1 |
20160208243 | Zhang et al. | Jul 2016 | A1 |
20160208288 | Liu et al. | Jul 2016 | A1 |
20160215275 | Zhong | Jul 2016 | A1 |
20160215276 | Liu et al. | Jul 2016 | A1 |
20160215300 | May et al. | Jul 2016 | A1 |
20160244784 | Jacobson et al. | Aug 2016 | A1 |
20160244829 | Bang et al. | Aug 2016 | A1 |
20160264934 | Giallourakis et al. | Sep 2016 | A1 |
20160272965 | Zhang et al. | Sep 2016 | A1 |
20160281072 | Zhang | Sep 2016 | A1 |
20160298136 | Chen et al. | Oct 2016 | A1 |
20160304846 | Liu et al. | Oct 2016 | A1 |
20160304855 | Stark et al. | Oct 2016 | A1 |
20160312304 | Sorrentino et al. | Oct 2016 | A1 |
20160319262 | Doudna et al. | Nov 2016 | A1 |
20160333389 | Liu et al. | Nov 2016 | A1 |
20160340622 | Abdou | Nov 2016 | A1 |
20160340662 | Zhang et al. | Nov 2016 | A1 |
20160345578 | Barrangou et al. | Dec 2016 | A1 |
20160346360 | Quake et al. | Dec 2016 | A1 |
20160346361 | Quake et al. | Dec 2016 | A1 |
20160346362 | Quake et al. | Dec 2016 | A1 |
20160348074 | Quake et al. | Dec 2016 | A1 |
20160348096 | Liu et al. | Dec 2016 | A1 |
20160350476 | Quake et al. | Dec 2016 | A1 |
20160355796 | Davidson et al. | Dec 2016 | A1 |
20160369262 | Reik et al. | Dec 2016 | A1 |
20170009224 | Liu et al. | Jan 2017 | A1 |
20170009242 | McKinley et al. | Jan 2017 | A1 |
20170014449 | Bangera et al. | Jan 2017 | A1 |
20170020922 | Wagner | Jan 2017 | A1 |
20170037432 | Donohoue et al. | Feb 2017 | A1 |
20170044520 | Liu et al. | Feb 2017 | A1 |
20170044592 | Peter et al. | Feb 2017 | A1 |
20170053729 | Kotani et al. | Feb 2017 | A1 |
20170058271 | Joung et al. | Mar 2017 | A1 |
20170058272 | Carter et al. | Mar 2017 | A1 |
20170058298 | Kennedy et al. | Mar 2017 | A1 |
20170073663 | Wang et al. | Mar 2017 | A1 |
20170073670 | Nishida et al. | Mar 2017 | A1 |
20170087224 | Quake | Mar 2017 | A1 |
20170087225 | Quake | Mar 2017 | A1 |
20170088587 | Quake | Mar 2017 | A1 |
20170088828 | Quake | Mar 2017 | A1 |
20170107536 | Zhang et al. | Apr 2017 | A1 |
20170107560 | Peter et al. | Apr 2017 | A1 |
20170114367 | Hu et al. | Apr 2017 | A1 |
20170121693 | Liu et al. | May 2017 | A1 |
20170145394 | Yeo et al. | May 2017 | A1 |
20170145405 | Tang et al. | May 2017 | A1 |
20170145438 | Kantor | May 2017 | A1 |
20170152528 | Zhang | Jun 2017 | A1 |
20170152787 | Kubo et al. | Jun 2017 | A1 |
20170159033 | Kamtekar et al. | Jun 2017 | A1 |
20170166928 | Vyas et al. | Jun 2017 | A1 |
20170175104 | Doudna et al. | Jun 2017 | A1 |
20170175142 | Zhang et al. | Jun 2017 | A1 |
20170191047 | Terns et al. | Jul 2017 | A1 |
20170191078 | Zhang et al. | Jul 2017 | A1 |
20170198269 | Zhang et al. | Jul 2017 | A1 |
20170198277 | Kmiec et al. | Jul 2017 | A1 |
20170198302 | Feng et al. | Jul 2017 | A1 |
20170226522 | Hu et al. | Aug 2017 | A1 |
20170233703 | Xie et al. | Aug 2017 | A1 |
20170233756 | Begemann et al. | Aug 2017 | A1 |
20170247671 | Yung et al. | Aug 2017 | A1 |
20170247703 | Sloan et al. | Aug 2017 | A1 |
20170268022 | Liu et al. | Sep 2017 | A1 |
20170275665 | Silas et al. | Sep 2017 | A1 |
20170283797 | Robb et al. | Oct 2017 | A1 |
20170283831 | Zhang et al. | Oct 2017 | A1 |
20170314016 | Kim et al. | Nov 2017 | A1 |
20170362635 | Chamberlain et al. | Dec 2017 | A1 |
20180064077 | Dunham et al. | Mar 2018 | A1 |
20180066258 | Powell | Mar 2018 | A1 |
20180068062 | Zhang et al. | Mar 2018 | A1 |
20180073012 | Liu et al. | Mar 2018 | A1 |
20180080051 | Sheikh et al. | Mar 2018 | A1 |
20180087046 | Badran et al. | Mar 2018 | A1 |
20180100147 | Yates et al. | Apr 2018 | A1 |
20180105867 | Xiao et al. | Apr 2018 | A1 |
20180119118 | Lu et al. | May 2018 | A1 |
20180127780 | Liu et al. | May 2018 | A1 |
20180155708 | Church et al. | Jun 2018 | A1 |
20180155720 | Donohoue et al. | Jun 2018 | A1 |
20180163213 | Aneja et al. | Jun 2018 | A1 |
20180170984 | Harris et al. | Jun 2018 | A1 |
20180179503 | Maianti et al. | Jun 2018 | A1 |
20180179547 | Zhang et al. | Jun 2018 | A1 |
20180201921 | Malcolm | Jul 2018 | A1 |
20180230464 | Zhong | Aug 2018 | A1 |
20180230471 | Storici et al. | Aug 2018 | A1 |
20180236081 | Liu et al. | Aug 2018 | A1 |
20180237758 | Liu et al. | Aug 2018 | A1 |
20180237787 | Maianti et al. | Aug 2018 | A1 |
20180245066 | Yao et al. | Aug 2018 | A1 |
20180258418 | Kim | Sep 2018 | A1 |
20180265864 | Li et al. | Sep 2018 | A1 |
20180273939 | Yu et al. | Sep 2018 | A1 |
20180282722 | Jakimo et al. | Oct 2018 | A1 |
20180298391 | Jakimo et al. | Oct 2018 | A1 |
20180305688 | Zhong | Oct 2018 | A1 |
20180305704 | Zhang | Oct 2018 | A1 |
20180312822 | Lee et al. | Nov 2018 | A1 |
20180312825 | Liu et al. | Nov 2018 | A1 |
20180312828 | Liu et al. | Nov 2018 | A1 |
20180312835 | Yao et al. | Nov 2018 | A1 |
20180327756 | Zhang et al. | Nov 2018 | A1 |
20190010481 | Joung | Jan 2019 | A1 |
20190055543 | Tran et al. | Feb 2019 | A1 |
20190093099 | Liu et al. | Mar 2019 | A1 |
20190185883 | Liu et al. | Jun 2019 | A1 |
20190225955 | Liu et al. | Jul 2019 | A1 |
20190233847 | Savage et al. | Aug 2019 | A1 |
20190241633 | Fotin-Mleczek et al. | Aug 2019 | A1 |
20190256842 | Liu et al. | Aug 2019 | A1 |
20190264202 | Church et al. | Aug 2019 | A1 |
20190276816 | Liu et al. | Sep 2019 | A1 |
20190322992 | Liu et al. | Oct 2019 | A1 |
20190352632 | Liu et al. | Nov 2019 | A1 |
20190367891 | Liu et al. | Dec 2019 | A1 |
20200010818 | Liu et al. | Jan 2020 | A1 |
20200010835 | Maianti et al. | Jan 2020 | A1 |
20200063127 | Lu et al. | Feb 2020 | A1 |
20200071722 | Liu et al. | Mar 2020 | A1 |
20200109398 | Rubens et al. | Apr 2020 | A1 |
20200172931 | Liu et al. | Jun 2020 | A1 |
20200181619 | Tang et al. | Jun 2020 | A1 |
20200190493 | Liu et al. | Jun 2020 | A1 |
20200216833 | Liu et al. | Jul 2020 | A1 |
20200255868 | Liu et al. | Aug 2020 | A1 |
20200277587 | Liu et al. | Sep 2020 | A1 |
20200323984 | Liu et al. | Oct 2020 | A1 |
20200399619 | Maianti et al. | Dec 2020 | A1 |
20210054416 | Liu et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2012244264 | Nov 2012 | AU |
2012354062 | Jul 2014 | AU |
2015252023 | Nov 2015 | AU |
2015101792 | Jan 2016 | AU |
112015013786 | Jul 2017 | BR |
2894668 | Jun 2014 | CA |
2894681 | Jun 2014 | CA |
2894684 | Jun 2014 | CA |
2 852 593 | Nov 2015 | CA |
1069962 | Mar 1993 | CN |
103224947 | Jul 2013 | CN |
103233028 | Aug 2013 | CN |
103388006 | Nov 2013 | CN |
103614415 | Mar 2014 | CN |
103642836 | Mar 2014 | CN |
103668472 | Mar 2014 | CN |
103820441 | May 2014 | CN |
103820454 | May 2014 | CN |
103911376 | Jul 2014 | CN |
103923911 | Jul 2014 | CN |
103981211 | Aug 2014 | CN |
103981212 | Aug 2014 | CN |
104004778 | Aug 2014 | CN |
104004782 | Aug 2014 | CN |
104017821 | Sep 2014 | CN |
104109687 | Oct 2014 | CN |
104178461 | Dec 2014 | CN |
104342457 | Feb 2015 | CN |
104404036 | Mar 2015 | CN |
104450774 | Mar 2015 | CN |
104480144 | Apr 2015 | CN |
104498493 | Apr 2015 | CN |
104504304 | Apr 2015 | CN |
104531704 | Apr 2015 | CN |
104531705 | Apr 2015 | CN |
104560864 | Apr 2015 | CN |
104561095 | Apr 2015 | CN |
104593418 | May 2015 | CN |
104593422 | May 2015 | CN |
104611370 | May 2015 | CN |
104651392 | May 2015 | CN |
104651398 | May 2015 | CN |
104651399 | May 2015 | CN |
104651401 | May 2015 | CN |
104673816 | Jun 2015 | CN |
104725626 | Jun 2015 | CN |
104726449 | Jun 2015 | CN |
104726494 | Jun 2015 | CN |
104745626 | Jul 2015 | CN |
104762321 | Jul 2015 | CN |
104805078 | Jul 2015 | CN |
104805099 | Jul 2015 | CN |
104805118 | Jul 2015 | CN |
104846010 | Aug 2015 | CN |
104894068 | Sep 2015 | CN |
104894075 | Sep 2015 | CN |
104928321 | Sep 2015 | CN |
105039339 | Nov 2015 | CN |
105039399 | Nov 2015 | CN |
105063061 | Nov 2015 | CN |
105087620 | Nov 2015 | CN |
105112422 | Dec 2015 | CN |
105112445 | Dec 2015 | CN |
105112519 | Dec 2015 | CN |
105121648 | Dec 2015 | CN |
105132427 | Dec 2015 | CN |
105132451 | Dec 2015 | CN |
105177038 | Dec 2015 | CN |
105177126 | Dec 2015 | CN |
105210981 | Jan 2016 | CN |
105219799 | Jan 2016 | CN |
105238806 | Jan 2016 | CN |
105255937 | Jan 2016 | CN |
105274144 | Jan 2016 | CN |
105296518 | Feb 2016 | CN |
105296537 | Feb 2016 | CN |
105316324 | Feb 2016 | CN |
105316327 | Feb 2016 | CN |
105316337 | Feb 2016 | CN |
105331607 | Feb 2016 | CN |
105331608 | Feb 2016 | CN |
105331609 | Feb 2016 | CN |
105331627 | Feb 2016 | CN |
105400773 | Mar 2016 | CN |
105400779 | Mar 2016 | CN |
105400810 | Mar 2016 | CN |
105441451 | Mar 2016 | CN |
105462968 | Apr 2016 | CN |
105463003 | Apr 2016 | CN |
105463027 | Apr 2016 | CN |
105492608 | Apr 2016 | CN |
105492609 | Apr 2016 | CN |
105505976 | Apr 2016 | CN |
105505979 | Apr 2016 | CN |
105518134 | Apr 2016 | CN |
105518135 | Apr 2016 | CN |
105518137 | Apr 2016 | CN |
105518138 | Apr 2016 | CN |
105518139 | Apr 2016 | CN |
105518140 | Apr 2016 | CN |
105543228 | May 2016 | CN |
105543266 | May 2016 | CN |
105543270 | May 2016 | CN |
105567688 | May 2016 | CN |
105567689 | May 2016 | CN |
105567734 | May 2016 | CN |
105567735 | May 2016 | CN |
105567738 | May 2016 | CN |
105593367 | May 2016 | CN |
105594664 | May 2016 | CN |
105602987 | May 2016 | CN |
105624146 | Jun 2016 | CN |
105624187 | Jun 2016 | CN |
105646719 | Jun 2016 | CN |
105647922 | Jun 2016 | CN |
105647962 | Jun 2016 | CN |
105647968 | Jun 2016 | CN |
105647969 | Jun 2016 | CN |
105671070 | Jun 2016 | CN |
105671083 | Jun 2016 | CN |
105695485 | Jun 2016 | CN |
105779448 | Jul 2016 | CN |
105779449 | Jul 2016 | CN |
105802980 | Jul 2016 | CN |
105821039 | Aug 2016 | CN |
105821040 | Aug 2016 | CN |
105821049 | Aug 2016 | CN |
105821072 | Aug 2016 | CN |
105821075 | Aug 2016 | CN |
105821116 | Aug 2016 | CN |
105838733 | Aug 2016 | CN |
105861547 | Aug 2016 | CN |
105861552 | Aug 2016 | CN |
105861554 | Aug 2016 | CN |
105886498 | Aug 2016 | CN |
105886534 | Aug 2016 | CN |
105886616 | Aug 2016 | CN |
105907758 | Aug 2016 | CN |
105907785 | Aug 2016 | CN |
105925608 | Sep 2016 | CN |
105950560 | Sep 2016 | CN |
105950626 | Sep 2016 | CN |
105950633 | Sep 2016 | CN |
105950639 | Sep 2016 | CN |
105985985 | Oct 2016 | CN |
106011104 | Oct 2016 | CN |
106011150 | Oct 2016 | CN |
106011167 | Oct 2016 | CN |
106011171 | Oct 2016 | CN |
106032540 | Oct 2016 | CN |
106047803 | Oct 2016 | CN |
106047877 | Oct 2016 | CN |
106047930 | Oct 2016 | CN |
106086008 | Nov 2016 | CN |
106086028 | Nov 2016 | CN |
106086061 | Nov 2016 | CN |
106086062 | Nov 2016 | CN |
106109417 | Nov 2016 | CN |
106119275 | Nov 2016 | CN |
106119283 | Nov 2016 | CN |
106148286 | Nov 2016 | CN |
106148370 | Nov 2016 | CN |
106148416 | Nov 2016 | CN |
106167525 | Nov 2016 | CN |
106167808 | Nov 2016 | CN |
106167810 | Nov 2016 | CN |
106167821 | Nov 2016 | CN |
106172238 | Dec 2016 | CN |
106190903 | Dec 2016 | CN |
106191057 | Dec 2016 | CN |
106191061 | Dec 2016 | CN |
106191062 | Dec 2016 | CN |
106191064 | Dec 2016 | CN |
106191071 | Dec 2016 | CN |
106191099 | Dec 2016 | CN |
106191107 | Dec 2016 | CN |
106191113 | Dec 2016 | CN |
106191114 | Dec 2016 | CN |
106191116 | Dec 2016 | CN |
106191124 | Dec 2016 | CN |
106222177 | Dec 2016 | CN |
106222193 | Dec 2016 | CN |
106222203 | Dec 2016 | CN |
106244555 | Dec 2016 | CN |
106244591 | Dec 2016 | CN |
106244609 | Dec 2016 | CN |
106282241 | Jan 2017 | CN |
106318934 | Jan 2017 | CN |
106318973 | Jan 2017 | CN |
106350540 | Jan 2017 | CN |
106367435 | Feb 2017 | CN |
106399306 | Feb 2017 | CN |
106399311 | Feb 2017 | CN |
106399360 | Feb 2017 | CN |
106399367 | Feb 2017 | CN |
106399375 | Feb 2017 | CN |
106399377 | Feb 2017 | CN |
106434651 | Feb 2017 | CN |
106434663 | Feb 2017 | CN |
106434688 | Feb 2017 | CN |
106434737 | Feb 2017 | CN |
106434748 | Feb 2017 | CN |
106434752 | Feb 2017 | CN |
106434782 | Feb 2017 | CN |
106446600 | Feb 2017 | CN |
106479985 | Mar 2017 | CN |
106480027 | Mar 2017 | CN |
106480036 | Mar 2017 | CN |
106480067 | Mar 2017 | CN |
106480080 | Mar 2017 | CN |
106480083 | Mar 2017 | CN |
106480097 | Mar 2017 | CN |
106544351 | Mar 2017 | CN |
106544353 | Mar 2017 | CN |
106544357 | Mar 2017 | CN |
106554969 | Apr 2017 | CN |
106566838 | Apr 2017 | CN |
106701763 | May 2017 | CN |
106701808 | May 2017 | CN |
106701818 | May 2017 | CN |
106701823 | May 2017 | CN |
106701830 | May 2017 | CN |
106754912 | May 2017 | CN |
106755026 | May 2017 | CN |
106755077 | May 2017 | CN |
106755088 | May 2017 | CN |
106755091 | May 2017 | CN |
106755097 | May 2017 | CN |
106755424 | May 2017 | CN |
106801056 | Jun 2017 | CN |
106834323 | Jun 2017 | CN |
106834341 | Jun 2017 | CN |
106834347 | Jun 2017 | CN |
106845151 | Jun 2017 | CN |
106868008 | Jun 2017 | CN |
106868031 | Jun 2017 | CN |
106906240 | Jun 2017 | CN |
106906242 | Jun 2017 | CN |
106916820 | Jul 2017 | CN |
106916852 | Jul 2017 | CN |
106939303 | Jul 2017 | CN |
106947750 | Jul 2017 | CN |
106947780 | Jul 2017 | CN |
106957830 | Jul 2017 | CN |
106957831 | Jul 2017 | CN |
106957844 | Jul 2017 | CN |
106957855 | Jul 2017 | CN |
106957858 | Jul 2017 | CN |
106967697 | Jul 2017 | CN |
106967726 | Jul 2017 | CN |
106978428 | Jul 2017 | CN |
106987570 | Jul 2017 | CN |
106987757 | Jul 2017 | CN |
107012164 | Aug 2017 | CN |
107012174 | Aug 2017 | CN |
107012213 | Aug 2017 | CN |
107012250 | Aug 2017 | CN |
107022562 | Aug 2017 | CN |
107034188 | Aug 2017 | CN |
107034218 | Aug 2017 | CN |
107034229 | Aug 2017 | CN |
107043775 | Aug 2017 | CN |
107043779 | Aug 2017 | CN |
107043787 | Aug 2017 | CN |
107058320 | Aug 2017 | CN |
107058328 | Aug 2017 | CN |
107058358 | Aug 2017 | CN |
107058372 | Aug 2017 | CN |
107083392 | Aug 2017 | CN |
107099533 | Aug 2017 | CN |
107099850 | Aug 2017 | CN |
107119053 | Sep 2017 | CN |
107119071 | Sep 2017 | CN |
107129999 | Sep 2017 | CN |
107130000 | Sep 2017 | CN |
107142272 | Sep 2017 | CN |
107142282 | Sep 2017 | CN |
107177591 | Sep 2017 | CN |
107177595 | Sep 2017 | CN |
107177625 | Sep 2017 | CN |
107177631 | Sep 2017 | CN |
107190006 | Sep 2017 | CN |
107190008 | Sep 2017 | CN |
107217042 | Sep 2017 | CN |
107217075 | Sep 2017 | CN |
107227307 | Oct 2017 | CN |
107227352 | Oct 2017 | CN |
107236737 | Oct 2017 | CN |
107236739 | Oct 2017 | CN |
107236741 | Oct 2017 | CN |
107245502 | Oct 2017 | CN |
107254485 | Oct 2017 | CN |
107266541 | Oct 2017 | CN |
107267515 | Oct 2017 | CN |
107287245 | Oct 2017 | CN |
107298701 | Oct 2017 | CN |
107299114 | Oct 2017 | CN |
107304435 | Oct 2017 | CN |
107312785 | Nov 2017 | CN |
107312793 | Nov 2017 | CN |
107312795 | Nov 2017 | CN |
107312798 | Nov 2017 | CN |
107326042 | Nov 2017 | CN |
107326046 | Nov 2017 | CN |
107354156 | Nov 2017 | CN |
107354173 | Nov 2017 | CN |
107356793 | Nov 2017 | CN |
107362372 | Nov 2017 | CN |
107365786 | Nov 2017 | CN |
107365804 | Nov 2017 | CN |
107384894 | Nov 2017 | CN |
107384922 | Nov 2017 | CN |
107384926 | Nov 2017 | CN |
107400677 | Nov 2017 | CN |
107418974 | Dec 2017 | CN |
107435051 | Dec 2017 | CN |
107435069 | Dec 2017 | CN |
107446922 | Dec 2017 | CN |
107446923 | Dec 2017 | CN |
107446924 | Dec 2017 | CN |
107446932 | Dec 2017 | CN |
107446951 | Dec 2017 | CN |
107446954 | Dec 2017 | CN |
107460196 | Dec 2017 | CN |
107474129 | Dec 2017 | CN |
107475300 | Dec 2017 | CN |
107488649 | Dec 2017 | CN |
107502608 | Dec 2017 | CN |
107502618 | Dec 2017 | CN |
107513531 | Dec 2017 | CN |
107519492 | Dec 2017 | CN |
107523567 | Dec 2017 | CN |
107523583 | Dec 2017 | CN |
107541525 | Jan 2018 | CN |
107557373 | Jan 2018 | CN |
107557378 | Jan 2018 | CN |
107557381 | Jan 2018 | CN |
107557390 | Jan 2018 | CN |
107557393 | Jan 2018 | CN |
107557394 | Jan 2018 | CN |
107557455 | Jan 2018 | CN |
107574179 | Jan 2018 | CN |
107586777 | Jan 2018 | CN |
107586779 | Jan 2018 | CN |
107604003 | Jan 2018 | CN |
107619829 | Jan 2018 | CN |
107619837 | Jan 2018 | CN |
107630006 | Jan 2018 | CN |
107630041 | Jan 2018 | CN |
107630042 | Jan 2018 | CN |
107630043 | Jan 2018 | CN |
107641631 | Jan 2018 | CN |
107653256 | Feb 2018 | CN |
107686848 | Feb 2018 | CN |
206970581 | Feb 2018 | CN |
107760652 | Mar 2018 | CN |
107760663 | Mar 2018 | CN |
107760684 | Mar 2018 | CN |
107760715 | Mar 2018 | CN |
107784200 | Mar 2018 | CN |
107794272 | Mar 2018 | CN |
107794276 | Mar 2018 | CN |
107815463 | Mar 2018 | CN |
107828738 | Mar 2018 | CN |
107828794 | Mar 2018 | CN |
107828826 | Mar 2018 | CN |
107828874 | Mar 2018 | CN |
107858346 | Mar 2018 | CN |
107858373 | Mar 2018 | CN |
107880132 | Apr 2018 | CN |
107881184 | Apr 2018 | CN |
107893074 | Apr 2018 | CN |
107893075 | Apr 2018 | CN |
107893076 | Apr 2018 | CN |
107893080 | Apr 2018 | CN |
107893086 | Apr 2018 | CN |
107904261 | Apr 2018 | CN |
107937427 | Apr 2018 | CN |
107937432 | Apr 2018 | CN |
107937501 | Apr 2018 | CN |
107974466 | May 2018 | CN |
107988229 | May 2018 | CN |
107988246 | May 2018 | CN |
107988256 | May 2018 | CN |
107988268 | May 2018 | CN |
108018316 | May 2018 | CN |
108034656 | May 2018 | CN |
108048466 | May 2018 | CN |
108102940 | Jun 2018 | CN |
108103092 | Jun 2018 | CN |
108103098 | Jun 2018 | CN |
108103586 | Jun 2018 | CN |
108148835 | Jun 2018 | CN |
108148837 | Jun 2018 | CN |
108148873 | Jun 2018 | CN |
108192956 | Jun 2018 | CN |
108251423 | Jul 2018 | CN |
108251451 | Jul 2018 | CN |
108251452 | Jul 2018 | CN |
108342480 | Jul 2018 | CN |
108359691 | Aug 2018 | CN |
108359712 | Aug 2018 | CN |
108384784 | Aug 2018 | CN |
108396027 | Aug 2018 | CN |
108410877 | Aug 2018 | CN |
108410906 | Aug 2018 | CN |
108410907 | Aug 2018 | CN |
108410911 | Aug 2018 | CN |
108424931 | Aug 2018 | CN |
108441519 | Aug 2018 | CN |
108441520 | Aug 2018 | CN |
108486108 | Sep 2018 | CN |
108486111 | Sep 2018 | CN |
108486145 | Sep 2018 | CN |
108486146 | Sep 2018 | CN |
108486154 | Sep 2018 | CN |
108486159 | Sep 2018 | CN |
108486234 | Sep 2018 | CN |
108504657 | Sep 2018 | CN |
108504685 | Sep 2018 | CN |
108504693 | Sep 2018 | CN |
108546712 | Sep 2018 | CN |
108546717 | Sep 2018 | CN |
108546718 | Sep 2018 | CN |
108559730 | Sep 2018 | CN |
108559732 | Sep 2018 | CN |
108559745 | Sep 2018 | CN |
108559760 | Sep 2018 | CN |
108570479 | Sep 2018 | CN |
108588071 | Sep 2018 | CN |
108588123 | Sep 2018 | CN |
108588128 | Sep 2018 | CN |
108588182 | Sep 2018 | CN |
108610399 | Oct 2018 | CN |
108611364 | Oct 2018 | CN |
108624622 | Oct 2018 | CN |
108642053 | Oct 2018 | CN |
108642055 | Oct 2018 | CN |
108642077 | Oct 2018 | CN |
108642078 | Oct 2018 | CN |
108642090 | Oct 2018 | CN |
108690844 | Oct 2018 | CN |
108707604 | Oct 2018 | CN |
108707620 | Oct 2018 | CN |
108707621 | Oct 2018 | CN |
108707628 | Oct 2018 | CN |
108707629 | Oct 2018 | CN |
108715850 | Oct 2018 | CN |
108728476 | Nov 2018 | CN |
108728486 | Nov 2018 | CN |
108753772 | Nov 2018 | CN |
108753783 | Nov 2018 | CN |
108753813 | Nov 2018 | CN |
108753817 | Nov 2018 | CN |
108753832 | Nov 2018 | CN |
108753835 | Nov 2018 | CN |
108753836 | Nov 2018 | CN |
108795902 | Nov 2018 | CN |
108822217 | Nov 2018 | CN |
108823248 | Nov 2018 | CN |
108823249 | Nov 2018 | CN |
108823291 | Nov 2018 | CN |
108841845 | Nov 2018 | CN |
108853133 | Nov 2018 | CN |
108866093 | Nov 2018 | CN |
108893529 | Nov 2018 | CN |
108913664 | Nov 2018 | CN |
108913691 | Nov 2018 | CN |
108913714 | Nov 2018 | CN |
108913717 | Nov 2018 | CN |
109 517 841 | Mar 2019 | CN |
0264166 | Apr 1988 | EP |
2604255 | Jun 2013 | EP |
2840140 | Feb 2015 | EP |
2966170 | Jan 2016 | EP |
3009511 | Apr 2016 | EP |
3031921 | Jun 2016 | EP |
3045537 | Jul 2016 | EP |
3 115 457 | Jan 2017 | EP |
3144390 | Mar 2017 | EP |
3199632 | Aug 2017 | EP |
3216867 | Sep 2017 | EP |
3252160 | Dec 2017 | EP |
3450553 | Dec 2019 | EP |
2740248 | Feb 2020 | ES |
2528177 | Jan 2016 | GB |
2 531 454 | Apr 2016 | GB |
2542653 | Mar 2017 | GB |
1208045 | Feb 2016 | HK |
2007-501626 | Feb 2007 | JP |
2008-515405 | May 2008 | JP |
2010-033344 | Feb 2010 | JP |
2010-539929 | Dec 2010 | JP |
2011-081011 | Apr 2011 | JP |
2011-523353 | Aug 2011 | JP |
2012-525146 | Oct 2012 | JP |
2012-531909 | Dec 2012 | JP |
101584933 | Jan 2016 | KR |
20160133380 | Nov 2016 | KR |
20170037025 | Apr 2017 | KR |
20170037028 | Apr 2017 | KR |
101748575 | Jun 2017 | KR |
2018-0022465 | Mar 2018 | KR |
2016104674 | Aug 2017 | RU |
2634395 | Oct 2017 | RU |
2652899 | May 2018 | RU |
2015128057 | Mar 2019 | RU |
2015128098 | Mar 2019 | RU |
2687451 | May 2019 | RU |
2019112514 | Jun 2019 | RU |
2019127300 | Sep 2019 | RU |
2701850 | Oct 2019 | RU |
1608100 | Dec 2017 | TW |
2018-29773 | Aug 2018 | TW |
WO 9002809 | Mar 1990 | WO |
WO 9116024 | Oct 1991 | WO |
WO 9117271 | Nov 1991 | WO |
WO 9117424 | Nov 1991 | WO |
WO 9206188 | Apr 1992 | WO |
WO 9206200 | Apr 1992 | WO |
WO 9324641 | Dec 1993 | WO |
WO 9418316 | Aug 1994 | WO |
WO 94026877 | Nov 1994 | WO |
WO 9604403 | Feb 1996 | WO |
WO 9610640 | Apr 1996 | WO |
WO 9832845 | Jul 1998 | WO |
WO 2001036452 | May 2001 | WO |
WO 2001038547 | May 2001 | WO |
WO 2002059296 | Aug 2002 | WO |
WO 2002068676 | Sep 2002 | WO |
WO 2002103028 | Dec 2002 | WO |
WO 2004007684 | Jan 2004 | WO |
WO 2005014791 | Feb 2005 | WO |
WO 2005019415 | Mar 2005 | WO |
WO 2006002547 | Jan 2006 | WO |
WO 2006042112 | Apr 2006 | WO |
WO 2007025097 | Mar 2007 | WO |
WO 07066923 | Jun 2007 | WO |
WO 2007136815 | Nov 2007 | WO |
WO 2007143574 | Dec 2007 | WO |
WO 08005529 | Jan 2008 | WO |
WO 2008108989 | Sep 2008 | WO |
WO 2009098290 | Aug 2009 | WO |
WO 2009134808 | Nov 2009 | WO |
WO 2010011961 | Jan 2010 | WO |
WO 2010028347 | Mar 2010 | WO |
WO 2010054108 | May 2010 | WO |
WO 2010054154 | May 2010 | WO |
WO 2010068289 | Jun 2010 | WO |
WO 2010075424 | Jul 2010 | WO |
WO 2010102257 | Sep 2010 | WO |
WO 2010129019 | Nov 2010 | WO |
WO 2010129023 | Nov 2010 | WO |
WO 2010132092 | Nov 2010 | WO |
WO 2010144150 | Dec 2010 | WO |
WO 2011002503 | Jan 2011 | WO |
WO 2011017293 | Feb 2011 | WO |
WO 2011053868 | May 2011 | WO |
WO 2011053982 | May 2011 | WO |
WO 2011068810 | Jun 2011 | WO |
WO 2011075627 | Jun 2011 | WO |
WO 2011091311 | Jul 2011 | WO |
WO 2011109031 | Sep 2011 | WO |
WO 2011143124 | Nov 2011 | WO |
WO 2011147590 | Dec 2011 | WO |
WO 2011159369 | Dec 2011 | WO |
WO 2012054726 | Apr 2012 | WO |
WO 2012065043 | May 2012 | WO |
WO 2012088381 | Jun 2012 | WO |
WO 2012125445 | Sep 2012 | WO |
WO 2012138927 | Oct 2012 | WO |
WO 2012149470 | Nov 2012 | WO |
WO 2012158985 | Nov 2012 | WO |
WO 2012158986 | Nov 2012 | WO |
WO 2012164565 | Dec 2012 | WO |
WP 2012170930 | Dec 2012 | WO |
WO 2013012674 | Jan 2013 | WO |
WO 2013013105 | Jan 2013 | WO |
WO 2013039857 | Mar 2013 | WO |
WO 2013039861 | Mar 2013 | WO |
WO 2013045632 | Apr 2013 | WO |
WO 2013047844 | Apr 2013 | WO |
WO 2013066438 | May 2013 | WO |
WO 2013086441 | Jun 2013 | WO |
WO 2013086444 | Jun 2013 | WO |
WO 2013098244 | Jul 2013 | WO |
WO 2013119602 | Aug 2013 | WO |
WO 2013126794 | Aug 2013 | WO |
WO 2013130824 | Sep 2013 | WO |
WO 2013141680 | Sep 2013 | WO |
WO 2013142578 | Sep 2013 | WO |
WO 2013152359 | Oct 2013 | WO |
WO 2013160230 | Oct 2013 | WO |
WO 2013166315 | Nov 2013 | WO |
WO 2013169398 | Nov 2013 | WO |
WO 2013169802 | Nov 2013 | WO |
WO 2013176772 | Nov 2013 | WO |
WO 2013176915 | Nov 2013 | WO |
WO 2013176916 | Nov 2013 | WO |
WO 2013181440 | Dec 2013 | WO |
WO 2013186754 | Dec 2013 | WO |
WO 2013188037 | Dec 2013 | WO |
WO 2013188522 | Dec 2013 | WO |
WO 2013188638 | Dec 2013 | WO |
WO 2013192278 | Dec 2013 | WO |
WO 2013142378 | Jan 2014 | WO |
WO 2014004336 | Jan 2014 | WO |
WO 2014005042 | Jan 2014 | WO |
WO 2014011237 | Jan 2014 | WO |
WO 2014011901 | Jan 2014 | WO |
WO 2014018423 | Jan 2014 | WO |
WO 2014020608 | Feb 2014 | WO |
WO 2014022120 | Feb 2014 | WO |
WO 2014022702 | Feb 2014 | WO |
WO 2014036219 | Mar 2014 | WO |
WO 2014039513 | Mar 2014 | WO |
WO 2014039523 | Mar 2014 | WO |
WO 2014039585 | Mar 2014 | WO |
WO 2014039684 | Mar 2014 | WO |
WO 2014039692 | Mar 2014 | WO |
WO 2014039702 | Mar 2014 | WO |
WO 2014039872 | Mar 2014 | WO |
WO 2014039970 | Mar 2014 | WO |
WO 2014041327 | Mar 2014 | WO |
WO 2014043143 | Mar 2014 | WO |
WO 2014047103 | Mar 2014 | WO |
WO 2014055782 | Apr 2014 | WO |
WO 2014059173 | Apr 2014 | WO |
WO 2014059255 | Apr 2014 | WO |
WO 2014065596 | May 2014 | WO |
WO 2014066505 | May 2014 | WO |
WO 2014068346 | May 2014 | WO |
WO 2014070887 | May 2014 | WO |
WO 2014071006 | May 2014 | WO |
WO 2014071219 | May 2014 | WO |
WO 2014071235 | May 2014 | WO |
WO 2014072941 | May 2014 | WO |
WO 2014081729 | May 2014 | WO |
WO 2014081730 | May 2014 | WO |
WO 2014081855 | May 2014 | WO |
WO 2014082644 | Jun 2014 | WO |
WO 2014085261 | Jun 2014 | WO |
WO 2014085593 | Jun 2014 | WO |
WO 2014085830 | Jun 2014 | WO |
WO 2014089212 | Jun 2014 | WO |
WO 2014089290 | Jun 2014 | WO |
WO 2014089348 | Jun 2014 | WO |
WO 2014089513 | Jun 2014 | WO |
WO 2014089533 | Jun 2014 | WO |
WO 2014089541 | Jun 2014 | WO |
WO 2014093479 | Jun 2014 | WO |
WO 2014093595 | Jun 2014 | WO |
WO 2014093622 | Jun 2014 | WO |
WO 2014093635 | Jun 2014 | WO |
WO 2014093655 | Jun 2014 | WO |
WO 2014093661 | Jun 2014 | WO |
WO 2014093694 | Jun 2014 | WO |
WO 2014093701 | Jun 2014 | WO |
WO 2014093709 | Jun 2014 | WO |
WO 2014093712 | Jun 2014 | WO |
WO 2014093718 | Jun 2014 | WO |
WO 2014093736 | Jun 2014 | WO |
WO 2014093768 | Jun 2014 | WO |
WO 2014093852 | Jun 2014 | WO |
WO 2014096972 | Jun 2014 | WO |
WO 2014099744 | Jun 2014 | WO |
WO 2014099750 | Jun 2014 | WO |
WO 2014104878 | Jul 2014 | WO |
WO 2014110006 | Jul 2014 | WO |
WO 2014110552 | Jul 2014 | WO |
WO 2014113493 | Jul 2014 | WO |
WO 2014123967 | Aug 2014 | WO |
WO 2014124226 | Aug 2014 | WO |
WO 2014125668 | Aug 2014 | WO |
WO 2014127287 | Aug 2014 | WO |
WO 2014128324 | Aug 2014 | WO |
WO 2014128659 | Aug 2014 | WO |
WO 2014130706 | Aug 2014 | WO |
WO 2014130955 | Aug 2014 | WO |
WO 2014131833 | Sep 2014 | WO |
WO 2014138379 | Sep 2014 | WO |
WO 2014143381 | Sep 2014 | WO |
WO 2014144094 | Sep 2014 | WO |
WO 2014144155 | Sep 2014 | WO |
WO 2014144288 | Sep 2014 | WO |
WO 2014144592 | Sep 2014 | WO |
WO 2014144761 | Sep 2014 | WO |
WO 2014144951 | Sep 2014 | WO |
WO 2014145599 | Sep 2014 | WO |
WO 2014145736 | Sep 2014 | WO |
WO 2014150624 | Sep 2014 | WO |
WO 2014152432 | Sep 2014 | WO |
WO 2014152940 | Sep 2014 | WO |
WO 2014153118 | Sep 2014 | WO |
WO 2014153470 | Sep 2014 | WO |
WO 2014158593 | Oct 2014 | WO |
WO 2014161821 | Oct 2014 | WO |
WO 2014164466 | Oct 2014 | WO |
WO 2014165177 | Oct 2014 | WO |
WO 2014165349 | Oct 2014 | WO |
WO 2014165612 | Oct 2014 | WO |
WO 2014165707 | Oct 2014 | WO |
WO 2014165825 | Oct 2014 | WO |
WO 2014172458 | Oct 2014 | WO |
WO 2014172470 | Oct 2014 | WO |
WO 2014172489 | Oct 2014 | WO |
WO 2014173955 | Oct 2014 | WO |
WO 2014182700 | Nov 2014 | WO |
WO 2014183071 | Nov 2014 | WO |
WO 2014184143 | Nov 2014 | WO |
WO 2014184741 | Nov 2014 | WO |
WO 2014184744 | Nov 2014 | WO |
WO 2014186585 | Nov 2014 | WO |
WO 2014186686 | Nov 2014 | WO |
WO 2014190181 | Nov 2014 | WO |
WO 2014191128 | Dec 2014 | WO |
WO 2014191518 | Dec 2014 | WO |
WO 2014191521 | Dec 2014 | WO |
WO 2014191525 | Dec 2014 | WO |
WO 2014191527 | Dec 2014 | WO |
WO 2014193583 | Dec 2014 | WO |
WO 2014194190 | Dec 2014 | WO |
WO 2014197568 | Dec 2014 | WO |
WO 2014197748 | Dec 2014 | WO |
WO 2014199358 | Dec 2014 | WO |
WO 2014200659 | Dec 2014 | WO |
WO 2014201015 | Dec 2014 | WO |
WO 2014204578 | Dec 2014 | WO |
WO 2014204723 | Dec 2014 | WO |
WO 2014204724 | Dec 2014 | WO |
WO 2014204725 | Dec 2014 | WO |
WO 2014204726 | Dec 2014 | WO |
WO 2014204727 | Dec 2014 | WO |
WO 2014204728 | Dec 2014 | WO |
WO 2014204729 | Dec 2014 | WO |
WO 2014205192 | Dec 2014 | WO |
WO 2014207043 | Dec 2014 | WO |
WO 2015002780 | Jan 2015 | WO |
WO 2015004241 | Jan 2015 | WO |
WO 2015006290 | Jan 2015 | WO |
WO 2015006294 | Jan 2015 | WO |
WO 2015006437 | Jan 2015 | WO |
WO 2015006498 | Jan 2015 | WO |
WO 2015006747 | Jan 2015 | WO |
WO 2015007194 | Jan 2015 | WO |
WO 2015010114 | Jan 2015 | WO |
WO 2015011483 | Jan 2015 | WO |
WO 2015013583 | Jan 2015 | WO |
WO 2015017866 | Feb 2015 | WO |
WO 2015018503 | Feb 2015 | WO |
WO 2015021353 | Feb 2015 | WO |
WO 2015021426 | Feb 2015 | WO |
WO 2015021990 | Feb 2015 | WO |
WO 2015024017 | Feb 2015 | WO |
WO 2015024986 | Feb 2015 | WO |
WO 2015026883 | Feb 2015 | WO |
WO 2015026885 | Feb 2015 | WO |
WO 2015026886 | Feb 2015 | WO |
WO 2015026887 | Feb 2015 | WO |
WO 2015027134 | Feb 2015 | WO |
WO 2015028969 | Mar 2015 | WO |
WO 2015030881 | Mar 2015 | WO |
WO 2015031619 | Mar 2015 | WO |
WO 2015031775 | Mar 2015 | WO |
WO 2015032494 | Mar 2015 | WO |
WO 2015033293 | Mar 2015 | WO |
WO 2015034872 | Mar 2015 | WO |
WO 2015034885 | Mar 2015 | WO |
WO 2015035136 | Mar 2015 | WO |
WO 2015035139 | Mar 2015 | WO |
WO 2015035162 | Mar 2015 | WO |
WO 2015040075 | Mar 2015 | WO |
WO 2015040402 | Mar 2015 | WO |
WO 2015042585 | Mar 2015 | WO |
WO 2015048577 | Apr 2015 | WO |
WO 2015048690 | Apr 2015 | WO |
WO 2015048707 | Apr 2015 | WO |
WO 2015048801 | Apr 2015 | WO |
WO 2015049897 | Apr 2015 | WO |
WO 2015051191 | Apr 2015 | WO |
WO 2015052133 | Apr 2015 | WO |
WO 2015052231 | Apr 2015 | WO |
WO 2015052335 | Apr 2015 | WO |
WO 2015053995 | Apr 2015 | WO |
WO 2015054253 | Apr 2015 | WO |
WO 2015054315 | Apr 2015 | WO |
WO 2015057671 | Apr 2015 | WO |
WO 2015057834 | Apr 2015 | WO |
WO 2015057852 | Apr 2015 | WO |
WO 2015057976 | Apr 2015 | WO |
WO 2015057980 | Apr 2015 | WO |
WO 2015059265 | Apr 2015 | WO |
WO 2015065964 | May 2015 | WO |
WO 2015066119 | May 2015 | WO |
WO 2015066634 | May 2015 | WO |
WO 2015066636 | May 2015 | WO |
WO 2015066637 | May 2015 | WO |
WO 2015066638 | May 2015 | WO |
WO 2015066643 | May 2015 | WO |
WO 2015069682 | May 2015 | WO |
WO 2015070083 | May 2015 | WO |
WO 2015070193 | May 2015 | WO |
WO 2015070212 | May 2015 | WO |
WO 2015071474 | May 2015 | WO |
WO 2015073683 | May 2015 | WO |
WO 2015073867 | May 2015 | WO |
WO 2015073990 | May 2015 | WO |
WO 2015075056 | May 2015 | WO |
WO 2015075154 | May 2015 | WO |
WO 2015075175 | May 2015 | WO |
WO 2015075195 | May 2015 | WO |
WO 2015075557 | May 2015 | WO |
WO 2015077058 | May 2015 | WO |
WO 2015077290 | May 2015 | WO |
WO 2015077318 | May 2015 | WO |
WO 2015079056 | Jun 2015 | WO |
WO 2015079057 | Jun 2015 | WO |
WO 2015086795 | Jun 2015 | WO |
WO 2015086798 | Jun 2015 | WO |
WO 2015088643 | Jun 2015 | WO |
WO 2015089046 | Jun 2015 | WO |
WO 2015089077 | Jun 2015 | WO |
WO 2015089277 | Jun 2015 | WO |
WO 2015089351 | Jun 2015 | WO |
WO 2015089354 | Jun 2015 | WO |
WO 2015089364 | Jun 2015 | WO |
WO 2015089406 | Jun 2015 | WO |
WO 2015089419 | Jun 2015 | WO |
WO 2015089427 | Jun 2015 | WO |
WO 2015089462 | Jun 2015 | WO |
WO 2015089465 | Jun 2015 | WO |
WO 2015089473 | Jun 2015 | WO |
WO 2015089486 | Jun 2015 | WO |
WO 2015095804 | Jun 2015 | WO |
WO 2015099850 | Jul 2015 | WO |
WO 2015100929 | Jul 2015 | WO |
WO 2015103057 | Jul 2015 | WO |
WO 2015103153 | Jul 2015 | WO |
WO 2015105928 | Jul 2015 | WO |
WO 2015108993 | Jul 2015 | WO |
WO 2015109752 | Jul 2015 | WO |
WO 2015110474 | Jul 2015 | WO |
WO 2015112790 | Jul 2015 | WO |
WO 2015112896 | Jul 2015 | WO |
WO 2015113063 | Jul 2015 | WO |
WO 2015114365 | Aug 2015 | WO |
WO 2015115903 | Aug 2015 | WO |
WO 2015116686 | Aug 2015 | WO |
WO 2015116969 | Aug 2015 | WO |
WO 2015117021 | Aug 2015 | WO |
WO 2015117041 | Aug 2015 | WO |
WO 2015117081 | Aug 2015 | WO |
WO 2015118156 | Aug 2015 | WO |
WO 2015119941 | Aug 2015 | WO |
WO 2015121454 | Aug 2015 | WO |
WO 2015122967 | Aug 2015 | WO |
WO 2015123339 | Aug 2015 | WO |
WO 2015124715 | Aug 2015 | WO |
WO 2015124718 | Aug 2015 | WO |
WO 2015126927 | Aug 2015 | WO |
WO 2015127428 | Aug 2015 | WO |
WO 2015127439 | Aug 2015 | WO |
WO 2015129686 | Sep 2015 | WO |
WO 2015131101 | Sep 2015 | WO |
WO 2015133554 | Sep 2015 | WO |
WO 2015134121 | Sep 2015 | WO |
WO 2015134812 | Sep 2015 | WO |
WO 2015136001 | Sep 2015 | WO |
WO 2015138510 | Sep 2015 | WO |
WO 2015138739 | Sep 2015 | WO |
WO 2015138855 | Sep 2015 | WO |
WO 2015138870 | Sep 2015 | WO |
WO 2015139008 | Sep 2015 | WO |
WO 2015139139 | Sep 2015 | WO |
WO 2015143046 | Sep 2015 | WO |
WO 2015143177 | Sep 2015 | WO |
WO 2015145417 | Oct 2015 | WO |
WO 2015148431 | Oct 2015 | WO |
WO 2015148670 | Oct 2015 | WO |
WO 2015148680 | Oct 2015 | WO |
WO 2015148760 | Oct 2015 | WO |
WO 2015148761 | Oct 2015 | WO |
WO 2015148860 | Oct 2015 | WO |
WO 2015148863 | Oct 2015 | WO |
WO 2015153760 | Oct 2015 | WO |
WO 2015153780 | Oct 2015 | WO |
WO 2015153789 | Oct 2015 | WO |
WO 2015153791 | Oct 2015 | WO |
WO 2015153889 | Oct 2015 | WO |
WO 2015153940 | Oct 2015 | WO |
WO 2015155341 | Oct 2015 | WO |
WO 2015155686 | Oct 2015 | WO |
WO 2015157070 | Oct 2015 | WO |
WO 2015157534 | Oct 2015 | WO |
WO 2015159068 | Oct 2015 | WO |
WO 2015159086 | Oct 2015 | WO |
WO 2015159087 | Oct 2015 | WO |
WO 2015160683 | Oct 2015 | WO |
WO 2015161276 | Oct 2015 | WO |
WO 2015163733 | Oct 2015 | WO |
WO 2015164740 | Oct 2015 | WO |
WO 2015164748 | Oct 2015 | WO |
WO 2015165274 | Nov 2015 | WO |
WO 2015165275 | Nov 2015 | WO |
WO 2015165276 | Nov 2015 | WO |
WO 2015166272 | Nov 2015 | WO |
WO 2015167766 | Nov 2015 | WO |
WO 2015167956 | Nov 2015 | WO |
WO 2015168125 | Nov 2015 | WO |
WO 2015168158 | Nov 2015 | WO |
WO 2015168404 | Nov 2015 | WO |
WO 2015168547 | Nov 2015 | WO |
WO 2015168800 | Nov 2015 | WO |
WO 2015171603 | Nov 2015 | WO |
WO 2015171894 | Nov 2015 | WO |
WO 2015171932 | Nov 2015 | WO |
WO 2015172128 | Nov 2015 | WO |
WO 2015173436 | Nov 2015 | WO |
WO 2015175642 | Nov 2015 | WO |
WO 2015179540 | Nov 2015 | WO |
WO 2015183025 | Dec 2015 | WO |
WO 2015183026 | Dec 2015 | WO |
WO 2015183885 | Dec 2015 | WO |
WO 2015184259 | Dec 2015 | WO |
WO 2015184262 | Dec 2015 | WO |
WO 2015184268 | Dec 2015 | WO |
WO 2015188056 | Dec 2015 | WO |
WO 2015188065 | Dec 2015 | WO |
WO 2015188094 | Dec 2015 | WO |
WO 2015188109 | Dec 2015 | WO |
WO 2015188132 | Dec 2015 | WO |
WO 2015188135 | Dec 2015 | WO |
WO 2015188191 | Dec 2015 | WO |
WO 2015189693 | Dec 2015 | WO |
WO 2015191693 | Dec 2015 | WO |
WO 2015191899 | Dec 2015 | WO |
WO 2015191911 | Dec 2015 | WO |
WO 2015193858 | Dec 2015 | WO |
WO 2015195547 | Dec 2015 | WO |
WO 2015195621 | Dec 2015 | WO |
WO 2015195798 | Dec 2015 | WO |
WO 2015198020 | Dec 2015 | WO |
WO 2015200334 | Dec 2015 | WO |
WO 2015200378 | Dec 2015 | WO |
WO 2015200555 | Dec 2015 | WO |
WO 2015200805 | Dec 2015 | WO |
WO 2016001978 | Jan 2016 | WO |
WO 2016004010 | Jan 2016 | WO |
WO 2016004318 | Jan 2016 | WO |
WO 2016007347 | Jan 2016 | WO |
WO 2016007604 | Jan 2016 | WO |
WO 2016007948 | Jan 2016 | WO |
WO 2016011080 | Jan 2016 | WO |
WO 2016011210 | Jan 2016 | WO |
WO 2016011428 | Jan 2016 | WO |
WO 2016012544 | Jan 2016 | WO |
WO 2016012552 | Jan 2016 | WO |
WO 2016014409 | Jan 2016 | WO |
WO 2016014565 | Jan 2016 | WO |
WO 2016014794 | Jan 2016 | WO |
WO 2016014837 | Jan 2016 | WO |
WO 2016016119 | Feb 2016 | WO |
WO 2016016358 | Feb 2016 | WO |
WO 2016019144 | Feb 2016 | WO |
WO 2016020399 | Feb 2016 | WO |
WO 2016021972 | Feb 2016 | WO |
WO 2016021973 | Feb 2016 | WO |
WO 2016022363 | Feb 2016 | WO |
WO 2016022866 | Feb 2016 | WO |
WO 2016022931 | Feb 2016 | WO |
WO 2016025131 | Feb 2016 | WO |
WO 2016025469 | Feb 2016 | WO |
WO 2016025759 | Feb 2016 | WO |
WO 2016026444 | Feb 2016 | WO |
WO 2016028682 | Feb 2016 | WO |
WO 2016028843 | Feb 2016 | WO |
WO 2016028887 | Feb 2016 | WO |
WO 2016033088 | Mar 2016 | WO |
WO 2016033230 | Mar 2016 | WO |
WO 2016033246 | Mar 2016 | WO |
WO 2016033298 | Mar 2016 | WO |
WO 2016035044 | Mar 2016 | WO |
WO 2016036754 | Mar 2016 | WO |
WO 2016037157 | Mar 2016 | WO |
WO 2016040030 | Mar 2016 | WO |
WO 2016040594 | Mar 2016 | WO |
WO 2016044182 | Mar 2016 | WO |
WO 2016044416 | Mar 2016 | WO |
WO 2016046635 | Mar 2016 | WO |
WO 2016049024 | Mar 2016 | WO |
WO 2016049163 | Mar 2016 | WO |
WO 2016049230 | Mar 2016 | WO |
WO 2016049251 | Mar 2016 | WO |
WO 2016049258 | Mar 2016 | WO |
WO 2016053397 | Apr 2016 | WO |
WO 2016054326 | Apr 2016 | WO |
WO 2016057061 | Apr 2016 | WO |
WO 2016057821 | Apr 2016 | WO |
WO 2016057835 | Apr 2016 | WO |
WO 2016057850 | Apr 2016 | WO |
WO 2016057951 | Apr 2016 | WO |
WO 2016057961 | Apr 2016 | WO |
WO 2016061073 | Apr 2016 | WO |
WO 2016061374 | Apr 2016 | WO |
WO 2016061481 | Apr 2016 | WO |
WO 2016061523 | Apr 2016 | WO |
WO 2016064894 | Apr 2016 | WO |
WO 2016069282 | May 2016 | WO |
WO 2016069283 | May 2016 | WO |
WO 2016069591 | May 2016 | WO |
WO 2016069774 | May 2016 | WO |
WO 2016069910 | May 2016 | WO |
WO 2016069912 | May 2016 | WO |
WO 2016070037 | May 2016 | WO |
WO 2016070070 | May 2016 | WO |
WO 2016070129 | May 2016 | WO |
WO 2016072399 | May 2016 | WO |
WO 2016072936 | May 2016 | WO |
WO 2016073433 | May 2016 | WO |
WO 2016073559 | May 2016 | WO |
WO 2016073990 | May 2016 | WO |
WO 2016075662 | May 2016 | WO |
WO 2016076672 | May 2016 | WO |
WO 2016077273 | May 2016 | WO |
WO 2016077350 | May 2016 | WO |
WO 2016080097 | May 2016 | WO |
WO 2016080795 | May 2016 | WO |
WO 2016081923 | May 2016 | WO |
WO 2016081924 | May 2016 | WO |
WO 2016082135 | Jun 2016 | WO |
WO 2016083811 | Jun 2016 | WO |
WO 2016084084 | Jun 2016 | WO |
WO 2016084088 | Jun 2016 | WO |
WO 2016086177 | Jun 2016 | WO |
WO 2016089433 | Jun 2016 | WO |
WO 2016089866 | Jun 2016 | WO |
WO 2016089883 | Jun 2016 | WO |
WO 2016090385 | Jun 2016 | WO |
WO 2016094679 | Jun 2016 | WO |
WO 2016094845 | Jun 2016 | WO |
WO 2016094867 | Jun 2016 | WO |
WO 2016094872 | Jun 2016 | WO |
WO 2016094874 | Jun 2016 | WO |
WO 2016094880 | Jun 2016 | WO |
WO 2016094888 | Jun 2016 | WO |
WO 2016097212 | Jun 2016 | WO |
WO 2016097231 | Jun 2016 | WO |
WO 2016097751 | Jun 2016 | WO |
WO 2016099887 | Jun 2016 | WO |
WO 2016100272 | Jun 2016 | WO |
WO 2016100389 | Jun 2016 | WO |
WO 2016100568 | Jun 2016 | WO |
WO 2016100571 | Jun 2016 | WO |
WO 2016100951 | Jun 2016 | WO |
WO 2016100955 | Jun 2016 | WO |
WO 2016100974 | Jun 2016 | WO |
WO 2016103233 | Jun 2016 | WO |
WO 2016104716 | Jun 2016 | WO |
WO 2016106236 | Jun 2016 | WO |
WO 2016106239 | Jun 2016 | WO |
WO 2016106244 | Jun 2016 | WO |
WO 2016106338 | Jun 2016 | WO |
WO 2016108926 | Jul 2016 | WO |
WO 2016109255 | Jul 2016 | WO |
WO 2016109840 | Jul 2016 | WO |
WO 2016110214 | Jul 2016 | WO |
WO 2016110453 | Jul 2016 | WO |
WO 2016110511 | Jul 2016 | WO |
WO 2016110512 | Jul 2016 | WO |
WO 2016111546 | Jul 2016 | WO |
WO 2016112242 | Jul 2016 | WO |
WO 2016112351 | Jul 2016 | WO |
WO 2016112963 | Jul 2016 | WO |
WO 2016113357 | Jul 2016 | WO |
WO 2016114972 | Jul 2016 | WO |
WO 2016115179 | Jul 2016 | WO |
WO 2016115326 | Jul 2016 | WO |
WO 2016115355 | Jul 2016 | WO |
WO 2016116032 | Jul 2016 | WO |
WO 2016120480 | Aug 2016 | WO |
WO 2016123071 | Aug 2016 | WO |
WO 2016123230 | Aug 2016 | WO |
WO 2016123243 | Aug 2016 | WO |
WO 2016123578 | Aug 2016 | WO |
WO 2016126747 | Aug 2016 | WO |
WO 2016130600 | Aug 2016 | WO |
WO 2016130697 | Aug 2016 | WO |
WO 2016131009 | Aug 2016 | WO |
WO 2016132122 | Aug 2016 | WO |
WO 2016133165 | Aug 2016 | WO |
WO 2016135507 | Sep 2016 | WO |
WO 2016135557 | Sep 2016 | WO |
WO 2016135558 | Sep 2016 | WO |
WO 2016135559 | Sep 2016 | WO |
WO 2016137774 | Sep 2016 | WO |
WO 2016137949 | Sep 2016 | WO |
WO 2016141224 | Sep 2016 | WO |
WO 2016141893 | Sep 2016 | WO |
WO 2016142719 | Sep 2016 | WO |
WO 2016145150 | Sep 2016 | WO |
WO 2016148994 | Sep 2016 | WO |
WO 2016149484 | Sep 2016 | WO |
WO 2016149547 | Sep 2016 | WO |
WO 2016150336 | Sep 2016 | WO |
WO 2016150855 | Sep 2016 | WO |
WO 2016154016 | Sep 2016 | WO |
WO 2016154579 | Sep 2016 | WO |
WO 2016154596 | Sep 2016 | WO |
WO 2016155482 | Oct 2016 | WO |
WO 2016161004 | Oct 2016 | WO |
WO 2016161207 | Oct 2016 | WO |
WO 2016161260 | Oct 2016 | WO |
WO 2016161380 | Oct 2016 | WO |
WO 2016161446 | Oct 2016 | WO |
WO 2016164356 | Oct 2016 | WO |
WO 2016164797 | Oct 2016 | WO |
WO 2016166340 | Oct 2016 | WO |
WO 2016167300 | Oct 2016 | WO |
WO 2016168631 | Oct 2016 | WO |
WO 2016170484 | Oct 2016 | WO |
WO 2016172359 | Oct 2016 | WO |
WO 2016172727 | Oct 2016 | WO |
WO 2016174056 | Nov 2016 | WO |
WO 2016174151 | Nov 2016 | WO |
WO 2016174250 | Nov 2016 | WO |
WO 2016176191 | Nov 2016 | WO |
WO 2016176404 | Nov 2016 | WO |
WO 2016176690 | Nov 2016 | WO |
WO 2016177682 | Nov 2016 | WO |
WO 2016178207 | Nov 2016 | WO |
WO 2016179038 | Nov 2016 | WO |
WO 2016179112 | Nov 2016 | WO |
WO 2016181357 | Nov 2016 | WO |
WO 2016182893 | Nov 2016 | WO |
WO 2016182917 | Nov 2016 | WO |
WO 2016182959 | Nov 2016 | WO |
WO 2016183236 | Nov 2016 | WO |
WO 2016183298 | Nov 2016 | WO |
WO 2016183345 | Nov 2016 | WO |
WO 2016183402 | Nov 2016 | WO |
WO 2016183438 | Nov 2016 | WO |
WO 2016183448 | Nov 2016 | WO |
WO 2016184955 | Nov 2016 | WO |
WO 2016184989 | Nov 2016 | WO |
WO 2016185411 | Nov 2016 | WO |
WO 2016186745 | Nov 2016 | WO |
WO 2016186772 | Nov 2016 | WO |
WO 2016186946 | Nov 2016 | WO |
WO 2016186953 | Nov 2016 | WO |
WO 2016187717 | Dec 2016 | WO |
WO 2016187904 | Dec 2016 | WO |
WO 2016191684 | Dec 2016 | WO |
WO 2016191869 | Dec 2016 | WO |
WO 2016196273 | Dec 2016 | WO |
WO 2016196282 | Dec 2016 | WO |
WO 2016196308 | Dec 2016 | WO |
WO 2016196361 | Dec 2016 | WO |
WO 2016196499 | Dec 2016 | WO |
WO 2016196539 | Dec 2016 | WO |
WO 2016196655 | Dec 2016 | WO |
WO 2016196805 | Dec 2016 | WO |
WO 2016196887 | Dec 2016 | WO |
WO 2016197132 | Dec 2016 | WO |
WO 2016197133 | Dec 2016 | WO |
WO 2016197354 | Dec 2016 | WO |
WO 2016197355 | Dec 2016 | WO |
WO 2016197356 | Dec 2016 | WO |
WO 2016197357 | Dec 2016 | WO |
WO 2016197358 | Dec 2016 | WO |
WO 2016197359 | Dec 2016 | WO |
WO 2016197360 | Dec 2016 | WO |
WO 2016197361 | Dec 2016 | WO |
WO 2016197362 | Dec 2016 | WO |
WO 2016198361 | Dec 2016 | WO |
WO 2016198500 | Dec 2016 | WO |
WO 2016200263 | Dec 2016 | WO |
WO 2016201047 | Dec 2016 | WO |
WO 2016201138 | Dec 2016 | WO |
WO 2016201152 | Dec 2016 | WO |
WO 2016201153 | Dec 2016 | WO |
WO 2016201155 | Dec 2016 | WO |
WO 2016205276 | Dec 2016 | WO |
WO 2016205613 | Dec 2016 | WO |
WO 2016205623 | Dec 2016 | WO |
WO 2016205680 | Dec 2016 | WO |
WO 2016205688 | Dec 2016 | WO |
WO 2016205703 | Dec 2016 | WO |
WO 2016205711 | Dec 2016 | WO |
WO 2016205728 | Dec 2016 | WO |
WO 2016205745 | Dec 2016 | WO |
WO 2016205749 | Dec 2016 | WO |
WO 2016205759 | Dec 2016 | WO |
WO 2016205764 | Dec 2016 | WO |
WO 2017001572 | Jan 2017 | WO |
WO 2017001988 | Jan 2017 | WO |
WO 2017004261 | Jan 2017 | WO |
WO 2017004279 | Jan 2017 | WO |
WO 2017004616 | Jan 2017 | WO |
WO 2017005807 | Jan 2017 | WO |
WO 2017009399 | Jan 2017 | WO |
WO 2017010556 | Jan 2017 | WO |
WO 2017011519 | Jan 2017 | WO |
WO 2017011721 | Jan 2017 | WO |
WO 2017011804 | Jan 2017 | WO |
WO 2017015015 | Jan 2017 | WO |
WO 2017015101 | Jan 2017 | WO |
WO 2017015545 | Jan 2017 | WO |
WO 2017015567 | Jan 2017 | WO |
WO 2017015637 | Jan 2017 | WO |
WO 2017017016 | Feb 2017 | WO |
WO 2017019867 | Feb 2017 | WO |
WO 2017019895 | Feb 2017 | WO |
WO 2017023803 | Feb 2017 | WO |
WO 2017023974 | Feb 2017 | WO |
WO 2017024047 | Feb 2017 | WO |
WO 2017024319 | Feb 2017 | WO |
WO 2017024343 | Feb 2017 | WO |
WO 2017024602 | Feb 2017 | WO |
WO 2017025323 | Feb 2017 | WO |
WO 2017027423 | Feb 2017 | WO |
WO 2017028768 | Feb 2017 | WO |
WO 2017029664 | Feb 2017 | WO |
WO 2017031360 | Feb 2017 | WO |
WO 2017031483 | Feb 2017 | WO |
WO 2017035416 | Mar 2017 | WO |
WO 2017040348 | Mar 2017 | WO |
WO 2017040511 | Mar 2017 | WO |
WO 2017040709 | Mar 2017 | WO |
WO 2017040786 | Mar 2017 | WO |
WO 2017040793 | Mar 2017 | WO |
WO 2017040813 | Mar 2017 | WO |
WO 2017043573 | Mar 2017 | WO |
WO 2017043656 | Mar 2017 | WO |
WO 2017044419 | Mar 2017 | WO |
WO 2017044776 | Mar 2017 | WO |
WO 2017044857 | Mar 2017 | WO |
WO 2017048390 | Mar 2017 | WO |
WO 2017049129 | Mar 2017 | WO |
WO 2017050963 | Mar 2017 | WO |
WO 2017053312 | Mar 2017 | WO |
WO 2017053431 | Mar 2017 | WO |
WO 2017053713 | Mar 2017 | WO |
WO 2017053729 | Mar 2017 | WO |
WO 2017053753 | Mar 2017 | WO |
WO 2017053762 | Mar 2017 | WO |
WO 2017053879 | Mar 2017 | WO |
WO 2017054721 | Apr 2017 | WO |
WO 2017058658 | Apr 2017 | WO |
WO 2017059241 | Apr 2017 | WO |
WO 2017062605 | Apr 2017 | WO |
WO 2017062723 | Apr 2017 | WO |
WO 2017062754 | Apr 2017 | WO |
WO 2017062855 | Apr 2017 | WO |
WO 2017062886 | Apr 2017 | WO |
WO 2017062983 | Apr 2017 | WO |
WO 2017064439 | Apr 2017 | WO |
WO 2017064546 | Apr 2017 | WO |
WO 2017064566 | Apr 2017 | WO |
WO 2017066175 | Apr 2017 | WO |
WO 2017066497 | Apr 2017 | WO |
WO 2017066588 | Apr 2017 | WO |
WO 2017066707 | Apr 2017 | WO |
WO 2017066781 | Apr 2017 | WO |
WO 2017068077 | Apr 2017 | WO |
WO 2017068377 | Apr 2017 | WO |
WO 2017069829 | Apr 2017 | WO |
WO 2017070029 | Apr 2017 | WO |
WO 2017070032 | Apr 2017 | WO |
WO 2017070169 | Apr 2017 | WO |
WO 2017070284 | Apr 2017 | WO |
WO 2017070598 | Apr 2017 | WO |
WO 2017070605 | Apr 2017 | WO |
WO 2017070632 | Apr 2017 | WO |
WO 2017070633 | Apr 2017 | WO |
WO 2017072590 | May 2017 | WO |
WO 2017074526 | May 2017 | WO |
WO 2017074962 | May 2017 | WO |
WO 2017075261 | May 2017 | WO |
WO 2017075335 | May 2017 | WO |
WO 2017075475 | May 2017 | WO |
WO 2017077135 | May 2017 | WO |
WO 2017077329 | May 2017 | WO |
WO 2017078751 | May 2017 | WO |
WO 2017079400 | May 2017 | WO |
WO 2017079428 | May 2017 | WO |
WO 2017079673 | May 2017 | WO |
WO 2017079724 | May 2017 | WO |
WO 2017081097 | May 2017 | WO |
WO 2017081288 | May 2017 | WO |
WO 2017083368 | May 2017 | WO |
WO 2017083722 | May 2017 | WO |
WO 2017083766 | May 2017 | WO |
WO 2017087395 | May 2017 | WO |
WO 2017090724 | Jun 2017 | WO |
WO 2017091510 | Jun 2017 | WO |
WO 2017091630 | Jun 2017 | WO |
WO 2017092201 | Jun 2017 | WO |
WO 2017093370 | Jun 2017 | WO |
WO 2017093969 | Jun 2017 | WO |
WO 2017095111 | Jun 2017 | WO |
WO 2017096041 | Jun 2017 | WO |
WO 2017096237 | Jun 2017 | WO |
WO 2017100158 | Jun 2017 | WO |
WO 2017100431 | Jun 2017 | WO |
WO 2017104404 | Jun 2017 | WO |
WO 2017105251 | Jun 2017 | WO |
WO 2017105350 | Jun 2017 | WO |
WO 2017105991 | Jun 2017 | WO |
WO 2017106414 | Jun 2017 | WO |
WO 2017106528 | Jun 2017 | WO |
WO 2017106537 | Jun 2017 | WO |
WO 2017106569 | Jun 2017 | WO |
WO 2017106616 | Jun 2017 | WO |
WO 2017106657 | Jun 2017 | WO |
WO 2017106767 | Jun 2017 | WO |
WO 2017109134 | Jun 2017 | WO |
WO 2017109757 | Jun 2017 | WO |
WO 2017112620 | Jun 2017 | WO |
WO 2017115268 | Jul 2017 | WO |
WO 2017117395 | Jul 2017 | WO |
WO 2017118598 | Jul 2017 | WO |
WO 2017118720 | Jul 2017 | WO |
WO 2017123609 | Jul 2017 | WO |
WO 2017123910 | Jul 2017 | WO |
WO 2017124086 | Jul 2017 | WO |
WO 2017124100 | Jul 2017 | WO |
WO 2017124652 | Jul 2017 | WO |
WO 2017126987 | Jul 2017 | WO |
WO 2017127807 | Jul 2017 | WO |
WO 2017131237 | Aug 2017 | WO |
WO 2017132112 | Aug 2017 | WO |
WO 2017132580 | Aug 2017 | WO |
WO 2017136520 | Aug 2017 | WO |
WO 2017136629 | Aug 2017 | WO |
WO 2017136794 | Aug 2017 | WO |
WO 2017139264 | Aug 2017 | WO |
WO 2017139505 | Aug 2017 | WO |
WO 2017141173 | Aug 2017 | WO |
WO 2017142835 | Aug 2017 | WO |
WO 2017142999 | Aug 2017 | WO |
WO 2017143042 | Aug 2017 | WO |
WO 2017147278 | Aug 2017 | WO |
WO 2017147432 | Aug 2017 | WO |
WO 2017147446 | Aug 2017 | WO |
WO 2017147555 | Aug 2017 | WO |
WO 2017151444 | Sep 2017 | WO |
WO 2017151719 | Sep 2017 | WO |
WO 2017152015 | Sep 2017 | WO |
WO 2017155717 | Sep 2017 | WO |
WO 2017157422 | Sep 2017 | WO |
WO 2017158153 | Sep 2017 | WO |
WO 2017160689 | Sep 2017 | WO |
WO 2017160752 | Sep 2017 | WO |
WO 2017160890 | Sep 2017 | WO |
WO 2017161068 | Sep 2017 | WO |
WO 2017165826 | Sep 2017 | WO |
WO 2017165862 | Sep 2017 | WO |
WO 2017172644 | Oct 2017 | WO |
WO 2017172645 | Oct 2017 | WO |
WO 2017172860 | Oct 2017 | WO |
WO 2017173004 | Oct 2017 | WO |
WO 2017173054 | Oct 2017 | WO |
WO 2017173092 | Oct 2017 | WO |
WO 2017174329 | Oct 2017 | WO |
WO 2017176529 | Oct 2017 | WO |
WO 2017176806 | Oct 2017 | WO |
WO 2017178590 | Oct 2017 | WO |
WO 2017180694 | Oct 2017 | WO |
WO 2017180711 | Oct 2017 | WO |
WO 2017180915 | Oct 2017 | WO |
WO 2017180926 | Oct 2017 | WO |
WO 2017181107 | Oct 2017 | WO |
WO 2017181735 | Oct 2017 | WO |
WO 2017182468 | Oct 2017 | WO |
WO 2017184334 | Oct 2017 | WO |
WO 2017184768 | Oct 2017 | WO |
WO 2017184786 | Oct 2017 | WO |
WO 2017186550 | Nov 2017 | WO |
WO 2017189308 | Nov 2017 | WO |
WO 2017189336 | Nov 2017 | WO |
WO 2017190041 | Nov 2017 | WO |
WO 2017190257 | Nov 2017 | WO |
WO 2017190664 | Nov 2017 | WO |
WO 2017191210 | Nov 2017 | WO |
WO 2017191274 | Nov 2017 | WO |
WO 2017192172 | Nov 2017 | WO |
WO 2017192512 | Nov 2017 | WO |
WO 2017192544 | Nov 2017 | WO |
WO 2017192573 | Nov 2017 | WO |
WO 2017193029 | Nov 2017 | WO |
WO 2017193053 | Nov 2017 | WO |
WO 2017196768 | Nov 2017 | WO |
WO 2017197038 | Nov 2017 | WO |
WO 2017197238 | Nov 2017 | WO |
WO 2017197301 | Nov 2017 | WO |
WO 2017201476 | Nov 2017 | WO |
WO 2017205290 | Nov 2017 | WO |
WO 2017205423 | Nov 2017 | WO |
WO 2017207589 | Dec 2017 | WO |
WO 2017208247 | Dec 2017 | WO |
WO 2017209809 | Dec 2017 | WO |
WO 2017213896 | Dec 2017 | WO |
WO 2017213898 | Dec 2017 | WO |
WO 2017214460 | Dec 2017 | WO |
WO 2017216392 | Dec 2017 | WO |
WO 2017216771 | Dec 2017 | WO |
WO 2017218185 | Dec 2017 | WO |
WO 2017219027 | Dec 2017 | WO |
WO 2017219033 | Dec 2017 | WO |
WO 2017220751 | Dec 2017 | WO |
WO 2017222370 | Dec 2017 | WO |
WO 2017222773 | Dec 2017 | WO |
WO 2017222834 | Dec 2017 | WO |
WO 2017223107 | Dec 2017 | WO |
WO 2017223330 | Dec 2017 | WO |
WO 2018000657 | Jan 2018 | WO |
WO 2018002719 | Jan 2018 | WO |
WO 2018005117 | Jan 2018 | WO |
WO 2018005289 | Jan 2018 | WO |
WO 2018005691 | Jan 2018 | WO |
WO 2018005782 | Jan 2018 | WO |
WO 2018005873 | Jan 2018 | WO |
WO 201806693 | Jan 2018 | WO |
WO 2018009520 | Jan 2018 | WO |
WO 2018009562 | Jan 2018 | WO |
WO 2018009822 | Jan 2018 | WO |
WO 2018013821 | Jan 2018 | WO |
WO 2018013932 | Jan 2018 | WO |
WO 2018013990 | Jan 2018 | WO |
WO 2018014384 | Jan 2018 | WO |
WO 2018015444 | Jan 2018 | WO |
WO 2018015936 | Jan 2018 | WO |
WO 2018017754 | Jan 2018 | WO |
WO 2018018979 | Feb 2018 | WO |
WO 2018020248 | Feb 2018 | WO |
WO 2018021878 | Feb 2018 | WO |
WO 2018022480 | Feb 2018 | WO |
WO 2018022634 | Feb 2018 | WO |
WO 2018025206 | Feb 2018 | WO |
WO 2018026723 | Feb 2018 | WO |
WO 2018026976 | Feb 2018 | WO |
WO 2018027078 | Feb 2018 | WO |
WO 2018030608 | Feb 2018 | WO |
WO 2018031683 | Feb 2018 | WO |
WO 2018035250 | Feb 2018 | WO |
WO 2018035300 | Feb 2018 | WO |
WO 2018035423 | Feb 2018 | WO |
WO 2018035503 | Feb 2018 | WO |
WO 2018039145 | Mar 2018 | WO |
WO 2018039438 | Mar 2018 | WO |
WO 2018039440 | Mar 2018 | WO |
WO 2018039448 | Mar 2018 | WO |
WO 2018045630 | Mar 2018 | WO |
WO 2018048827 | Mar 2018 | WO |
WO 2018049073 | Mar 2018 | WO |
WO 2018049168 | Mar 2018 | WO |
WO 2018051347 | Mar 2018 | WO |
WO 2018058064 | Mar 2018 | WO |
WO 2018062866 | Apr 2018 | WO |
WO 2018064352 | Apr 2018 | WO |
WO 2018064371 | Apr 2018 | WO |
WO 2018064516 | Apr 2018 | WO |
WO 2018067546 | Apr 2018 | WO |
WO 2018067846 | Apr 2018 | WO |
WO 2018068053 | Apr 2018 | WO |
WO 2018069474 | Apr 2018 | WO |
WO 2018071623 | Apr 2018 | WO |
WO 2018071663 | Apr 2018 | WO |
WO 2018071868 | Apr 2018 | WO |
WO 2018071892 | Apr 2018 | WO |
WO 2018074979 | Apr 2018 | WO |
WO 2018079134 | May 2018 | WO |
WO 2018080573 | May 2018 | WO |
WO 2018081504 | May 2018 | WO |
WO 2018081535 | May 2018 | WO |
WO 2018081728 | May 2018 | WO |
WO 2018083128 | May 2018 | WO |
WO 2018083606 | May 2018 | WO |
WO 2018085288 | May 2018 | WO |
WO 2018086623 | May 2018 | WO |
WO 2018089664 | May 2018 | WO |
WO 2018093990 | May 2018 | WO |
WO 2018098383 | May 2018 | WO |
WO 2018098480 | May 2018 | WO |
WO 2018098587 | Jun 2018 | WO |
WO 2018099256 | Jun 2018 | WO |
WO 2018103686 | Jun 2018 | WO |
WO 2018106268 | Jun 2018 | WO |
WO 2018107028 | Jun 2018 | WO |
WO 2018107103 | Jun 2018 | WO |
WO 2018107129 | Jun 2018 | WO |
WO 2018108272 | Jun 2018 | WO |
WO 2018109101 | Jun 2018 | WO |
WO 2018111946 | Jun 2018 | WO |
WO 2018111947 | Jun 2018 | WO |
WO 2018112336 | Jun 2018 | WO |
WO 2018112446 | Jun 2018 | WO |
WO 2018119354 | Jun 2018 | WO |
WO 2018119359 | Jun 2018 | WO |
WO 2018120283 | Jul 2018 | WO |
WO 2018130830 | Jul 2018 | WO |
WO 2018135838 | Jul 2018 | WO |
WO 2018136396 | Jul 2018 | WO |
WO 2018138385 | Aug 2018 | WO |
WO 2018142364 | Aug 2018 | WO |
WO 2018148246 | Aug 2018 | WO |
WO 2018148256 | Aug 2018 | WO |
WO 2018148647 | Aug 2018 | WO |
WO 2018149418 | Aug 2018 | WO |
WO 2018149888 | Aug 2018 | WO |
WO 2018149915 | Aug 2018 | WO |
WO 2018152197 | Aug 2018 | WO |
WO 2018152418 | Aug 2018 | WO |
WO 2018154380 | Aug 2018 | WO |
WO 2018154387 | Aug 2018 | WO |
WO 2018154412 | Aug 2018 | WO |
WO 2018154413 | Aug 2018 | WO |
WO 2018154418 | Aug 2018 | WO |
WO 2018154439 | Aug 2018 | WO |
WO 2018154459 | Aug 2018 | WO |
WO 2018154462 | Aug 2018 | WO |
WO 2018156372 | Aug 2018 | WO |
WO 2018161009 | Sep 2018 | WO |
WO 2018165504 | Sep 2018 | WO |
WO 2018165629 | Sep 2018 | WO |
WO 2018170015 | Sep 2018 | WO |
WO 2018170340 | Sep 2018 | WO |
WO 2018175502 | Sep 2018 | WO |
WO 2018176009 | Sep 2018 | WO |
WO 2018177351 | Oct 2018 | WO |
WO 2018179578 | Oct 2018 | WO |
WO 2018183403 | Oct 2018 | WO |
WO 2018189184 | Oct 2018 | WO |
WO 2018191388 | Oct 2018 | WO |
WO 2018195402 | Oct 2018 | WO |
WO 2018195545 | Oct 2018 | WO |
WO 2018195555 | Oct 2018 | WO |
WO 2018197020 | Nov 2018 | WO |
WO 2018197495 | Nov 2018 | WO |
WO 2018202800 | Nov 2018 | WO |
WO 2018204493 | Nov 2018 | WO |
WO 2018208755 | Nov 2018 | WO |
WO 2018208998 | Nov 2018 | WO |
WO 2018209158 | Nov 2018 | WO |
WO 2018209320 | Nov 2018 | WO |
WO 2018213351 | Nov 2018 | WO |
WO 2018213708 | Nov 2018 | WO |
WO 2018213726 | Nov 2018 | WO |
WO 2018213771 | Nov 2018 | WO |
WO 2018213791 | Nov 2018 | WO |
WO 2018217852 | Nov 2018 | WO |
WO 2018217981 | Nov 2018 | WO |
WO 2018218166 | Nov 2018 | WO |
WO 2018218188 | Nov 2018 | WO |
WO 2018218206 | Nov 2018 | WO |
WO 2019005886 | Jan 2019 | WO |
WO 2019010384 | Jan 2019 | WO |
WO 2019023680 | Jan 2019 | WO |
WO 2019051097 | Mar 2019 | WO |
WO 2019079347 | Apr 2019 | WO |
WO 2019084062 | May 2019 | WO |
WO 2019118949 | Jun 2019 | WO |
WO 2019139645 | Jul 2019 | WO |
WO 2019139951 | Jul 2019 | WO |
WO 2019147014 | Aug 2019 | WO |
WO 2019226953 | Nov 2019 | WO |
WO 2020014261 | Jan 2020 | WO |
WO 2020041751 | Feb 2020 | WO |
WO 2020047124 | Mar 2020 | WO |
WO 2020051360 | Mar 2020 | WO |
WO 2020086908 | Apr 2020 | WO |
WO 2020092453 | May 2020 | WO |
WO 2020102659 | May 2020 | WO |
WO 2020154500 | Jul 2020 | WO |
WO 2020181178 | Sep 2020 | WO |
WO 2020181180 | Sep 2020 | WO |
WO 2020181193 | Sep 2020 | WO |
WO 2020181195 | Sep 2020 | WO |
WO 2020181202 | Sep 2020 | WO |
WO 2020191153 | Sep 2020 | WO |
WO 2020191171 | Sep 2020 | WO |
WO 2020191233 | Sep 2020 | WO |
WO 2020191234 | Sep 2020 | WO |
WO 2020191239 | Sep 2020 | WO |
WO 2020191241 | Sep 2020 | WO |
WO 2020191242 | Sep 2020 | WO |
WO 2020191243 | Sep 2020 | WO |
WO 2020191245 | Sep 2020 | WO |
WO 2020191246 | Sep 2020 | WO |
WO 2020191248 | Sep 2020 | WO |
WO 2020191249 | Sep 2020 | WO |
WO 2020210751 | Oct 2020 | WO |
WO 2020214842 | Oct 2020 | WO |
Entry |
---|
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al. |
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al. |
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al. |
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al. |
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al. |
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al. |
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al. |
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al. |
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al. |
U.S. Appl. No. 61/874,682, filed Sep. 6, 2013, Liu et al. |
U.S. Appl. No. 61/874,746, filed Sep. 6, 2013, Liu et al. |
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al. |
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al. |
International Search Report for PCT/US2018/048969, dated Jul. 31, 2019. |
International Preliminary Report on Patentability for PCT/US2018/048969, dated Mar. 12, 2020. |
[No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016. |
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages. |
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages. |
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages. |
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages. |
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages. |
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573. |
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi. |
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu. |
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo. |
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98. |
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013. |
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 33, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020. |
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014. |
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999; 18(5): 1407-14. |
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi:10.1093/nar/gki291. |
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76. |
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12. |
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357. |
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011. |
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5. |
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 2, 20046;337(3):585-96. |
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/naturel 1537. Epub Sep. 23, 2012. |
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/. |
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review. |
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006. |
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017. |
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16. |
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045): 1059-66. doi: 10.1038/nature03657. |
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA. Sep. 1, 1998;95(18):10570-5. |
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2): 135-6. Doi: 10.1038/nbt.1767. |
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20. |
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006; 112(2):240-8. Epub Mar. 20, 2006. |
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science. 1204094. |
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2): 133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014. |
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61. |
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i 17/Improved-route-single-base-genome.html. |
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12. |
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. |
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5. |
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science. 1159689. |
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010. |
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401. |
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(ll): 1047-52. |
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16. |
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci USA. Jan. 20, 1998;95(2):455-9. |
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(l):139, 142-7. doi: 10.2144/97231rr02. |
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31. |
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020. |
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240. |
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29): 10505-10. Epub Jul. 9, 2004. |
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012. |
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380. |
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65. |
Cargill et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8. |
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8. |
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5. |
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22): 1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008. |
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9): 1658-60. doi: 10.1038/mt.2012.171. |
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review. |
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011. |
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vase Biol. Sep. 2017;37(9): 1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017. |
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016. |
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1.doi: 10.1038/495050a. |
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015; 12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015. |
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages. |
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018. bioRxiv preprint first posted online Jun. 14, 2016. |
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009. |
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195. |
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012. |
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008. |
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47. |
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. |
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67. |
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8. |
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1): 132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013. |
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013. |
Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012. |
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.ll0.120717. Epub Jul. 6, 2010. |
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8. |
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006. |
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/ma.24321. Epub Apr. 5, 2013. |
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012. |
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9. |
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013. |
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/GB-2008-9-6-229. Epub Jun. 17, 2008. |
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI: 10.2174/138945011701151217110917. |
Cox et al., Conditional gene expression in the mouse inner ear using Cre-1oxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/sl0162-012-0324-5. Epub Apr. 24, 2012. |
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793. |
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013. |
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152. |
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010. |
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010. |
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gkul010. Epub Oct. 28, 2014. |
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(l):47-52. |
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):el002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012. |
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143. |
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015; 11(5):316-8. doi: 10.1038/nchembio.l793. Epub Apr. 6, 2015. |
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27. |
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886. |
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43. |
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012. |
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA. 115.304351. Epub Jun. 10, 2014. |
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010. |
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437. |
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science. 1258096. |
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbtl409. Epub May 25, 2008. |
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/111450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard. |
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6. |
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3. |
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4): 1153-6. |
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006; 14(9):1459-68. |
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014; 111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014. |
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014. |
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6. |
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011. |
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66. |
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013. |
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9. |
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12): 1557-1560. |
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93. |
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 26, 2016;7:12834. doi: 10.1038/ncomms12834. |
Ferretti et al., Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4658-63. |
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633. |
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(l):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information. |
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010. |
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014. |
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gktl074. Epub Nov. 22, 2013. |
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4. |
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014. |
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013. |
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005; 14(6): 1538-44. |
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11. |
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512. |
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011. |
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46. |
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014. |
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013. |
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013. |
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185. |
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016. |
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005. |
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523. |
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included. |
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013. |
Genbank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages. |
Genbank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages. |
Genbank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages. |
Genbank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages. |
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84. |
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010. |
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/kr421. Epub Jun. 7, 2011. |
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51. |
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013. |
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014. |
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56. |
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014. |
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014. |
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004. |
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1): 148. doi: 10.1186/s13059-016-1012-2. |
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040. |
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8. |
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna. |
Harrington et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839?842. doi:10.1136/bmj.329.7470.839. |
Harris et al., RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Mol Cell. Nov. 2002; 10(5): 1247-53. |
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75. |
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009. |
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002. |
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006. |
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016. |
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008. |
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review. |
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7. |
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115. |
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018. |
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009. |
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927. |
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008. |
Hondares et al., Peroxisome Proliferator-activated Receptor (PPAR) Induces PPAR Coactivator 1 (PGC-1) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775. |
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555. |
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007. |
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39): 15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013. |
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60. |
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12. |
Hower et al., Shape-based peak identification for ChlP-Seq. BMC Bioinformatics. Jan. 1, 20112;12:15. doi: 10.1186/1471-2105-12-15. |
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. |
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009. |
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018. |
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939. |
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112. |
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003. |
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review. |
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013. |
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006. |
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000. |
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33. |
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8. |
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006. |
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6): 1565-75. |
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011. |
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013. |
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242): 1477-81. doi: 10.1126/science.aab1452. |
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016. |
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science. 1225829. Epub Jun. 28, 2012. |
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471. |
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014. |
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011. |
Joung et al.,TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(l):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012. |
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6. |
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9. |
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009. |
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009. |
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53. |
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review. |
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016. |
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. U S A Apr. 2016;113(15):4057-62. |
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8): 1404-11. |
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002. |
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013. |
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017. |
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017. |
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6): 1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014. |
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017. |
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013. |
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009; 19(7): 1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009. |
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026. |
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800. |
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):el003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013. |
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013. |
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009. |
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015. |
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015. |
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016. |
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012. |
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9. |
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4): 1229-37. |
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017. |
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.Ml 10.177402. Epub Oct. 6, 2010. |
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102. |
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004. |
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(l-2):20-36. doi: 10.1016/j.cell.2016.10.044. |
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017. |
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946. |
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008. |
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x. |
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9. |
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41. |
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34. |
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9. |
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017. |
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017. |
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014. |
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007. |
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkvl222. Epub Nov. 17, 2015. |
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439. |
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33. |
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013. |
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci USA. Dec. 5, 2000;97(25): 13573-8. |
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72. |
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007; 129(33): 10110-2. Epub Aug. 1, 2007. |
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52. |
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-l.19773. |
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9): 1245-52. |
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713. |
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1): 17-18. doi: 10.1038/nbt.3753. |
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80. |
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97. |
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020.eCollection 2016. |
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012; 109(43): 17484-9. Doi: 10.1073/pnas. 1215421109. Epub Oct. 8, 2012. |
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011. |
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 1, 19852;228(4696):190-2. |
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81. |
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379. |
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9. |
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018. |
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33. |
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016. |
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print]. |
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockouand gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011. |
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654. |
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010. |
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024. |
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20. |
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104. |
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766. |
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review. |
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22. |
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013. |
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007. |
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 2, 20140;9(1):e85755. doi: 10.1371/joumal.pone.0085755. eCollection 2014. |
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30. |
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6): 1755-64. Print 2006. |
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7. |
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(l):90-4. DOI: 10.1002/anie.200502589. |
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006; 118(1):96-100. |
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009; 109(5): 1948-98. doi: 10.1021/cr030183i. |
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11): 1298-306. Epub Oct. 28, 2007. |
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2): 153-9. |
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016. |
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007. |
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19. |
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y. |
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030. |
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016; 13:1029-35. doi:10.1038/nmeth.4027. |
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013. |
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016. |
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013. |
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas. 1019533108. Epub Jan. 24, 2011. |
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29. |
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015. |
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011. |
Mali et al., Cas9 as a versatile tool for engineeringbiology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649. |
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013. |
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science. 1232033. Epub Jan. 3, 2013. |
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x. |
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57. |
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6. |
Marrafhini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science. 1165771. |
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015. |
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016. |
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008. |
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012. |
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27. |
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008. |
Meyer et al., Confirmation of a second natural preQi aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008. |
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.l476-5381.2009.00288.x. |
Miller et al., A Tale nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2): 143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010. |
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007. |
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/GB-2011-12-11-r112. |
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72. |
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry. . . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016. |
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007. |
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82. |
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8. |
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80. |
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5. |
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012. |
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9. |
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5. |
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkrl51. Epub Mar. 18, 2011. |
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6. |
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science. 1178817. |
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3. |
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011. |
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012. |
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50. |
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004. |
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3): 195-200. |
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages. |
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420. |
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50. |
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86. |
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review. |
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016. |
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251. |
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014. |
Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007. |
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013. |
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012. |
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20. |
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016. |
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953. |
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511. |
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/naturel3769. Epub Sep. 28, 2014. |
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/. |
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013. |
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9. |
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014. |
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9. |
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013. |
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670. |
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17. |
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4): 165-81. |
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014. |
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896. |
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833. |
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113): 1408-11. doi: 10.1126/science.338.6113.1408. |
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbtl410. Epub Jun. 29, 2008. |
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012. |
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013. |
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010. |
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542. |
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9): 1169-74. |
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8. |
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 16, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006. |
Pluciennik et al., PCNA function in the activation and strand direction of MutL? endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas. 1010662107. Epub Aug. 16, 2010. |
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3. |
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4. |
Pospsílová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081. |
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63. |
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8. |
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011. |
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537. |
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015. |
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46. |
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012. |
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5): 1173-83. doi: 10.1016/j.cell.2013.02.022. |
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41. |
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6): 1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014. |
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012. |
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374. |
Ran et al., Double Nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 26, 2013. |
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013. |
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015. |
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6. |
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998). |
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40. |
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55. |
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790. |
Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534. |
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016. |
Reyon et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170. |
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016. |
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291. |
Riechmann et al.,. The C-terminal domain of To1A is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308. |
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5. |
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009. |
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013. |
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179. |
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712): 1114-8. Epub Jan. 13, 2005. |
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004. |
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012. |
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014. |
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013. |
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934. |
Sang, Prospects for transgenesis in the chick. Meeh Dev. Sep. 2004;121(9):1179-86. |
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431. |
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008. |
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011. |
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z. |
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012. |
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007; 104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104. |
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9. |
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6. |
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002. |
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006. |
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72. |
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51. |
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40. |
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U SA. Mar. 16, 1999;96(6):2758-63. |
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78. |
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (Crispr) is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011. |
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2): 172-6. doi: 10.1038/nbt.l602. Epub Jan. 17, 2010. |
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009. |
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41. |
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006. |
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007. |
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461. |
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011. |
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs. 13345. Epub Jul. 1, 2015. |
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science. 1247005. Epub Dec. 12, 2013. |
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012. |
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40. |
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013. |
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222. |
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601. |
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769. |
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017. |
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011. |
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97. |
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6): 1087-8. |
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005. |
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014. |
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006. |
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005. |
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015. |
Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521. |
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7. |
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.l744. Epub Jan. 10, 2010. |
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi: 10.1038/naturel 1017. |
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/naturel3011. Epub Jan. 29, 2014. |
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016. |
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003; 17(21):2688-97. |
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4. |
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012. |
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33. |
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015. |
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014. |
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879. |
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007. |
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4. |
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939. |
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662. |
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25): 11844-8. |
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940. |
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014. |
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12396962-0.00012-4. |
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204. |
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54. |
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34. |
Trumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27. |
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21. |
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10): 1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011. |
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data. |
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014. |
Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014. |
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1): 1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012. |
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2): 193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011. |
Turan et al., Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. FASEB J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review. |
UniProt Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages. |
UniProt Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages. |
UniProt Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages. |
UniProt Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages. |
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842. |
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005. |
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82. |
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008. |
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002. |
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78. |
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9): 1084-97. |
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22. |
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104. |
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004. |
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9. |
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014. |
Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18. |
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vase Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016. |
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA. Feb. 29, 2016. pii: 201520244. [Epub ahead of print]. |
Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1):1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017. |
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013. |
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434. |
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013. |
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010. |
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012. |
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7): 1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012. |
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71. |
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008. |
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4): 1104-12. |
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011. |
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015. |
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008. |
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human C1C-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012. |
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review. |
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012. |
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008. |
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49. |
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611. |
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002. |
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6. |
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002. |
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51. |
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34. |
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011. |
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016. |
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014. |
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8): 1147-57. doi: 10.1101/gr. 191452.115. Epub Jun. 10, 2015. |
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017. |
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2): 133-139. https://doi.org/10.2222/jsv.57.133. |
Yamano et al., Crystal Structure of Cpfl in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62. |
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017. |
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330. |
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016. |
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017. |
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28. |
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011. |
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(l): 11-6. |
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014. |
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010. |
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7): 1383-8. |
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303. |
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8): 1275-86. doi: 10.1016/j.str.2008.04.018. |
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46. |
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001. |
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2): 139-42. doi: 10.1038/nbt.3149. |
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015. |
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405. |
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012; 13(7):511-24. doi: 10.1631/jzus.B1200042. Review. |
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014. |
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2): 149-53. doi: 10.1038/nbt.l775. Epub Jan. 19, 2011. |
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6. |
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645. |
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8): 1438-47. |
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050. |
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:el8858. doi: 10.7554/eLife. 18858. |
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67. |
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017. |
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005. |
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009. |
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80. |
U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al. |
U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al. |
U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al. |
U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al. |
U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al. |
U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al. |
U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al. |
U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al. |
U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al. |
U.S. Appl. No. 14/911,117, filed Feb. 9, 2019, Liu et al. |
U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al. |
U.S. Appl. No. 14/462,189 filed Aug. 18, 2014, Liu et al. |
U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al. |
U.S. Appl. No. 16/860,639, filed Apr. 28, 2020, Liu et al. |
U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al. |
U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al. |
U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al. |
U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al. |
U.S. Appl. No. 16/796,323, filed Feb. 20, 2020, Liu et al. |
U.S. Appl. No. 14/325,8815, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al. |
U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al. |
U.S. Appl. No. 16/374,634, filed Apr. 30, 2019, Liu et al. |
U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al. |
U.S. Appl. No. 16/132,276, filed Sep. 14, 2008, Liu et al. |
U.S. Appl. No. 16/888,646, filed May 29, 2020, Liu et al. |
U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al. |
U.S. Appl. No. 15/958,721, filed Apr. 20, 2019, Liu et al. |
U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al. |
U.S. Appl. No. 15/960,171, filed Apr. 23, 2018, Liu et al. |
U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al. |
U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al. |
U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al. |
U.S. Appl. No. 16/926,436, filed Jul. 10, 2020, Maianti et al. |
U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al. |
U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al. |
U.S. Appl. No. 16/324,476, filed Feb. 8, 2019, Liu et al. |
U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al. |
U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al. |
U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Liu et al. |
U.S. Appl. No. 15/784,033, filed Oct. 13, 2017, Liu et al. |
U.S. Appl. No. 16/492,553, filed Sep. 9, 2019, Liu et al. |
U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al. |
U.S. Appl. No. 16/613,988, filed Nov. 12, 2019, Liu et al. |
U.S. Appl. No. 16/634.405, filed Jan. 27, 2020, Liu et al. |
U.S. Appl. No. 16/976,047, filed Aug. 26, 2020, Liu et al. |
U.S. Appl. No. 16/756,432, filed Apr. 15, 2020, Liu et al. |
U.S. Appl. No. 16/772,747, filed Jun. 12, 2020, Liu et al. |
PCT/US2018/048969, Jul. 31, 2019, International Search Report and Written Opinion. |
PCT/US2018/048969, Mar. 12, 2020, International Prelimary Report on Patentability. |
[No Author Listed] “FokI” from New England Biolabs Inc. Last accessed online via https://www.neb.com/products/r0109-foki#Product%20Information on Mar. 19, 2021. 1 page. |
[No Author Listed] “Human genome.” Encyclopedia Britannica. Encyclopedia Brittanica, Inc. Published Feb. 15, 2019. Last accessed online via https://www.britannica.com/science/human-genome on Mar. 19, 2021. 2 pages. |
[No Author Listed] “Nucleic Acids Sizes and Molecular Weights.” Printed Mar. 19, 2021. 2 pages. |
[No Author Listed] “Zinc Finger Nuclease” from Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Zinc_finger_nuclease&oldid= 1007053318. Page last edited Feb. 16, 2021. Printed on Mar. 19, 2021. |
[No Author Listed] Beast2: Bayesian evolutionary analysis by sampling trees. http://www.beast2.org/ Last accessed Apr. 28, 2021. |
[No Author Listed] HyPhy—Hypothesis testing using Phylogenies. Last modified Apr. 21, 2017. Accessed online via http://hyphy.org/w/index.php/Main_Page on Apr. 28, 2021. |
[No Author Listed] NCBI Accession No. XP_015843220.1. C ->U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540. |
[No Author Listed] NCBI Accession No. XP_021505673.1. C ->U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541. |
[No Author Listed] Theoretical Biochemistry Group. Institute for Theoretical Chemistry. The ViennaRNA Package. Universitat Wien. https://www.tbi.univie.ac.at/RNA/. Last accessed Apr. 28, 2021. |
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14. |
Abudayyeh et al., A cytosine deaminase for programmable single-base RNA editing. Science. Jul. 26, 2019;365(6451):382-386. doi: 10.1126/science.aax7063. Epub Jul. 11, 2019. |
Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature. Oct. 12, 2017;550(7675):280-284. doi: 10.1038/nature24049. Epub Oct. 4, 2017. |
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x. |
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.l519368113. Epub Apr. 26, 2016. |
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n. |
Adli, The CRISPR tool kit for genome editing and beyond. Nat Commun. May 15, 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2. |
Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015. |
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20. |
Aik et al., Structure of human RNA N?-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014. |
Aird et al., Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. May 31, 2018; 1:54. doi: 10.1038/s42003-018-0054-2. |
Akcakaya et al., In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. Sep. 2018;561(7723):416-419. doi: 10.1038/s41586-018-0500-9. Epub Sep. 12, 2018. PMID: 30209390; PMCID: PMC6194229. |
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x. |
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011; 118(1): 19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011. |
Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6): 1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015. |
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/naturel4281. Epub Mar. 18, 2015. |
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2. |
Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013. |
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2. |
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known ?—gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013. |
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15. |
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014:546:1-20. |
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science. 1589762. |
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016. |
Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019. |
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005. |
Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv. 1600699. |
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29. |
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSRl. J Mol Biol. May 5, 1992;225(l):25-37. doi: 10.1016/0022-2836(92)91023-i. |
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868. |
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci USA. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas. 1301366110. Epub Apr. 30, 2013. |
Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018. |
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015. |
Arb Ab et al., Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. Jul. 23, 2020;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub Jun. 12, 2020. |
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008. |
Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/naturel4510. Epub Jun. 10, 2015. |
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016. |
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr. 161638.113. Epub Oct. 31, 2013. |
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731. |
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x. |
Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198. |
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):l 111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013. |
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016. |
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425. |
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015. |
Bagyinszky et al., Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. Aug. 14, 2018; 14:2067-2085. doi: 10.2147/NDT.S165445. |
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013. |
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. Jan. 1987;6(1):229-34. |
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6. |
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004. |
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sei. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012. |
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. Mar. 1, 1992;112(l):29-35. doi: 10.1016/0378-1119(92)90299-5. |
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852. |
Bartoso Vic et al., N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. Nov. 2, 2017;45(19): 11356-11370. doi: 10.1093/nar/gkx778. |
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007. |
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14): 10324-34. |
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct. 1994;5(5):382-9. doi: 10.1021/bc00029a002. |
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5. |
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci USA. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604. |
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014. |
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010. |
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999. |
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005. |
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110. |
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex VIVO in VIVO gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015. |
Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/sl097-2765(00)80143-4. |
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013; 14:20. doi: 10.1186/1471-2199-14-20. |
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6): 1896-910. doi: 10.1111/j.1365-2958.2005.04517.x. |
Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017. |
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7. |
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92. |
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315. |
Blau et al., A proliferation switch for genetically?modified?cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076. |
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52. |
Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090. |
Boersma et al., Selection strategies for improved biocatalysts. FEBS J. May 2007;274(9):2181-95. |
Bogdanove et al., Engineering altered protein-DNA recognition specificity. Nucleic Acids Res. Jun. 1, 2018;46(10):4845-4871. doi: 10.1093/nar/gky289. |
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006. |
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615. |
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11): 1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015. |
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Tyl. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217. |
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667. |
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9. |
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0. |
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb. 172.4.1877-1888.1990. |
Brown et al., Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014. |
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006. |
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992. |
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1? interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012. |
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013; 1010:3-17. doi: 10.1007/978-1-62703-411-1_1. |
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473. |
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(l):28-33. doi: 10.1101/gr.2.1.28. |
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33. |
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3. |
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999; 121(23):5597-5598. https://doi.org/.1021/ja990929n. |
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537. |
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003. |
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570. |
Canver et al., Customizing the genome as therapy for the ?-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016. |
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021. |
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results. |
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590. |
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci USA. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010. |
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x. |
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038. |
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015. |
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007. |
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005. |
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252. |
Chan et al., Molecular recording of mammalian embryogenesis. Nature. Jun. 2019;570(7759):77-82. doi: 10.1038/s41586-019-1184-5. Epub May 13, 2019. |
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029. |
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23. |
Chen et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. Oct. 19, 2017;550(7676):407-410. doi: 10.1038/nature24268. Epub Sep. 20, 2017. |
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016. |
Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015. |
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information. |
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014. |
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999. |
Choe et al., Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell. Feb. 2, 2017;65(3):380-392. doi: 10.1016/j.molcel.2016.12.020. |
Choi et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2): 110-5. doi: 10.1038/nsmb.3148. Epub Jan. 16, 2016. |
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 27, 2005. |
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17): 10567-77. doi: 10.1074/jbc.273.17.10567. |
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109. |
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159. |
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25): 15587-90. doi: 10.1074/jbc.272.25.15587. |
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 1, 19979; 192(2):271 -81. doi: 10.1016/s0378-1119(97)00105-4. |
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154. |
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968. |
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994; 176(4): 1069-76. doi: 10.1128/jb. 176.4.1069-1076.1994. |
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8. doi: 10.1038/nbt.3198. Epub Mar. 24, 2015. |
Chuai et al., DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. Jun. 26, 2018;19(1):80. doi: 10.1186/s 13059-018-1459-4. |
Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016. |
Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841. |
Chujo et al., Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012. |
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437. |
Clement et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. Mar. 2019;37(3):224-226. doi: 10.1038/s41587-019-0032-3. |
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092. |
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-1-62703-293-3_8. |
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519. |
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. Embo J. May 18, 20058;24(10): 1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005. |
Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313. |
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995; 14(6): 1276-85. |
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework:? A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999; 121(5):1100-1. https://doi.org/10.1021/ja983804b. |
Cox et al., RNA editing with CRISPR-Cas13. Science. Nov. 24, 2017;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub Oct. 25, 2017. |
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561. |
Crabtree et al., Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci. Nov. 1996;21(11):418-22. doi: 10.1016/s0968-0004(96)20027-1. |
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63. |
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404. |
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016. |
Cui et al., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. Mar. 14, 2017; 18(11):2622-2634. doi: 10.1016/j.cehep.2017.02.059. |
Cui et al., Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci. Jun. 2018;10(2):455-465. doi: 10.1007/s12539-018-0298-z. Epub Apr. 11, 2018. |
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9. |
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91. |
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390. |
Dandage et al., beditor: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics. Jun. 2019;212(2):377-385. doi: 10.1534/genetics.119.302089. Epub Apr. 1, 2019. |
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3. |
Das et al.,The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032. |
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009. |
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762. |
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5. |
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003. |
De Wit et al., The Human CD4+ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol. Mar. 5, 2019;93(6):e01883-18. doi: 10.1128/JVI.01883-18. |
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. Sep. 27, 1996;273(5283): 1856-62. doi: 10.1126/science.273.5283.1856. |
DeKosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016. |
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science. 1206938. Epub Jun. 23, 2011. |
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015. |
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013. |
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013. |
Dever et al., CRISPR/Cas9 ?-globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016. |
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gktl35. Epub Mar. 4, 2013. |
Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015. |
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013. |
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12. |
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M. |
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w. |
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997; 119(22):5106-5109. https://doi.org/10.1021/ja963891c. |
Doman et al., Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. May 2020;38(5):620-628. doi: 10.1038/s41587-020-0414-6. Epub Feb. 10, 2020. |
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112. |
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006. |
Dormiani et al., Long-term and efficient expression of human ?-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015. |
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54. |
Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-Scel. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84. |
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. Aug. 15, 1991;88(16):7160-4. |
Dubois et al., Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol. Mar. 22, 2018;9:527. doi: 10.3389/fmicb.2018.00527. |
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review. |
Dunbar et al., Gene therapy comes of age. Science. Jan. 12, 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672. |
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French. |
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11. |
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912. |
Ed Lund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002. |
Eick et al., Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol. Feb. 1, 2017;34(2):247-261. doi: 10.1093/molbev/msw223. |
Engel et al., The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav. Mar. 2018;17(3):e12428. doi: 10.1111/gbb. 12428. Epub Nov. 17, 2017. |
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci USA. Nov. 25, 1997;94(24):13087-92. |
England, Unnatural amino acid mutagenesis: a precise tool for probing; protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9. |
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2. |
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972. |
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091. |
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103. |
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26): 18359-63. doi: 10.1074/jbc.274.26.18359. |
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923. |
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016. |
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5. |
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006. |
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 2, 19866;47(6): 1007-15. doi: 10.1016/0092-8674(86)90815-9. |
Feldstein et al., Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene. Oct. 15, 1989;82(1):53-61. doi: 10.1016/0378-1119(89)90029-2. |
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.Ml 13.546168. Epub Mar. 10, 2014. |
Feng et al., Human LI retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2. |
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132. |
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5. |
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888. |
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6): 1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x. |
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998. |
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259. |
Fogg et al., Genome Integration and Excision by a New Streptomyces Bacteriophage, ?Joe. Appl Environ Microbiol. Feb. 15, 2017;83(5):e02767-16. doi: 10.1128/AEM.02767-16. |
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x. |
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006. |
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941. |
Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8. |
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15. |
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0. |
Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018. |
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22. |
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb. 12152. Epub Mar. 6, 2014. |
Gao et al., Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. Jan. 11, 2018;553(7687):217-221. doi: 10.1038/nature25164. Epub Dec. 20, 2017. |
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005. |
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608. |
Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018. |
Gehrke et al., An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. Nov. 2018;36(10):977-982. doi: 10.1038/nbt.4199. Epub Jul. 30, 2018. |
GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993. |
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994. |
GenBank Submission; NIH/NCBI Accession No. NM 001319224.2. Umar et al., Apr. 21, 2021. 7 pages. |
Genank Submission; NIH/NCBI Accession No. NM 006027.4. Umar et al., Apr. 10, 2021. 7 pages. |
GenBank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages. |
GenbBank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages. |
GENBANK Submission; NIH/NCBI, Accession No. AYD60528.1. Ram et al., Oct. 2, 2018. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NC 002737.2. Nasser et al., Feb. 7, 2021. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NM 000311.5. Alves et al., Mar. 7, 2021. 5 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NM 001319224. Umar et al., Apr. 21, 2021. 7 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NM 003686. Umar et al., Apr. 9, 2021. 7 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NM 003686.4. Umar et al., Apr. 9, 2021. 7 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NM 006027. Umar et al., Apr. 10, 2021. 7 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NP 000302.1. Alves et al., Mar. 7, 2021. 4 pages. |
GENBANK Submission; NIH/NCBI, Accession No. NP 955579.1. Chen et al., Aug. 13, 2018. 5 pages. |
GENBANK Submission; NIH/NCBI, Accession No. QBJ66766. Duan et al. Aug. 12, 2020. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. RFF81513.1. Zhou et al., Aug. 21, 2018. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. SNX31424.1. Weckx, S., Feb. 16, 2018. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. TGH57013. Xu et al., Apr. 9, 2019. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. WP 016631044.1. Haft et al., Sep. 22, 2020. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP 031386437. No Author Listed., Sep. 23, 2019. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP 0315 89969.1. Haft et al., Oct. 9, 2019. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. WP_044924278.1. Haft et al., Oct. 9, 2019. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. WP_047338501.1. Haft et al., Oct. 9, 2019. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. WP_060798984.1. Haft et al., Oct. 9, 2019. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. WP_062913273.1. Haft et al., Oct. 9, 2019, 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. WP_072754838. No Author Listed., Sep. 23, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_095142515.1. No Author Listed., Sep. 23, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_118538418.1. No Author Listed., Oct. 13, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_119223642.1. No Author Listed., Oct. 13, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_119227726.1. No Author Listed., Oct. 13, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_119623382.1. No Author Listed., Oct. 13, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_132221894.1. No Author Listed., Sep. 23, 2019. 1 page. |
Genbank Submission; NIH/NCBI, Accession No. WP_133478044.1. Haft et al., Oct. 9, 2019. 2 pages. |
Genbank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages. |
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097. |
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271. |
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI. 15.4.785-797.1975. |
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417. |
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442): 1146-9. doi: 10.1126/science.286.5442.1146. |
Ghahfarokhi et al., Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. Nov. 13, 2017;7(1):15432. doi: 10.1038/s41598-017-15648-3. |
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009. |
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3. |
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82. |
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci USA. Aug. 18, 1998;95(17):9997-10002. |
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006. |
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011. |
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8. |
Gou et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021. |
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003. |
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):REVIEWS1017.doi: 10.1186/gb-2001-2-6-reviews1017. Epub Jun. 5, 2001. |
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4. |
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004; 166(4): 1775-82. doi: 10.1534/genetics.166.4.1775. |
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122. |
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006. |
Grüvnewald et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. May 2019;569(7756):433-437. doi: 10.1038/s41586-019-l 161-z. Epub Apr. 17, 2019. |
Gumulya et al., Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem J. Jan. 1, 2017 ;474(1):1-19. doi: 10.1042/BCJ20160507. |
Guo et al., Facile functionalization of FK506 for biological studies by the thiol-ene ‘click’ reaction. RSC Advances. 2014;22:11400-3. |
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013. |
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007. |
Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130. |
Haapaniemi et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Jul. 2018;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub Jun. 11, 2018. |
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995; 199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14. |
Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Inti Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibio18/webprogram/paper544785.html. Retrieved Jun. 29, 2020. |
Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018. |
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22): 10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000. |
Handa et al., Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res. Oct. 12, 2018;46(18):9711-9725. doi: 10.1093/nar/gky620. |
Hanson et al., Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. Jan. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91. Epub Oct. 11, 2017. |
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540. |
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1): 1424. doi: 10.1038/s41467-017-01408-4. |
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x. |
Hector et al., CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. Dec. 15, 2017;3(6):e200. doi: 10.1212/NXG.0000000000000200. |
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203. |
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001. |
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659. |
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466. |
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010. |
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015. |
Hille et al., The Biology of CRISPR-Cas: Backward and Forward. Cell. Mar. 8, 2018;172(6): 1239-1259. doi: 10.1016/j.cell.2017.11.032. |
Hoang et al., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. Feb. 1, 2018;35(2):518-522. doi: 10.1093/molbev/msx281. |
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016. |
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79. |
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810. |
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8. |
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages. |
Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information. |
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5): 1201-11. doi: 10.1016/81097-2765(02)00736-0. |
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110. |
Hwang et al., Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. Dec. 27, 2018;19(1):542. doi: 10.1186/s12859-018-2585-4. |
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA; synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5. |
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12. |
Ihry et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. Jul. 2018;24(7):939-946. doi: 10.1038/s41591-018-0050-6. Epub Jun. 11, 2018. |
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11): 1445-53. |
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j. 1365-2958.1990.tb00671.x. |
Imanishi et al., Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). Nov. 30, 2017;53(96): 12930-12933. doi: 10.1039/c7cc07699a. |
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30. |
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0. |
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12): 1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007. |
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2): 166-72. doi: 10.1016/s0014-5793(99)01220-x. |
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7): 1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006. |
Jaffrey et al., Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. Jan. 12, 2017;9(1):2. doi: 10.1186/s13073-016-0395-8. |
Jardine et al., HIV-1 Vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244): 156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015. |
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740. |
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3. |
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9): 1108-22. doi: 10.1261/rna.5430403. |
Jiang et al., CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. May 22, 2017;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub Mar. 30, 2017. |
Jin et al., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. Apr. 19, 2019;364(6437):292-295. doi: 10.1126/science.aaw7166. Epub Feb. 28, 2019. |
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3): 1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992. |
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3): 176-85. https://doi.org/10.1006/smvy.1997.0120. |
Johansson et al., Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1): 1-13. Epub Jun. 1, 2005. |
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005.9 |
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9. |
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4. |
Jusiak et al., Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synth Biol. Jan. 18, 2019;8(1): 16-24. doi: 10.1021/acssynbio.8b00089. Epub Jan. 9, 2019. |
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3): 122-6. |
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8. |
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604. |
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013;153(1):71-85. doi: 10.1016/j.cell.2013.02.036. |
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1. |
Kalyaanamoorthy et al., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. Jun. 2017;14(6):587-589. doi: 10.1038/nmeth.4285. Epub May 8, 2017. |
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17): 14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002. |
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130. |
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012. |
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2. |
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013. |
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1): 187-93. |
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126. |
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058. |
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc. 1200886. |
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2): 135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006. |
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science.1974085. |
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24): 14082-7. doi: 10.1073/pnas.93.24.14082. |
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010. |
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273. |
Kim et al., Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol. Apr. 2019;37(4):430-435. doi: 10.1038/s41587-019-0050-1. Epub Mar. 4, 2019. |
Kim et al., Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu Rev Biochem. Jun. 20, 2019;88:191-220. doi: 10.1146/annurev-biochem-013118-111730. Epub Mar. 18, 2019. |
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):el8556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011. |
Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2): 153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016. |
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.l365-2958.2003.03723.x. |
KIM et al., Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. Nov. 15, 2017;18(1):218. doi: 10.1186/s13059-017-1355-3. |
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551. |
Klapacz et al., Frameshift mutagenesis and micro satellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038. |
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33): 11779-91. doi: 10.1021/jal04903x. |
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9. |
Klompe et al., Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature. Jul. 2019;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub Jun. 12, 2017. |
Knott et al., Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas 13a enzyme. Nat Struct Mol Biol. Oct. 2017;24(10):825-833. doi: 10.1038/nsmb.3466. Epub Sep. 11, 2017. |
Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018. |
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009. |
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013. |
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015. |
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720. |
Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017. |
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014. |
Kosicki et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. Sep. 2018;36(8):765-771. doi: 10.1038/nbt.4192. Epub Jul. 16, 2018. |
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4. |
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988; 16(1):265-77. doi: 10.1093/nar/16.1.265. |
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum. 1994.5.7-793. |
Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. Apr. 10, 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub Feb. 19, 2019. |
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125. |
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015. |
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951. |
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996. |
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583. |
Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gkyl90. |
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905. |
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722. |
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7. |
Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016;13(12):983-984. doi: 10.1038/nmeth.4076. |
Kwart et al., Precise and efficient scarless genome editing in stem cells using Correct. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017. |
Kweon et al., Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun. Nov. 23, 2017;8(1):1723. doi: 10.1038/s41467-017-01650-w. Erratum in: Nat Commun. Jan. 16, 2018;9(1):303. |
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mose). Jan. 2011;76(1):131-46. |
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236. |
Landrum et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. Jan. 2014;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub Nov. 14, 2013. |
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002. |
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275. |
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055. |
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991. |
Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6. |
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8): 1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013. |
Lee et al., Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. Prog Mol Biol Transl Sci. 2018;159:79-100. doi: 10.1016/bs.pmbts.2018.07.001. Epub Aug. 9, 2018. |
Lee et al., Site-specific integration of my cobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111. |
Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312. |
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 20, 2010: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109. |
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014. |
Lei et al., Site-specificity of serine integrase demonstrated by the attB sequence preference of ?BT1 integrase. FEBS Lett. Apr. 2018;592(8):1389-1399. doi: 10.1002/1873-3468.13023. Epub Mar. 25, 2018. |
Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018. |
Levy et al., Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4(1):97-110. doi:10.1038/s41551-019-0501-5. |
Levy et al., Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol. Mar. 1, 2017;595(5):1699-1709. doi: 10.1113/JP273147. Epub Jan. 18, 2017. |
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887. |
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016; 113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016. |
Lewis et al., RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. Mar. 2017;18(3):202-210. doi: 10.1038/nrm.2016.163. Epub Feb. 1, 2017. |
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015. |
Li et al., Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. National Science Review. Jan. 1, 2020:92-101. DOI: 10.1093/nsr/nwzl31. Retrieved from the Internet via https://academic.oup.com/nsr/article-pdf/7/1/92/33321439/nwz131.pdf. Last accessed Apr. 28, 2021. |
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009. |
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109. |
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036. |
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009. |
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323. |
Liang et al., Correction of ?-thalassemia mutant by base editor in human embryos. Protein Cell. Nov. 2017;8(ll):811-822. doi: 10.1007/s13238-017-0475-6. Epub Sep. 23, 2017. |
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172. |
Lienert et al., Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013. |
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06. |
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003. |
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013. |
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824. |
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h. |
Liu et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Feb. 2019;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub Feb. 4, 2019. Author manuscript entitled CRISPR-CasX is an RNA-dominated enzyme active for human genome editing. |
Liu et al., Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. Apr. 5, 2018;173(2):430-442.e17. doi: 10.1016/j.cell.2018.03.016. Epub Mar. 29, 2018. |
Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016; 167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056. |
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi: 10.1146/annurev.biochem.73.012803.092453. |
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007. |
Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2. |
Liu et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 25, 20156;518(7540):560-4. doi: 10.1038/nature14234. |
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12): 1848-56. doi: 10.1261/ma.041178.113. Epub Oct. 18, 2013. |
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3): 187-200. doi: 10.1007/BF01319905. |
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science. 1067467. |
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004. |
Liu et al., The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell. Aug. 10, 2017;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub Jul. 27, 2017. |
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x. |
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015. |
Lopez-Girona et al., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. Nov. 2012;26(11):2326-35. doi: 10.1038/leu.2012.119. Epub May 3, 2012. |
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26. |
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5. |
Luckow et al., High level expression of nonfused foreign genes with Autographa califomica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6. |
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649. |
Lüke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7): 1764-9. doi: 10.1021/bi00459a015. |
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010. |
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006. |
Ma et al., In vitro protein engineering using synthetic tRNA(A1a) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45. |
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014. |
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895. |
Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740): 1534-9. doi: 10.1126/science.1113150. |
Macrae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(l):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006. |
Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438. |
Makarova et al., Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J. Oct. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033. |
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20. |
Malashkevich et al., Crystal structure of tRNA adenosine deaminase Tad A from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006). |
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012. |
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014. |
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1. |
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012. |
Marquart et al., Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screeen. bioRxiv. Jul. 5, 2020. DOI:10.1101/2020.07.05.186544. Retrieved from the Internet via https://www.biorxiv.org/content/10.1101/2020.07.05.186544v1.full.pdf lased accessed on Apr. 28, 2021. |
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25): 11787-91. doi: 10.1073/pnas.91.25.11787. |
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4. |
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(l):225-44. doi: 10.1111/imr.12075. |
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(l-2): 1-13. doi: 10.1016/s0378-1119(99)00103-1. |
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61. |
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016. |
May et al., Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis. Jan. 2018;66:1-4. doi: 10.1016/j.ijid.2017.09.024. Epub Oct. 4, 2017. |
Mccarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42. doi: 10.1038/ng2080. |
McDonald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno. 1996.4508. |
McInerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014. |
McKenna et al., Recording development with single cell dynamic lineage tracing. Development. Jun. 27, 2019;146(12):dev169730. doi: 10.1242/dev. 169730. |
McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016. |
McNaughton et al., Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A. Apr. 14, 2009;106(15):6111-6. doi: 10.1073/pnas.0807883106. Epub Mar. 23, 2009. |
Mcvey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008. |
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716. |
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016. |
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009. |
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012; 149(7): 1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012. |
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105. |
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014. |
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0. |
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299. |
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5):1588-96. doi: 10.1093/nar/gkj514. |
Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991. |
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0. |
Mills et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543. |
Mitani et al., Delivering therapeutic genes—matching approach and application. Trends Biotechnol. May 1993;11(5):162-6. doi: 10.1016/0167-7799(93)90108-L. |
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008): 1244-7. doi: 10.1126/science.1195858. |
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549. |
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5. |
Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018. |
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/ma.039743.113. Epub May 22, 2013. |
Mok et al., A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. Jul. 2020;583(7817):631-637. doi: 10.1038/s41586-020-2477-4. Epub Jul. 8, 2020. |
Molla et al., CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol. Oct. 2019;37(10): 1121-1142. doi: 10.1016/j.tibtech.2019.03.008. Epub Apr. 14, 2019. |
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):el003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013. |
Morita et al., The site-specific recombination system of actinophage TGI. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x. |
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705. |
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116. PMID: 16061932; PMCID: PMC1182171. |
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007. |
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468. |
Myerowiiz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9. |
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151. |
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R. |
Nahar et al., A G-quadruplex motif at the 3′ end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb). Mar. 7, 2018;54(19):2377-2380. doi: 10.1039/c7cc08893k. Epub Feb. 16, 2018. |
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560. |
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292. |
Naorem et al., DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci USA. Nov. 21, 2017;114(47):E10187-E10195. doi: 10.1073/pnas.l715952114. Epub Nov. 6, 2017. |
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011; 108(34): 14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011. |
Newby et al., Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. Jun. 2, 2021. doi: 10.1038/s41586-021-03609-w. Epub ahead of print. |
Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016. |
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014. |
Nishimasu et al., Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. Sep. 21, 2018;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub Aug. 30, 2018. |
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/ma.055558.115. Epub Jan. 29, 2016. |
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91. |
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013. |
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci USA. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.l520040113. Epub Feb. 16, 2016. |
Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019; 176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052. |
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016. |
Odsbu et al., Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005; 10(11): 1039-49. |
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6. |
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300. |
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(l):45-53. |
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002. |
Olorunniji et al., Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol. 2017;1642:229-245. doi: 10.1007/978-1-4939-7169-5_15. |
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112. |
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91. |
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010. |
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015. |
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237. |
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9. |
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032. |
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050. |
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j. |
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33. |
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi: 10.1126/science.1207339. |
Paiva et al., Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. Jun. 2019;50:111-119. doi: 10.1016/j.cbpa.2019.02.022. Epub Apr. 17, 2019. |
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601): 125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016. |
Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262. |
Park et al., Highly efficient editing of the ?-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. Sep. 5, 2019;47(15):7955-7972. doi: 10.1093/nar/gkz475. |
Park et al., Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57. |
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012. |
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013. |
Pellenz et al., New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases. Aug. 20, 2018. bioRxiv doi: https://doi.org/10.1101/396390. |
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761. |
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/sl367-5931(97)80065-8. |
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125. |
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346. |
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2. |
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103. |
Peyroties et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8. |
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289. |
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019. |
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad. 1.3.268. |
Pirakliikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513. |
Popp et al., Sortagging: a versatile method for protein labeling. Nat Chem Biol. Nov. 2007;3(11):707-8. doi: 10.1038/nchembio.2007.31. Epub Sep. 23, 2007. |
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71. |
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x. |
Pu et al., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol. Apr. 2017;13(4):432-438. doi: 10.1038/nchembio.2299. Epub Feb. 13, 2017. |
Qu et al., Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas. Jan. 14, 2019;156:3. doi: 10.1186/s41065-018-0079-z. |
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8. |
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9. |
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci USA. Jun. 28, 2016;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016. |
Ramamurthy et al., Identification of immunogenic B-cell epitope peptides of rubella virus E1 glycoprotein towards development of highly specific immunoassays and/or vaccine. Conference Abstract. 2019. |
Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018. |
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2): 192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008. |
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009. |
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15. |
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51. |
Rauch et al., Programmable RNA Binding Proteins for Imaging and Therapeutics. Biochemistry. Jan. 30, 2018;57(4):363-364. doi: 10.1021/acs.biochem.7b01101. Epub Nov. 17, 2017. |
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457): 172-7. doi: 10.1038/nature12311. |
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49. |
Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717. |
Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1. |
Rees et al., Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun. May 17, 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4. |
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021. |
Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567. |
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x. |
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian ?-lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013. |
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015. |
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc. 1203957. |
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007. |
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013. |
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35. |
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064. |
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096. |
Rouet et al., Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. J Am Chem Soc. May 30, 2018;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub May 18, 2018. |
Roundtree et al.,YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. Oct. 6, 2017;6:e31311. doi: 10.7554/eLife.31311. |
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x. |
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108. |
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci USA. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531. |
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011. |
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399. |
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013. |
Ryu et al., Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. Jul. 2018;36(6):536-539. doi: 10.1038/nbt.4148. Epub Apr. 27, 2018. |
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91. |
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):1 18-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015. |
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989. |
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002. |
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873. |
Sarkar et al., HIV-1 pro viral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science. 1141453. |
Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7. |
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941. |
Savic et al., Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. May 29, 2018;7:e33761. doi: 10.7554/eLife.33761. |
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3. |
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5. |
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4. |
Schaefer et al., Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. May 2017;7(5): 170077. doi: 10.1098/rsob. 170077. |
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo. |
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386. |
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419. |
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746. |
Schöller et al., Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. Apr. 2018;24(4):499-512. doi: 10.1261/ma.064063.117. Epub Jan. 18, 2018. |
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2. |
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′—>P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73. |
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638. |
Sebastían-Martín et al., Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep. Jan. 12, 2018;8(1):627. doi: 10.1038/s41598-017-18974-8. |
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0. |
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007. |
Setten et al., The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. Jun. 2019;18(6):421-446. doi: 10.1038/s41573-019-0017-4. |
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205. |
Sha et al., Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci. May 2017;26(5):910-924. doi: 10.1002/pro.3148. Epub Mar. 24, 2017. |
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013. |
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015. |
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553. |
Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018. |
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004. |
Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018. |
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014. |
Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2):131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016. |
Shi et al., YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. Mar. 2017;27(3):315-328. doi: 10.1038/cr.2017.15. Epub Jan. 20, 2017. |
Shin et al., CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun. May 31, 2017;8:15464. doi: 10.1038/ncomms15464. |
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260. |
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0. |
Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. Mar. 2017;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub Jan. 23, 2017. |
Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077. |
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234. |
Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012. |
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013. |
Singh et al., Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun. Sep. 14, 2016;7:12778. doi: 10.1038/ncomms12778. |
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010. |
Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434. |
Smargon et al., Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. Feb. 16, 2017;65(4):618-630.e7. doi: 10.1016/j.molce1.2016.12.023. Epub Jan. 5, 2017. |
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156. |
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4. |
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014. |
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-o. |
Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918. |
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04. |
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805. |
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365. |
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3. |
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054. |
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100. |
Stamos et al., Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell. Dec. 7, 2017;68(5):926-939.e4. doi: 10.1016/j.molcel.2017.10.024. Epub Nov. 16, 2017. |
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr. 2007-Jun;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007. |
Stella et al., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. Jun. 22, 2017;546(7659):559-563. doi: 10.1038/nature22398. Epub May 31, 2017. |
Stenson et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. Jun. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6. Epub Mar. 27, 2017. |
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576): 110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015. |
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150. |
Stevens et al., A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A. Aug. 8, 2017; 114(32):8538-8543. doi: 10.1073/pnas.1701083114. Epub Jul. 24, 2017. |
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4. |
Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019. |
Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724. |
Su et al., Human DNA polymerase ? has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019. |
Sudarsan et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. Jul. 18, 2008;321(5887):411-3. doi: 10.1126/science.1159519. |
Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017. |
Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016. |
Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkql280. Epub Feb. 1, 2011. |
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015. |
Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018. |
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b. |
Takimoto et al., Stereochemical basis for engineered; pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of; structurally divergent non-native amino acids. ACS Chem Biol. Jul. 2011; 15;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011. |
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378. |
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014. |
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944. |
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016. |
Tang et al., Rewritable multi-event analog recording in bacterial and mammalian cells. Science. Apr. 13, 2018;360(6385):eaap8992. doi: 10.1126/science.aap8992. Epub Feb. 15, 2018. |
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003. |
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808. |
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013. |
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997. |
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4): 1276-80. doi: 10.1073/pnas.90.4.1276. |
Thomson et al., Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis. Jul. 2003;36(3): 162-7. doi: 10.1002/gene.10211. |
Thuronyi et al., Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. Sep. 2019;37(9): 1070-1079. doi: 10.1038/s41587-019-0193-0. Epub Jul. 22, 2019. |
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007. |
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442. |
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14): 10498-505. doi: 10.1074/jbc.275.14.10498. |
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage ?29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb. 120587. Epub Dec. 7, 2012. |
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803. |
Toro et al., On the Origin and Evolutionary Relationships of the Reverse Transcriptases Associated With Type III CRISPR-Cas Systems. Front Microbiol. Jun. 15, 2018;9:1317. doi: 10.3389/fmicb.2018.01317. |
Toro et al., The Reverse Transcriptases Associated with CRISPR-Cas Systems. Sci Rep. Aug. 2, 2017;7(1):7089. doi: 10.1038/s41598-017-07828-y. |
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011. |
Townsend et al., Role ofHFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6. |
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009. |
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072. |
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251. |
Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016. |
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016. |
Tsai et al., CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. Jun. 2017;14(6):607-614. doi: 10.1038/nmeth.4278. Epub May 1, 2017. |
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi. 1996.0496. |
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011; 145(2): 198-211. doi: 10.1016/j.cell.2011.03.004. |
Tycko et al., Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. bioRxiv. doi: https://doi.org/10.1101/269399 Posted Feb. 22, 2018. |
Uniprot Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. Mar. 16, 2018;46(5):2699. doi: 10.1093/nar/gky092. |
UniProtein AOA1V6. Dec. 11, 2019. |
UN1PROTKB Submission; Accession No. F0NH53. May 3, 2011. 4 pages. |
UN1PROTKB Submission; Accession No. F0NN87. May 3, 2011. 4 pages. |
UNIPROTKB Submission; Accession No. G3ECR1.2. No Author Listed., Aug. 12, 2020, 8 pages. |
UNIPROTKB Submission; Accession No. P04264. No Author Listed., Apr. 7, 2021. 12 pages. |
UNIPROTKB Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages. |
UNIPROTKB Submission; Accession No. U2UMQ6. No Author Listed., Apr. 7, 2021, 11 pages. |
Urasaki et al., Functional dissection of the To12 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics. 106.060244. Epub Sep. 7, 2006. |
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015. |
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (N Y). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149. |
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016. |
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006. |
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004. |
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1): 1-38. doi: 10.1016/0304-419x(77)90005-1. |
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208. |
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271. |
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003. |
Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160. |
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009. |
Wang et al., Continuous directed evolutions of proteins with improved soluble expression. Nature Chemical Biology. Nat Publishing Group. Aug. 20, 2018; 14(10):972-980. |
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004. |
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol; Struct. 2006;35:225-49. Review. |
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8. |
Wang et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6): 1388-99. doi: 10.1016/j.cell.2015.05.014. |
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481): 117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013. |
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009. |
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014. |
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013. |
Wang et al., Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016. |
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7): 1067-72. doi: 10.2310/JIM.0b013e31820fb28c. |
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014. |
Weinert et al., Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science. Apr. 19, 2019;364(6437):286-289. doi: 10.1126/science.aav9023. Epub Apr. 18, 2019. |
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ?VP8* subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014. |
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VAI RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9. |
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91. |
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5. |
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016. |
Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017. |
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006. |
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989. |
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823. |
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33. |
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241): 1376-81. doi:; 10.1126/science.aabl433. Epub May 21, 2015. |
Winter et al., Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov. Aug. 20, 2019;5:41. doi: 10.1038/s41421-019-0109-7. |
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61. |
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005. |
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88. |
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879. |
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7. |
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015. |
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016. |
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5. |
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226. |
Wu et al., Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. Dec. 2017;47:67-76. doi: 10.1016/j.sbi.2017.05.011. Epub Jun. 16, 2017. |
Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017. |
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52): 14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013. |
Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016. |
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ?C31 integrase system. DNA Cell Biol. Jul. 2012;31(7): 1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012. |
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62. |
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388. |
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87. |
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994; 13(23):5517-22. |
Xu et al., PTMD: A Database of Human Disease-associated Post-translational Modifications. Genomics Proteomics Bioinformatics. Aug. 2018; 16(4):244-251. doi: 10.1016/j.gpb.2018.06.004. Epub Sep. 21, 2018. |
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014. |
Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53. |
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32. |
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja980776o. |
Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Apr. 19, 2018;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub Mar. 15, 2018. |
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFCl. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002. |
Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x. |
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013; 154(6): 1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013. |
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014. |
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7. |
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6. |
Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007. |
Yang, Phylogenetic Analysis by Maximum Likelihood (PAML).//abacus.gene.ucl.ac.uk/software/paml.html Last accessed Apr. 28, 2021. |
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23. |
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008. |
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252. |
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(l):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010. |
Yu et al., Progress towards gene therapy for HIV infection. Gene Ther. Jan. 1994;1(1):13-26. |
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2): 142-7.doi: 10.1016/j.stem.2015.01.003. |
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010. |
Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(l):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016. |
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014. |
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009. |
Zhang et al., II-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2): 120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015. |
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46. |
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013. |
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217. |
Zhang et al., Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev. Jul. 18, 201;98(3): 1205-1240. doi: 10.1152/physrev.00046.2017. |
Zhao et al., An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA. Feb. 2018;24(2):183-195. doi: 10.1261/ma.063479.117. Epub Nov. 6, 2017. |
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016. |
Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016. |
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012. |
Zheng et al., Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. CommunBiol. Apr. 19, 2018;1:32. doi: 10.1038/s42003-018-0035-5. |
Zheng et al., Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep. Sep. 4, 2018;8(1): 13211. doi: 10.1038/s41598-018-31394-6. |
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015. |
Zhou et al., Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. Jul. 2019;571(7764):275-278. doi: 10.1038/s41586-019-1314-0. Epub Jun. 10, 2019. |
Zhou et al., Protective VI27 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804. |
Zhou et al., Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpfl and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther. Nov. 2018;29(11):1252-1263. doi: 10.1089/hum.2017.255. Epub May 9, 2018. |
Ztelenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497. |
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014. |
Zlmmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6. |
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999. |
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 19810;9(1):133-48. doi: 10.1093/nar/9.1.133. |
Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. Apr. 19, 2019;364(6437):289-292. doi: 10.1126/science.aav9973. Epub Feb. 28, 2019. |
Number | Date | Country | |
---|---|---|---|
20200190493 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62661974 | Apr 2018 | US | |
62551938 | Aug 2017 | US |