High-frequency electrical connector

Abstract
An electrical connector comprises an insulative shell having a floor; a first plurality of contacts extending through the floor, wherein the first plurality of contacts are disposed in a plurality of columns; a second plurality of contacts extending through the floor, wherein the second plurality of contacts are interspersed with the first plurality of contacts within the plurality of columns; and a conductive member adjacent the floor. The conductive member comprises a first plurality of openings, wherein the first plurality of contacts extend through the openings of the first plurality of openings; a second plurality of openings, wherein the second plurality of contacts extend through the openings of the second plurality of openings; and a first plurality of tabs, extending into openings in the insulative shell.
Description
BACKGROUND

This disclosure relates generally to electrical interconnection systems and more specifically to improved signal integrity in interconnection systems, particularly in high speed electrical connectors.


Electrical connectors are used in many electronic systems. It is generally easier and more cost effective to manufacture a system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be joined together with electrical connectors. A known arrangement for joining several printed circuit boards is to have one printed circuit board serve as a backplane. Other printed circuit boards, called “daughter boards” or “daughter cards,” may be connected through the backplane.


A known backplane has the form of a printed circuit board onto which many connectors may be mounted. Conductive traces in the backplane may be electrically connected to signal conductors in the connectors so that signals may be routed between the connectors. Daughter cards may also have connectors mounted thereon. The connectors mounted on a daughter card may be plugged into the connectors mounted on the backplane. In this way, signals may be routed among the daughter cards through the backplane. The daughter cards may plug into the backplane at a right angle. The connectors used for these applications may therefore include a right angle bend and are often called “right angle connectors.” Other known connectors include, but are not limited to, orthogonal midplane connectors and midplaneless direct attachment orthogonal connectors.


Connectors may also be used in other configurations for interconnecting printed circuit boards and for interconnecting other types of devices, such as cables, to printed circuit boards. Sometimes, one or more smaller printed circuit boards may be connected to another larger printed circuit board. In such a configuration, the larger printed circuit board may be called a “mother board” and the printed circuit boards connected to it may be called daughter boards. Also, boards of the same size or similar sizes may sometimes be aligned in parallel. Connectors used in these applications are often called “stacking connectors” or “mezzanine connectors.”


Regardless of the exact application, electrical connector designs have been adapted to mirror trends in the electronics industry. Electronic systems generally have gotten smaller, faster, and functionally more complex. Because of these changes, the number of circuits in a given area of an electronic system, along with the frequencies at which the circuits operate, have increased significantly in recent years. Current systems pass more data between printed circuit boards and require electrical connectors that are electrically capable of handling more data at higher speeds than connectors of even a few years ago.


In a high density, high speed connector, electrical conductors may be so close to each other that there may be electrical interference between adjacent signal conductors. To reduce interference, and to otherwise provide desirable electrical properties, shield members are often placed between or around adjacent signal conductors. The shields may prevent signals carried on one conductor from creating “crosstalk” on another conductor. The shield may also impact the impedance of each conductor, which may further affect electrical properties.


Examples of shielding can be found in U.S. Pat. Nos. 4,632,476 and 4,806,107, which show connector designs in which shields are used between columns of signal contacts. These patents describe connectors in which the shields run parallel to the signal contacts through both the daughter board connector and the backplane connector. Cantilevered beams are used to make electrical contact between the shield and the backplane connectors. U.S. Pat. Nos. 5,433,617, 5,429,521, 5,429,520, and 5,433,618 show a similar arrangement, although the electrical connection between the backplane and shield is made with a spring type contact. Shields with torsional beam contacts are used in the connectors described in U.S. Pat. No. 6,299,438. Further shields are shown in U.S. Publication No. 2013/0109232.


Other connectors have the shield plate within only the daughter board connector. Examples of such connector designs can be found in U.S. Pat. Nos. 4,846,727, 4,975,084, 5,496,183, and 5,066,236. Another connector with shields only within the daughter board connector is shown in U.S. Pat. No. 5,484,310. U.S. Pat. No. 7,985,097 is a further example of a shielded connector.


Other techniques may be used to control the performance of a connector. For example, transmitting signals differentially may reduce crosstalk. Differential signals are carried on a pair of conductive paths, called a “differential pair.” The voltage difference between the conductive paths represents the signal. In general, a differential pair is designed with preferential coupling between the conductive paths of the pair. For example, the two conductive paths of a differential pair may be arranged to run closer to each other than to adjacent signal paths in the connector. No shielding is desired between the conductive paths of the pair, but shielding may be used between differential pairs. Electrical connectors can be designed for differential signals as well as for single-ended signals. Examples of differential signal electrical connectors are shown in U.S. Pat. Nos. 6,293,827, 6,503,103, 6,776,659, 7,163,421, and 7,794,278.


In an interconnection system, such connectors are attached to printed circuit boards, one of which may serve as a backplanes for routing signals between the electrical connectors and for providing reference planes to which reference conductors in the connectors may be grounded. Typically the backplane is formed as a multi-layer assembly manufactured from stacks of dielectric sheets, sometimes called “prepreg”. Some or all of the dielectric sheets may have a conductive film on one or both surfaces. Some of the conductive films may be patterned, using lithographic or laser printing techniques, to form conductive traces that are used to make interconnections between circuit boards, circuits and/or circuit elements. Others of the conductive films may be left substantially intact and may act as ground planes or power planes that supply the reference potentials. The dielectric sheets may be formed into an integral board structure such as by pressing the stacked dielectric sheets together under pressure.


To make electrical connections to the conductive traces or ground/power planes, holes may be drilled through the printed circuit board. These holes, or “vias”, are filled or plated with metal such that a via is electrically connected to one or more of the conductive traces or planes through which it passes.


To attach connectors to the printed circuit board, contact pins or contact “tails” from the connectors may be inserted into the vias, with or without using solder. The vias are sized to accept the contact tails of the connector.


As in the case of the connectors that attach to the printed circuit boards, the electrical performance of printed circuit boards is at least partially dependent on the structures of the conductive traces, ground planes and vias formed in the printed circuit boards. Further, electrical performance issues become more acute as the density of signal conductors and the operating frequencies of the connectors increase. Such electrical performance issues may include, but are not limited to, crosstalk between closely-spaced signal conductors.


SUMMARY

In accordance with embodiments, an electrical connector comprises an insulative shell having a floor; a first plurality of contacts extending through the floor, wherein the first plurality of contacts are disposed in a plurality of columns; a second plurality of contacts extending through the floor, wherein the second plurality of contacts are interspersed with the first plurality of contacts within the plurality of columns; and a conductive member adjacent the floor. The conductive member comprises a first plurality of openings, wherein the first plurality of contacts extend through the openings of the first plurality of openings; a second plurality of openings, wherein the second plurality of contacts extend through the openings of the second plurality of openings; and a first plurality of tabs, extending into openings in the insulative shell.


In some embodiments, the first plurality of tabs are slidable in the openings in the insulative shell relative to the columns of contacts.


In some embodiments, each of the openings in the insulative shell has a pair of opposed slots; and each of the first plurality of tabs is inserted into the pair of opposed slots.


In some embodiments, the first plurality of contacts are disposed in a plurality of pairs; within each column of the plurality of columns, each pair of the plurality of pairs is disposed between two adjacent contacts of the second plurality of contacts.


In some embodiments, the conductive member reduces near end crosstalk between a first pair and a second pair diagonally adjacent to the first pair by at least 2 dB over the frequency range from 5 to 28 GHz.


In some embodiments, each of the second plurality of contacts comprises a mating contact portion and two contact tails, the mating contact portion comprises a contact surface, and each of the second plurality of contacts comprises a twisted region such that a line between the two contact tails is transverse to the contact surface.


In some embodiments, the line between the two contact tails is at an angle to the contact surface between 35 and 55 degrees.


In some embodiments, a first of the two adjacent second contacts is twisted in a first direction relative to the contact surface; and a second of the two adjacent second contacts is twisted in a second direction, opposite to the first direction, relative to the contact surface.


In some embodiments, the floor comprises a plurality of surface portions and a recessed portion, recessed relative to the surface portions; the plurality of surface portions extend through the first plurality of openings; and the conductive member is disposed within the recessed portion.


In some embodiments, the first plurality of contacts are disposed in a plurality of pairs; each of the plurality of pairs extends through a surface portion of the plurality of surface portions.


In some embodiments, the second plurality of contacts extend through the recessed portion.


In some embodiments, the first plurality of contacts and the second plurality of contacts comprise mating contact portions and contact tails; the floor comprises a first surface and an opposed second surface; the mating contact portions of the first plurality of contacts and the second plurality of contacts extend from the first surface; the contact tails of the first plurality of contacts and the second plurality of contacts extend from the second surface; and the recessed portion comprises a recess in the first surface.


In some embodiments, the conductive member also comprises a second plurality of tabs; and the second plurality of tabs press against the second plurality of contacts.


In some embodiments, the second plurality of contacts comprise first surfaces, facing a first direction, and opposing second surfaces; the second plurality of tabs press against the second plurality of contacts at the second surfaces.


In some embodiments, the second plurality of contacts comprise dimples that are concave in the second surfaces; the second plurality of tabs comprise tips; and the tips of the second plurality of tabs contact the second surfaces at the dimples.


In some embodiments, the tips of the second plurality of tabs are rounded such that the tips contact the dimples at at least two points.


In some embodiments, the second plurality of tabs are compliant beams and exert a spring force against the second surfaces, biasing the conductive member in a second direction normal to the second surfaces; the floor comprises a plurality of surface portions and a recessed portion, recessed relative to the surface portions; the plurality of surface portions extend through the first plurality of openings such that edges of the conductive member abut the surface portions so as to counter spring forces biasing the conductive member in the second direction.


In some embodiments, the first surfaces of the second plurality of contacts comprise a selective plating of gold.


In some embodiments, the second plurality of contacts comprises at least 16 contacts; and the conductive member electrically connects the at least 16 contacts.


In some embodiments, the first plurality of contacts comprise differential signal contacts; and the second plurality of contacts comprise ground contacts.


In some embodiments, the conductive member comprises a metal member.


In some embodiments, the metal member comprises a metal sheet with the openings of the first plurality of openings and the second plurality of openings and the tabs formed therein.


In accordance with further embodiments, a printed circuit board comprises a plurality of signal traces; a plurality of ground layers; and the electrical connector as mentioned above mounted to the printed circuit board, wherein the first plurality of contacts are connected to the signal traces; and the second plurality of contacts are connected to the ground layers.


In accordance with further embodiments, a conductive member comprises a conductive sheet with a first plurality of openings and a second plurality of openings, wherein the first plurality of openings are disposed in a plurality of columns, and the second plurality of openings are interspersed with the first plurality of openings within the plurality of columns; and a first plurality of tabs, disposed at edge of the conductive sheet and bendable at an angle relative to the conductive sheet.


In some embodiments, the conductive member also comprises a second plurality of tabs; and each of the second plurality of tabs is disposed in each of the second plurality of openings.


In some embodiments, each of the second plurality of tabs is a compliant beam.


In some embodiments, the second plurality of tabs comprise tips; and the tips of the second plurality of tabs are rounded.


In some embodiments, each column of the plurality of columns is offset in the column direction with respect to adjacent columns.


In accordance with further embodiments, a method of forming an electrical connector, the method comprises placing a conductive member adjacent to a floor of a shell of the electrical connector; inserting a first plurality of contacts through a first plurality of openings in the conductive member such that the first plurality of contacts are positioned in columns on the floor; and inserting a second plurality of contacts through a second plurality of openings in the conductive member such that the second plurality of contacts are positioned in the columns, wherein a first plurality of tabs of the conductive member extend into openings in the shell such that the conductive member are attached to the shell.


In some embodiments, a second plurality of tabs on the conductive member press against the second plurality of contacts such that the second plurality of contacts are electrically connected through the conductive member.


In some embodiments, forming the conductive member by stamping in a metal sheet the openings of the first plurality of openings and the second plurality of openings and the first plurality of tabs and the second plurality of tabs.


In some embodiments, the method further comprises plating a first surface of the second plurality of contacts with a noble metal; and inserting the second plurality of contacts comprises sliding each of the second plurality of tabs over a second surface of the second plurality of contacts.


In some embodiments, placing the conductive member adjacent to the floor of the shell comprises receiving portions of the shell within the first plurality of openings, wherein the portions of the shell electrically insulate the first plurality of contacts from the conductive member.





BRIEF DESCRIPTION OF DRAWINGS

For a better understanding of the disclosed technology, reference is made to the accompanying drawings, which are incorporated herein by reference and in which:



FIG. 1 is an exploded view of a high speed, high density electrical connector, a backplane and a daughter board;



FIG. 2 is a perspective view of a backplane connector in accordance with a first embodiment of a high speed, high density electrical connector;



FIG. 2A is an enlarged view of region A in FIG. 2;



FIG. 3 is an exploded view of the backplane connector of FIG. 2;



FIG. 3A is an enlarged view of region B in FIG. 3;



FIG. 4 an another exploded view of the backplane connector of FIG. 2, wherein a conductive member is attached to an insulative shell;



FIG. 4A is an enlarged view of region C in FIG. 4;



FIG. 5 is a top view of an insulative shell with a conductive member attached in accordance with second embodiment of a high speed, high density electrical connector;



FIG. 5A is an enlarged view of region D in FIG. 5;



FIG. 5B is a sectional view taken along line E-E in FIG. 5;



FIG. 6 is a perspective view of second contacts in accordance with a third embodiment of a high speed, high density electrical connector; and



FIG. 7 is a partial top view of a connector footprint on a printed circuit board.





DETAILED DESCRIPTION

The inventors have recognized and appreciated that the operating speed of an electrical connector may be improved with a conductive member adapted to be mounted adjacent a floor in a connector housing. In one implementation, such a conductive member may be made by forming one or more cutouts in a sheet of conductive material. The cutouts may be arranged such that, when the conductive member is disposed across a mating interface of the connector, the conductive member is in electrical contact with at least some of the ground conductors in the connector, but not with any conductive elements adapted to be signal conductors. For example, the cutouts may be aligned with the signal conductors at the mating interface so that each signal conductor extends through a corresponding cutout without making electrical contact with the conductive member. Though, alternatively or additionally, such a conductive member may be integrated into the connector near the contact tails.


Such techniques may be used alone or in any suitable combination, examples of which are provided in the exemplary embodiments described below.


Referring to FIG. 1, an electrical interconnection system 100 with two connectors is shown. The electrical interconnection system 100 includes a daughter card connector 120 and a backplane connector 150.


Daughter card connector 120 is designed to mate with backplane connector 150, creating electronically conducting paths between a backplane 160 and a daughter card 140. Though not expressly shown, interconnection system 100 may interconnect multiple daughter cards having similar daughter card connectors that mate to similar backplane connections on backplane 160. Accordingly, the number and type of subassemblies connected through an interconnection system is not a limitation.



FIG. 1 shows an interconnection system using a right-angle, separable mating interface connector. It should be appreciated that in other embodiments, the electrical interconnection system 100 may include other types and combinations of connectors, as the invention may be broadly applied in many types of electrical connectors, such as right-angle, separable mating interface connectors, mezzanine connectors and chip sockets.


Backplane connector 150 and daughter card connector 120 each contains conductive elements. The conductive elements of daughter card connector 120 are coupled to traces, of which trace 142 is numbered, ground planes or other conductive elements within daughter card 140. The traces carry electrical signals and the ground planes provide reference levels for components on daughter card 140. Ground planes may have voltages that are at earth ground or positive or negative with respect to earth ground, as any voltage level may act as a reference level.


Daughter card connector 120 includes a plurality of wafers 1221 . . . 1226 coupled together, with each of the plurality of wafers 1221 . . . 1226 having a housing and a column of conductive elements. In the illustrated embodiment, each column has a plurality of signal conductors and a plurality of ground conductors. The ground conductors may be employed within each wafer 1221 . . . 1226 to minimize crosstalk between signal conductors or to otherwise control the electrical properties of the connector.


In the illustrated embodiment, daughter card connector 120 is a right angle connector and has conductive elements that traverse a right angle. As a result, opposing ends of the conductive elements extend from perpendicular edges of the wafers 1221 . . . 1226.


Each conductive element of wafers 1221 . . . 1226 has at least one contact tail, shown collectively as contact tails 126 that can be connected to daughter card 140. Each conductive element in daughter card connector 120 also has a mating contact portion, shown collectively as mating contact portions 124, which can be connected to a corresponding contact in backplane connector 150. Each conductive element also has an intermediate portion between the mating contact portion and the contact tail, which may be enclosed by or embedded within a wafer housing.


The contact tails 126 electrically connect the contacts within daughter card and connector 120 to conductive elements, such as traces 142 in daughter card 140. In the embodiment illustrated, contact tails 126 are press fit “eye of the needle” contacts that make an electrical connection through via holes in daughter card 140. However, any suitable attachment mechanism may be used instead of or in addition to via holes and press fit contact tails.


In the illustrated embodiment, each of the mating contact portions 124 has a dual beam structure configured to mate to a corresponding mating contact portion 154 of backplane connector 150. The conductive elements acting as signal conductors may be grouped in pairs, separated by ground conductors in a configuration suitable for use as a differential electrical connector. However, other embodiments are possible for single-ended use in which the conductive elements are evenly spaced with or without designated ground conductors separating signal conductors or with a ground conductor between signal conductors.


In the embodiments illustrated, some conductive elements are designated as forming a differential pair of conductors and some conductive elements are designated as ground conductors. These designations refer to the intended use of the conductive elements in an interconnection system as they would be understood by one skilled in the art. For example, though other uses of the conductive elements may be possible, differential pairs may be identified based on preferential coupling between the conductive elements that make up the pair. Electrical characteristics of the pair, such as its impedance, that make it suitable for carrying a differential signal may provide an alternative or additional method of identifying a differential pair. As another example, in a connector with differential pairs, ground conductors may be identified by their positioning relative to the differential pairs. In other instances, ground conductors may be identified by their shape or electrical characteristics. For example, ground conductors may be relatively wide to provide low inductance, which is desirable for providing a stable reference potential, but provides an impedance that is undesirable for carrying a high speed signal.


For exemplary purposes only, daughter card connector 120 is illustrated with six wafers 1221 . . . 1226, with each wafer having a plurality of pairs of signal conductors and adjacent ground conductors. As pictured, each of the wafers 1221 . . . 1226 includes one column of conductive elements. However, the disclosed technology is not limited in this regard, as the number of wafers and the number of signal conductors and ground conductors in each wafer may be varied as desired.


As shown, each wafer 1221 . . . 1226 is inserted into front housing 130 such that mating contact portions 124 are inserted into and held within openings in front housing 130. The openings in front housing 130 are positioned so as to allow mating contact portions 154 of the backplane connector 150 to enter the openings in front housing 130 and allow electrical connection with mating contact portions 124 when daughter card connector 120 is mated to backplane connector 150.


Daughter card connector 120 may include a support member instead of or in addition to front housing 130 to hold wafers 1221 . . . 1226. In the pictured embodiment, stiffener 128 supports the plurality of wafers 1221 . . . 1226. Stiffener 128 is, in the embodiment illustrated, a stamped metal member. However, stiffener 128 may be formed from any suitable material. Stiffener 128 may be stamped with slots, holes, grooves or other features that can engage a wafer.


Similarly, contacts in backplane connector 150 are coupled to traces, of which trace 162 is numbered, ground planes or other conductive elements within backplane 160. When daughter card connector 120 and backplane connector 150 mate, contacts in the backplane connector and conductive elements in the daughter card connector mate to complete electrically conductive paths between the conductive elements within backplane 160 and daughter card 140.


Backplane connector 150 includes a backplane shell 158 and a plurality of contacts. The contacts of backplane connector 150 are held within the shell 158, which may be formed of an insulative material. In some embodiments, the contacts extend through floor 514 of the backplane shell 158 with portions both above and below floor 514. Here, the portions of the contacts that extend above floor 514 form mating contact portions, shown collectively as mating contact portions 154, which are adapted to mate to corresponding conductive elements of daughter card connector 120. In the illustrated embodiment, mating contact portions 154 are in the form of blades, although other suitable contact configurations may be employed, as the disclosed technology is not limited in this regard.


Tail portions, shown collectively as contact tails 156, of the contacts extend below the shell floor 514 and are adapted to be attached to backplane 160. Here, the tail portions are in the form of a press fit, “eye of the needle” compliant sections that fit within via holes, shown collectively as via holes 164, on backplane 160. However, other configurations are also suitable, such as surface mount elements, spring contacts, solderable pins, etc., as the disclosed technology is not limited in this regard.



FIG. 2 shows a perspective view of a backplane connector 200 suitable for use with a daughter card connector (e.g., the daughter card connector 120 shown in FIG. 1), in accordance with some embodiments. In this example, the contacts in backplane connector 200 generally include a first plurality of contacts 210 and a second plurality of contacts 220, which are accommodated in an insulative shell 230. In some embodiments, the first contacts may be adapted to be signal conductors, while the second contacts may be adapted to be ground conductors. The first contacts 210 are disposed in a plurality of columns. For example, first contacts 2101, 2102 and 2103 are disposed in a column. The second contacts 220 are interspersed with the first contacts 210 within each column. In the illustrated embodiment, the first contacts 210 are disposed in a plurality of pairs, for example, for transmitting signals differentially. The adjacent pairs of the first contacts 210 within a column are separated by at least a second contact 220. For instance, within each column, each pair of the first contacts is disposed between and adjacent two second contacts. The pair of the first contacts 2101, the pair of the first contacts 2102 and the pair of the first contacts 2103 are disposed between and adjacent two second contacts 220 respectively. The ground conductors may be employed to reduce crosstalk between signal conductors or to otherwise control one or more electrical properties of the connector. The ground conductors may perform these functions based on their shape and/or position within the column of contacts within a wafer or position within an array of contacts formed when multiple wafers are arranged side-by-side.


While a connector with differential pairs is shown in figures for purposes of illustration, it should be appreciated that embodiments are possible for single-ended use in which contacts are evenly spaced without designated ground conductors separating designated differential pairs, or with designated ground conductors between adjacent designated signal conductors for some or all of the columns.


The backplane connector 200 further includes a conductive member 300, which is visible in the exploded view of FIG. 3. The conductive member 300 is disposed adjacent the floor 232 of the insulative shell 230, as shown in FIG. 4. The conductive member 300 comprises a first plurality of openings 310 and a second plurality of openings 320. For instance, the conductive member 300 may be a conductive sheet 302 with the first openings 310 and the second openings 320. In an assembled connector, the first contacts 210 extend through the first openings 310, and the second contacts 220 extend through the second openings 320. The mating contact portions of the first and second contacts 210 and 220 extend above the conductive member 300. The first openings 310 are arranged in a plurality of columns. The second openings 320 are interspersed with the first openings 310 within each column. For instance, the first and second openings 310 and 320 may be adapted to receive the mating contact portions of the first and second contacts 210 and 220 shown in FIG. 2, respectively. On the other hand, each of the first openings 310 may be adapted to receive two mating contact portions of two first contacts shown in FIG. 2, but without making electrical connection with either of the mating contact portions. In the illustrated embodiment, two first contacts 210 pass through each of first openings 310. Between any two adjacent first openings 310, there is a second opening 320. One second contact 220 passes through each of second openings 320. The second openings 320 may be adapted to make electrical connection between conductive member 300 and the mating contact portions of the second contacts. The connections, in some embodiments, may be made by sizing openings adapted to receive second contacts to be approximately the same size as the second contacts in one or more dimensions. However, it should be appreciated that aspects of the present disclosure are not limited to this.


Moreover, the second openings 320 may be shaped and positioned so that the conductive member 300 is in electrical contact with mating contact portions of second contacts 220, but not with mating contact portions of first contacts 210. In this manner, the second contacts 220 may be electrically connected to each other via the conductive member 300.


In some embodiments, each column of the first and second contacts 210 and 220 is offset in the column direction with respect to adjacent columns of the first and second contacts 210 and 220. Thus, the pairs of first contacts in a column are diagonally adjacent to the corresponding pairs of first contacts in adjacent columns. In the cases that the first contacts serve as signal conductors, even with diagonal pairs of signal conductors, the conductive member 300 can reduce crosstalk between them. Near End Crosstalk (NEXT), for example, may be reduced in this way. The conductive member 300 has an important benefit in reducing cross-talk at higher frequencies. The conductive member 300 can reduce crosstalk between diagonal pairs of signal conductors by at least 2 dB over the frequency range from 5 to 28 GHz.


In some embodiments, such a conductive member 300 may be formed by stamping a preform with appropriate patterns of openings and tabs (if any). Though, other materials may be used instead of or in addition to such a preform. A sheet of metal material, for example, may be used.


In some embodiments, the conductive member 300 further includes a first plurality of tabs 330, extending into openings 238 in the insulative shell 230, as shown in FIGS. 3-3A. In this way, the conductive member 300 is attached to the insulative shell 230. In example embodiments, the openings 238 are disposed in the floor 232 of the insulative shell 230, particularly, at the edge of the floor 232. The first tabs 330 may be disposed at an edge of the conductive sheet 302 and bendable at an angle relative to the conductive sheet 302.


In the embodiment illustrated in FIGS. 3 and 3A, the first tabs 330 are bent at an angle, such as about 90 degrees, relative to the conductive sheet 302. Each of the openings in the insulative shell 230 has a pair of opposed slots 2382. The first tabs 330 are inserted into the slots 2382 of corresponding opening 238. This both holds the conductive member 300 against the insulative shell 230 and sets the position of the conductive member 300 relative to the columns of contacts. In different embodiments, the angle of slots 2382 relative to horizontal direction may be different to accommodate first tabs 330 bent angle(s) other than 90 degrees.


In other embodiments illustrated in FIGS. 5 and 5A-5B, the first tabs 510 of the conductive member 500 are slidable in the openings 520 in the insulative shell 500. The openings 520 may have a configuration that is similar to or different from the opening 238 shown as FIGS. 3 and 3A. In the case that the opening 520 is similar to the opening 238, the first tabs 510 may be bent at less than 90 degrees. The first tab 510 are not inserted into the slots of the openings 520, instead, the sides of the first tabs 510 press against walls of larger openings 520, as shown in FIG. 5A. In this way, the first tab 510 is slidable in the opening 520. A benefit of this slidable connection is that the conductive member 500 is positioned relative to the columns of contacts based on the shape of the insulative shell 500 around the contacts. This avoids misalignment of the conductive member 500 relative to the contacts. It is found that misalignment of the conductive member 500 and contacts resulted in the conductive member 500 scraping along the edges of the contacts during assembly. This scraping caused metal to be scraped off the contact, which could interfere with operation of the connector.


In some embodiments, the conductive member 300 further includes a second plurality of tabs 340, as shown in FIGS. 3 and 2A. Each of the second tabs 340 is disposed in each of the second openings 320. Each of the second tabs 340 presses against a corresponding second contact 220. The second contacts 220 may comprise first surfaces, facing a first direction, and opposing second surfaces 2202. In the embodiment illustrated, the second contacts 220 are shaped as blades with the first and second surfaces forming broadsides of the blades and edges joining the surfaces.


The second tabs 340 press against the second contacts 220 at the second surfaces 2202. In some embodiments, the second tabs 340 are compliant beams. The compliant beams exert a spring force against the second surfaces 2202, biasing the conductive member 300 in a second direction 240 normal to the second surfaces 2202. The first surfaces of the second contacts 220 may include mating surfaces of the second contacts 220 and may be selectively plated with a noble metal, such as gold. When daughter card connector 120 and backplane connector 150 mate, contacts in the backplane connector and conductive elements in the daughter card connector mate to complete electrically conductive paths at the first surfaces.


In some embodiments, the second tabs 340 may comprise tips, and the tips of the second tabs 340 are rounded. There are dimples 2204 that are concave in the second surfaces of the second contacts 220. The tips of the second tabs 340 can contact the second surfaces of the second contacts 220 at the dimples 2204. In this way, pressing the rounded tip of the second tab 340 into the dimple 2204 makes two or more points of contact between the second tab 340 and the second contact 220, such that the second tabs 340 can make good electrical contact with the second contacts 220. However, any suitable contacting mechanism may be used instead of or in addition to dimples 2204 and the rounded tip of the second tab 340. Thus, the above description is not a limitation.


As mentioned above, the second tabs 340 bias the conductive member 300 in the second direction 240. In order to counter this biasing force, the floor 232 of the insulative shell 230 comprises a plurality of surface portions 234 and a recessed portion 236, as shown in FIGS. 3-3A. The recessed portion 236 is recessed relative to the surface portions 234. The surface portions 234 extend through the first openings 310, as shown in FIG. 4A, and the conductive member 300 is disposed within the recessed portion 236. Accordingly, edges of the openings of the conductive member 300 abut the surface portions 234 so as to counter spring forces biasing the conductive member 300 in the second direction 240. In the embodiments in which the first contacts 210 are disposed in pairs, each pair of the first contacts 210 extends through a surface portion 234. The second contacts 220 extend through the recessed portion 236.


The floor 232 comprises a first surface, from which the mating contact portions of the first and second contacts 210 and 220 extend, and an opposed second surface, from which the contact tails of the first and second contacts 210 and 220 extend. In the example illustrated in the figures, the first surface corresponds to the upper surface of the floor 232, and the second surface corresponds to the lower surface of the floor 232. The recessed portion 236 comprises a recess in the first surface. In some embodiments, the conductive member 300 is recessed below the floor 232 of the shell. This positions the conductive member 300 by counters the forces exerted by the second tabs 340 against the second contacts 220. All second tabs 340 press the same direction, because the second tabs 340 should press on backs (second surfaces) of the second contacts 220. Fronts (first surfaces) of the second contacts 220 have the contact surface and are plated with gold. Gold would be scraped off if the second tabs 340 were to slide along the front as the second contacts 220 are inserted through the conductive member 300.


In some embodiments, each of the second contacts 600 comprises a mating contact portion 610 and two contact tails 620, as shown in FIG. 6. The dual beam contact tails are used to provide multiple points of contact between the second contacts and the backplane 160. Again, it should be appreciated that other numbers of contact tails and other types of mating contact portion structures may also be suitable for the second contacts 600. The second contact 600 has a first (front) surface 601 and an opposed second (back) surface 602, as mentioned above. The first surface 601 has the contact surface and is plated with gold, and the second surface 602 has a dimple. A second tab of the conductive member presses against the dimple.


In some embodiments, the second contacts 600 comprise twisted regions 630, which are connected between the mating contact portions 610 and contact tails 620. Because of the twisted region 630, a line between the two contact tails 620 is transverse to the contact surface. In some embodiments, the line between the two contact tails is at an angle to the contact surface between 35 and 55 degrees. This results in a via hole pattern in the backplane to which the connector is attached that reduces crosstalk. It especially reduces crosstalk between two pairs of vias carrying signals that are close to each other in a column.


In some embodiments, one of two adjacent second contacts is twisted in a first direction relative to the contact surface, and the other of the two adjacent contacts is twisted in a second direction, opposite to the first direction, relative to the contact surface. As shown in FIG. 6, take two adjacent second contacts 610A and 610B for example, the contact tails of the second contact 610A are twisted in counterclockwise direction relative to the contact surface, while the contact tails of the second contact 610B are twisted in clockwise direction relative to the contact surface. Accordingly, it seems that the contact tails of the second contacts 610A and 610B face to each other. This feature is provided to further reduce crosstalk between two pairs of signal conductors close to each other in a column.


Preferably, the connector comprises at least 16 second contacts, and the conductive member 300 electrically connects the at least 16 contacts as a common conductive member.


Any backplane connector mentioned above may be mounted to a printed circuit board. The printed circuit board further comprises a plurality of signal traces and a plurality of ground layers. The first contacts of backplane connector are connected to the signal traces, and the second contacts are connected to the ground layer.


The assembling of the electrical connector is described by reference to the embodiment as shown in FIGS. 4-4A. Firstly, the conductive member 300 is placed adjacent to the floor of the shell 230. The first tabs 350 of the conductive member 300 extend into openings 238 in the shell such that the conductive member 300 is attached to the shell 230. Then, the first contacts 210 are inserted through the first openings in the conductive member 300 and the floor 232 of first contacts 210, and the second contacts 220 are inserted through the second openings in the conductive member 300 and the floor 232 of first contacts 210. In this manner, the first and second contacts 210 and 220 are positioned in columns on the floor.


In this embodiment, the first tabs are bent down to engage the slots of shell. However, the manner by which the conductive member 300 is attached to the shell 230 is not limited to this. Alternatively or additionally, the conductive member 300 may be attached to the shell by an interference fit, and/or smaller first tabs 510 and larger openings 520 as shown in FIGS. 5-5A. The step of placing the conductive member adjacent to the floor of the shell comprises receiving portions of the shell within the first openings. For instance, a plurality of projecting surface portions 234 may extend into first openings 310, as shown in FIG. 3. The portions of the shell electrically insulate the first contacts from the conductive member. The second tabs may press against the second contacts such that the second contacts are electrically connected through the conductive member.


The step of inserting the second plurality of contacts comprises sliding each of the second tabs over a second surface of the second plurality of contacts, to avoid the noble metal on the opposed first surface to be scraped off.


An example of a printed circuit board is described with reference to FIG. 7. A partial top view of backplane 160 showing a portion of a connector footprint 700 for mating with the contact tails of backplane connector 150 is shown in FIG. 7. The backplane 160 may be implemented as a printed circuit board as described below. As shown, the connector footprint 700 includes a plurality of columns of repeating via patterns. FIG. 7 only schematically shows two via patterns 710 and 720, and they are in different columns. In the illustrated embodiment, each via pattern includes two pairs of signal vias for forming two differential pair of signal conductors, and two pairs of ground vias for forming associated reference conductors. The via patterns 710 and 720 in adjacent columns may be offset by a distance D in a direction 730 of the columns such that Near End Crosstalk (NEXT) between adjacent pairs of signal vias, such as 712 and 722, in different columns can be reduced.


Take the via pattern 710 for example, it includes a first pair of signal vias 712 and a second pair of signal vias 714, as well as a first pair of ground vias 716 and a second pair of ground vias 718. Within each column, the pairs of ground vias are positioned between adjacent pairs of signal vias. The first pair of ground vias 716 is positioned between the first pair of signal vias 712 and the second pair of signal vias 714, and the second pair of ground vias 718 is positioned between the second pair of signal vias 714 and a first pair of signal vias in adjacent via pattern (not shown). Within each column, each pair of signal vias is positioned between a first pair of ground vias and a second pair of ground vias. The first pair of signal vias 712 is positioned between the first pair of ground vias 716 and a second pair of signal vias in adjacent via pattern (not shown), and the second pair of signal vias 714 is positioned between the second pair of ground vias 718 and the first pair of ground vias 716.


In some embodiments, the centers of the signal vias 712 and 714 are aligned on a first line A-A in the column direction 730. For each pair of ground vias, the centers of the ground vias have different offsets from the first line A-A in a direction perpendicular to the first line A-A. For instance, for the pair of first and second ground vias 7162 and 7164, the first and second ground vias 7162 and 7164 are offset from the first line in a direction perpendicular to the first line. Furthermore, the first and second ground vias 7162 and 7164 are offset from the first line in opposite directions. The first ground via 7162 is offset from the first line A-A upwards, and the second ground vias 7164 is offset from the first line A-A downwards, in FIG. 7.


The centers of the first pair of ground vias 716 are aligned on a second line B-B, and the centers of the second pair of ground vias 718 are aligned on a second line C-C. In some embodiments, the second line B-B makes an angle α with the first line A-A, and the second line C-C makes an angle β with the first line A-A. In some embodiments, the angles α and β are in the opposite directions. The absolute values of angles α and β may be different or the same. These features are provided to reduce crosstalk between adjacent pairs of signal conductors in a column.


It will be understood that each of the via patterns 710 and 720 matches a pattern of contact tails of backplane connector 150, as shown in FIG. 1 and described above. In particular, each column of via patterns corresponds to one of the columns of contact tails of backplane connector 150. It will be understood that the parameters of the connector footprint may vary, including the number and arrangement of via patterns and the configuration of each via pattern, provided that the connector footprint matches the pattern of contact tails in backplane connector.


The disclosed technology is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosed technology is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” or “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Having thus described at least one illustrative embodiment of the invention, various alterations, modifications and improvements will readily occur to those skilled in the art.


For example, layers may be described as upper layers, or “above” or “below” other layers. It should be appreciated these terms are for ease of illustration and not a limitation on the orientation of layers. In the embodiment illustrated, “upper” refers to a surface of a printed circuit board to which components are attached or a normal to such a surface. In some embodiments, components may be attached to two sides of a printed circuit board, such that upper and lower may depend on which vias are being considered. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and the scope of the present invention.


Further, it was described that each column of signal conductors within a connector may comprise pairs of signal conductors with one or more ground conductors between each pair. In some embodiments, the signal conductors and ground conductors may be arranged such that two ground conductors are between each pair of signal conductors. Such connectors may have a footprint with pairs of signal vias 712, 714 with multiple ground vias between each pair of signal vias, and, in some embodiments, with two pairs of ground vias 716, 718 between each pair of signal vias 714.


Accordingly, the foregoing description is by way of example only and is not intended to be limiting. The present invention is limited only as defined in the following claims and the equivalents thereto.

Claims
  • 1. An electrical connector comprising: a first plurality of contacts, wherein the first plurality of contacts is disposed in a plurality of pairs in a plurality of columns; anda second plurality of contacts, wherein within each column of the plurality of columns, adjacent pairs of the plurality of pairs are separated by at least one contact of the second plurality of contacts;wherein:each contact in the first plurality of contacts comprises a mating contact portion and a contact tail;each contact in the second plurality of contacts comprises a mating contact portion and two contact tails, the mating contact portion comprising a contact surface disposed in a plane, andeach contact in the second plurality of contacts comprises a twisted region such that a line between the two contact tails is transverse to the contact surface and the plane of the contact surface passes between the two contact tails.
  • 2. The electrical connector of claim 1, wherein: the line between the two contact tails is at an angle to the contact surface between 35 and 55 degrees.
  • 3. The electrical connector of claim 1, wherein: each pair of the plurality of pairs is, within a respective column of the plurality of columns, between two adjacent contacts of the second plurality of contacts.
  • 4. The electrical connector of claim 3, wherein: a first of the two adjacent contacts is twisted in a first direction relative to the contact surface; anda second of the two adjacent contacts is twisted in a second direction, opposite to the first direction, relative to the contact surface.
  • 5. The electrical connector of claim 4, wherein: the contact surface of each of the second plurality of contacts is selectively plated with a noble metal.
  • 6. The electrical connector of claim 5, wherein: the first plurality of contacts comprise differential signal contacts; andthe second plurality of contacts comprise ground contacts.
  • 7. The electrical connector of claim 1, further comprising a housing to hold the first plurality of contacts and the second plurality of contacts.
  • 8. The electrical connector of claim 1, wherein each column in the plurality of columns is oriented along a first direction, andeach column is offset from an adjacent column along the first direction.
  • 9. The electrical connector of claim 1, in combination with a printed circuit board, the printed circuit board comprising: a plurality of signal traces;a plurality of ground layers; andwherein the electrical connector is mounted to the printed circuit board, wherein: the first plurality of contacts are connected to the signal traces; andthe second plurality of contacts are connected to the ground layers.
  • 10. An electrical connector comprising: a first plurality of contacts disposed in a plurality of pairs in a plurality of columns extending in a column direction, wherein each contact in the first plurality of contacts comprises a mating contact portion and a contact tail, wherein the contact portions of the first plurality of contacts of a respective column of the plurality of columns are aligned in the direction of the respective column; anda second plurality of contacts,wherein, within each column of the plurality of columns: adjacent pairs of the plurality of pairs are separated by at least one contact of the second plurality of contacts;the contact tails of the first plurality of contacts within the column are aligned along a first line in the column direction; andeach contact in the second plurality of contacts comprises:a mating contact portion aligned in the column direction with the mating contact portions of the contacts of the first plurality of contacts in the column; anda contact tail twisted with respect to the contact portion such that the contact tail is offset, in a direction perpendicular to the column direction, from the first line.
  • 11. The electrical connector of claim 10 wherein, within each column of the plurality of columns, mating contact portion of the first plurality of contacts are aligned along the first line.
  • 12. The electrical connector of claim 11 wherein, within each column of the plurality of columns, mating contact portion of the second plurality of contacts are aligned along the first line.
  • 13. The electrical connector of claim 12 wherein: the contact tail of each contact of the second plurality of contacts is a first contact tail, and each contact of the second plurality of contacts comprises a second contact tail;within each column of the plurality of contacts, a line between the first contact tail and the second contact tail is at an angle to the first line of between 35 and 55 degrees.
  • 14. The electrical connector of claim 12, wherein: the first plurality of contacts comprise differential signal contacts; andthe second plurality of contacts comprise ground contacts.
  • 15. The electrical connector of claim 10, wherein: a contact surface of each of the second plurality of contacts is selectively plated with a noble metal.
  • 16. The electrical connector of claim 10, further comprising a housing holding the first plurality of contacts and the second plurality of contacts.
  • 17. The electrical connector of claim 10, wherein: each column in the plurality of columns is oriented along a first direction, andeach column is offset from an adjacent column along the first direction.
  • 18. The electrical connector of claim 10, in combination with a printed circuit board, the printed circuit board comprising: a plurality of signal traces;a plurality of ground layers; andwherein the electrical connector is mounted to the printed circuit board, wherein: the first plurality of contacts are connected to the signal traces; andthe second plurality of contacts are connected to the ground layers.
  • 19. An electrical connector comprising: a first plurality of contacts disposed in a column; anda second plurality of contacts, wherein within the column, adjacent pairs of contacts in the first plurality of contacts are separated by a pair of contacts in the second plurality of contacts;wherein: each contact in the first plurality of contacts comprises a mating contact portion and a contact tail;each contact in the second plurality of contacts comprises a mating contact portion and a contact tail twisted from the mating contact portion such that: each contact in the pair of contacts in the second plurality of contacts is offset, in a direction perpendicular to the column direction, from the first line, andeach contact in the pair of contacts in the second plurality of contacts is offset in an opposite direction as the other contact in the pair of contacts.
  • 20. The electrical connector of claim 19, further comprising a housing holding the first plurality of contacts and the second plurality of contacts.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 16/689,993, filed on Nov. 20, 2019, entitled “HIGH-FREQUENCY ELECTRICAL CONNECTOR,” which claims priority to and the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/770,462, filed on Nov. 21, 2018, entitled “HIGH-FREQUENCY ELECTRICAL CONNECTOR.” The entire contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (653)
Number Name Date Kind
2124207 Carl Jul 1938 A
2996710 Pratt Aug 1961 A
3002162 Garstang Sep 1961 A
3007131 Dahlgren et al. Oct 1961 A
3134950 Cook May 1964 A
3229240 Harrison et al. Jan 1966 A
3322885 May et al. May 1967 A
3594613 Prietula Jul 1971 A
3715706 Michel et al. Feb 1973 A
3786372 Epis et al. Jan 1974 A
3825874 Peverill Jul 1974 A
3863181 Glance et al. Jan 1975 A
4083615 Volinskie Apr 1978 A
4155613 Brandeau May 1979 A
4157612 Rainal Jun 1979 A
4195272 Boutros Mar 1980 A
4276523 Boutros et al. Jun 1981 A
4307926 Smith Dec 1981 A
4371742 Manly Feb 1983 A
4408255 Adkins Oct 1983 A
4447105 Ruehl May 1984 A
4471015 Ebneth et al. Sep 1984 A
4484159 Whitley Nov 1984 A
4490283 Kleiner Dec 1984 A
4518651 Wolfe, Jr. May 1985 A
4519664 Tillotson May 1985 A
4519665 Althouse et al. May 1985 A
4615578 Stadler et al. Oct 1986 A
4632476 Schell Dec 1986 A
4636752 Saito Jan 1987 A
4639054 Kersbergen Jan 1987 A
4682129 Bakermans et al. Jul 1987 A
4697862 Hasircoglu Oct 1987 A
4708660 Claeys et al. Nov 1987 A
4724409 Lehman Feb 1988 A
4728762 Roth et al. Mar 1988 A
4751479 Parr Jun 1988 A
4761147 Gauthier Aug 1988 A
4795375 Williams Jan 1989 A
4806107 Arnold et al. Feb 1989 A
4826443 Lockard May 1989 A
4846724 Sasaki et al. Jul 1989 A
4846727 Glover et al. Jul 1989 A
4871316 Herrell et al. Oct 1989 A
4878155 Conley Oct 1989 A
4889500 Lazar et al. Dec 1989 A
4913667 Muz Apr 1990 A
4924179 Sherman May 1990 A
4948922 Varadan et al. Aug 1990 A
4949379 Cordell Aug 1990 A
4970354 Iwasa et al. Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4990099 Marin et al. Feb 1991 A
4992060 Meyer Feb 1991 A
5000700 Masubuchi et al. Mar 1991 A
5066236 Broeksteeg Nov 1991 A
5141454 Garrett et al. Aug 1992 A
5150086 Ito Sep 1992 A
5168252 Naito Dec 1992 A
5168432 Murphy et al. Dec 1992 A
5176538 Hansell, III et al. Jan 1993 A
5197893 Morlion et al. Mar 1993 A
5266055 Naito et al. Nov 1993 A
5280257 Cravens et al. Jan 1994 A
5287076 Johnescu et al. Feb 1994 A
5306171 Marshall Apr 1994 A
5332979 Roskewitsch et al. Jul 1994 A
5334050 Andrews Aug 1994 A
5340334 Nguyen Aug 1994 A
5346410 Moore, Jr. Sep 1994 A
5387130 Fedder et al. Feb 1995 A
5402088 Pierro et al. Mar 1995 A
5429520 Morlion et al. Jul 1995 A
5429521 Morlion et al. Jul 1995 A
5433617 Morlion et al. Jul 1995 A
5433618 Morlion et al. Jul 1995 A
5435757 Fedder et al. Jul 1995 A
5441424 Morlion et al. Aug 1995 A
5456619 Belopolsky et al. Oct 1995 A
5461392 Mott et al. Oct 1995 A
5484310 McNamara et al. Jan 1996 A
5487673 Hurtarte Jan 1996 A
5496183 Soes et al. Mar 1996 A
5499935 Powell Mar 1996 A
5509827 Huppenthal et al. Apr 1996 A
5551893 Johnson Sep 1996 A
5554038 Morlion et al. Sep 1996 A
5562497 Yagi et al. Oct 1996 A
5597328 Mouissie Jan 1997 A
5598627 Saka et al. Feb 1997 A
5632634 Soes May 1997 A
5651702 Hanning et al. Jul 1997 A
5669789 Law Sep 1997 A
5691506 Miyazaki et al. Nov 1997 A
5702258 Provencher et al. Dec 1997 A
5733148 Kaplan et al. Mar 1998 A
5743765 Andrews et al. Apr 1998 A
5781759 Kashiwabara Jul 1998 A
5796323 Uchikoba et al. Aug 1998 A
5831491 Buer et al. Nov 1998 A
5924899 Paagman Jul 1999 A
5981869 Kroger Nov 1999 A
5982253 Perrin et al. Nov 1999 A
6019616 Yagi et al. Feb 2000 A
6053770 Blom Apr 2000 A
6083046 Wu et al. Jul 2000 A
6095825 Liao Aug 2000 A
6095872 Lang et al. Aug 2000 A
6116926 Ortega et al. Sep 2000 A
6144559 Johnson et al. Nov 2000 A
6146202 Ramey et al. Nov 2000 A
6152747 McNamara Nov 2000 A
6168466 Chiou Jan 2001 B1
6168469 Lu Jan 2001 B1
6174203 Asao Jan 2001 B1
6174944 Chiba et al. Jan 2001 B1
6203376 Magajne et al. Mar 2001 B1
6217372 Reed Apr 2001 B1
6273753 Ko Aug 2001 B1
6273758 Lloyd et al. Aug 2001 B1
6285542 Kennedy, III et al. Sep 2001 B1
6293827 Stokoe Sep 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299483 Cohen et al. Oct 2001 B1
6322379 Ortega et al. Nov 2001 B1
6328601 Yip et al. Dec 2001 B1
6347962 Kline Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6364711 Berg et al. Apr 2002 B1
6364718 Polgar et al. Apr 2002 B1
6366471 Edwards et al. Apr 2002 B1
6371788 Bowling et al. Apr 2002 B1
6375510 Asao Apr 2002 B2
6379188 Cohen et al. Apr 2002 B1
6398588 Bickford Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6452789 Pallotti et al. Sep 2002 B1
6482017 Van Doorn Nov 2002 B1
6489563 Zhao et al. Dec 2002 B1
6503103 Cohen et al. Jan 2003 B1
6506076 Cohen et al. Jan 2003 B2
6517360 Cohen Feb 2003 B1
6530790 McNamara et al. Mar 2003 B1
6535367 Carpenter et al. Mar 2003 B1
6537086 MacMullin Mar 2003 B1
6537087 McNamara et al. Mar 2003 B2
6551140 Billman et al. Apr 2003 B2
6554647 Cohen et al. Apr 2003 B1
6565387 Cohen May 2003 B2
6574115 Asano et al. Jun 2003 B2
6575772 Soubh et al. Jun 2003 B1
6579116 Brennan et al. Jun 2003 B2
6582244 Fogg et al. Jun 2003 B2
6592390 Davis et al. Jul 2003 B1
6592401 Gardner et al. Jul 2003 B1
6595802 Watanabe et al. Jul 2003 B1
6602095 Astbury, Jr. et al. Aug 2003 B2
6607402 Cohen et al. Aug 2003 B2
6616864 Jiang et al. Sep 2003 B1
6652296 Kuroda et al. Nov 2003 B2
6652318 Winings et al. Nov 2003 B1
6655966 Rothermel et al. Dec 2003 B2
6685501 Wu et al. Feb 2004 B1
6692262 Loveless Feb 2004 B1
6705893 Ko Mar 2004 B1
6709294 Cohen et al. Mar 2004 B1
6713672 Stickney Mar 2004 B1
6743057 Davis et al. Jun 2004 B2
6776659 Stokoe et al. Aug 2004 B1
6786771 Gailus Sep 2004 B2
6797891 Blair et al. Sep 2004 B1
6814619 Stokoe et al. Nov 2004 B1
6824426 Spink, Jr. Nov 2004 B1
6830489 Aoyama Dec 2004 B2
6843657 Driscoll et al. Jan 2005 B2
6872085 Cohen Mar 2005 B1
6903934 Lo et al. Jun 2005 B2
6916183 Alger et al. Jul 2005 B2
6932649 Rothermel et al. Aug 2005 B1
6955565 Lloyd et al. Oct 2005 B2
6971887 Trobough Dec 2005 B1
6979226 Otsu et al. Dec 2005 B2
7044794 Consoli et al. May 2006 B2
7056128 Driscoll et al. Jun 2006 B2
7057570 Irion, II et al. Jun 2006 B2
7070446 Henry et al. Jul 2006 B2
7074086 Cohen et al. Jul 2006 B2
7077658 Ashman et al. Jul 2006 B1
7094102 Cohen et al. Aug 2006 B2
7108556 Cohen et al. Sep 2006 B2
7148428 Meier et al. Dec 2006 B2
7163421 Cohen et al. Jan 2007 B1
7214097 Hsu et al. May 2007 B1
7223915 Hackman May 2007 B2
7234944 Nordin et al. Jun 2007 B2
7244137 Renfro et al. Jul 2007 B2
7267515 Lappohn Sep 2007 B2
7280372 Grundy et al. Oct 2007 B2
7285018 Kenny et al. Oct 2007 B2
7307293 Fjelstad et al. Dec 2007 B2
7309257 Minich Dec 2007 B1
7331816 Krohn et al. Feb 2008 B2
7331830 Minich Feb 2008 B2
7335063 Cohen et al. Feb 2008 B2
7354274 Minich Apr 2008 B2
7371117 Gailus May 2008 B2
7384275 Ngo Jun 2008 B2
7402048 Meier et al. Jul 2008 B2
7422483 Avery et al. Sep 2008 B2
7431608 Sakaguchi et al. Oct 2008 B2
7445471 Scherer et al. Nov 2008 B1
7462942 Tan et al. Dec 2008 B2
7485012 Daugherty et al. Feb 2009 B2
7494383 Cohen et al. Feb 2009 B2
7534142 Avery et al. May 2009 B2
7540781 Kenny et al. Jun 2009 B2
7549897 Fedder et al. Jun 2009 B2
7581990 Kirk Sep 2009 B2
7588464 Kim Sep 2009 B2
7613011 Grundy et al. Nov 2009 B2
7621779 Laurx et al. Nov 2009 B2
7652381 Grundy et al. Jan 2010 B2
7654831 Wu Feb 2010 B1
7658654 Ohyama et al. Feb 2010 B2
7686659 Peng Mar 2010 B2
7690930 Chen et al. Apr 2010 B2
7713077 McGowan et al. May 2010 B1
7719843 Dunham May 2010 B2
7722401 Kirk et al. May 2010 B2
7731537 Amleshi et al. Jun 2010 B2
7744414 Scherer et al. Jun 2010 B2
7753731 Cohen et al. Jul 2010 B2
7771233 Gailus Aug 2010 B2
7775802 Defibaugh et al. Aug 2010 B2
7789676 Morgan et al. Sep 2010 B2
7794240 Cohen et al. Sep 2010 B2
7794278 Cohen et al. Sep 2010 B2
7811129 Glover et al. Oct 2010 B2
7819675 Ko et al. Oct 2010 B2
7824197 Westman et al. Nov 2010 B1
7857630 Hermant et al. Dec 2010 B2
7862344 Morgan et al. Jan 2011 B2
7871296 Fowler et al. Jan 2011 B2
7874873 Do et al. Jan 2011 B2
7887371 Kenny et al. Feb 2011 B2
7906730 Atkinson et al. Mar 2011 B2
7914304 Cartier et al. Mar 2011 B2
7967637 Fedder et al. Jun 2011 B2
7976318 Fedder et al. Jul 2011 B2
7985097 Gulla Jul 2011 B2
8002581 Whiteman, Jr. et al. Aug 2011 B1
8016616 Glover et al. Sep 2011 B2
8018733 Jia Sep 2011 B2
8036500 McColloch Oct 2011 B2
8057267 Johnescu Nov 2011 B2
8083553 Manter et al. Dec 2011 B2
8100699 Costello Jan 2012 B1
8157573 Tanaka Apr 2012 B2
8162675 Regnier et al. Apr 2012 B2
8167651 Glover et al. May 2012 B2
8182289 Stokoe et al. May 2012 B2
8192222 Kameyama Jun 2012 B2
8197285 Farmer Jun 2012 B2
8210877 Droesbeke Jul 2012 B2
8215968 Cartier et al. Jul 2012 B2
8226441 Regnier et al. Jul 2012 B2
8251745 Johnescu Aug 2012 B2
8272877 Stokoe Sep 2012 B2
8308491 Nichols et al. Nov 2012 B2
8308512 Ritter et al. Nov 2012 B2
8337243 Elkhatib et al. Dec 2012 B2
8338713 Fjelstad et al. Dec 2012 B2
8371875 Gailus Feb 2013 B2
8371876 Davis Feb 2013 B2
8382524 Khilchenko et al. Feb 2013 B2
8398433 Yang Mar 2013 B1
8419472 Swanger et al. Apr 2013 B1
8439704 Reed May 2013 B2
8449312 Lang et al. May 2013 B2
8449330 Schroll et al. May 2013 B1
8465302 Regnier et al. Jun 2013 B2
8469745 Davis et al. Jun 2013 B2
8475209 Whiteman, Jr. et al. Jul 2013 B1
8535065 Costello Sep 2013 B2
8540525 Regnier et al. Sep 2013 B2
8550861 Cohen et al. Oct 2013 B2
8553102 Yamada Oct 2013 B2
8556657 Nichols Oct 2013 B1
8588561 Zbinden et al. Nov 2013 B2
8588562 Zbinden et al. Nov 2013 B2
8597055 Regnier et al. Dec 2013 B2
8657627 McNamara et al. Feb 2014 B2
8662924 Davis et al. Mar 2014 B2
8672707 Nichols et al. Mar 2014 B2
8678860 Minich et al. Mar 2014 B2
8690604 Davis Apr 2014 B2
8715003 Buck et al. May 2014 B2
8740644 Long Jun 2014 B2
8753145 Lang et al. Jun 2014 B2
8758051 Nonen et al. Jun 2014 B2
8771016 Atkinson et al. Jul 2014 B2
8787711 Zbinden et al. Jul 2014 B2
8804342 Behziz et al. Aug 2014 B2
8814595 Cohen et al. Aug 2014 B2
8845364 Wanha et al. Sep 2014 B2
8864521 Atkinson et al. Oct 2014 B2
8888531 Jeon Nov 2014 B2
8888533 Westman et al. Nov 2014 B2
8911255 Scherer et al. Dec 2014 B2
8926377 Kirk et al. Jan 2015 B2
8944831 Stoner et al. Feb 2015 B2
8992236 Wittig et al. Mar 2015 B2
8992237 Regnier et al. Mar 2015 B2
8998642 Manter et al. Apr 2015 B2
9004942 Paniauqa Apr 2015 B2
9011177 Lloyd et al. Apr 2015 B2
9022806 Cartier, Jr. et al. May 2015 B2
9028201 Kirk et al. May 2015 B2
9028281 Kirk et al. May 2015 B2
9035183 Kodama et al. May 2015 B2
9040824 Guetig et al. May 2015 B2
9065230 Milbrand, Jr. Jun 2015 B2
9071001 Scherer et al. Jun 2015 B2
9118151 Tran et al. Aug 2015 B2
9119292 Gundel Aug 2015 B2
9124009 Atkinson et al. Sep 2015 B2
9142896 Wickes et al. Sep 2015 B2
9142921 Wanha et al. Sep 2015 B2
9203171 Yu et al. Dec 2015 B2
9214768 Pao et al. Dec 2015 B2
9219335 Atkinson et al. Dec 2015 B2
9225083 Krenceski et al. Dec 2015 B2
9225085 Cartier, Jr. et al. Dec 2015 B2
9232676 Sechrist et al. Jan 2016 B2
9246251 Regnier et al. Jan 2016 B2
9257778 Buck et al. Feb 2016 B2
9257794 Wanha et al. Feb 2016 B2
9312618 Regnier et al. Apr 2016 B2
9350108 Long May 2016 B2
9356401 Horning et al. May 2016 B1
9362678 Wanha et al. Jun 2016 B2
9373917 Sypolt et al. Jun 2016 B2
9374165 Zbinden et al. Jun 2016 B2
9385455 Regnier et al. Jul 2016 B2
9391407 Bucher et al. Jul 2016 B1
9413112 Helster et al. Aug 2016 B2
9450344 Cartier, Jr. et al. Sep 2016 B2
9490558 Wanha et al. Nov 2016 B2
9509101 Cartier, Jr. et al. Nov 2016 B2
9520689 Cartier, Jr. et al. Dec 2016 B2
9531133 Horning et al. Dec 2016 B1
9543676 Evans et al. Jan 2017 B2
9553381 Regnier Jan 2017 B2
9559446 Wetzel et al. Jan 2017 B1
9564696 Gulla Feb 2017 B2
9608348 Wanha et al. Mar 2017 B2
9651752 Zbinden et al. May 2017 B2
9660364 Wig et al. May 2017 B2
9666961 Horning et al. May 2017 B2
9685736 Gailus et al. Jun 2017 B2
9728903 Long et al. Aug 2017 B2
9774144 Cartier, Jr. et al. Sep 2017 B2
9801301 Costello Oct 2017 B1
9831588 Cohen Nov 2017 B2
9841572 Zbinden et al. Dec 2017 B2
9843135 Guetig et al. Dec 2017 B2
9876319 Zhao et al. Jan 2018 B2
9923309 Aizawa et al. Mar 2018 B1
9929512 Trout et al. Mar 2018 B1
9985367 Wanha et al. May 2018 B2
9985389 Morgan et al. May 2018 B1
10038284 Krenceski et al. Jul 2018 B2
10056706 Wanha et al. Aug 2018 B2
10062984 Regnier Aug 2018 B2
10069225 Wanha et al. Sep 2018 B2
10096921 Johnescu et al. Oct 2018 B2
10096945 Cartier, Jr. et al. Oct 2018 B2
10148025 Trout et al. Dec 2018 B1
10170869 Gailus et al. Jan 2019 B2
10181663 Regnier Jan 2019 B2
10205286 Provencher et al. Feb 2019 B2
RE47342 Lloyd et al. Apr 2019 E
10283914 Morgan et al. May 2019 B1
10305224 Girard, Jr. May 2019 B2
10355416 Picket et al. Jul 2019 B1
10446983 Krenceski et al. Oct 2019 B2
10651603 Kurudamannil et al. May 2020 B2
10686282 McCarthy Jun 2020 B1
10720735 Provencher et al. Jul 2020 B2
RE48230 Lloyd et al. Sep 2020 E
10826245 Chen Nov 2020 B2
10931062 Cohen et al. Feb 2021 B2
10965063 Krenceski et al. Mar 2021 B2
11387609 Provencher et al. Jul 2022 B2
11469553 Johnescu et al. Oct 2022 B2
11469554 Ellison et al. Oct 2022 B2
20010012730 Ramey et al. Aug 2001 A1
20010042632 Manov et al. Nov 2001 A1
20010046810 Cohen et al. Nov 2001 A1
20020042223 Belopolsky et al. Apr 2002 A1
20020088628 Chen Jul 2002 A1
20020089464 Joshi Jul 2002 A1
20020098738 Astbury et al. Jul 2002 A1
20020111068 Cohen et al. Aug 2002 A1
20020111069 Astbury et al. Aug 2002 A1
20020157865 Noda Oct 2002 A1
20020187688 Marvin et al. Dec 2002 A1
20030073331 Peloza et al. Apr 2003 A1
20030119362 Nelson et al. Jun 2003 A1
20030162441 Nelson et al. Aug 2003 A1
20040005815 Mizumura et al. Jan 2004 A1
20040018757 Lang et al. Jan 2004 A1
20040020674 McFadden et al. Feb 2004 A1
20040094328 Fjelstad et al. May 2004 A1
20040110421 Broman et al. Jun 2004 A1
20040115968 Cohen Jun 2004 A1
20040121633 David et al. Jun 2004 A1
20040121652 Gailus Jun 2004 A1
20040155328 Kline Aug 2004 A1
20040196112 Welbon et al. Oct 2004 A1
20040224559 Nelson et al. Nov 2004 A1
20040229510 Lloyd et al. Nov 2004 A1
20040259419 Payne et al. Dec 2004 A1
20040264894 Cooke et al. Dec 2004 A1
20050006126 Aisenbrey Jan 2005 A1
20050032430 Otsu et al. Feb 2005 A1
20050070160 Cohen et al. Mar 2005 A1
20050093127 Fjelstad et al. May 2005 A1
20050118869 Evans Jun 2005 A1
20050133245 Katsuyama et al. Jun 2005 A1
20050142944 Ling et al. Jun 2005 A1
20050176835 Kobayashi et al. Aug 2005 A1
20050233610 Tutt et al. Oct 2005 A1
20050239339 Pepe Oct 2005 A1
20050283974 Richard et al. Dec 2005 A1
20050287869 Kenny et al. Dec 2005 A1
20060001163 Kolbehdari et al. Jan 2006 A1
20060068640 Gailus Mar 2006 A1
20060079119 Wu Apr 2006 A1
20060091507 Fjelstad et al. May 2006 A1
20060110977 Matthews May 2006 A1
20060216969 Bright et al. Sep 2006 A1
20060228922 Morriss Oct 2006 A1
20070004282 Cohen et al. Jan 2007 A1
20070021001 Laurx et al. Jan 2007 A1
20070021002 Laurx et al. Jan 2007 A1
20070032104 Yamada et al. Feb 2007 A1
20070037419 Sparrowhawk Feb 2007 A1
20070042639 Manter et al. Feb 2007 A1
20070054554 Do et al. Mar 2007 A1
20070059961 Cartier et al. Mar 2007 A1
20070155241 Lappohn Jul 2007 A1
20070197095 Feldman et al. Aug 2007 A1
20070207641 Minich Sep 2007 A1
20070218765 Cohen et al. Sep 2007 A1
20070243741 Yang Oct 2007 A1
20070254517 Olson et al. Nov 2007 A1
20080026638 Cohen et al. Jan 2008 A1
20080194146 Gailus Aug 2008 A1
20080200955 Tepic Aug 2008 A1
20080207023 Tuin et al. Aug 2008 A1
20080246555 Kirk et al. Oct 2008 A1
20080248658 Cohen et al. Oct 2008 A1
20080248659 Cohen et al. Oct 2008 A1
20080248660 Kirk et al. Oct 2008 A1
20080264673 Chi et al. Oct 2008 A1
20080267620 Cole et al. Oct 2008 A1
20080297988 Chau Dec 2008 A1
20080305689 Zhang et al. Dec 2008 A1
20090011641 Cohen et al. Jan 2009 A1
20090011645 Laurx et al. Jan 2009 A1
20090011664 Laurx et al. Jan 2009 A1
20090017682 Amleshi et al. Jan 2009 A1
20090023330 Stoner et al. Jan 2009 A1
20090051558 Dorval Feb 2009 A1
20090098767 Long Apr 2009 A1
20090117386 Vacanti et al. May 2009 A1
20090124101 Minich et al. May 2009 A1
20090130913 Yi et al. May 2009 A1
20090130918 Nguyen et al. May 2009 A1
20090166082 Liu et al. Jul 2009 A1
20090176400 Davis et al. Jul 2009 A1
20090205194 Semba et al. Aug 2009 A1
20090215309 Mongold et al. Aug 2009 A1
20090227141 Pan Sep 2009 A1
20090239395 Cohen et al. Sep 2009 A1
20090247012 Pan Oct 2009 A1
20090291593 Atkinson et al. Nov 2009 A1
20090305533 Feldman et al. Dec 2009 A1
20090311908 Fogg et al. Dec 2009 A1
20100009571 Scherer et al. Jan 2010 A1
20100081302 Atkinson et al. Apr 2010 A1
20100099299 Moriyama et al. Apr 2010 A1
20100112850 Rao et al. May 2010 A1
20100144167 Fedder et al. Jun 2010 A1
20100144168 Glover et al. Jun 2010 A1
20100144175 Helster et al. Jun 2010 A1
20100144201 Defibaugh et al. Jun 2010 A1
20100144203 Glover et al. Jun 2010 A1
20100144204 Knaub et al. Jun 2010 A1
20100177489 Yagisawa Jul 2010 A1
20100183141 Arai et al. Jul 2010 A1
20100203768 Kondo et al. Aug 2010 A1
20100221951 Pepe et al. Sep 2010 A1
20100291806 Minich et al. Nov 2010 A1
20100294530 Atkinson et al. Nov 2010 A1
20110003509 Gailus Jan 2011 A1
20110067237 Cohen et al. Mar 2011 A1
20110074213 Schaffer et al. Mar 2011 A1
20110104948 Girard, Jr. et al. May 2011 A1
20110130038 Cohen et al. Jun 2011 A1
20110177699 Crofoot et al. Jul 2011 A1
20110212632 Stokoe et al. Sep 2011 A1
20110212633 Regnier et al. Sep 2011 A1
20110212649 Stokoe et al. Sep 2011 A1
20110212650 Amleshi et al. Sep 2011 A1
20110223807 Jeon et al. Sep 2011 A1
20110230095 Atkinson et al. Sep 2011 A1
20110230096 Atkinson et al. Sep 2011 A1
20110230104 Lang et al. Sep 2011 A1
20110263156 Ko Oct 2011 A1
20110287663 Gailus et al. Nov 2011 A1
20110300757 Regnier et al. Dec 2011 A1
20120003848 Casher et al. Jan 2012 A1
20120034820 Lang et al. Feb 2012 A1
20120077369 Andersen Mar 2012 A1
20120077380 Minich et al. Mar 2012 A1
20120094536 Khilchenko et al. Apr 2012 A1
20120135643 Lange et al. May 2012 A1
20120156929 Manter et al. Jun 2012 A1
20120184136 Ritter Jul 2012 A1
20120202363 McNamara et al. Aug 2012 A1
20120202386 McNamara et al. Aug 2012 A1
20120214344 Cohen et al. Aug 2012 A1
20120329294 Raybold et al. Dec 2012 A1
20130012038 Kirk et al. Jan 2013 A1
20130017715 Laarhoven et al. Jan 2013 A1
20130017733 Kirk et al. Jan 2013 A1
20130052843 Johnescu et al. Feb 2013 A1
20130078870 Milbrand, Jr. Mar 2013 A1
20130089993 Jeon Apr 2013 A1
20130092429 Ellison Apr 2013 A1
20130109232 Paniaqua May 2013 A1
20130143442 Cohen et al. Jun 2013 A1
20130178107 Costello et al. Jul 2013 A1
20130196553 Gailus Aug 2013 A1
20130210246 Davis et al. Aug 2013 A1
20130223036 Herring et al. Aug 2013 A1
20130225006 Khilchenko et al. Aug 2013 A1
20130273781 Buck et al. Oct 2013 A1
20130288521 McClellan et al. Oct 2013 A1
20130288525 McClellan et al. Oct 2013 A1
20130288539 McClellan et al. Oct 2013 A1
20130340251 Regnier et al. Dec 2013 A1
20140004724 Cartier, Jr. et al. Jan 2014 A1
20140004726 Cartier, Jr. et al. Jan 2014 A1
20140004746 Cartier, Jr. et al. Jan 2014 A1
20140041937 Lloyd et al. Feb 2014 A1
20140057493 De Geest Feb 2014 A1
20140057494 Cohen Feb 2014 A1
20140057498 Cohen Feb 2014 A1
20140065883 Cohen et al. Mar 2014 A1
20140073174 Yang Mar 2014 A1
20140073181 Yang Mar 2014 A1
20140080331 Jeon Mar 2014 A1
20140194004 Pickel et al. Jul 2014 A1
20140242844 Wanha et al. Aug 2014 A1
20140273551 Resendez et al. Sep 2014 A1
20140273557 Cartier, Jr. et al. Sep 2014 A1
20140273627 Cartier, Jr. et al. Sep 2014 A1
20140287627 Cohen Sep 2014 A1
20140308852 Gulla Oct 2014 A1
20140322974 Chang et al. Oct 2014 A1
20140335707 Johnescu et al. Nov 2014 A1
20140335736 Regnier et al. Nov 2014 A1
20150031238 Davis et al. Jan 2015 A1
20150056856 Atkinson et al. Feb 2015 A1
20150079829 Brodsgaard Mar 2015 A1
20150079845 Wanha et al. Mar 2015 A1
20150180578 Leigh et al. Jun 2015 A1
20150194751 Herring Jul 2015 A1
20150200496 Simpson et al. Jul 2015 A1
20150207247 Regnier et al. Jul 2015 A1
20150236450 Davis Aug 2015 A1
20150236451 Cartier, Jr. et al. Aug 2015 A1
20150236452 Cartier, Jr. et al. Aug 2015 A1
20150255926 Paniagua Sep 2015 A1
20150280351 Bertsch Oct 2015 A1
20150303608 Zerebilov et al. Oct 2015 A1
20150357736 Tran et al. Dec 2015 A1
20150357761 Wanha et al. Dec 2015 A1
20160013594 Costello et al. Jan 2016 A1
20160013596 Regnier Jan 2016 A1
20160028189 Resendez et al. Jan 2016 A1
20160104956 Santos et al. Apr 2016 A1
20160111825 Wanha et al. Apr 2016 A1
20160134057 Buck et al. May 2016 A1
20160141807 Gailus et al. May 2016 A1
20160149343 Atkinson et al. May 2016 A1
20160149362 Ritter et al. May 2016 A1
20160150633 Cartier, Jr. May 2016 A1
20160150639 Gailus et al. May 2016 A1
20160150645 Gailus et al. May 2016 A1
20160181713 Peloza et al. Jun 2016 A1
20160181732 Laurx et al. Jun 2016 A1
20160190747 Regnier et al. Jun 2016 A1
20160197423 Regnier Jul 2016 A1
20160218455 Sayre et al. Jul 2016 A1
20160233598 Wittig Aug 2016 A1
20160240946 Evans et al. Aug 2016 A1
20160268714 Wanha et al. Sep 2016 A1
20160274316 Verdiell Sep 2016 A1
20160308296 Pitten et al. Oct 2016 A1
20160315409 Horning et al. Oct 2016 A1
20160322770 Zerebilov Nov 2016 A1
20160344141 Cartier, Jr. et al. Nov 2016 A1
20170025783 Astbury et al. Jan 2017 A1
20170033478 Wanha et al. Feb 2017 A1
20170042070 Baumler et al. Feb 2017 A1
20170047692 Cartier, Jr. et al. Feb 2017 A1
20170077643 Zbinden et al. Mar 2017 A1
20170093093 Cartier, Jr. et al. Mar 2017 A1
20170098901 Regnier Apr 2017 A1
20170162960 Wanha et al. Jun 2017 A1
20170294743 Gailus et al. Oct 2017 A1
20170302011 Wanha et al. Oct 2017 A1
20170338595 Girard, Jr. Nov 2017 A1
20170365942 Regnier Dec 2017 A1
20170365943 Wanha et al. Dec 2017 A1
20180006416 Lloyd et al. Jan 2018 A1
20180034175 Lloyd et al. Feb 2018 A1
20180034190 Ngo Feb 2018 A1
20180040989 Chen Feb 2018 A1
20180109043 Provencher et al. Apr 2018 A1
20180138620 Horning May 2018 A1
20180145438 Cohen May 2018 A1
20180219331 Cartier, Jr. et al. Aug 2018 A1
20180219332 Brungard et al. Aug 2018 A1
20180366880 Zerebilov et al. Dec 2018 A1
20190013625 Gailus et al. Jan 2019 A1
20190020155 Trout et al. Jan 2019 A1
20190036256 Martens et al. Jan 2019 A1
20190044284 Dunham Feb 2019 A1
20190157812 Gailus et al. May 2019 A1
20190173236 Provencher et al. Jun 2019 A1
20190296469 Stokoe et al. Sep 2019 A1
20200194940 Cohen et al. Jun 2020 A1
20200251841 Stokoe et al. Aug 2020 A1
20200303879 Provencher et al. Sep 2020 A1
20210234314 Johnescu et al. Jul 2021 A1
20210234315 Ellison et al. Jul 2021 A1
20220329015 Provencher et al. Oct 2022 A1
20220407269 Ellison et al. Dec 2022 A1
Foreign Referenced Citations (57)
Number Date Country
2519434 Oct 2002 CN
1126212 Oct 2003 CN
1127783 Nov 2003 CN
201022125 Feb 2008 CN
201038469 Mar 2008 CN
101164204 Apr 2008 CN
101312275 Nov 2008 CN
101471515 Jul 2009 CN
101752700 Jun 2010 CN
101783449 Jul 2010 CN
201562814 Aug 2010 CN
101854748 Oct 2010 CN
102157860 Aug 2011 CN
201966361 Sep 2011 CN
102299429 Dec 2011 CN
102427178 Apr 2012 CN
102598430 Jul 2012 CN
102782955 Nov 2012 CN
202678544 Jan 2013 CN
103124030 May 2013 CN
202930673 May 2013 CN
103151651 Jun 2013 CN
103915727 Jul 2014 CN
104241973 Dec 2014 CN
106067610 Nov 2016 CN
109728456 May 2019 CN
110212332 Sep 2019 CN
3447556 Jul 1986 DE
1207587 May 2002 EP
1779472 May 2007 EP
2169770 Mar 2010 EP
2390958 Nov 2011 EP
2811589 Dec 2014 EP
1272347 Apr 1972 GB
H02-079571 Jun 1990 JP
H07-302649 Nov 1995 JP
2000-311749 Nov 2000 JP
2006-108115 Apr 2006 JP
2011-018651 Jan 2011 JP
2012-516021 Jul 2012 JP
2016-528688 Sep 2016 JP
M357771 May 2009 TW
WO 8805218 Jul 1988 WO
WO 9956352 Nov 1999 WO
WO 2004059794 Jul 2004 WO
WO 2004059801 Jul 2004 WO
WO 2006002356 Jan 2006 WO
WO 2006039277 Apr 2006 WO
WO 2007005597 Jan 2007 WO
WO 2007005599 Jan 2007 WO
WO 2008072322 Jun 2008 WO
WO 2008124057 Oct 2008 WO
WO 2010039188 Apr 2010 WO
WO 2012078434 Jun 2012 WO
WO 2013006592 Jan 2013 WO
WO 2015013430 Jan 2015 WO
WO 2015112717 Jul 2015 WO
Non-Patent Literature Citations (35)
Entry
Chinese Office Action dated Apr. 2, 2021 in connection with Chinese Application No. 201780073986.7.
International Preliminary Report on Patentability Chapter II dated Apr. 1, 2022 in connection with International Application No. PCT/US2021/015073.
International Preliminary Report on Patentability Chapter II dated Apr. 5, 2022 in connection with International Application No. PCT/US2021/015048.
Chinese Office Action for Application No. CN201580069567.7 dated Jun. 17, 2019.
Chinese Office Action for Application No. CN201580069567.7 dated Oct. 9, 2019.
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012.
International Preliminary Report Patentability for International Application No. PCT/US2017/057402 dated May 2, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2015//012463 dated May 13, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006.
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2015/060472 dated Mar. 11, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2015/012542 dated Apr. 30, 2015.
International Search Report and Written Opinion for International Application No. PCT/US2016/043358 dated Nov. 3, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2017/033122 dated Aug. 8, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2014/026381 dated Aug. 12, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2017/057402 dated Jan. 19, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2006/25562 dated Oct. 31, 2007.
International Search Report and Written Opinion for International Application No. PCT/US2010/056495 dated Jan. 25, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2018/045207 dated Nov. 29, 2018.
International Search Report and Written Opinion dated Jul. 1, 2021 in connection with International Application No. PCT/US2021/015048.
International Search Report and Written Opinion dated May 17, 2021 in connection with International Application No. PCT/US2021/015073.
[No Author Listed], Amphenol TCS expands the Xcede Platform with 85 Ohm Connectors and High-Speed Cable Solutions. Press Release. Published Feb. 25, 2009. http://www.amphenol.com/about/news_archive/2009/58 [Retrieved Mar. 26, 2019 from Wayback Machine]. 4 pages.
[No Author Listed], Agilent. Designing Scalable 10G Backplane Interconnect Systems Utilizing Advanced Verification Methodologies. White Paper, Published May 5, 2012. 24 pages.
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sviresearch/detail/225895. Last accessed Sep. 19, 2013, 2 pages.
[No Author Listed], File: Wrt54gl-layout.jpg Sep. 8, 2006. Retrieved from the Internet: https://xinu.mscs.mu.edu/File:Wrt54gl-layout.jpg [retrieved on Apr. 9, 2019]. 2 pages.
[No Author Listed], Hitachi Cable America Inc. Direct Attach Cables. 8 pages. Retrieved Aug. 10, 2017 from http://www.hca.hitachi-cable.com/products/hca/catalog/pdfs/direct-attach-cable-assemblies.pdf [last accessed Mar. 6, 2019].
[No Author Listed], Size 8 High Speed Quadrax and Differential Twinax Contacts for Use in MIL-DTL-38999 Special Subminiature Cylindrical and ARINC 600 Rectangular Connectors. Published May 2008. 10 pages. Retrieved from https://www.peigenesis.com/images/content/news/amphenol_quadrax.pdf.
Beaman, High Performance Mainframe Computers Cables. 1997 Electronic Components and Technology Conference. 1997;911-7.
Fjelstadt, Flexible Circuit Technology. Third Edition. BR Publishing, Inc. Sep. 2006. 226 pages. ISBN 0-9667075-0-8.
Johnescu et al., High Speed Connector, U.S. Appl. No. 17/902.342 filed Sep. 2, 2022.
Shi et al., Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56.
Related Publications (1)
Number Date Country
20210184404 A1 Jun 2021 US
Provisional Applications (1)
Number Date Country
62770462 Nov 2018 US
Divisions (1)
Number Date Country
Parent 16689993 Nov 2019 US
Child 17181822 US