The present invention relates to a high frequency laminated device used in mobile communication equipment, such as portable phones.
Electronic components used in mobile communication equipment, such as portable phones are required to have a small size and a small weight without having their performance decline. A transmission circuit of the mobile communication equipment includes a low pass filter for preventing emission of unnecessary signals, such as higher harmonics.
In the LPF, the printed electrode patterns are located as close to each other as possible in order to allow the device to have a reduced size. The LPF, having an excessively reduced size, as shown by solid line F of
In order to allow the LPF to have the small size, a space between the electrode patterns of inductors 104 and 105 adjacent to each other is narrow. But, the narrow space has the LPF have a declining performance as the characteristic shown in FIG. 14.
An inductance (L) at a frequency (ω) of an inductor formed of an electrode pattern having a characteristic impedance (Z) and an electrical length (θ) is expressed as the following equation:
L=(Z·sinθ)/ω (Equation 1)
In order to reduce an area occupied by the electrode pattern while the inductance (L) is maintained in constant, the characteristic impedance (Z) is increased, and the electrical length (θ) is accordingly reduced. That is, the area occupied by the electrode pattern is reduced by making the electrical length (θ) smaller to make the electrode pattern shorter.
However, since the sheet 101a to 101d have certain dielectric constants, the sheets 101a to 101d need to be thick, or the electrode pattern need to be thin in order to increase the characteristic impedance (Z). The thick sheets 101a to 101d would be contrary to the small size of the LPF. Moreover, thinning of electrode patterns available at present, which have widths of 100 μm, decreases an electrical conductivity of electrode patterns and increases an insertion loss of the LPF. Further, it is difficult to mass-produce the thin electrode patterns because of problems, such as scratch in printing. Accordingly, it is difficult to reduce the size of the conventional LPF, a high frequency device having the laminate structure.
A high frequency laminated device includes a laminated body including a first sheet having a relative permeability larger than 1, a second sheet having a relative permeability larger than 1 provided on a first surface of the first sheet, and a third sheet provided over a second surface of the first sheet. The device further includes a first inductor pattern forming a first inductor provided between the first sheet and the second sheet, and first and second capacitor patterns forming a capacitor which are opposed to each other about the third sheet.
The inductor pattern is short, and the inductor has a large inductance and a small size, thus allowing the high frequency laminated device to have a small size.
(Exemplary Embodiment 1)
A laminated low pass filter (LPF) as a high frequency laminated device according to Exemplary Embodiment 1 of the present invention is shown in FIG. 1. The LPF includes magnetic sheets 1a to 1d made of magnetic material having a relative permeability larger than 1, input/output electrodes 2 formed on respective side surfaces of the magnetic sheets 1a to 1d, ground (GND) electrodes 3 formed similarly to the input/output electrodes 2, inductor patterns 4 and 5 for forming an inductor printed on the magnetic sheet 1b, capacitor patterns 6, 7 and 8 for forming capacitors printed on the magnetic sheet 1c, GND pattern 9 printed on the magnetic sheet 1d, and via-conductors 10a and 10b.
The magnetic sheets 1a to 1d are stacked in an order shown in the figure and are sintered unitarily to provide a laminated body. The ends of the input/output electrodes 2 and inductance patterns 4 are electrically connected to a portion of the capacitor pattern 6, and the GND electrode 3 is electrically connected to the GND pattern 9. The capacitor patterns 6, 7 and 8 are opposed to the GND pattern 9 about the magnetic sheet 1c.
The other ends of the inductor patterns 4 and 5 are electrically connected to the capacitor pattern 7 through the via-conductors 10a and 10b, respectively. Another input/output terminal (not shown) is formed on a side surface opposite to the side surface where the input/output terminal 2 is formed, and another GND electrode (not shown) is formed on a side surface opposite to a side surface where the GND electrode 3 is formed.
As shown in
According to Embodiment 1, the laminated body including the magnetic sheets allows the inductor patterns 4 and 5 to have a large characteristic impedance as a transmission line, thus enabling the inductor pattern to be short. A characteristic impedance Zm of a microstrip transmission line formed on a substrate having a relative permeability μr and a relative dielectric constant ∈r is generally proportional to a square root of (μr/∈r). Accordingly, the LPF of Embodiment 1 including the laminated body having the magnetic sheets of the large relative permeability μr allows the characteristic impedance of the inductor patterns to be increased without reducing the width of the inductor pattern. As a result, the pattern can be shortened, as shown by Equation 1. That is, since the inductor pattern can be thick and short, a resistance loss in the pattern can be reduced. Thus, an LPF having a high Q value and a small loss is provided.
(Exemplary Embodiment 2)
Capacitor pattern 9 is opposed to capacitor patterns 6, 7, and 8 about the dielectric sheet 101c. This arrangement allows a thickness and a relative dielectric constant of the dielectric sheet 101c to be optimized independently from other sheets, thereby reducing, for example, variations in manufacture of capacitors 6, 7 and 8. That is, a magnetic sheet is used at a portion where an inductor pattern is formed, while the dielectric sheet is used at the portion where the capacitor pattern is formed. This allows the LPF, i.e., the high frequency laminated device, to have an excellent characteristic.
In the LPF of Embodiment 2, magnetic sheet 1b and dielectric sheet 101c having patterns 6, 7, and 8 are stacked and sintered to provide a laminated body. If respective materials of the dielectric sheet and the magnetic sheet diffuse into each other during the sintering, the sheets may change in their electrical and mechanical properties, i.e., dielectric constant and permeability, increase of material loss, and deterioration of mechanical strength. The diffusion prevents reliable high frequency laminated devices from being manufactured. In the LPF of Embodiment 2, capacitor patterns 6, 7, and 8 each having a large plane are formed at an interface between the magnetic sheet 1b and the dielectric sheet 101c which form the laminated body suppress the diffusion at the interface between the magnetic sheet 1b and the dielectric sheet 101c. That is, in the LPF of Embodiment 2, capacitor patterns having large areas are formed at the interface between different materials, i.e., magnetic sheet 1b and dielectric sheet 101c. This arrangement configures a capacitor in the laminated body and provides the reliable LPF, i.e., the high frequency laminated device.
According to Embodiment 2, the capacitor pattern is formed between the dielectric sheet 101c and the magnetic sheet 1b. However, a land-form pattern having no electrical connections may provide the same effects. An inductor pattern may be formed at a portion of the interface.
According to Embodiment 2, via-conductor 110 for connecting the inductor patterns 4 and 5 to the inductor patterns 6, 7 and 8 is formed in the magnetic sheet 1b. A parasitic inductance of the via-conductor attenuates high frequency bands, thus providing the LPF with a high performance.
In the above description, the LPF has been described as the high frequency laminated device of Embodiments 1 and 2. However, other high frequency devices, such as a band pass filter, a high pass filter, a diplexer, coupler, and a balun, including the laminated body exhibits the same effects.
(Exemplary Embodiment 3)
A laminated high frequency device according to Exemplary Embodiment 3 of the invention is, for example, an antenna switch duplexer used in an European cellular phone system GSM/DCS.
As shown in
The duplexer of Embodiment 3, including the laminated body 11 having the magnetic sheets, increases the isolation between inductor patterns forming inductors similarly to Embodiments 1 and 2, thus providing the duplexer with ideal characteristics. The inductor patterns being relatively short but not thin provides the inductors with large inductances, thus allowing the duplexer to have a small size and a small insertion loss. A high frequency device including many circuit elements like the duplexer of Embodiment 3 includes a lot of inductor patterns and capacitor patterns, that is, a lot of patterns coupled electro-magnetically to each other. The laminated body including different materials, i.e., a dielectric sheet and a magnetic sheet, can include a large capacitor pattern formed at a interface between the materials, thus emphasizing effects of Embodiment 2.
The laminated high frequency device of Embodiment 3 includes the PIN diode, but may have circuit elements, such as an FET switch IC, mounted on a surface of the laminated body 11, thus having the same effects.
The laminated high frequency device of Embodiment 3 includes the SAW filter, but may have a circuit without a SAW filter.
The antenna duplexer for dual bands GSM/DCS as the laminated high frequency device of Embodiment 3 has been described. A duplexer for other complex bands, such as single, triple, and quad bands and a device, such as a low-noise amplifier (LNA) and a mixer, as the device of Embodiment 3 have the same effects.
Number | Date | Country | Kind |
---|---|---|---|
2002-254352 | Aug 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6426551 | Kawakami et al. | Jul 2002 | B1 |
6498553 | Tanaka et al. | Dec 2002 | B1 |
Number | Date | Country |
---|---|---|
02-232915 | Sep 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20040075968 A1 | Apr 2004 | US |