The present invention relates to magnetic microscopy; and in particular, for magnetically obtaining images of electrical currents flowing in microelectronic structures by means of scanning SQUID microscopes.
More in particular, the present invention relates to high frequency scanning SQUID microscopes with a bandwidth extended into the GHz range. The high frequency scanning of magnetic fields is conducted with pulsed sampling of the magnetic field with a hysteretic SQUID.
The present invention further relates to high frequency measurements of magnetic fields emanating from an object under study, particularly, for obtaining the images of electrical currents flowing in microelectronic structures for non-destructive evaluation of the structures and location of possible defects. Specifically, the method of high frequency (in the range of GHz and above) measurement of magnetic field employs pulsed sampling of the magnetic field emanating from the sample under study. In this method, a pulsed bias current Ibias with the pulses of a predetermined amplitude are applied to a SQUID at a plurality of time delays regarding the activation of the sample under study. Additional DC modulation flux is applied to the hysteretic SQUID. The modulation flux is swept over the predetermined flux range to cause the switching event of the hysteretic SQUID. As the result of the pulsed sampling technique, a histogram is obtained of modulation flux values causing a switching event of the hysteretic SQUID as a function of time. This modulation flux is related to the magnetic field at a particular time and a particular location related to the sample under study. By applying a standard magnetic inverse to the magnetic field, an image of electrical currents flowing in the sample under study may be obtained for non-destructive evaluation thereof.
In scanning SQUID microscopes, the output from a small Superconducting Quantum Interference Device (SQUID) is recorded as a sample is moved relative to the SQUID. The SQUID acts as the approximately point-like near field detector of the magnetic field, and the resulting data is used to construct an image of magnetic fields from the sample. The image of magnetic fields is further converted into the images of currents flowing in the sample under study by standard magnetical inverse.
The SQUID consists of two superconductors separated by thin insulating layers to form two parallel Josephson junctions. The device may be configured as a magnetometer to detect extremely small magnetic fields—small enough to measure the magnetic fields of living organisms.
The great sensitivity of the SQUID devices is associated with measuring changes in magnetic fields associated with one flux quantum. One of the discoveries associated with Josephson junction was that flux is quantized in units
If a constant biasing current is maintained in the SQUID device, the measured voltage oscillates with the changes in phase at the two junctions, which depends upon the change in the magnetic flux. Counting the oscillations permits evaluation of the flux change which has occurred.
One of the main commercial applications of SQUID microscopes is fault detection of importance in the semiconductor industry. Images of the source currents can be generated by applying a magnetic inverse technique to the magnetic field images. Disadvantageously, with the present technology, the bandwidth of SQUID microscopes has not exceeded a few MHz. This is not an inherent limitation of the SQUID itself, whose bandwidth is many order of magnitude higher but rather of the electronics used to monitor the SQUID.
The present SQUID electronics consists of a feedback loop which maintains the magnetic flux through the SQUID loop constant. The electronics is based around an internal oscillator which operates typically at 100-300 KHz. The closed loop gain actually drops off somewhat lower than this value. Since the present invention of computer processors operate at over a GHz, well above the bandwidth of the present SQUID microscopes, the fault detection in the semiconductor industry with the present SQUID microscopes is somewhat limited for traditional scanning SQUID microscopes.
With the advance of semiconductor processor clock speed in excess of a GHz, the ability to image over a much larger bandwidth is desirable.
Therefore, the scanning SQUID microscopes with extended bandwidths to and above a GHz region is desirable and needed in magnetic microscopy.
It is therefore an object of the present invention to provide a high frequency scanning SQUID microscope capable of measuring magnetic fields in the range in excess of a GHz.
It is another object of the present invention to provide a measurement method permitting an extension of the bandwidth of scanning SQUID microscopes to a range exceeding GHz range.
It is a further object of the present invention to provide a measuring technique in which a hysteretic SQUID is used in the measurement scheme to sample magnetic fields emanating from the sample under study and where a pulsed sampling technique is employed.
It is an object of the present invention to extend the bandwidth of SQUID measurements by biasing the hysteretic SQUID with a pulsed bias current having the amplitude of pulses preset within the critical current range of the hysteretic SQUID, and by initiating the switching event of the hysteretic SQUID with an additional DC modulating flux applied to the SQUID. The value of the modulating flux sufficient to cause the triggering event of the hysteretic SQUID at a predetermined time point serves as a measure of the measured magnetic field.
It is still a further object of the present invention to provide a technique for extending the bandwidth of the scanning SQUID microscope wherein the hysteretic SQUID is pulse biased and the count of switching events occurring in the hysteretic SQUID are monitored as a function of time and monitoring flux applied to the hysteretic SQUID.
In one aspect of the present invention there is provided a method of high frequency measurement of magnetic fields with a Superconducting Quantum Interference Device (SQUID) which includes the steps of:
The modulation flux value at which the switching event in the hysteretic SQUID has been obtained serves as the measure of magnetic field emanating from the sample under study. Since such sampling is performed at different time delays, the map of modulation flux values causing the switching events in the SQUID may be obtained and interpolated into the magnetic fields as a function of time.
The hysteretic SQUID has a critical current range and the amplitude of the pulses in the pulsed bias current is preset to be substantially at the midpoint of the critical current range.
In order to obtain the map of the modulation flux values, a processor (which is an inherent component of the scanning SQUID microscope) generates a two-dimensional histogram of the recorded switching event as a function of the modulation flux values causing the switching events in the hysteretic SQUID and the time delays.
Further for each value of the time delay, the processor interpolates the respective modulation flux values which results in a map of a magnetic flux emanating from the sample under study as a function of time.
Upon the pulsed sampling of the magnetic field having been performed at a predetermined location of the two-dimensional area on the sample under study, the SQUID is displaced to another location within the boundaries of the two-dimensional area and the pulsed sampling of the magnetic field is repeated in the identified fashion.
The present invention also represents a high frequency scanning Superconducting Quantum Interference Device (SQUID) microscope which comprises:
The pulsed sampling unit includes:
The SQUID microscope further includes a counter for acquiring and recording switching events of the hysteretic SQUID sensor, and
These and other novel features and advantages of this invention will be fully understood from the following detailed description of the accompanying Drawings.
Referring to
The I-V diagram of the hysteretic SQUID shows that prior to the current flowing through the junctions reaching a critical value Ic (Φ), the hysteretic SQUID is not switched on. If Ibias<Ic, no transition occurs and the SQUID remains at VSQUID=0. However, if Ibias>Ic, the transition occurs so that the output voltage of the SQUID VSQUID≠0. The output voltage of the SQUID serves as an indication of the switching event.
As shown in
Referring to
The scanning SQUID microscope system 20 includes the sensitive SQUID detector 10 of the magnetic fields which is a superconducting quantum interference device best presented in
The SQUID detector 10 is brought into close proximity to the sample 22. This is made as close as possible in order to maintain the separation between the sample 22 (disposed in the ambient atmosphere) and the SQUID detector 10 (placed in the cryogenic environment) below a predetermined value. The SQUID 10 is scanned over the surface of the sample 22 to acquire a low noise image of the magnetic fields on and above the surface of the sample 22.
The sample 22 may be a microelectronic structure such as, for example, a semiconductor computer chip, multichip module, etc. Magnetic fields emanating from the sample 22, are picked up by the SQUID detector 10 as it moves relative to the sample 22 by means of the positioning mechanism 26 which includes a scanning stage 36 and stepper motors 38. The stepper motors 38 are controlled by the computer 24 to change the relative disposition between the sample 22 and the SQUID detector 10 in X, Y, and Z directions.
The output signal of the SQUID 10 is recorded by the computer 24 which additionally keeps track of the position of the sample 22. The acquired data is displayed on the screen of the computer 24 as an image of magnetic fields on and above the sample 22. The computer 24 processes the acquired data to generate a map of the current densities in the sample 22. The map (or the image) of the current flowing in the wires of the sample 22 is further compared to the CAD layout used to create the chip (or the module) 22 in order to locate a faulty region which may occur in the sample 22.
The computer 24 controls the pulse sampling electronics 28 and processes the acquired data in accordance with the principles of the present invention which is particularly developed for extending the bandwidth of the scanning SQUID microscope 20 as will be explained infra.
As shown in
The pulsed sampling electronics block 28 includes, a power source 42 coupled to the sample 22 under study for activating the latter in order that the currents flowing in the sample 22 generate magnetic fields to be measured by the SQUID microscope 20. Further, a pulse generator 44 is included in the pulse sample electronics 28 to generate a bias current Ibias to be supplied to the SQUID 10. The pulse generator 44 may be a Stanford Research Systems DG535 pulse generator which sends a bias current having a plurality of current pulses of a predetermined amplitude and duration. A clock unit 46 is used as a part of the pulse sample electronics 28 which sets the time delay τ1 between the activation of the sample 22 and generation of the pulsed bias current. A modulation flux source 48 provides a controlled DC modulation flux to the SQUID detector 10 in adjustable and controllable flux values range. The modulation DC flux is applied to the SQUID 10 either by means of a modulation coil or by means of a thin copper modulation wire placed alongside the SQUID 10. A Function Generator 58 may be used to supply a computer controlled DC current to the flux line 34 to create the modulated flux applied to the SQUID 10.
Referring to
The SQUID current source is a Pulse Generator 44, generating the pulsed current of a predetermined amplitude and duration. A counter 52 detects the number of switching events (voltage pulses) from the SQUID 10 in a given time interval and provides this to the computer 24 for further processing of the data.
To perform the high frequency measurement of magnetic fields emanating from the sample 22 under the study, the hysteretic SQUID 10 is positioned over a predetermined location (x1, y1) over the sample 22. Sample 22 is activated by applying a power from the power source 42 thereto. In the test, as shown in FIG. 4, the signal-under-test generated by the microwave generator 50 serves as a simulation of the fields emanating from the sample 22.
Pulsed sampling is used for sampling the magnetic field generated by the sample 22. For performing the pulsed sampling, a pulse bias current Ibias is applied to the SQUID 10 with a predetermined time delay τ1 with respect to the predetermined time of activation of the sample 22. The sample 22 generates a spatial and time dependent magnetic field B(x, y, z, t) which is repeated periodically at a rate corresponding to the activation signal applied to the sample 22. The bias current Ibias is sent to the SQUID 10 as a pulse(s) of a predetermined amplitude and pulse duration.
If the flux through the SQUID 10 and the amplitude of the bias current pulse meets the appropriate criteria, a voltage pulse across the SQUID will be present and measured indicative of switching the SQUID “ON”. If no voltage is measured across the SQUID, meaning that the SQUID was not triggered by application of the bias current, additional flux is sent to the SQUID via a modulation coil or flux line 34. This modulation flux is repeatedly adjusted in this manner until it is sufficient to trigger the SQUID 10. This modulation flux is then easily correlated to the magnetic field at a particular point and time B(x1, y1, z, t1). The entire sampling process is repeated with a new delay τ2, τ3, etc., τn, until the entire time dependent B (x1, y1, z, t) is mapped out. This process is then repeated over the entire two-dimensional region 60 to be scanned on the sample 22 under study.
Referring once again to
The presence of a voltage pulse VSQUID at the output voltage of the SQUID 10 is an indication of switching the SQUID “ON”. The VSQUID is measured by a voltmeter 54 coupled to the output of the SQUID 10 and is amplified by an amplifier 56. The output of the amplifier is coupled to the counter 58 which may be an Agilent 53132 counter. If the bias current pulse amplitude is set too low, the SQUID will not show a voltage pulse. If, however, the Ibias amplitude is set too high, the SQUID 10 will show continuous pulsing. As shown in
To avoid continuous pulsing as well as failure to switch the SQUID “ON” at all, the bias current pulse amplitude is set somewhat in the mid-point of the SQUID's critical current range.
As shown in
When the bias current is set near the midpoint of the SQUID's critical current range, the voltage pulses on the SQUID output can be turned “ON” and “OFF” by adjusting the flux at the SQUID 10. The external source of modulation flux may be simulated by using the thin copper modulation wire placed alongside the SQUID. The Function Generator 58 is used to supply a completely controlled DC current of between −50 mA to +50 mA to the flux line 34. From the periodicity of the Ic (Φ) curve shown in
In order to measure a fast time dependent flux, an oscillation test signal is sent to the flux line 34 to present the signal under test. The SQUID 10 is triggered externally by the bias current pulse. By adjusting the delay between the bias current pulse and the signal under test in the clock unit 46, shown in
Shown in
Averaging over all possible delay times, an uncertainty in the flux of 7.6 m Φo was obtained. A pulse width of 10 ns corresponds to a bandwidth of 100 MHz, which indicates a white noise level of S1/2=7.6×10−7 Φ0/Hz, where S is the power spectral density of the flux noise.
An expected S for comparison may be calculated. For a SQUID loop with inductance L at temperature T, the rms Johnson current noise obeys:
Neglecting Josephson inductance, the flux noise can be approximated as
σΦ≈{square root}{square root over (kBTL)} (Eq. 3)
With inductance L=25 pH and T=4.2 K, Φ=20 m Φ0 is then obtained. However, this is the sum of the noise level over all possible frequencies. The cut-off frequency can be defined to be the junction plasma frequency, fp, given by
fp={square root}{square root over (Io/2πΦ0C)} (Eq. 4)
For the SQUID 10 used, the average critical current Io=45 μA is the average junction critical current, and the average junction capacitance C=0.3 pF. From Equation (4), fp=100 GHz is found, and S1/2=6×10−8 φ0/Hz about an order of magnitude smaller than that measured.
One possible explanation for this discrepancy is that although the current pulses are nominally 10 ns long, the pulse is likely less well defined when it reaches the SQUID 10, reducing the effective pulse width. In addition, the switching may take place very soon after the current pulse is applied, in which case there is some natural switching bandwidth, which may be different from the estimated value. This bandwidth can be estimated from the measured flux noise, Φ=7.6 mΦ0, and the estimated spectral noise flux density, S1/2=6×10−8 Φ0/Hz, which yields an effective pulse width of 65 ps.
To test this hypothesis, in
Finally, it is noted that the residual plotted in
To examine the low-frequency drift, the experiment with the test signal turned off was repeated, where it was expected to only see noise. The spectral flux noise density from a 10 minute run is shown in
From block 102, the process flows to the block 106 “Generate Pulsed Ibias”, in which the pulse generator 44 generates a pulsed Ibias of the amplitude which is within the critical current range of the SQUID loop, and preferably substantially at the midpoint of the critical current range.
Further, the process flows to the block 108 “Apply Generated Pulsed Ibias to the SQUID at time t0+τi”, where the generated pulsed Ibias is applied to the SQUID detector 10 with time delay τi relative to the t0.
The flow chart proceeds further to the block 110 “Measuring VSQUID”, in which the SQUID output voltage is measured with the voltmeter 54. This VSQUID is an indication of the switching event of the SQUID detector 10.
From the block 110, the procedure flows to the logic block 112 “Is VSQUID>Vthreshold”, where Vthreshold is some chosen voltage below the SQUID switching voltage and above the noise level. If this condition is false, processes in the blocks 116, 102, 106, 108, 110, 112 are repeated. If the condition is true, the switching event is recorded in block 122 “Record Switching Event” by a counter 52 (shown in
The process flows further to the block 120 “Increase the Modulation Flux to SQUID by Δφ”, in which under the control of the computer 24, the modulation flux source 48 couples an additional DC modulation flux to the SQUID detector. From block 120 through the block 170 “Increment the Time Delay by Δτ”, the procedure returns to block 104 to repeat the process as in blocks 116-120 for different time delays τi.
The computer 24 further uses the recorded switching events in block 122 to generate a 2D histogram shown in
After creating the 2D histogram, shown in
Further, the procedure flows to block 150 where a new SQUID position (xi, yi) is selected. The processes in blocks 100-130 and 150 are repeated until all positions (x, y) have been mapped out; and the procedure follows to block 160 in which a map of B(x,y) is calculated for each delay time τi.
Finally, the procedure flows from the block 130, 150 and 160 to the block 132 where the calculated magnetic field B is converted into the current image of the current flowing in the sample 22. To convert the magnetic field image into an image of currents flowing in the sample, the standard magnetic inverse is performed which involves taking a forward Fast Fourier Transformer (FFT) multiplying the result of the forward FFT by the appropriate exponential factor (the Biot-Savart factor), and then performing an inverse FFT.
Although this invention has been described in connection with specific forms and embodiments thereof, it will be appreciated that various modifications other than those discussed above may be resorted to without departing from the spirit or scope of the invention. For example, equivalent elements may be substituted for those specifically shown and described, certain features may be used independently of other features, and in certain cases, particular locations of the elements may be reversed or interposed, all without departing from the spirit or scope of the invention as defined in the appended claims.
This Utility Patent Application is based on Provisional Patent Application Ser. No. 60/553,915, filed 17 Mar. 2004.
Number | Date | Country | |
---|---|---|---|
60553915 | Mar 2004 | US |