High intensity fabry-perot sensor

Information

  • Patent Grant
  • 7782465
  • Patent Number
    7,782,465
  • Date Filed
    Wednesday, February 4, 2009
    15 years ago
  • Date Issued
    Tuesday, August 24, 2010
    13 years ago
Abstract
A method and apparatus for detecting seismic vibrations using a series of MEMS units, with each MEMS unit including an interferometer is described. The interferometers on the MEMS units receive and modulate light from two differing wavelengths by way of a multiplexing scheme involving the use of Bragg gratings and light circulators, and an optoelectronic processor receives and processes the modulated light to discern vibrational movement of the system, which in turn allows for monitoring and calculation of a specified environmental parameter, such as seismic activity, temperature or pressure.
Description
FIELD OF INVENTION

The present invention relates to sensors for measuring the absolute length of a gap in a Fabry-Perot interferometer, and more particularly to a Fabry-Perot sensor that provides a more intense signal.


BACKGROUND OF THE INVENTION

The use of Fabry-Perot interferometers to measure the absolute length of a gap is known. Use of a ball lens to collimate light shining on a Fabry-Perot interferometer is needed for sensors measuring gaps exceeding about 30 um in order to maintain a uniform optical path length for all light rays and to assure a high percentage of the light reflected by the interferometer is captured by the fiber. However, if the light delivery fiber is not precisely centered on the ball lens axis or if the interferometer is not precisely perpendicular to the axis of the incident light transmitted by the ball lens, then the reflected light from the diaphragm does not re-enter the fiber because the reflected light spot that is re-imaged by the ball lens is not centered on the end of the input fiber. As a result, if insufficient light reflected from the sensor re-enters the fiber, the results from the Fabry-Perot interferometer-based sensor are compromised.


Accordingly, a Fabry-Perot interferometer-based sensor with a ball lens and alignment scheme that reflects high intensity light signals would provide benefits such as improved power budget, improved signal to noise ratio, and would be welcomed by the industry.


SUMMARY OF THE INVENTION

The present application discloses a sensor assembly that comprises an optical fiber having an optical axis, a lens in optical communication with the optical fiber, the lens having an optical axis and the lens capable of transmitting a beam of light, a reflective surface, the reflective surface spaced from the lens such that the beam of light transmitted from the lens is capable of reflecting from the reflective surface back to the lens, and an alignment device capable of aligning the beam of light transmitted from the lens substantially perpendicular with the reflective surface.


Another embodiment discloses a Fabry-Perot sensor assembly that comprises an optical fiber, a ball lens in optical communication with the optical fiber the ball lens capable of transmitting a beam of light, a window having a first surface and a second surface, a diaphragm spaced from and parallel to the second surface of the window, the diaphragm having a partially reflective surface, and an alignment device capable of aligning the beam of light transmitted from the ball lens substantially perpendicular with the partially reflective dielectric coating of the diaphragm.


In yet another embodiment, a sensor assembly comprises a body having a socket, a ball rotatably positioned in the socket of the body, an optical fiber, at least a portion of the optical fiber positioned in the ball, a ball lens attached to the optical fiber, the ball lens capable of transmitting a beam of light, a diaphragm having a reflective surface, the diaphragm spaced from the ball lens such that the beam of light transmitted by the ball lens is capable of reflecting from the surface of the diaphragm back to the ball lens, and wherein rotation of the ball aligns the beam of light transmitted from the ball lens substantially perpendicular with the reflective surface of the mesa diaphragm.





DESCRIPTION OF THE DRAWINGS

Operation may be better understood by reference to the following detailed description taken in connection with the following illustrations, wherein:



FIG. 1A is a concept drawing of a Fabry-Perot interferometer based sensor assembly with a ball lens and Fabry-Perot gap, wherein the window is a wedge with nonparallel surfaces.



FIG. 1B is a concept drawing of a Fabry-Perot interferometer based sensor assembly with a ball lens, a Fabry-Perot gap, and a wedge-shaped spacer that is used with a window having parallel surfaces.



FIG. 2 is a concept drawing of sensor assembly with ball lens and Fabry-Perot gap, wherein the two surfaces of the window are plane parallel (where one surface is a first reflector in a Fabry-Perot interferometer) and the transducer body is machined at the desired angle to maximize the reflected light signal.



FIG. 3 is a ray trace drawing of a 2 mm diameter ball lens with de-centering of the delivery fiber relative to the ball lens and tilt of the diaphragm relative to the fiber, where the lens-to-window spacing 0.1 mm; the window thickness=0.7 mm; the window-reflector spacing (gap)=1 mm; the fiber de-center=0.5 mm; and the tilt angle=0.5°.



FIG. 4 is a ray trace drawing of a 2 mm diameter ball lens with de-centering of the delivery fiber relative to the ball lens and no tilt of the diaphragm relative to the fiber (i.e., reflected rays do not re-enter fiber), where the lens-window spacing 0.1 mm; the window thickness 0.7 mm; the window-reflector spacing (gap) 1 mm; the fiber de-center=0.05 mm; and the tilt angle=0.



FIG. 5 shows a cross section of a second reflector in the Fabry-Perot interferometer with a mesa diaphragm configuration.



FIG. 6 shows a cross section of a second reflector in the Fabry-Perot interferometer with a plug diaphragm configuration.



FIG. 7 shows a cross section of a second reflector in the Fabry-Perot interferometer with a bellows diaphragm configuration.



FIG. 8 shows a cross section of a second reflector in the Fabry-Perot interferometer with a spherical depression.



FIG. 9 shows a flexible transducer incorporating an embodiment of a Fabry-Perot interferometer based sensor.



FIG. 10 shows a cross-section drawing of ball and socket alignment device of an optical fiber with fused ball lens.





DETAILED DESCRIPTION

While the present invention is described with reference to the embodiments described herein, it should be clear that the present invention should not be limited to such embodiments. Therefore, the description of the embodiments herein is illustrative of the present invention and should not limit the scope of the invention as claimed.


To obtain the maximum light intensity using a Fabry-Perot interferometer based sensor, it is necessary to assure the optical fiber is precisely centered on the lens optical axis and the second reflector in the Fabry-Perot interferometer is precisely perpendicular to the beam of light transmitted from the lens. Since these conditions cannot be met precisely in manufacturing practice, certain adjustments are necessary to achieve these results. An embodiment of a Fabry-Perot interferometer based sensor 10 is shown in FIG. 1A. In this embodiment, a wedge shaped window assembly 15 is used rather than a plane-parallel window as an alignment device. The Fabry-Perot interferometer based sensor 10 comprises a transducer body 11, a ferrule 20, an optical fiber 25 having an optical fiber axis 27, a lens 30 having a lens optical axis 32, and a Fabry-Perot sensor 40. Despite only a ball lens being shown in FIG. 1, any sort of lens that focuses and collimates light can be used, e.g., a graded index lens or a ball lens. The Fabry-Perot sensor 40 comprises a wedge shaped window assembly 15 and a diaphragm 42 having an optical axis 45 and a reflective surface 49. The wedge shaped window assembly 15 comprises one surface 52 that serves as the first partially reflector in a Fabry-Perot interferometer where the window assembly 15 is located between the lens 30 and a second reflector 49 in the Fabry-Perot interferometer, which allows for proper operation of the invention with long gaps. Rotation of the wedge-shaped window assembly 15 causes a change in the angle of refraction into and out of the window assembly 15 until the window assembly 15 is in the precise rotational location where the column or beam of light transmitted from the lens 30, is perpendicular to the first reflective surface 52 on the window assembly 15. Additionally, the lens optical axis 32 is perpendicular to the surface 49 of the diaphragm 42, as well as the optical axis 27 of the optical fiber 25 being perpendicular to the first reflective surface 52 of the window assembly 15 and the surface 49 of the diaphragm 42.


Alternatively, the window surfaces 51, 52 can be maintained parallel to each other and parallel to the second reflector surface 49 in the Fabry-Perot sensor. Plane-parallel windows are easier to manufacture. In this embodiment, the alignment device comprises a wedge-shaped spacer 61 located between the lens and the reflective surface as shown in FIG. 1B. Accordingly, to provide the angle tuning, the wedge-shaped spacer 61 is inserted until the column or beam of light transmitted from the lens 30, is perpendicular to the reflective surface on the diaphragm. Spacers 61 with different wedge angles can be matched to different transducer bodies to collect for variation in manufacturing tolerances of the transducer bodies and to optimize light transmission.


As shown in FIG. 2, another alternative embodiment of a Fabry-Perot interferometer based sensor 210 is shown. In this embodiment, the Fabry-Perot interferometer based sensor 210 maintains the window surfaces 251, 252 parallel to each other and parallel to the second reflector surface 249 in the Fabry-Perot sensor 240. To provide the angle tuning, the alignment device comprises a surface 213 of the transducer body 211 that mates with the window assembly 215 that is machined at the desired angle after the ball lens 230 and optical fiber 225 assembly are bonded. In this alternative embodiment, the window assembly 215 does not need to be rotated to bring the window 215 into precise alignment with the transducer 211. It is simply attached to the transducer body 211 at any rotational position. The transducer body 211 is machined at a predetermined angle to produce the desired tilt angle of the Fabry-Perot interferometer based sensor. In other words, the alignment device comprises the transducer body 211 having its end surface or face 213 machined at an angle relative to its axis to align the beam of light transmitted from the lens perpendicular with the reflective surface 249 of the diaphragm. The desired tilt angle of the transducer body 211 is also when a light beam transmitted from the ball lens 230 is perpendicular to the end face 213 of the transducer body 211. This ensures the light beam is perpendicular to the diaphragm surface 249, as shown in FIG. 2. This approach can also be used even when there is no ball lens and no window, to correct for any misalignment of the light beam with the transducer body and second reflector of the Fabry-Perot sensor, i.e. the diaphragm surface.


In the yet another embodiment, the method for pointing the light beam to achieve perpendicularity with the diaphragm is to use a metal ball-and-socket assembly shown in FIG. 10. In this embodiment, the Fabry-Perot interferometer based sensor 1000 comprises a ferrule 1020, an optical fiber 1025, a lens 1030, a Fabry-Perot sensor 1040, and an alignment device. The alignment device comprises a body 1060 having a socket 1065, and a ball 1070. The Fabry-Perot sensor 1040 comprises a window assembly 1015 and a diaphragm 1042. The window assembly 1015 comprises one surface 1052 that serves as the first reflector in a Fabry-Perot interferometer where the window 1015 is between the lens 1030 and a second reflector 1049 in the Fabry-Perot interferometer. This allows for proper operation of the embodiment with long gaps. The window assembly 1015 also includes another surface 1051 parallel to the surface 1052. The ball 1070 can be a metal ball, but is not limited to such. It can be of any material. The ball 1070 is rotatably attached in the socket 1065. Held inside the metal ball 1070 is the ferrule 1020 that holds the optical fiber 1025 and lens 1030. The metal ball 1070 can be rotated in its mating socket 1065 through two degrees of freedom about the center-of-rotation 1072, as shown by the arrow. In this manner the light beam angle transmitted from the lens 1030 is fine-tuned to be perpendicular to the diaphragm 1042 surface 1049.


Various alternatives have been modeled using optical ray tracing software. In one embodiment, a 2 mm diameter ball lens that is configured according to the drawing in FIG. 3 has the design parameters presented in Table 1.









TABLE 1





Parameter definitions for design in FIG. 3. For


a lens with 2 mm FS ball w 0.7 mm thick window





















THICK-
APERTURE



SRF
RADIUS
NESS
RADIUS
GLASS





OBJ

0.530000
0.025000
AIR


AST
1.000000
2.000000
0.119528 AS
FK3 (fused silica)


2
−1.000000
0.100000
0.418365 S
AIR


3

0.700000
0.420979 S
BK7 (glass)


4

1.000000
0.433099 S
AIR


5

−1.000000
0.459240 S
REFL_HATCH *


6

−0.700000
0.48538 1 S
BK7


7

−0.100000
0.497501 5
AIR


8
−1.000000
−2.000000
0.500115 5
FK3


9
1.000000
−0.530000
0.221589 S
AIR


IMS


0.060116S


















0
DT
1
DCX

DCY
0.050000
DCZ






TLA

TLB

TLC



3
DT
1
DCX

DCY

DCZ






TLA
−0.500000
TLB

TLC



5
DT
1
DCX

DCY

DCZ






TLA
−0.500000
TLB

TLC



7
DT
1
DCX

DCY

DCZ






TLA
−0.500000
TLB

TLC






* TILT/DECENTER DATA






The tilt angle is an input parameter to the ray trace. The same tilt angle is applied to each window surface C and D and the reflector E. FIG. 4 shows what happens if the fiber de-center remains 0.05 mm and the tilt angle is set to 0. The reflected rays miss the end of the fiber. Compare FIG. 4 with FIG. 3, where the reflected rays re-enter the fiber. The object and image size in FIG. 3 is roughly 0.065 mm (total spot size, not rms). In FIG. 4, the size of the image (reflected spot) is roughly 0.115 mm and is not centered about the object (fiber end).


As previously discussed, a configuration to collimate light shining on the diaphragm of a fiber optic Fabry-Perot pressure sensor is shown in FIGS. 1 and 2. A light delivery fiber and a ball lens are not attached to one another.


In addition to the alignment issues caused by the non-attached ball lens and fiber, the non-attached case results in two unwanted reflective surfaces (the fiber end and the ball lens input surface) that could interfere with the desired signal from the Fabry-Perot sensor. In the embodiment shown in FIG. 10, the ball lens 1030 is attached to the optical fiber 1025. More specifically, the ball lens 1030 is fused and centered on the end of the optical fiber 1025 minimizing the de-centering problem and eliminating two unwanted reflective surfaces. A ball lens is fused to the silica optical fiber by heating the end of the fiber to the melting point. During melting of the fiber, surface tension produces a sphere of transparent silica, and when the melted silica refreezes, the ball lens is permanently fused to the end of the fiber. Alternatively, the ball lens 1030 can be bonded to the optical fiber 1025 using an adhesive. The typical diameter of the ball lens formed in this manner is 340/Lm.


An additional way to improve the performance of the Fabry-Perot interferometer based sensor is to machine a feature (such as a circular groove) into the diaphragm that causes the surface of the diaphragm to translate without bending as the diaphragm deflects. This feature could be configured as a mesa 500 (which is the circular groove cut into the diaphragm substantially surrounding the flat mesa reflective surface of the diaphragm), a plug 600, or a bellows 700 as depicted in FIGS. 5, 6, and 7, respectively. As shown in FIG. 5, the mesa diaphragm 500 includes a circular groove 510 cut therein. As shown, the circular groove 510 surrounds the reflective surface 549 of the diaphragm 500.


Another way to improve the performance of the Fabry-Perot interferometer based sensor 10 is to attach a glass plate and/or dielectric coating 49 to the surface of the diaphragm 42 that allows the reflectance of the diaphragm 42 to be optimized and to remain uniform with time and temperature.


Additionally, the performance of the Fabry-Perot interferometer based sensor could be improved by machining a concave spherical depression 810 as depicted in FIG. 8 in the center of the diaphragm 800 to provide modal control of the Fabry-Perot gap. The depth of the spherical depression must be less than the minimum gap that is to be measured with the Fabry-Perot sensor.


The features of the second reflector in the Fabry-Perot interferometer based sensor combine to enable a transducer head 900 to be fabricated that is very short and very small in diameter. The small size allows the transducer head 900 to be placed on then end of a flexible probe 910 for use in locations where space and access are very limited, forming a flexible transducer. In gas turbine applications where pressure pulsations in the combustor are to be monitored, it is desirable to install the pressure transducers and other sensors as close as possible to the combustion zone. Combustor baskets in Siemens Westinghouse turbines contain J-tubes used to examine the combustor basket with a boroscope. A flexible transducer may be installed in this location but there are physical limitations to the size of the transducer head and the pigtail assembly that contains the leads. It is straightforward to design and build a fiber optic transducer that fits within the size envelope defined by the gas turbine combustor basket J-tube. One design is shown in FIG. 9. The size constraints include the diameter and length of the transducer and the flexibility of the pigtail assembly that must be pressure sealed.


While the present invention has been described with reference to the preferred embodiment, obviously other embodiments, modifications, and alternations could be ascertained by one skilled in the art upon reading the present disclosed. The present invention is intended to cover these other embodiments, modifications, and alterations that fall within the scope of the invention upon a reading and understanding of this specification.

Claims
  • 1. A sensor assembly comprising: an optical fiber having an optical axis;a lens in optical communication with said optical fiber, said lens having an optical axis and said lens capable of transmitting a beam of light;a reflective surface, said reflective surface spaced from said lens such that said beam of light transmitted from said lens is capable of reflecting from said reflective surface back to said lens; andan alignment device capable of aligning said beam of light transmitted from said lens substantially perpendicular with said reflective surface.
  • 2. The sensor assembly of claim 1, further comprising a transparent window with a partially reflective surface, wherein said partially reflective surface of said window is substantially parallel with and is separated by a gap from said reflective surface, said optically transparent window and said reflective surface forming a Fabry-Perot sensor.
  • 3. The sensor assembly of claim 2, wherein said lens comprises at least one of: a ball lens; a graded index lens; a lens that focuses light; and a lens that collimates lights.
  • 4. The sensor assembly of claim 3, further comprising a ferrule encasing said optical fiber, said ferrule aligning said optical axis of said optical fiber with said optical axis of said lens.
  • 5. The sensor assembly of claim 3, wherein said ball lens is attached to said optical fiber to align said optical axis of said optical fiber with said optical axis of said lens.
  • 6. The sensor assembly of claim 5, wherein said ball lens is attached to said optical fiber by melting or bonding said ball lens to said optical fiber.
  • 7. The sensor assembly of claim 4, wherein said ball lens is not attached to said optical fiber.
  • 8. The sensor assembly of claim 1, wherein said alignment device comprises: a body having a socket aperture;a ball rotatably positioned in said socket aperture;wherein at least a portion of said optical fiber is positioned within said ball.
  • 9. The sensor assembly of claim 8, wherein said ball is rotatable to align said beam of light transmitted from said lens substantially perpendicular with said reflective surface.
  • 10. The sensor assembly of claim 1, wherein said alignment device comprises a wedge shaped window located between said lens and said reflective surface.
  • 11. The sensor assembly of claim 1, wherein said alignment device comprises a wedge shaped spacer located between said lens and said reflective surface.
  • 12. The sensor assembly of claim 1, wherein said alignment device comprises a transducer body having an axis and an end surface, said end surface machined at an angle relative to said transducer body axis to align said beam of light transmitted from said lens substantially perpendicular with said reflective surface.
  • 13. The sensor assembly of claim 1, wherein said reflective surface is a diaphragm.
  • 14. The sensor assembly of claim 13, wherein said diaphragm comprises at least one of: a flat diaphragm; a mesa diaphragm; a plug diaphragm; and a bellows diaphragm.
  • 15. The sensor assembly of claim 13, wherein said diaphragm has a dielectric reflective surface.
  • 16. The sensor assembly of claim 15, wherein said diaphragm comprises a mesa diaphragm, said mesa diaphragm comprising a circular groove substantially surrounding said dielectric reflective surface.
  • 17. The sensor assembly of claim 13, wherein said diaphragm has a flat or a concave reflective surface.
  • 18. The sensor assembly of claim 1, further comprising a flexible tube encasing at least a portion of said optical fiber to form a flexible transducer.
  • 19. A Fabry-Perot sensor assembly comprising: an optical fiber;a ball lens in optical communication with said optical fiber said ball lens capable of transmitting a beam of light;a window having a first surface and a second surface;a diaphragm spaced from and parallel to said second surface of said window, said diaphragm having a partially reflective surface; andan alignment device capable of aligning said beam of light transmitted from said ball lens substantially perpendicular with said partially reflective dielectric coating of said diaphragm.
  • 20. The Fabry-Perot sensor assembly of claim 19, wherein said ball lens is attached to said optical fiber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/377,050 to Gibler et al. filed on Mar. 16, 2006 now abandoned. This application claims priority from U.S. Provisional Patent Application No. 60/662,202 filed on Mar. 16, 2005, which is hereby incorporated by reference, and claims priority from U.S. Provisional Patent Application No. 60/774,289 filed on Feb. 17, 2006, which is also hereby incorporated by reference.

US Referenced Citations (266)
Number Name Date Kind
1432149 Bellingham Oct 1922 A
3923400 Hardy Dec 1975 A
4210029 Porter Jul 1980 A
4329058 James et al. May 1982 A
4393714 Schmidt Jul 1983 A
4418981 Stowe Dec 1983 A
4428239 Johnston Jan 1984 A
4572669 James et al. Feb 1986 A
4576479 Downs Mar 1986 A
4583228 Brown et al. Apr 1986 A
4596466 Ulrich Jun 1986 A
4606638 Sommargren Aug 1986 A
4628211 Ruppert Dec 1986 A
4640616 Michalik Feb 1987 A
4647203 Jones et al. Mar 1987 A
4648083 Giallorenzi Mar 1987 A
4668889 Adams May 1987 A
4678909 Jackson et al. Jul 1987 A
4682500 Uda Jul 1987 A
4729654 Akuta et al. Mar 1988 A
4755668 Davis Jul 1988 A
4777358 Nelson Oct 1988 A
4787741 Udd et al. Nov 1988 A
4806016 Corpron et al. Feb 1989 A
4844616 Kulkarni et al. Jul 1989 A
4873989 Einzig Oct 1989 A
4907035 Galburt et al. Mar 1990 A
4914666 Glance Apr 1990 A
4968144 Thomas et al. Nov 1990 A
4972077 Willson et al. Nov 1990 A
4995697 Adamovsky Feb 1991 A
5034603 Wilson Jul 1991 A
5089696 Turpin Feb 1992 A
5094534 Cole et al. Mar 1992 A
5119024 Popovic et al. Jun 1992 A
5128537 Halg Jul 1992 A
5128798 Bowen et al. Jul 1992 A
5148604 Bantien Sep 1992 A
5177805 Groger et al. Jan 1993 A
5187546 Johnston Feb 1993 A
5202939 Belleville et al. Apr 1993 A
5218418 Layton Jun 1993 A
5218426 Hall et al. Jun 1993 A
5225888 Selwyn et al. Jul 1993 A
5239400 Liu Aug 1993 A
5247597 Blacha et al. Sep 1993 A
5276501 McClintock et al. Jan 1994 A
5283625 Bunn, Jr. Feb 1994 A
5319981 Mei et al. Jun 1994 A
5351317 Weber Sep 1994 A
5361130 Kersey et al. Nov 1994 A
5386729 Reed et al. Feb 1995 A
5392117 Belleville et al. Feb 1995 A
5400140 Johnston Mar 1995 A
5401956 Dunphy et al. Mar 1995 A
5401958 Berkcan Mar 1995 A
5420688 Farah May 1995 A
5444724 Goto Aug 1995 A
5451772 Narendran Sep 1995 A
5471428 Baroni et al. Nov 1995 A
5477323 Andrews et al. Dec 1995 A
5497233 Meyer Mar 1996 A
5509023 Glance et al. Apr 1996 A
5526114 Eselun Jun 1996 A
5550373 Cole et al. Aug 1996 A
5557406 Taylor et al. Sep 1996 A
5559358 Burns et al. Sep 1996 A
5631736 Thiel et al. May 1997 A
5641956 Vengsarkar et al. Jun 1997 A
5646762 Delavaux et al. Jul 1997 A
5647030 Jorgenson et al. Jul 1997 A
5657405 Fujiwara Aug 1997 A
5682237 Belk Oct 1997 A
5760391 Narendran Jun 1998 A
5784507 Holm-Kennedy et al. Jul 1998 A
5796007 Panagotopulos et al. Aug 1998 A
5818586 Lehto et al. Oct 1998 A
5835214 Cabib et al. Nov 1998 A
5835645 Jorgenson et al. Nov 1998 A
5847828 Downs Dec 1998 A
5852498 Youvan et al. Dec 1998 A
5872628 Erskine Feb 1999 A
5889590 Duggal et al. Mar 1999 A
5891747 Farah Apr 1999 A
5910840 Furstenau Jun 1999 A
5923030 Assard et al. Jul 1999 A
5926591 Labeye et al. Jul 1999 A
5929990 Hall et al. Jul 1999 A
5949801 Tayebati Sep 1999 A
5986749 Wu et al. Nov 1999 A
5999261 Pressesky et al. Dec 1999 A
5999262 Dobschal et al. Dec 1999 A
6016702 Maron Jan 2000 A
6020963 DiMarzio Feb 2000 A
6057911 Reich May 2000 A
6064630 Fersht et al. May 2000 A
6069686 Wang et al. May 2000 A
6075613 Schermer et al. Jun 2000 A
6078706 Nau et al. Jun 2000 A
6088144 Doerr Jul 2000 A
6115521 Tran et al. Sep 2000 A
6118534 Miller Sep 2000 A
6122415 Blake Sep 2000 A
6137621 Wu Oct 2000 A
6151114 Russell Nov 2000 A
6157025 Katagiri et al. Dec 2000 A
6173091 Reich Jan 2001 B1
6178001 Kim Jan 2001 B1
6201289 Jou Mar 2001 B1
6212306 Cooper et al. Apr 2001 B1
6233262 Mesh et al. May 2001 B1
6272926 Fehrenbach et al. Aug 2001 B1
6281976 Taylor et al. Aug 2001 B1
6282215 Zorabedian et al. Aug 2001 B1
6289143 Berthold et al. Sep 2001 B1
6304686 Yamate et al. Oct 2001 B1
6328647 Traudt Dec 2001 B1
6330255 Hung Dec 2001 B1
6331892 Green Dec 2001 B1
6396605 Heflinger et al. May 2002 B1
6422084 Fernald et al. Jul 2002 B1
6425290 Willcox et al. Jul 2002 B2
6439055 Maron et al. Aug 2002 B1
6469817 Heflinger Oct 2002 B1
6486984 Baney et al. Nov 2002 B1
6490038 Jung et al. Dec 2002 B1
6492636 Chen et al. Dec 2002 B1
6492800 Woods et al. Dec 2002 B1
6496265 Duncan et al. Dec 2002 B1
6501551 Tearney et al. Dec 2002 B1
6522797 Siems et al. Feb 2003 B1
6538748 Tucker et al. Mar 2003 B1
6539136 Dianov et al. Mar 2003 B1
6545760 Froggatt et al. Apr 2003 B1
6552799 Wright et al. Apr 2003 B1
6563968 Davis et al. May 2003 B2
6581465 Waters et al. Jun 2003 B1
6583882 Scruggs et al. Jun 2003 B2
6594022 Watterson et al. Jul 2003 B1
6597458 Tayag et al. Jul 2003 B2
6603560 Islam Aug 2003 B1
6608685 Wood et al. Aug 2003 B2
6612174 Sittler et al. Sep 2003 B2
6621258 Davidson et al. Sep 2003 B2
6633593 Ksendzov et al. Oct 2003 B2
6636321 Bohnert Oct 2003 B2
6643025 Degertekin et al. Nov 2003 B2
6647160 Chi et al. Nov 2003 B1
6650420 Houston et al. Nov 2003 B2
6668105 Chen et al. Dec 2003 B2
6668111 Tapalian et al. Dec 2003 B2
6668656 Fernald et al. Dec 2003 B2
6680472 Thingbø et al. Jan 2004 B1
6687011 Lee et al. Feb 2004 B1
6687036 Riza Feb 2004 B2
6690873 Bendett et al. Feb 2004 B2
6714566 Coldren et al. Mar 2004 B1
6714700 Burger et al. Mar 2004 B2
6717965 Hopkins, II et al. Apr 2004 B2
6735224 Murry et al. May 2004 B2
6741357 Wang et al. May 2004 B2
6747743 Skinner et al. Jun 2004 B2
6765194 Holz et al. Jul 2004 B2
6771905 Bortz Aug 2004 B1
6776049 Johnson et al. Aug 2004 B2
6785004 Kersey et al. Aug 2004 B2
6791694 Pezeshki Sep 2004 B2
6798940 Lee et al. Sep 2004 B2
6806961 Hill Oct 2004 B2
6820489 Fernald et al. Nov 2004 B2
6822979 Daiber Nov 2004 B2
6825934 Baney et al. Nov 2004 B2
6829073 Krol et al. Dec 2004 B1
6829259 Pontis et al. Dec 2004 B2
6838660 Duncan et al. Jan 2005 B2
6839131 Kwon Jan 2005 B2
6842254 Van Neste et al. Jan 2005 B2
6879421 Clark et al. Apr 2005 B2
6882428 Baney et al. Apr 2005 B2
6886365 Rumpf et al. May 2005 B2
6886404 Digonnet et al. May 2005 B2
6894787 Youngner et al. May 2005 B2
6898339 Shah et al. May 2005 B2
6900896 Motamedi et al. May 2005 B2
6901088 Li et al. May 2005 B2
6901176 Balachandran et al. May 2005 B2
6904070 Pontis et al. Jun 2005 B2
6909548 Duggan Jun 2005 B2
6915048 Kersey et al. Jul 2005 B2
6917736 Ersoy Jul 2005 B1
6925213 Boyd et al. Aug 2005 B2
6940588 Woodside et al. Sep 2005 B2
6947218 Turner, III Sep 2005 B2
6955085 Jones et al. Oct 2005 B2
6963404 Chang Nov 2005 B2
6985235 Bao et al. Jan 2006 B2
6989906 Sandercock Jan 2006 B2
7002697 Domash et al. Feb 2006 B2
7009691 VanWiggeren et al. Mar 2006 B2
7016047 May Mar 2006 B2
7019837 Waagaard Mar 2006 B2
7043102 Okamoto et al. May 2006 B2
7046349 Everall et al. May 2006 B2
7047816 Jones et al. May 2006 B2
7065108 Park et al. Jun 2006 B2
7134346 Lopushansky et al. Nov 2006 B2
7139081 DeGroot Nov 2006 B2
7139295 Tsai et al. Nov 2006 B2
7173713 Xu et al. Feb 2007 B2
7230959 Johnson Jun 2007 B2
7305158 Jeffers et al. Dec 2007 B2
7355684 Jeffers et al. Apr 2008 B2
7355726 Jeffers et al. Apr 2008 B2
7405829 Shen Jul 2008 B2
7423762 Schmidt Sep 2008 B2
7434472 Leitko et al. Oct 2008 B2
7492463 Lopushansky et al. Feb 2009 B2
7511823 Schultz et al. Mar 2009 B2
20010013934 Varnham et al. Aug 2001 A1
20020015155 Pechstedt et al. Feb 2002 A1
20020041722 Johnson et al. Apr 2002 A1
20020109081 Tarvin et al. Aug 2002 A1
20020167730 Needham et al. Nov 2002 A1
20020186377 Kuskovsky et al. Dec 2002 A1
20030020926 Miron Jan 2003 A1
20030025912 Hui et al. Feb 2003 A1
20030043697 Vakoc Mar 2003 A1
20030081875 Kochergin et al. May 2003 A1
20030128917 Turpin et al. Jul 2003 A1
20030132375 Blazo Jul 2003 A1
20030141440 Kim et al. Jul 2003 A1
20030159518 Sawatari et al. Aug 2003 A1
20030184867 Clark Oct 2003 A1
20040008742 Chou et al. Jan 2004 A1
20040013040 Maas et al. Jan 2004 A1
20040013356 Wang et al. Jan 2004 A1
20040113104 Maida, Jr. Jun 2004 A1
20040141184 Ueki Jul 2004 A1
20040151216 Tsai et al. Aug 2004 A1
20040151438 Ferguson Aug 2004 A1
20040196874 Spiegelberg et al. Oct 2004 A1
20040202399 Kochergin et al. Oct 2004 A1
20050046862 Melnyk Mar 2005 A1
20050073690 Abbink et al. Apr 2005 A1
20050105098 Johansen et al. May 2005 A1
20050213870 Kersey et al. Sep 2005 A1
20050218299 Olsen et al. Oct 2005 A1
20050231729 Lopushansky et al. Oct 2005 A1
20050231730 Jeffers et al. Oct 2005 A1
20050237538 Belleville Oct 2005 A1
20050242096 Jaghab Nov 2005 A1
20060034569 Shih et al. Feb 2006 A1
20060139652 Berthold Jun 2006 A1
20060146337 Hartog Jul 2006 A1
20060152733 Waagaard Jul 2006 A1
20060241889 Lopushansky et al. Oct 2006 A1
20060274323 Gibler et al. Dec 2006 A1
20070006663 Zerwekh et al. Jan 2007 A1
20070064241 Needham Mar 2007 A1
20070227252 Leitko et al. Oct 2007 A1
20070252998 Berthold et al. Nov 2007 A1
20080043245 Needham Feb 2008 A1
20080174781 Berthold et al. Jul 2008 A1
20080186506 Lopushansky Aug 2008 A1
20080297808 Riza et al. Dec 2008 A1
20090056447 Berthold et al. Mar 2009 A1
Foreign Referenced Citations (10)
Number Date Country
3127333 Jan 1983 DE
3411096 Jun 1983 DE
0397388 Nov 1990 EP
0400939 Dec 1990 EP
0452993 Oct 1991 EP
0549166 Jun 1993 EP
0571107 Nov 1993 EP
0597345 Nov 1999 EP
1586854 Oct 2005 EP
1168971 Oct 1969 GB
Related Publications (1)
Number Date Country
20090207417 A1 Aug 2009 US
Provisional Applications (2)
Number Date Country
60774289 Feb 2006 US
60662202 Mar 2005 US
Continuations (1)
Number Date Country
Parent 11377050 Mar 2006 US
Child 12365700 US