1. Technical Field
This application relates generally to the field of lighting. More particularly, this application relates to the technology of high power light emitting diode (LED) lighting units, e.g., providing approximately 9,000 lumens of total illumination at 150 watts power dissipation, and, in particular, to a higher power LED lighting unit for indoor and outdoor lighting functions, such as architectural lighting, having a dynamically programmable single or multiple color array of high power LEDs and improved heat dissipation characteristics.
2. Background Information
Developments in LED technology have resulted in the development of “high powered” LEDs having light outputs on the order of, for example, 70 to 80 lumens per watt, so that lighting units including arrays of high powered LEDs have proven practical and suitable for high powered indoor and outdoor lighting functions, such as architectural lighting. Such high powered LED array lighting units have proven advantageous over traditional and conventional lighting device by providing comparable illumination level outputs at significantly lower power consumption. Lighting units including arrays of higher powered LEDs are further advantageous in providing simple and flexible control of the color or color temperature of the lighting units. That is, and for example, high powered LED lighting units may include arrays of selected combinations of red, green and blue LEDs and white LEDs having different color temperatures. The color or color temperature output, of such an LED array, may then be controlled by dimming control of the LEDs of the array so that the relative illumination level outputs, of the individual LEDs in the array, combine to provide the desired color or color temperature for the lighting unit output.
A recurring problem with such higher powered LED array lighting units, however, is the heat generated by such high powered LED arrays, which often adversely effects the power and control circuitry of the lighting units and the junction temperatures of the LEDs, resulting in shortened use life and an increased failure rate of one or more of the power and control circuitry and the LEDs. This problem is compounded by the heat generated by, for example, the LED array power circuitry and is particularly compounded by the desire for LED lighting units that are compact and of esthetically pleasing appearance as such considerations often result in units having poor heat transfer and dissipation characteristics with consequently high interior temperatures and “hot spots” or “hot pockets.”
The present invention provides a solution to these and related problems of the prior art.
Wherefore, it is an object of the present invention to overcome the above mentioned shortcomings and drawbacks associated with the prior art.
An object of the present invention is to provide a higher power LED lighting unit approaching about 9,000 lumens of total illumination at 150 watts power dissipation.
Another object of the present invention is to provide an improved heat transfer element, which further improves the conduction of heat, generated by the LEDs and through and out of the LED lighting unit so that the LED lighting unit operates at a cooler temperature and thereby reduces the possibility or likelihood that the generated heat from the LEDS will adversely affect the power supply and/or the associated electronic circuitry.
A further object of the present invention is to provide a centrally located chimney, formed in at least one of a rear surface of the power supply housing, and a front surface of the LED array housing, which directly communicates with the air flowing into and through the heat transfer element and thereby facilitates improved convection airflow into and out of the LED lighting unit, which provides a more efficient cooling of the LED lighting unit and thereby increases the durability of the LED lighting unit incorporating the same.
Yet another object of the present invention is to provide the chimney with a reduced area throat section as well as a suitable cross sectional airflow area which avoids restricting pass natural convention flow of air into and through the chimney and thereby improves the overall cooling of the LED lighting unit and, in turn, the LEDs and the internal components accommodated within the LED lighting unit.
The present invention is directed to a lighting unit including a thermally conductive array housing and having an array of LEDs and LED control circuits mounted on a first surface of a printed circuit board, and a heat transfer element located on a second surface of the printed circuit board and forming a thermally conducting path between the array of LEDs and a rear side of the LED array housing, and a power supply housing spaced apart from the read side of the LED array housing and including a power supply. The LED array housing includes more than one vertically oriented (e.g., with respect to a plane of the LED array) heat dissipation elements located in an airflow space between the LED array housing and power supply housing and extending toward but not touching a front side of the power supply housing. The heat dissipating elements, the rear side of the LED array housing and the front side of the power supply housing form multiple convective circulation air passages for the convective dispersal of heat from the heat dissipating elements with thermal isolation gaps between the heat dissipation elements and the power supply housing to thermally isolate the power supply housing from the LED array housing and LED array.
The LED array may include a selected combination of high powered LEDs selected from among at least one of red LEDs, green LEDs, blue LEDs and white LEDs of various color temperatures and the control circuits may include dimming circuits to control a light spectrum and illumination level output of the array of LED by controlling the power levels delivered to the diodes of the LED array.
The LED array housing and the power supply housing are mounted to each other by one or both of a conduit providing a path for power cabling between the power supply housing and the LED array housing and thermally isolating support posts.
In at least some embodiments the heat dissipation elements extend in parallel across a width of a rear surface of the LED array housing as elongated, generally rectangular fins having a major width extending across a rear side of the LED array housing and tapering to a lesser width extending toward the power supply housing and of a height extending generally from the rear side of the LED array housing and toward a front side of the power supply housing with a thermally isolating gap between the heat dissipation elements and the front side of the power supply housing.
In at least some embodiments, the LED array housing and the power supply housing are each substantially cylindrical in shape with a substantially circular transverse cross section having a diameter greater than the axial length of the housing and a circumferential side wall sloping from a first diameter at the front side of the respective housing to a lesser second diameter at the rear side of the respective housing.
In one aspect, at least one embodiment described herein provides a solid-state lighting unit including a solid-state array housing defining an internal compartment and at least one solid-state array module. The solid-state array module includes an array of solid-state lighting elements, a solid-state lighting element control circuit and a printed circuit board. The solid-state array module is accommodated within the internal compartment of the solid-state array housing, having a rear surface that includes a heat transfer element. The lighting unit also includes a power supply housing accommodating a power supply. The power supply housing has a front surface opposing the rear surface of the solid-state array housing and a chimney extending therethrough from the front surface of the power supply housing to a rear surface thereof. The rear surface of the solid-state array housing is fixedly disposed in a spaced apart relationship with respect to the front surface of the power supply housing, such that an airflow space is defined therebetween so that, during operation of the solid-state lighting unit, air flows into the airflow space and toward a central axis of the solid-state lighting unit and out through the chimney to facilitate removal of heat from the solid-state lighting elements.
In another aspect, at least one embodiment described herein provides a process for dissipating heat from a solid-state lighting unit comprising a solid-state array housing fixedly attached to and spaced apart from a power supply housing. The process includes transferring thermal energy from a rear surface of the solid-state array housing to heat air in a space between the solid-state housing and the power supply housing. The heated air is channeled into an open end of a chimney defined in the power supply housing and including a lumen having a first open end facing the rear surface of the solid-state array housing. The channeled air creates airflow through the chimney that reduces a pressure in the space between the solid-state housing and the power supply housing. Ambient air is drawn laterally into the space between the solid-state housing and the power supply housing in response to the reduced pressure.
In another aspect, at least one embodiment described herein provides a solid-state lighting unit including a solid-state array housing defining an internal compartment and a solid-state array module. The solid-state array module includes an array of solid-state lighting elements, a solid-state lighting element control circuit and a printed circuit board. The solid-state array module is accommodated within the internal compartment of the solid-state array housing having a rear surface that includes a heat transfer element. The lighting unit further includes a power supply housing accommodating a power supply. The power supply housing has a front surface opposing the rear surface of the solid-state array housing. The rear surface of the solid-state array housing is fixedly disposed in a spaced apart relationship with respect to the front surface of the power supply housing, such that an airflow space is defined therebetween so that, during operation of the solid-state lighting unit, air flows into the airflow space and to facilitate removing heat from the solid-state lighting elements.
In yet another aspect, at least one embodiment described herein provides solid-state lighting unit including means for transferring thermal energy from a rear surface of the solid-state array housing to heat air in a space between the solid-state housing and the power supply housing. Also provided are means for channeling the heated air into an open end of a chimney defined in the power supply housing. The chimney includes a lumen having a first open end facing the rear surface of the solid-state array housing. The channeled air creates airflow through the chimney that reduces a pressure in the space between the solid-state housing and the power supply housing. The lighting unit also includes means for drawing ambient air laterally into the space between the solid-state housing and the power supply housing in response to the reduced pressure.
The present invention is further described in the detailed description which follows, in reference to the noted drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
In the following detailed description of the preferred embodiments, reference is made to accompanying drawings, which form a part thereof, and within which are shown by way of illustration, specific embodiments, by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the case of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in that how the several forms of the present invention may be embodied in practice. Further, like reference numbers and designations in the various drawings indicate like elements.
Referring first to
The LED assembly 13 includes a solid-state array housing including, for example LED lighting elements, referred to herein as an LED array housing 12. In an illustrative embodiments, the LED array housing 12 has a front diameter of approximately 17.25 inches and tapers to a rear side diameter of approximately 15.6 inches over a total housing thickness of approximately 3.25 inches. The power supply assembly 15 includes a power supply housing 14, which is spaced apart from a rear surface of the LED array housing 12, for example, by approximately 1.75 inches having a front diameter of approximately 14.9 inches and tapering to a rear side diameter of approximately 14.25 inches over a thickness of approximately 2.8 inches. Both the LED array housing 12 and the power supply housing 14 include a thermally conductive and supportive material, such as cast aluminum, for example, having a wall thickness of about 0.25 to 0.5 inches, provided with a polyester powder coat finish and sealed according to International Safety Standard IP66.
It will be appreciated and understood, however, that in at least some embodiments, the cross sectional shapes of the array housing 12 and the power supply housing 14 are generally defined by the shape of the LED array, which is described in detail in a following description, as are the dimensions of the LED array housing 12 and the power supply housing 14. It will also be understood that other cross sectional and longitudinal shapes, such as square, rectangular or polygonal for example, are possible and fall within the scope of the present invention.
As shown, the lighting unit 10 is typically supported by a conventional mounting bracket 16 which allows for adjustment of the lighting unit as may be beneficial in causing or otherwise directing illumination in a preferred direction. For example, the mounting bracket 16 can allow for vertical rotation of the lighting unit 10 about a horizontal axis HA, which passes through the lighting unit 10 at a location approximately centrally between the LED array housing 12 and the power supply housing 14 at approximately a center of balance of the lighting unit 10. Alternatively or in addition, the mounting bracket 16 can allow for horizontal rotation about a vertical axis VA. It will be understood, however, that a lighting unit 10 may be supported or mounted by any of a wide range of other conventional mounting designs and/or configuration, including both fixed mounts and positional mounts of various types.
A power/control cable 18 supplies power and control signals to the LED array and enters the lighting unit 10 though a conventional weather tight fitting 20 that is mounted in a side wall of the power supply housing 14 (see
Referring now to
The LED array assembly 13 includes a solid state array module, e.g., an LED array 28 including a symmetrically packed array of solid state lighting elements, e.g., LEDs 30 mounted on one or more printed circuit modules 42a, 42b, 42c (generally 42) for generating and forming a desired light beam to be generated and transmitted by the lighting unit 10, when powered, with the LED array 28 being covered and protected by one or more optical/sealing elements 32, such as a transparent lens. The optical/sealing element(s) 32 sealing mate with (
The power supply housing 14, in turn, contains a power supply 34 that is connected with the power leads of the power/control cable 18 and supplies electrical power outputs to the LED array 28, as discussed in further detail below.
According to the present invention, each of the individual LEDs 30 of the LED array 28 is mounted on a front surface 36 of a printed circuit board 38 (see generally
According to one embodiment of the LED lighting unit 10, the LED array 28 includes three separate groups, channels or arrays each including a total of 36 LEDs. The 36 LEDs of each separate group, channel or array are arranged in a 6×6 LED array 42 generally in the shape of a diamond. Each one of the three diamond shaped 6×6 LED arrays 42 are clustered together closely adjacent one another to thereby form a generally hexagonally shaped LED array 28, as shown in
It will be appreciated, however, that the LED lighting unit 10 may be constructed with either more or less than 108 LEDs, depending upon the particular illumination application, with any desired combination of LED output colors, e.g., such as red, blue, green, amber, cyan, royal blue, yellow, warm white and cool white, and with greater or lesser output power and power consumption by suitable adaptation of the embodiments described herein, as will be readily understood by and be apparent to those of ordinary skill in the relevant art.
As known by those of skill in the relevant art, the color or the color temperature output of the LED array 28 may include any desired color combination of LEDs 30 and may be controlled by a dimmer control for the LEDs 30, forming the LED array 28, so that the relative illumination level output of, the individual LEDs 30 in the array, combine to provide the desired color or color temperature for the lighting unit output. According to the present invention, the dimming control of the individual LEDs 30, forming the LED array 28, can be provided by one or more control circuits 44, which are controlled by signals transmitted to each LED lighting unit 10 through the control/power cable 18 according to industry standard protocols, such as and for example, the industry standard DMX512 protocol, the DALI protocol, the digital signal interface (DSI), or the remote device management (RDM) protocol. Such control circuits 44 can be integrated, for example, in the one or more circuit boards 38 of the LED array assembly 13.
As generally illustrated in
According to the present invention, the rear surface 26 of the LED array housing 12 generally includes a thermally conductive heat transfer element 50. A rear surface 52 of the printed circuit board 38 is generally provided in intimate contact with the heat transfer element 50 so as to facilitate conduction of the heat, generated by the LEDs 30, from the circuit board 38 and into the heat transfer element 50 for subsequent transferred to surrounding air, as will be discussed below in further detail. During operation of the LED lighting unit 10, the printed circuit board 38, supporting the LED array 28, generally absorbs, transfers and/or otherwise carries away the heat which is generated by the LEDs 30. Accordingly, in such embodiments it is important that the rear surface 52 of the printed circuit board 38 be in thermally conductive contact with the adjacent surface of the heat transfer element 50.
To facilitate the desired heat transfer from the printed circuit board 38, the heat transfer element 50 is preferably manufactured from a thermally conductive material, such as aluminum or similar material or metal which readily conducts heat. When printed circuit board 38 is mounted within the LED array housing 12, an adjacent surface of the heat transfer element 50 is thus located in thermally conductive contact with the rear surface 52 of the printed circuit board 38 and thereby forms a continuous thermally conductive path from the LEDs 30 through the printed circuit board 38 into the heat transfer element 50 to facilitate conduction thereto of heat generated from the LEDs 30.
Referring now to the assembly of the LED array housing 12 and the power supply housing 14, as illustrated in
It should be appreciated that support posts 54 generally mechanically connect and secure the LED array housing 12 to the power supply housing 14 while also preventing the direct conduction of heat from the LED array housing 12 to the power supply housing 14, or vice versa. That is, the support posts 54 of the LED lighting unit 10 are designed to minimize the transfer of heat from the LED array housing 12 to the power supply housing 14. Accordingly, the support posts 54 include one or more conventional thermally isolating elements or components, for example, and/or may have a reduced diameter end which minimizes the heat transfer capacity along the support post 54 to the power supply housing 14. Minimum lengths of the one or more support posts 54 are generally sufficient to maintain at least some degree of physical separation between the LED array housing 12 and the power supply housing 14.
In at least some embodiments, a cable conduit 56 also extends between the LED array housing 12 and the power supply housing 14. Such a cable conduit 56 generally includes a hollow internal passage, which facilitates the passage of associated leads or electrical wires between the power supply 34 and/or the control circuitry of LED array 28.
As best shown in
Each of the heat dissipation elements 60 of the illustrative example generally has the shape of a rectangular member or ridge, which extends radially inward into and provides access to the airflow space 62. Each generally rectangular shaped heat dissipation element 60 is thickest at its base where it is integrally connected with the rear surface 26 of the LED array housing 12 but becomes gradually thinner as the heat dissipation element 60 projects away from the base, extending upwards toward the power supply housing 14. It is to be appreciated that the heat dissipation elements 60 generally do not contact, but are each spaced from, the front surface 58 of the power supply housing 14 so as to avoid transferring or conducting heat thereto. The exposed peripheral edges of the heat dissipation elements 60 are generally smooth and/or rounded so as to allow the air to flow around and by those edges without causing undue turbulence to the air which, in turn, assists with increasing the airflow through the airflow space 62 and dissipation or removal of heat from heat dissipation elements 60 of the heat transfer element 50.
As illustrated, the heat dissipation elements 60 each generally extend from the rear surface 26 of the LED array housing 12 and toward the front surface 58 of the power supply housing 14 but are slightly spaced from the front surface 58 of the power supply housing 14, e.g., are spaced therefrom by a distance of about 0.25 inches or less, thereby forming a thermal isolation gap which thermally isolates the LED array housing 12 from the power supply housing 14 and significantly reduces the direct transfer of heat from the LED array housing 12, supporting the electrically powered LED array 28, to the power supply housing 14 containing the power supply 34.
It should be noted that the thermal conductivity between the heat dissipation elements 60 and the power supply housing 14 may also be reduced while allowing the heat dissipation elements 60 to be in contact with the power supply housing 14 by, for example, minimizing the surface contact area between each heat dissipation element 60 and the power supply housing 14 or by interposing a thermal isolation element, such as a thermally non-conductive spacer, between the leading edge of each heat dissipation element 60 and front surface 58 of the power supply housing 14.
In addition to providing heat dissipation areas for transferring heat from the LED array housing 12 to the surrounding air, the heat dissipation elements 60, the rear surface 26 of the LED array housing 12 and the adjacent front surface 58 of the power supply housing 14 together form multiple convective inlet passages 66 which allow inlet of convective airflow into the airflow space 62, which can remove heat from by the heat dissipation elements 60 during operation of the LED lighting unit 10, as will be discussed below.
The effectiveness and efficiency of this convective heat transfer is, as is well understood by those of skill in the relevant art, a function of the interior dimensions, the lengths and the number of convective circulation passages 66, as well as the surface characteristics of the heat dissipation elements 60, the rear surface 26 of the LED array housing 12 and the front surface 58 of the power supply housing 14. For example, the interior dimensions and the lengths and the characteristics of the interior surfaces of the convective inlet passages 66 as well as the shape or contour of the airflow space 62 determines the type, the velocity and the volume of the convective airflow that is allowed to flow into the convective inlet passages 66. As such, these features are significant factors in determining the overall efficiency and the rate of heat transfer from the heat dissipation elements 60 to the air flowing into the convective inlet passages 66 and contacting with and remove heat from the exposed surfaces of the heat dissipation elements 60 of the heat transfer element 50.
This example embodiment generally defines a total of 22 convective inlet passages 66 with 11 convective inlet passages 66 being located along each oppose lateral side of the LED lighting unit 10. That is, each convective inlet passage 66 is generally defined by a pair of adjacent heat dissipation elements 60 located on either side thereof as well as the rear surface 26 of the LED array housing 12 and the front surface 58 of the power supply housing 14. Accordingly, each heat dissipation passage 66 generally has a width of between approximately 0.3 to 1.5 inches preferable about 0.75 inches, a height of between approximately 1.0 to 2.0 inches preferable about 1.5 inches, and a length ranging between approximately 1.0 to 4.5 inches preferable about 3.25 inches or so, depending upon the location of the passage 66.
The heat dissipation elements 60 thereby provide a desired heat dissipation area for dissipating heat generated by the LED array 28 and transferred to the rear surface 26 of the LED array housing 12 while the non-conductive thermal isolation gaps 64, between the remote free ends of the heat dissipation elements 60 and the front surface 58 of the power supply housing 14, significantly reduce the transfer of any heat directly from the LED array housing 12 to the power supply housing 14 and thereby significantly reducing adverse mutual heating effects of the LED array 28 to the power supply 34.
In some embodiments, the rear surface 26 of the LED array housing 12 also accommodates multiple spaced apart generally cylindrical or conical pins 68 in addition to the generally rectangular shaped heat dissipation elements 60. For example, the rear surface 26 accommodates typically between 20 and 500 pins, more preferably between 100 and 300 pins, preferably about 206 pins (see
Each of the heat dissipation elements 60 has an approximate height of between approximately 0.6 to 1.75 inches, preferable between about 0.9 and 1.5 inches, measured relative to the rear surface 26 of the LED array housing 12, a width or thickness of approximately 0.25 to 0.45 inches, preferably about 0.4 inches, of an inch tapering or narrowing in a direction away from the rear surface 26, for example, with the taper being approximately 6°, and a length ranging from about 2 to 10 inches, depending upon their location across the diameter of the LED array housing 12, and may be spaced apart by a distance on the order of 1.0 to 1.5, preferably about 1.35 inches or so. As generally shown in
With reference now to
In some embodiments, a central region of the heat transfer element 50 includes three arcuate walls 80 to assist with directing airflow into the chimney. These three arcuate walls 80 generally are arranged in an interrupted circle and are generally concentric with both the longitudinal axis A and the chimney 70. Six centrally located pins 68 are located within a region defined by the three arcuate walls 80 and these six pins 68 are generally separated from the remaining pins 68 by the three arcuate walls 80. These six centrally located pins 68 are in intimate communication with air for such air is directed into the chimney 70.
During operation of the LED lighting unit 10, the LEDs 30 generate heat which is conducted to and through the printed circuit board 38 and into the rear surface 26 of the LED array housing 12. As the heat transfer element 50 absorbs heat, ambient air naturally begins to flow into and through each one of the convective inlet passages 66 and into the airflow space 62 located between the rear surface 26 of the LED array housing 12 and the front surface 58 of the power supply housing 14. As this ambient air flows in through each one of the convective inlet passages 66 from a peripheral space between the rear surface 26 of the LED array housing 12 and the front surface 58 of the power supply housing 14, the air generally directed radially inwardly toward the central axis A of the LED lighting unit 10. As the cooler ambient air flows along this radially inward path, the air contacts with the exterior surface of the rectangular heat dissipation elements 60 and the heat is readily transferred from the rectangular heat dissipation element 60 to the air. Such heat transfer in effect cools the rectangular heat dissipation element 60 so that such elements may in turn conduct additional heat away from the LEDs 30.
For embodiments including pins 68, the air continues to flow radially inward, the air contacts one or more of the pins 68 and, as a result of such contact, additional heat is transferred from the pins 68 to the air which further increases the temperature of the air while simultaneously cooling the pins 68. Once the heated air generally reaches the central axis A, the heated air communicates with the three accurate walls and the six centrally located pins 68 before flowing into the chimney 70 and thus flowing axially along the central axis A and through the chimney 70 and out through the rear surface of the power supply housing 14. This airflow pattern, from the convective inlet passages 66 through the airflow space 62 and out through the chimney 70 maximizes convection airflow through the LED lighting unit 10 and thus achieves maximum cooling of the LED lighting unit 10.
As described, heat is transferred from the exterior surface of the rectangular heat dissipation elements 60 to air located within the airflow space 62, between the LED array housing 12 and the power supply housing 14. Such heating of air within the airflow space 62 reduces its density, also increasing its buoyancy. The heated air being more buoyant naturally rises. For arrangements in which the power supply housing 14 is located above the LED array housing 12, as would be for downward directed illumination, the rising heated air encounters the front surface 58 of the power supply housing 14. When configured with a chimney 70, at least a portion of the heated air is directed upward through the chimney 70, exiting the LED lighting unit 10. This creates an upward draft removing heated air from the airflow space 62 and creating a relative pressure drop within the airflow space 62 compared to ambient air. As a result of the relative pressure difference, ambient air is drawn into the airflow space 62, for example, through the inlet passages 66, heated and directed through the chimney 70 resulting in a continual natural draft-driven cooling process.
With reference now to
Turning now to
As best shown in
Turning now to
As shown in
When positioned for downward illumination as shown in
When positioned for lateral illumination as shown in
When positioned for upward illumination as shown, the heat transfer element 250 heats air within the airflow space 262, creating an upward draft through the chimney 272, as shown. The upward draft draws cooler ambient air laterally into the airflow space 262, which results in a continual cooling of the LED lighting unit 200.
Since certain changes may be made in the above described high power light emitting diode (LED) lighting unit for indoor and outdoor lighting functions, without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that the particular embodiments shown and described by way of illustration are in no way intended to be considered limiting. Further, the invention has been described with reference to particular preferred embodiments, but variations within the spirit and scope of the invention will occur to those skilled in the art. It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention.
While the present invention has been described with reference to exemplary embodiments, it is understood that the words, which have been used herein, are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects.
Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/485,904, filed May 13, 2011. The entire teachings of the above application are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6773139 | Sommers | Aug 2004 | B2 |
6851831 | Karlicek, Jr. | Feb 2005 | B2 |
7274302 | Stevenson et al. | Sep 2007 | B2 |
7798684 | Boissevain | Sep 2010 | B2 |
20050122229 | Stevenson et al. | Jun 2005 | A1 |
20050265024 | Luk | Dec 2005 | A1 |
20070051964 | Owen et al. | Mar 2007 | A1 |
20080080196 | Ruud et al. | Apr 2008 | A1 |
20080089060 | Kondo et al. | Apr 2008 | A1 |
20080285271 | Roberge et al. | Nov 2008 | A1 |
20090086491 | Ruud et al. | Apr 2009 | A1 |
20090196064 | Kracker et al. | Aug 2009 | A1 |
20090237923 | Zheng | Sep 2009 | A1 |
20090284976 | Storch et al. | Nov 2009 | A1 |
20100091492 | Simon | Apr 2010 | A1 |
20100128479 | Biebl et al. | May 2010 | A1 |
20100176706 | Fu et al. | Jul 2010 | A1 |
20100188018 | Salm | Jul 2010 | A1 |
20100259200 | Beausoleil | Oct 2010 | A1 |
20100328951 | Boissevain | Dec 2010 | A1 |
20110063843 | Cook | Mar 2011 | A1 |
20110080740 | Allen et al. | Apr 2011 | A1 |
20110121749 | Kubis | May 2011 | A1 |
20120250321 | Blincoe et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
1 693 615 | Aug 2006 | EP |
20-0447539 | Feb 2010 | KR |
10-0997746 | Dec 2010 | KR |
2009081382 | Jul 2009 | WO |
2010058325 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20120287613 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61485904 | May 2011 | US |