This application is a national stage application under 35 U.S.C. 371 and claims the benefit of PCT Application No. PCT/GB2013/50788 having an international filing date of Mar. 26, 2013, which designated the United States, which PCT application claimed the benefit of Great Britain Application No. 1205974.7 filed Apr. 3, 2012, and Great Britain Application No. 1215169.2 filed Aug. 24, 2012, the disclosure of each of which are incorporated herein by reference in their entirety.
The present invention relates to a method and system for high resolution imaging of extended volumes.
Applications of volumetric imaging can be found in all sectors of society from healthcare, to manufacturing, basic research, and defence. More often than not, current technology limits the acquisition volume and resolution that can be captured in a given time frame. Taking the example of optical microscopy, confocal scanning was until recently the gold standard, yet its acquisition time is limited by the scanning speed which in turn is limited by the laser power and the damage threshold of the sample. Various forms of light sheet microscopy such as orthogonal-plane optical sectioning, selective plane illumination microscopy (SPIM), uitramicroscopy, or digital scanned laser sheet microscopy (DSLM), address this issue. Unwanted background signal and photo-damage is prevented by illuminating the to-be-imaged volume in a stepwise fashion while rapidly capturing as much information as possible from the illuminated parts, e.g. using an adequately placed detector array such as a charge-coupled device camera (CCD). With its various implementations, this technique enables rapid high contrast four-dimensional optical sectioning, and has already revolutionised the study of live organisms.
A problem with conventional light sheet microscopy, based on Gaussian beams, is that high isotropic resolution demands a tightly focussed light sheet and therefore illumination with a high numerical aperture (NA). However, this restricts the distance over which a narrowly focussed light sheet can be maintained, thereby limiting the usable field-of-view. The ability to efficiently image large volumes with a single scan of a standard Gaussian light sheet is therefore incompatible with high resolution imaging.
Imaging large volumes at maximal resolution is key to many areas of research such as imaging for biological studies, whether this be archaebacteria, prokaryotes or eukaryotes and at the subcellular, cellular, tissue and in the whole organism level. Examples include embryology, cell-fate mapping both in stem cells studies and in developmental biology, neurobiology, cell spheroids. High resolution imaging of large volumes may also be used in the area of colloidal physics, and for imaging nanostructures such as three-dimensional meta-materials.
Several solutions have been proposed. Generally these are either restricted to two-photon excitation or require a larger number of sample exposures with the associated consequences for imaging speed and photo-damage that may hamper repeated scans. Bessel beams have been used to extend the imaging volume in light sheet microscopy. The transverse intensity profile of a zeroth Bessel order beam has a central spot and a series of concentric rings away from the beam centre. These rings significantly deteriorate the axial resolution.
Confocal detection of the Bessel beam core can improve the axial resolution. However, its advantage over regular confocal microscopy is small since a significant fraction of the light is rejected by the confocal detection of the light sheet beam, and the scanning speed is limited by the camera because images are acquired line-by-line instead of plane-by-plane. Whilst previous work has shown that the scan volume can be extended by using propagation-invariant, non-diffracting Bessel beams, for single photon excitation the trade-off is a significant loss in signal to noise ratio and resolving power achievable at irradiation levels compatible with biological imaging.
The present invention provides a means to create a light sheet with an asymmetric intensity profile in the scan direction, e.g. the squared Airy function. Such a light sheet may be non-planar and can be used for optical manipulation or for high resolution imaging of extended volumes. The asymmetric light sheet may be created from a non-diffractive, propagation invariant beam, defined here as any beam that maintains approximately the same intensity profile in the plane transverse to its propagation direction. The profile may translate or accelerate transversely to the propagation direction. The non-diffractive nature of the light sheet of the invention can be used to extend the field-of-view, and thus imaging volume of light sheet microscopy.
The use of an asymmetric light sheet enables high resolution throughout the entire imaging volume. Perfectly non-diffractive, propagation invariant beams exist only in theory. However, adequate quasi-non-diffractive approximations of such beams exist that still allow a significant extension of the field-of-view. For example, an asymmetric Airy beam, readily generated with a Fourier transform of a cubic phase modulation, is able to extend the field-of-view by an order of magnitude, whilst maintaining high isotropic resolution.
Alternatively, the asymmetric and/or propagation invariant light sheet can be created from any symmetric light sheet by modulating the illumination path after the generation of the light sheet. The position of the modulating element can be placed at any convenient place in the illumination path, be incorporated in any of its optical components, the illuminating objective, the light sheet generating element, or form part of the laser source. An asymmetric intensity profile may also be created by time-modulating the intensity of a symmetric and/or propagation invariant light sheet whilst scanning it transverse to the propagation direction.
The light sheet optical system of the invention can be configured for use as a light sheet imaging system and/or a light sheet spectroscopy system, for example a Raman spectroscopy system, and/or a light sheet microscopy system and/or a light sheet system for exerting an optical force on a particle, such as any inert or biological particle or cell, for example an optical trapping system or an optical guiding system.
The term ‘light sheet’ is used in the description of the invention in the generic sense of an illumination or irradiation pattern or set of patterns. The term ‘light sheet microscopy’ or ‘light sheet imaging’ is used independently of how the ‘light sheet’ is projected into the volume or how information is collected from the irradiated part(s), even if this is not necessarily at the microscopic scale.
Preferably, the propagation-invariant, non-diffractive asymmetric beam has self-healing properties, i.e. the beam can repair itself after passing obstacles (see for example “Optically mediated particle clearing using Airy wavepackets” by Baumgartl et al Nature Photonics, 2, November 2008). Ideally, the beam should have no or a minimal number of zeros for low spatial frequencies in its modulation transfer function (MTF).
The light sheet has an asymmetric transverse intensity profile such as the squared Airy function. The propagation-invariant, non-diffractive asymmetric field may have a Fourier transform that includes a phase term which has a second or higher order component, for example a third or higher order component, in its polynomial Taylor expansion. The Airy beam for example has a cubic phase term in its Fourier transform. Symmetric intensity profiles would have a real optical transfer function that under defocus will become oscillatory and go through zero. Such zeros represent an irretrievable loss of image information and thereby limit the field-of-view of symmetric light sheets. In contrast, any asymmetric profile yields a complex-valued optical transfer function, making it extremely unlikely that both the real and imaginary parts are simultaneously zero, even if the transfer function becomes oscillatory under defocus.
When used for imaging, the light sheet of the invention can increase the field-of-view devoid of MTF zeros, thereby preserving as much information as possible. The recorded image sequence does not need to be sharp and can look blurred to the human observer. If it contains the necessary information, sharp images can be reconstructed by digital means such as a simple, one-dimensional, linear deconvolution, typically handled in real time. The additional freedom given by this hybrid optical-digital approach can be leveraged to design the light sheet so that the quality of the final, processed, image is maximized. The image deconvolution step is only necessary when acquiring images for a human observer. Machine vision applications, such as the automated inspection of samples, may skip the image deconvolution step and obtain the desired information directly from the recorded data.
According to one embodiment of the invention, there is provided a light sheet microscope for imaging a volume comprising means for forming a light sheet using a propagation-invariant, non-diffractive asymmetric beam, such as an Airy beam. Although multi-photon excitation light sheet microscopy may benefit from asymmetric beams, preferably single photon excitation is used.
Using an Airy beam for light sheet imaging provides high resolution for single photon excitation and over a large field-of-view. Only a single exposure per image section is required; however, a set of neighbouring recorded image sections contains information about each two-dimensional slice of the reconstructed image volume. Optimal sharpness is therefore only obtained by using digital deconvolution. The technique enables, for example, specimens at sub-cellular resolution to be studied, whilst providing a holistic view of the interactions. The linear character of this technique facilitates its extension beyond fluorescence imaging to other imaging modalities such scattering and spectroscopy such as Raman imaging and coherent anti-Stokes Raman scattering (CARS).
An Airy wavepacket has been shown theoretically by Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264-267 (1979) to be a “diffraction-free” solution to the Schrodinger equation for a free particle. In the absence of any external potential the wavepacket may freely accelerate transverse to its propagation direction. The mathematical analogy between the Schrodinger equation and the paraxial wave equations may be used to realise finite energy Airy beams in the optical domain as recently witnessed, see Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. “Observation of Accelerating Airy Beams” Phys. Rev. Left. 99, 213901 (2007). The beam has the form of a central maximum and a number of side lobes that exhibit transverse motion.
Counter-intuitively, an Airy beam has an acceleration transverse to its propagation direction associated with its light field [Berry, M. V. & Balazs, N. L. Nonspreading wave packets Am. J. Phys., 47, 264-267 (1979)]. Particle trajectories may be induced to follow parabolic trajectories, commensurate with that transverse acceleration, As well as Airy beam(s), other parabolic beams, or appropriate combinations of beamsbeam arraysscanned beams may be used. Examples of parabolic beams are described in Davis, J. A. et al, Observation of accelerating parabolic beams. Opt. Express 16, 12866-12871 (2008).
The asymmetric light sheet of the invention may be formed using any form of static or dynamic refractive, reflective, or diffractive optical element or the beam can be emitted directly from a specialised laser. Dynamic modulation with for example a spatial light modulator offers the additional advantage that the light sheet can be corrected for system or sample induced aberrations; however, static modulation can be achieved at low cost in the form of a transmissive or reflective optical element with the appropriate surface/refractive index modulation or diffraction grating. The modulating element may perform multiple functions, e.g. it may be integrated into the light sheet generating element, the laser, a lens, or any other component that is irradiated.
Means may be provided for moving or positioning the asymmetric light sheet to capture images at different positions throughout a sample volume, and to ensure that the focal plane of the detection objective is well located with respect to the asymmetric beam light sheet.
The light sheet may consist of multiple light surfaces, formed by the transverse structure of the light sheet, from which information can be collected in parallel using a detector array. Multiple surfaces may be formed by the side lobes of an asymmetric light sheet such as that created from the Airy light sheet.
To aid in the alignment, a second objective and detector may be placed in the path of the light sheet on the illumination axis.
Although the light sheet of choice may be curved, this is not a requirement for extending the field-of-view of the imaging system. However, the curving may be used to apply optical ‘bending’ forces to microscopic objects.
Various aspects of the invention will now be described by way of example only and with reference to the accompanying drawings, of which:
The output beam of a laser passes through lenses L1 and L2 and is converted into a light sheet with a light sheet generating element (LSG), which can be a cylindrical lens or a scanning device such as an acousto-optical deflector (AOD). Lenses L1 and L2 adjust the beam for the LSG diameter. The beam is then passed through lenses L3 and L4 and shaped into an imaging volume extending light sheet with the aid of mask, MK1. This may be a static or dynamic spatial light modulator (SLM) that may be removable or switchable. This modulation may be introduced at any point in the illumination path, before, after, or integrated with other optical elements such as the light sheet generating element. In this specific configuration, lenses L3 and L4 adjust the beam to the size of mask MK1. Lenses L5 and L6 adjust the beam output from mask MK1 to an objective lens OBJ1.
Light transmitted via the spatial light modulator M1 illuminates the sample, and is focussed by objective lens OBJ1 into a specific sample region. An image stack of the sample is captured using the same, or a second objective lens OBJ2 and camera (CAM1). Optionally, a third objective lens OBJ3 and a second camera (CAM2), can be used for calibration of the system. Tube lenses (TL1 and TL2) may be used to focus the light coming from the objectives (OBJ2 and OBJ3) onto the active area of the cameras (CAM1 and CAM2), respectively. The mask, MK1, creates a beam such as the Airy beam, which is quasi non-diffractive, i.e. propagation invariant, and self healing. This permits an extension of the imaging volume along the x-axis by at least an order of magnitude with respect to that achievable with the conventional Gaussian light sheet.
An optional mask MK2, can be inserted at or near the back aperture of the second objective lens OBJ2 to increase the depth of field of the detection path, thereby facilitating the alignment and which may lead to a reduction in manufacturing costs. Additional optical elements could also intentionally introduce focal plane curvature to improve the coincidence of the detection focus with the light sheet.
More specifically,
The mirrors M1 to M4 can be used to facilitate the vertical alignment of the objectives with the sample. In one example, mirrors M2 and M3 can be fixed with respect to the axis of the objectives OBJ1 and OBJ2, respectively. Appropriate alignment of mirrors M1 and M4 allows a vertical translation of both objectives OBJ1 and OBJ2 and mirrors M2 and M3 with respect to the sample stage without altering the alignment. Axial translation stages on the objectives may facilitate fine-tuning the alignment.
The illumination path of
An Airy beam maintains its transverse intensity profile during propagation, to some extent even in the presence of obstacles such as scatterers (‘self-healing or self-repairing’). As it has side-lobes and follows a parabolic trajectory, the Airy beam might not appear appealing for light sheet imaging. However, in practice, it has been found that using propagation-invariant, non-diffractive Airy beam extends the effective field-of-view for light sheet imaging by at least and order of magnitude beyond that achievable using the conventional apertured Gaussian beam.
Converting a conventional light sheet microscope into an Airy light sheet microscope could be done by simply incorporating a cubic phase modulation, e.g. using a piece of transparent material with spatially varying optical thickness, in the illumination path of a conventional light sheet microscope. Mathematically the cubic phase modulation can be written as α(uy3+uz3), where α is a parameter that permits tuning the propagation invariance of the light sheet to match the required field-of-view, while uy and uz are normalised Cartesian coordinates aligned with the y and the z-axis respectively. it would be possible to make the Airy beam light sheet planar by orienting the mask so that the Airy beam curve remains in the plane of the light sheet. Since the point-spread function is formed by time-averaging the beam intensity in the y direction, the light sheet MTF is a section through the origin of the two-dimensional MTF of the Airy beam. It can be calculated that a mask rotation of 45 degrees to keep the propagation path within the light sheet plane would reduce the contrast to practically zero at a low spatial frequency. This should not be entirely surprising since, although an asymmetric beam is used to create the light sheet, the light sheet itself would be symmetric due to the time averaging along the y-axis.
Various experiments have been conducted to test the effectiveness of an Airy beam for light sheet microscopy (or any of its various implementations) in comparison to other beam types. In these experiments, a conventional laser beam (Coherent Verdi V6, 6W 532 nm) was expanded to fill the aperture of an acousto-optical deflector (AOD, Neos AOBD 45035-3) and create the light sheet by scanning the laser focus along the y-axis with a period of 2 s, considerably shorter than the shortest acquisition time (840 s). Next, the AOD aperture was re-imaged using a magnifying telescope to overfill the active area of a spatial light modulator (SLM, Hamamatsu LCOS X10468-04). The use of an SLM enabled rapid dynamic switching between the various light sheet types under investigation and allowed data cubes to be recorded for the various beam types in parallel, minimising the influence of photo bleaching and sample movement. This permitted the elimination of residual aberrations in the system, ensuring that the beams closely resemble the theoretical descriptions.
The active area of the SLM was imaged onto the back aperture of the illumination objective (Mitutoyo 20×/0.42, working distance 20 mm), using a demagnifying telescope (0.5×) with a slit aperture at its focus to select the first diffraction order. The beam was focussed inside the sample, held in a square-profile borosilicate glass capillary (Vitrocell 8250-100, 1 mm side, wall thickness 200 μm). The capillary was filled with fluorescent polystyrene beads (Duke R900) immobilised in PDMS, and mounted on an xyz-piezo stage (Mad City Labs, Nano-LP200) to allow automatic positioning of the sample with respect to the light sheet and the focal plane of the detection objective.
Fluorescence was detected using a CCD camera (Basler piA640-210gm) via an orthogonally mounted objective (Newport 20×/0.40) with appropriate tube lens and fluorescence filter. Note that an orthogonally positioned objective is typical, however, other configurations may be more convenient such as slanted illumination through the detection lens or otherwise positioned secondary lens or waveguide. The light sheets were scanned through the sample in steps of 100 nm using a combination of piezo-stage translation and holographic deflection with the SLM.
Digital post-processing is often hampered by a limited knowledge of the point-spread function, which can give rise to an image shift and ringing artifacts, for example when the distance to the focal plane of the Airy beam is uncertain. However, this is not an issue in light sheet microscopy, because the side-on detection means that a direct relationship exists between the propagation distance of the light sheet and the position on the detector array. Linear deconvolution can therefore accurately correct both the amplitude and phase of the optical transfer function, effectively cancelling the curvature of the Airy beam light sheet, as well as any residual phase artifacts originating from the finite aperture used to create the Airy beam. Furthermore, the accurate knowledge of the point-spread function means that the light sheet does not have to be propagation invariant, it is sufficient that the MTF has no zeros for the required spatial frequencies and field-of-view. By consequence, a large family of asymmetric beams can be used to extend the field-of-view of a light sheet microscope. Several examples are depicted in
However, it can also be noted that this has an adverse effect on the resolution. This can be seen more quantitatively by comparing the Bessel beam MTF curves shown in
In contrast to the Bessel beams, the same sample imaged with the Airy light sheet has a field-of-view that covers the complete region of interest, while at the same time maintaining a high axial resolution throughout the full field-of-view. Moreover, 4D tracking of a single fluorophore is possible with lower peak power since, due to the side lobes of the Airy light sheet, useful signal can be collected over multiple frames. Fluorescence saturation, bleaching and photo damage are therefore less likely in comparison to conventional or Bessel beam light sheet imaging. The use of an Airy light sheet can thus extend the usable lifetime of the fluorophores.
The applicability of the technique has been further demonstrated for biological samples by imaging human embryonic kidney cells suspended in agarose gel. To enable a resolution comparison, the cells were transfected to express the fluorescent protein DsRed in the mitochondria. In-situ wavefront correction was achieved using fluorescent microspheres pre-mixed into the agarose gel as fluorescent probes near the cells of interest.
Column 2 of
A skilled person will appreciate that variations of the disclosed arrangements are possible without departing from the scope of the invention. Although the invention is described specifically with reference to selective plane illumination microscopy, it could equally be applied to any arrangement that uses a sheet of light, for instance for imaging, spectroscopy, such as fluorescence or Raman spectroscopy, or excitation or exerting optical forces, such as trapping or guiding. Equally, types of radiation other than the optical radiation described herein could be used for example, millimeter wave, terrahertz, x-ray, radar or acoustic. Accordingly the above description of the specific embodiment is made by way of example only and not for the purposes of limitation. It will be clear to the skilled person that minor modifications may be made without significant changes to the operation described.
Number | Date | Country | Kind |
---|---|---|---|
1205974.7 | Apr 2012 | GB | national |
1215169.2 | Aug 2012 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2013/050788 | 3/26/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/150273 | 10/10/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7609391 | Betzig | Oct 2009 | B2 |
20090073563 | Betzig | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 2012003259 | Jan 2012 | WO |
Entry |
---|
International Search Report prepared by the European Patent Office dated Jun. 10, 2013, for International Application No. PCT/GB2013/050788. |
Written Opinion prepared by the European Patent Office dated Jun. 10, 2013, for International Application No. PCT/GB2013/050788. |
Search Report prepared by the Great Britain Intellectual Property Office dated Aug. 6, 2012, for Great Britain Application No. GB1205974.7. |
Fahrbach et al: “Microscopy with self-reconstructing beams”, Nature Photonics, vol. 4, No. 11, Sep. 12, 2010 (Sep. 12, 2010), pp. 780-785. |
Broky et al: “Self-healing properties of optical Airy beams”, Optics Express, vol. 16, No. 17, Aug. 18, 2008 (Aug. 18, 2008), p. 12880. |
Hwang et al: “Kessel-like beam generation by superposing multiple Airy beams”, Optics Express, vol. 19, No. 8, Apr. 11, 2011 (Apr. 11, 2011), p. 7356. |
Mazilu et al: “Light beats the spread: “non-diffracting” beams”, Laser & Photonics Reviews, vol. 4, No. 4, Jun. 25, 2010 (Jun. 25, 2010), pp. 529-547. |
Baumgartl et al: “Optically mediated particle clearing using Airy wavepackets”, Nature Photonics; vol. 2, Nov. 2008, pp. 675-678. |
Siviloglou et al: “Observation of Accelerating Airy Beams”, Physical review Letters, PRL 99, 213901-1 to 213901-4 (2007). |
Davis et al: “Observation of accelerating parabolic beams”, Optics Express, vol. 16, No. 17, pp. 12866-12871, 2008. |
Berry et al: “Nonspreading wave packets”, American Journal of Physics 47, 264 (1979); View online: http://dx.doi.org/10.1119/1.11855. |
Number | Date | Country | |
---|---|---|---|
20150029325 A1 | Jan 2015 | US |