The present disclosure relates to a method and apparatus for high resolution imaging of an object. In particular, the invention relates to a macro-collimator coded aperture apparatus for near field imaging in an application such as a radiation source in nuclear medical imaging.
In the art of gamma cameras used for medical imaging, a collimator is typically used to allow only gamma rays traveling substantially normal to the face of a position sensitive detector (such as a scintillation detector) to pass through and form part of the constructed image. A collimator is a device which has a large number of narrow hollow tubes arranged in a packed array configuration, and is made of a high density material such as lead or tungsten. The tubes have a length which is typically about 4 to 12 cm, and the tube may be about 1.0 to 3.0 mm in diameter. An image obtained from radiation passing through a collimator represents the radiation intensity field of the object placed in front of the collimator, i.e. radiation intensity (count rate) detected at a particular point on the detector corresponds to the radiation intensity of the object along a line normal to the detector passing through the particular point. The typically long exposure time required to obtain good quality images using a collimator is a weakness, since radiation is only accepted from a very small solid angle, and a gamma radiation source (namely a radioactive isotope) emits radiation at all angles.
Another device used in some gamma cameras is a pinhole aperture, which is a structure not unlike a pinhole aperture in photography. In a gamma camera pinhole aperture, a lead or tungsten shield (usually conical or pyramid in shape) allows gamma rays to pass unobstructed through a small hole aperture at a large range of angles with the effect that the radiation source is imaged on the detector. As with pinhole photography, the image obtained may he enlarged or reduced in size depending on the distance between the imaging system and the object.
Coded aperture imaging systems are also known. A coded aperture imaging system uses a mask consisting of an array of alternating radio-opaque and transparent elements positioned between the object and a position sensitive detector. Examples of coded aperture imaging systems are disclosed in U.S. Pat. No. 4,435,838 to Gourlay patent and an Apr. 14, 1995, publication (U.S. Pat. No. 2,710,986) in the name of Moretti et al. Instead of having a single aperture through which radiation may pass unobstructed to the detector, the array of transparent elements provide many apertures with the result that the count rate from the same object source is much higher and image acquisition is substantially faster. Coded aperture imaging systems, however, do not yield images on the detector which represent directly the radiation distribution field of the object, and to obtain a useful image, decoding of the position data is required. For example, a single point source will result in a two-dimensional detected distribution (sometimes referred to as a “shadowgram”) which corresponds to the mask pattern, or part of the pattern. For more complex radiation distribution fields, the detected shadowgram is a sum of many such two-dimensional distributions.
In coded aperture imaging systems, there are regions of space where an object source projects a complete shadow of the code (i.e., the mask pattern) onto the detector and others where only a portion of the code is available, since the size of the mask and of the detector are finite. Image reconstruction from partially coded information suffers from various limitations. During image decoding or reconstruction, loss of information from part of the detector or part of the coded aperture affects the whole reconstructed image, since the shadowgrams of the partially coded regions might overlap with the shadowgrams of fully coded regions that would otherwise be correctly reconstructed. This problem in coded aperture imaging is significant in near-field imaging, while for far-field imaging (e.g. gamma ray astronomy) the problem can be less significant.
One possible solution is to place the object at infinity or at a great distance. This has a first drawback of reducing the solid angle subtended by the detector surface with respect to the object source. A second drawback for medical imaging is the difficulty in arranging a patient at a great distance from the detector.
U.S. Pat. No. 6,737,652 to Lanza, Accorsi, and Gasparini (“Lanza et al.”) has presented a method for the reduction of near field artifacts due to the non-stationary point-spread function inherent in coded aperture imaging. Their method requires the acquisition of two sequential images with a 90-degree rotation of a single anti-symmetric coded aperture between the two acquisitions.
Therefore it is a primary object, feature or advantage of the present invention to improve over the state of the art to achieve high resolution images of the radiation source.
A further object, feature or advantage of the invention is to provide a macro-collimator coded aperture apparatus comprising an array of macro-collimating tubes and a coded aperture array for near-field imaging.
A further object, feature or advantage of the invention is the macro-collimating tubes are made of a radio-opaque material.
In another object, feature or advantage of the invention, the radio-opaque material is selected from lead, uranium, tungsten or tungsten-copper alloy.
In yet another object, feature or advantage of the present invention, the radio-opaque material is a tungsten-copper alloy.
In a further object, feature or advantage of the present invention there can be 1 to 100 coded aperture plates.
In another object, feature or advantage of the present invention there can be 20 square coded aperture plates arranged in a 4 by 5 array.
In yet another object, feature or advantage of the present invention, the plates can be 1.5 mm thick copper-tungsten alloy (range 0.5 to 3 mm) for Tc-99m (140 keV), or 5 mm thick (range 2 to 8 mm) for PET isotopes (511 keV).
In a further object, feature or advantage of the present invention a coded aperture plate comprises 1 to 5,000 pinholes arranged in a square or rectangular multiple uniformly redundant array (MURA). In an example configuration, each coded aperture comprises about 1000 pinholes for 140 keV gamma rays or about 400 pinholes for 511 keV gamma rays.
In a further object, feature or advantage of the present invention a pinhole can be 0.5 to 4 mm in diameter.
In another object, feature or advantage of the present invention a pinhole can be about 1.0 mm in diameter for 140 keV gamma rays or about 3.0 mm for 511 keV gamma rays.
Yet another object, feature or advantage of the present invention a reconstructed image resolution of 3 to 4 mm can be achieved for a field-of-view comparable to the size of the detector.
In another object, feature or advantage of the present invention an image resolution of 1 mm or less can be achieved for a small field-of-view less than 15 cm square.
In a further object, feature or advantage of the present invention the near-field imaging is nuclear imaging.
In yet another object, feature or advantage of the present invention the near field imaging is neutron imaging.
On another object, feature or advantage of the present invention the apparatus can be mounted to any 2-dimensional position sensitive detector.
In another object, feature or advantage of the present invention, the 2-dimensional position detector is a gamma camera.
In a further object, feature or advantage of the present invention, the 2-dimensional position detector is a position emission tomography scanner (PET scanner).
In another object, feature or advantage of the present invention, the coded aperture array is mounted within the array of macro-collimating tubes such that a first portion of the tubes is between the imaging detector and the aperture array and a second portion of the tubes is between the aperture array and the object.
In another object, feature or advantage of the present invention the coded aperture array is mounted at the front of the macro-collimating tubes between the tubes and the object.
In yet another object, feature or advantage of the present invention, the coded aperture array is mounted at the rear of the macro-collimating tubes between the tubes and the imaging detector.
In another object, feature or advantage of the present invention, the imaging detector is a gamma camera and the radiation being imaged is gamma radiation.
In yet another object, feature or advantage of the present invention, the macro-collimator consists of an “n×n” (square) array of square tubes, each of which contains a single identical, square, anti-symmetric coded aperture.
In another object, feature or advantage of the present invention, the entire array of coded apertures is rotated through 90 degrees.
In yet another object, feature or advantage of the present invention, data acquired using the macro-collimator with coded apertures is combined with data from the same object acquired with a second opposing gamma camera fitted with a standard parallel-hole collimator to view the object in the opposite direction to reduce the noise inherent in the coded aperture image.
One or more of these and/or other objects, features or advantages of the present invention will become apparent from the specification and claims that follow.
The present invention includes novel features which can be used to upgrade existing gamma camera systems by modifying the outer casing and mounting flange to fit the specifications for each camera design. A workstation is required to apply a unique software algorithm that enables the data to be reconstructed into an accurate image with minimal artifacts or interference. Coded aperture arrays are used in conjunction with macro-collimators, on either side of both sides of the coded aperture arrays, to produce coded images, which are then used to produce a decoded image. Various parameters, including the distances between the radiation source and the code and between the code and the detector, the relative lengths of macro-collimator tubes, sizes of pin-holes in the coded aperture arrays, and number and sizes of the macro-collimator tubes, can be selected to achieve high resolution images of the radiation source. Further, the use of coded aperture ensemble rotation eliminates near-field artifacts and wide-angle rays by the macro-collimator.
The invention will be better understood by way of the following description of example configurations, some with reference to the appended drawings, in which:
a is a partly sectional side view of the macro-collimator coded aperture apparatus for use in near-field imaging according to one configuration, in which the coded aperture is sandwiched between front and rear portions of macro-collimating tubes.
b is a partly sectional side view of the macro-collimator coded aperture apparatus for use in near-field imaging according to another aspect of the present disclosure, in which the coded aperture is placed at the front of the macro-collimating tubes.
c is a partly sectional side view of the macro-collimator coded aperture apparatus for use in near-field imaging according to another aspect of the present disclosure, in which the coded aperture is placed at a rear of the macro-collimating tubes.
In the prior art configuration illustrated in
The system resolution for a coded aperture can be defined as the product of the intrinsic resolution of the detector and the quotient of the distances D and d (D/d). In the Verista Systems' Smart Digital detector, the typical intrinsic spatial resolution is 2.7 mm full-width half-maximum at 140 keV (e.g. gamma photons from 99mTc). With a standard collimator gamma camera, the system resolution is about 9 mm under normal imaging conditions. Larger magnification can be obtained if the object source is closer to the code. However, a larger source-code distance is desirable to decrease angular distribution.
Thus, in accordance with an aspect of the present disclosure, the actual distances D and d are selected to meet: (1) the smallest possible magnification ratio, d/D, so as to obtain less than 4 mm system resolution and greater than one so that any given point projects a full shadow of the code onto the detector (one full code being defined as any quadrant of the code plate); and (2) the smallest possible D+d so that the box size is convenient for medical imaging (see
In the configuration illustrated in
As is better illustrated in
In the configuration shown in
The material used for the macro collimating tubes in the example configuration shown in
In the variant configurations illustrated in
As shown in
The present invention further improves upon the prior art wherein the macro-collimator consists of an “n×n” (square) array of square tubes, each of which contains a single identical, square, anti-symmetric coded aperture. These identical coded apertures 14 are drilled into a single sheet of machineable and self-supporting tungsten-copper alloy, such as Kulite or similar composition. The entire array of coded apertures may then be rotated through 90 degrees simply by rotating the entire sheet. Since the coded apertures are identical and square, the 90-degree rotation of the entire sheet will have the same effect as rotating each coded aperture individually about its center. During the rotations of the sheet through 90 degrees, each coded aperture will move to a new tube in the macro-collimator and will be rotated by 90 degrees relative to the coded aperture previously occupying that position. This arrangement allows the image to benefit from both the elimination of near-field artifacts by coded aperture rotation described by Lanza, et al., and the elimination of wide-angle rays by the macro-collimator as described above, as well as, allowing the use of faster Fourier deconvolution reconstruction algorithms with macro-collimator data. Data using radioactive Tc-99m and a Verista imaging gamma camera show that the combination of the macro-collimator with the rotation of the coded apertures yields better images of phantoms with fewer ghosts and other near-field artifacts than either technique when used alone.
Further, data acquired using the macro-collimator with coded apertures may be combined with data from the same object acquired with a second opposing gamma camera which is fitted with a standard parallel-hole collimator which views the object in the opposite direction from the opposite side. The two gamma camera heads so equipped may be stationary, or may rotate about the object acquiring multiple data sets from different directions. The combined data sets from the two gamma camera heads may be reconstructed using an iterative Ordered Subsets Expectation Maximization (OSEM) algorithm which minimizes differences between the expected and observed data on both detectors. Data acquired using a dual-head Park gamma camera and radioactive Tc-99m demonstrated that the OSEM reconstruction of the combined data yielded images which were clearly superior to those obtained with either the macro-collimator or the parallel-hole collimator alone. The reason for this improvement is believed to be the higher resolution provided by the coded apertures in the macro-collimator combined with the additional information about the boundary of the object provided by the parallel-hole collimator data. Coded aperture images are often plagued by noise covering the image because stochastic noise from highly radioactive regions of the object is spread over the entire image. The improved definition of the object border provided by the addition of the parallel-hole data allows the OSEM algorithm to eliminate this noise from the image.
While particular configurations have been described in the present application, it will be understood by those skilled in the art that the invention is not limited by the particular configurations disclosed and described herein. It will be appreciated by those skilled in the art that other components that embody the principles of the invention and other applications therefore other than as described herein can be configured within the spirit and intent of the invention. The configurations described herein are provided as only examples that incorporate and practices the principles of this invention. Other modifications and alterations are well within the knowledge of those skilled in the art and are to be included within the broad scope of the appended claims.
This application claims priority under 35 U.S.C. §119(e) to provisional application Serial No. 60/919,583 filed Mar. 23, 2007, herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60919583 | Mar 2007 | US |