The Present Disclosure relates generally to cable interconnection systems, and more particularly, to bypass cable interconnection systems for transmitting high speed signals at low losses.
Conventional cable interconnection systems are found in electronic devices such as routers and servers and the like, and are used to form a signal transmission line that extends between a primary chip member mounted on a printed circuit board of the device, such as an ASIC, and a connector mounted to the circuit board. The transmission line typically takes the form of a plurality of conductive traces that are etched, or otherwise formed on or as part of the printed circuit board. These traces extend between the chip member and a connector that provides a connection between one or more external plug connectors and the chip member. Circuit boards are usually formed from a material known as FR-4, which is inexpensive. However, FR-4 is known to promote losses in high speed signal transmission lines, and these losses make it undesirable to utilize FR-4 material for high speed applications (10 GHz and above). Custom materials for circuit boards are available that reduce such losses but the price of these materials severely increase the cost of the circuit board and, consequently, the electronic devices in which they are used. Additionally, when traces are used to form the signal transmission line, the overall length of the transmission line typically may well exceed 10 inches in length. These long lengths require that the signals traveling through the transmission line be amplified and repeated, thereby increasing the cost of the circuit board, and complicating the design inasmuch as additional board space is needed to accommodate these amplifiers and repeaters. In addition, the routing of the traces of such a transmission line in the FR-4 may require multiple turns and the transitions which occur at terminations affect the integrity of the signals transmitted thereby. It becomes difficult to route transmission line traces in a manner so as to achieve consistent impedance and a low signal loss therethrough.
The Present Disclosure is therefore directed to a high speed, bypass cable assembly that defines a transmission line for transmitting high speed signals, 10 GHz and greater that removes the transmission line from on the circuit board and which has low loss characteristics.
Accordingly, there is provided an improved high speed bypass cable assembly that defines a signal transmission line useful for high speed applications at 10 GHz or above and with low loss characteristics.
In accordance with an embodiment as described in the disclosure, an electrical connector assembly is disclosed. The electrical connector assembly comprises a printed circuit board, a chip member, a termination member, a first connector member, a bypass cable member and a second connector member. The chip member and the termination member are mounted on the printed circuit board, with the termination member mounted toward the end of the printed circuit board. The first connector member is in electrical communication with the chip member at a first end, and the bypass cable member electrically connects the first connector member, where it is coupled at a second end thereof, and the termination member, at a first end. The second connector member, disposed at a second end of the termination member, is in electrical communication with the termination member. Generally, the electrical connector is capable of the transmission of high speed signals. As the chip member is located a long length from the board connector, the bypass cable provides a transmission line therebetween that has a consistent geometry and structure that resists signal loss and maintains the system impedance at a consistent level without discontinuities.
In accordance with a second embodiment of the disclosure, the cable bypass assembly provides a transmission line that is separate from the circuit board, and may include one or more associated signal wire pairs, such as is found in “twin-ax” cable. The wires of the bypass cable are configured at their opposite ends in two fashions. At a first end of the bypass cable, the wires are configured for a direct termination to a board mounted connector, and are arranged in a manner such that the conductors of the signal wires extend in alignment with terminal termination ends, or feet, of the board mounted connector. The shielding of the signal wires are rolled back upon the insulative coating of the wires and exterior shield extensions are preferably provided to ensure that the signal wire conductor leads are effectively shielded through the connection. In this manner of connection, the terminal tails need not be attached to the circuit board, either as surface mount or through hole tails, thereby significantly reducing losses and the impedance discontinuity that occurs in the tail to board mounting transition.
At the second end of the bypass cable the signal wires are terminated in a fashion so that they can either be connected directly to the chip member or to the board in close proximity to the chip member. In this regard, and as disclosed in this second embodiment, the signal wire conductors are terminated to associated tail portions that are aligned with the conductors, similar to the termination which occurs at the first end. These tails are maintained in a desired spacing and are further completely shielded by a surrounding conductive enclosure to provide full EMI shielding and reduction of cross talk. The termination of the ends of the bypass cable assembly are done in a manner such that to the extent possible, the geometry of the conductors in the bypass cable is maintained through the termination of the cable to the board connector and/or the chip.
These and other objects, features and advantages of the Present Disclosure will be clearly understood through a consideration of the following detailed description.
The organization and manner of the structure and operation of the Present Disclosure, together with further objects and advantages thereof, may best be understood by reference to the following Detailed Description, taken in connection with the accompanying Figures, wherein like reference numerals identify like elements, and in which:
While the Present Disclosure may be susceptible to embodiment in different forms, there is shown in the Figures, and will be described herein in detail, specific embodiments, with the understanding that the disclosure is to be considered an exemplification of the principles of the Present Disclosure, and is not intended to limit the Present Disclosure to that as illustrated.
In the embodiments illustrated in the Figures, representations of directions such as up, down, left, right, front and rear, used for explaining the structure and movement of the various elements of the Present Application, are not absolute, but relative. These representations are appropriate when the elements are in the position shown in the Figures. If the description of the position of the elements changes, however, these representations are to be changed accordingly.
While the Present Disclosure may be susceptible to embodiment in different forms, there is shown in the Figures, and will be described herein in detail, specific embodiments, with the understanding that the disclosure is to be considered an exemplification of the principles of the Present Disclosure, and is not intended to limit the Present Disclosure to that as illustrated.
Referring more specifically to
Preferably, chip member 12 may comprise a PHY Chip, or any other surface-mounted, physical layer device, known in the art, from which a high speed signal is generated, such as an ASIC and transmitted to a cable assembly. Chip member 12 is mounted to any currently-known printed circuit board, using preferably any of the various currently-known mounting means. Preferably, an FR-4 type printed circuit board is used, in an effort to take advantage of its low cost and wide usage. For purposes of the Present Disclosure, the generated high speed signal may be any type of signal, but typically a data signal, generally having a frequency of 5 GHz and above, and most preferably and is a data signal having a frequency of 10 GHz or more.
Bypass cable member 18 is connected to chip member 12 by means of first connector member 16. First connector member 16 is capable of transmitting a signal greater than 10 GHz between chip member 12 and bypass cable member 18. The interface between first connector member 16 and chip member 18 may be by any known means, including, for example, a plug-receptacle connection, a friction-based connection or the like. It is preferred that the interface be removable. First connector member 16 is preferably capable of receiving the high speed signal generated by the chip member and transmitting it to the bypass cable member without need for a repeater or an amplifier, and without having to use the conductive properties of printed circuit board 14.
Bypass cable member 18 comprises a flexible circuit member, such as a cable, extending from first connector member 16 to termination member 20. Preferably, bypass cable member 18 is capable of receiving and carrying signals above 10 GHz. Preferably, bypass cable member 18 includes one or more wire pairs that transmit differential signals at high speeds. Each such wire pair may have a ground, or drain, wire associated with it. Further, the pairs may be enclosed within bypass cable member 18 and within an associated cable shield. Like first connector member 16, bypass cable member 18 is preferably capable of receiving the high speed signal generated by first connector member 18 and transmitting it to termination member 20 without need for a repeater or an amplifier, and without having to use the conductive properties of printed circuit board 14.
Termination member 20 is electrically connected to bypass cable member 18, and receives the signal from bypass cable member 18. Like all other elements in interconnection assembly 10, termination member 20 is capable of receiving signals greater than 10 GHz. Preferably, termination member 20 is located at or near the edge of printed circuit board 14. Termination member 20 may be mounted to the edge of printed circuit board 14. Alternatively, termination member 20 may be “freestanding,” and not connected to any aspect of assembly 10. Termination member 20 may receive bypass cable member 18 though any methods and means as currently described in the art.
Second connector member 22 preferably provides one end of a male-female relationship with termination member 20 (with termination member 20 providing the second end). It is not imperative that second connector member 22 (or termination member 20) be specifically relegated to the male or female end, as the teachings of the Present Disclosure will nevertheless be realized.
Second connector member 22 is preferably not disposed on any other aspect of interconnection assembly 10 of the Present Disclosure, i.e., second connector member 22 is not mounted on printed circuit board 14. Second connector member 22 receives the signal from termination member 20, and transmits the signal to its next or final destination.
The discussion above focused on a single interconnection assembly. Nevertheless, a plurality of interconnection assemblies may be used on a single printed circuit board, each generally comprising the above-referenced elements. A plurality of assemblies is generally illustrated in
Further, in another embodiment, a plurality of interconnection assemblies, used on a single printed circuit board, may be channeled to a single termination member 26 for transmission of signals beyond the printed circuit board. As illustrated in
A bypass cable assembly 105 is provided to connect together, the connector 112 and the chip member 104, in order to form a signal transmission line extending therebetween for transmitting signals at high speeds of approximately 5 GHz and greater and preferably of approximately 10 GHz and greater. The cable assembly 105 includes a preselected length of cable 107 that has at a first end 107a thereof, a first termination assembly and at a second and opposite end 107b thereof, a second termination assembly. As shown best in
In order to avoid losses that normally occur in the use of signal transmission lines in the circuit board 101 using FR-4 as the board material, the cables 107 are used as the signal transmission lines. As noted above, the cables 107 are made in a manner that controls their size, thickness and the position and spacing of the signal conductors 144A, 144B so as to define a constant impedance profile throughout the lengths of the cables. Accordingly, twin-ax type of cable is desirable as well as flexible circuitry where positioning of the conductors and insulators may be controlled to a high degree of tolerance. Problems with impedance profiles typically occur at the termination points of cables where the geometry of the cable disrupted in order to effect a termination. One such solution to this problem is disclosed in U.S. Pat. No. 6,454,605, issued Sep. 24, 2002 and assigned to the assignee of the Present Disclosure and which is hereby incorporated by reference, in its entirety.
The cable assemblies of the Present Disclosure are terminated at their opposite ends 107A, 107B in a manner that seeks to reduce the modification of the cable geometry in order to reduce the magnitude of the aforementioned discontinuities and to prevent to the extent possible excessive loss, noise and crosstalk. Returning to the drawings and in particular
In this manner, a “direct connection” is effected between the cable first end 107A and the connector 112, in a manner such that the signal terminal tail portions 132a, 132b are aligned with the exposed leads of the cable conductors 144A, 144B so that the exposed leads may be placed on the flat surfaces which the terminal tail portions 132a, 132b preferably provide. The inner shielding 148 of each cable 107 is pulled back over the exposed end of the cable and a shield extension 146 is provided for engaging these cable ends. The extension 146 is shown as a dual extension that can accommodate two cables. The shield extension 146 has what may be considered a cup portion 145 that is formed in a configuration that is generally complementary to the exterior configuration of the cable 107, and it is provided with contact feet 146a-c for contacting the associated terminal tail portions 132c of ground terminals in the receptacle connector 112.
The dual shield extension 146 shown in the drawings has two such cup portions 145 and three contact feet. Two contact feet 146a, 146b are formed along the outer edges of the cup portion 145, while the third contact foot 14c is formed between the cup portions 145. The contact surfaces 147 formed on the bottom of the contact feet are preferably aligned with each other along a common plane, shown as “H” in
The shield extensions 146 provide as close as can be attained complete shielding at the direct termination to the board connector and they extend forwardly to completely cover the exposed ends of the cable signal conductors 144A, 144B as shown in
While a preferred embodiment of the Present Disclosure is shown and described, it is envisioned that those skilled in the art may devise various modifications without departing from the spirit and scope of the foregoing Description and the appended Claims.
The Present DisclosureThis application is a reissue continuation of U.S. application Ser. No. 15/271,903, which is a reissue of U.S. Pat. No. 9,011,177, which issued on Apr. 21, 2015 from U.S. application Ser. No. 13/987,296, which is a continuation-in-part of International Application No. PCT/US2010/022738, filed Feb. 1, 2010, entitled “High Speed Interconnect Cable Assembly,” filed 01 Feb. 2010 with the U.S. Patent And Trademark Office (USPTO) as Receiving Office for the Patent Cooperation Treaty. The '738 Application claims priority of prior-filed U.S. Provisional Application No. 61/145,685, entitled “High Speed Interconnect Cable Assembly,” filed 30 Jan. 2009 also with the USPTO. The contents of each of the above Applications are fully incorporated in their entireties herein.
Number | Name | Date | Kind |
---|---|---|---|
3007131 | Dahlgren et al. | Oct 1961 | A |
3594613 | Prietula | Jul 1971 | A |
3963319 | Schumacher et al. | Jun 1976 | A |
4025141 | Thelissen | May 1977 | A |
4072387 | Sochor | Feb 1978 | A |
4083615 | Volinskie | Apr 1978 | A |
4157612 | Rainal | Jun 1979 | A |
4290664 | Davis et al. | Sep 1981 | A |
4307926 | Smith | Dec 1981 | A |
4346355 | Tsukii | Aug 1982 | A |
4417779 | Wilson | Nov 1983 | A |
4508403 | Weltman | Apr 1985 | A |
4611186 | Ziegner | Sep 1986 | A |
4615578 | Stadler et al. | Oct 1986 | A |
4639054 | Kersbergen | Jan 1987 | A |
4656441 | Takahashi et al. | Apr 1987 | A |
4657329 | Dechelette | Apr 1987 | A |
4679321 | Plonski | Jul 1987 | A |
4697862 | Hasircoglu | Oct 1987 | A |
4724409 | Lehman | Feb 1988 | A |
4889500 | Lazar et al. | Dec 1989 | A |
4924179 | Sherman | May 1990 | A |
4948379 | Evans | Aug 1990 | A |
4984992 | Beamenderfer et al. | Jan 1991 | A |
4991001 | Takubo et al. | Feb 1991 | A |
5112251 | Cesar | May 1992 | A |
5197893 | Morlion et al. | Mar 1993 | A |
5332979 | Roskewitsch | Jul 1994 | A |
5387130 | Fedder et al. | Feb 1995 | A |
5402088 | Pierro et al. | Mar 1995 | A |
5435757 | Fedder et al. | Jul 1995 | A |
5441424 | Morlion et al. | Aug 1995 | A |
5487673 | Hurtarte | Jan 1996 | A |
5509827 | Huppenthal et al. | Apr 1996 | A |
5554038 | Morlion et al. | Sep 1996 | A |
5598627 | Saka et al. | Feb 1997 | A |
5632634 | Soes | May 1997 | A |
5691506 | Miyazaki et al. | Nov 1997 | A |
5781759 | Kashiwabara | Jul 1998 | A |
5876239 | Morin et al. | Mar 1999 | A |
6004139 | Dramstad | Dec 1999 | A |
6053770 | Blom | Apr 2000 | A |
6083046 | Wu et al. | Jul 2000 | A |
6095872 | Lang et al. | Aug 2000 | A |
6144559 | Johnson et al. | Nov 2000 | A |
6156981 | Ward et al. | Dec 2000 | A |
6203376 | Magajne et al. | Mar 2001 | B1 |
6255741 | Yoshihara | Jul 2001 | B1 |
6266712 | Henrichs | Jul 2001 | B1 |
6273753 | Ko | Aug 2001 | B1 |
6273758 | Lloyd et al. | Aug 2001 | B1 |
6366471 | Edwards et al. | Apr 2002 | B1 |
6368120 | Scherer | Apr 2002 | B1 |
6371788 | Bowling et al. | Apr 2002 | B1 |
6452789 | Pallotti et al. | Sep 2002 | B1 |
6454605 | Bassler et al. | Sep 2002 | B1 |
6489563 | Zhao et al. | Dec 2002 | B1 |
6535367 | Carpenter | Mar 2003 | B1 |
6574115 | Asano et al. | Jun 2003 | B2 |
6575772 | Soubh et al. | Jun 2003 | B1 |
6592401 | Gardner et al. | Jul 2003 | B1 |
6652296 | Kuroda et al. | Nov 2003 | B2 |
6652318 | Winings et al. | Nov 2003 | B1 |
6685501 | Wu et al. | Feb 2004 | B1 |
6692262 | Loveless | Feb 2004 | B1 |
6705893 | Ko | Mar 2004 | B1 |
6780069 | Scherer | Aug 2004 | B2 |
6797891 | Blair et al. | Sep 2004 | B1 |
6812560 | Recktenwald | Nov 2004 | B2 |
6824426 | Spink, Jr. | Nov 2004 | B1 |
6843657 | Driscoll et al. | Jan 2005 | B2 |
6863549 | Brunker | Mar 2005 | B2 |
6882241 | Abo et al. | Apr 2005 | B2 |
6903934 | Lo | Jun 2005 | B2 |
6910914 | Spink, Jr. | Jun 2005 | B1 |
6916183 | Alger et al. | Jul 2005 | B2 |
6955565 | Lloyd et al. | Oct 2005 | B2 |
6969270 | Renfro | Nov 2005 | B2 |
6969280 | Chien | Nov 2005 | B2 |
6971887 | Trobough | Dec 2005 | B1 |
7004765 | Hsu | Feb 2006 | B2 |
7004767 | Kim | Feb 2006 | B2 |
7004793 | Scherer | Feb 2006 | B2 |
7044772 | McCreery | May 2006 | B2 |
7052292 | Hsu et al. | May 2006 | B2 |
7056128 | Driscoll et al. | Jun 2006 | B2 |
7066756 | Lange et al. | Jun 2006 | B2 |
7070446 | Henry | Jul 2006 | B2 |
7086888 | Wu | Aug 2006 | B2 |
7108522 | Verelst et al. | Sep 2006 | B2 |
7148428 | Meier et al. | Dec 2006 | B2 |
7168961 | Hsieh | Jan 2007 | B2 |
7175446 | Bright | Feb 2007 | B2 |
7192300 | Hashiguchi et al. | Mar 2007 | B2 |
7214097 | Hsu et al. | May 2007 | B1 |
7223915 | Hackman | May 2007 | B2 |
7234944 | Nordin | Jun 2007 | B2 |
7244137 | Renfro et al. | Jul 2007 | B2 |
7280372 | Grundy et al. | Oct 2007 | B2 |
7307293 | Fjelstad et al. | Dec 2007 | B2 |
7331816 | Krohn et al. | Feb 2008 | B2 |
7384275 | Ngo | Jun 2008 | B2 |
7394665 | Hamasaki et al. | Jul 2008 | B2 |
7402048 | Meier et al. | Jul 2008 | B2 |
7431608 | Sakaguchi et al. | Oct 2008 | B2 |
7445471 | Scherer et al. | Nov 2008 | B1 |
7462924 | Shuey | Dec 2008 | B2 |
7489514 | Hamasaki | Feb 2009 | B2 |
7534142 | Avery | May 2009 | B2 |
7540773 | Ko | Jun 2009 | B2 |
7549897 | Fedder et al. | Jun 2009 | B2 |
7621779 | Laurx et al. | Nov 2009 | B2 |
7637767 | Davis | Dec 2009 | B2 |
7654831 | Wu | Feb 2010 | B1 |
7658654 | Ohyama | Feb 2010 | B2 |
7690930 | Chen et al. | Apr 2010 | B2 |
7719843 | Dunham | May 2010 | B2 |
7744385 | Scherer | Jun 2010 | B2 |
7744403 | Barr | Jun 2010 | B2 |
7744414 | Scherer et al. | Jun 2010 | B2 |
7748988 | Hori | Jul 2010 | B2 |
7771207 | Hamner et al. | Aug 2010 | B2 |
7789529 | Roberts | Sep 2010 | B2 |
7819675 | Ko et al. | Oct 2010 | B2 |
7824197 | Westman | Nov 2010 | B1 |
7857629 | Chin | Dec 2010 | B2 |
7857630 | Hermant et al. | Dec 2010 | B2 |
7862344 | Morgan et al. | Jan 2011 | B2 |
7892019 | Rao | Feb 2011 | B2 |
7906730 | Atkinson et al. | Mar 2011 | B2 |
7931502 | Iida | Apr 2011 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
7997933 | Feldman | Aug 2011 | B2 |
8002583 | van Woensel | Aug 2011 | B2 |
8018733 | Jia | Sep 2011 | B2 |
8036500 | McColloch | Oct 2011 | B2 |
8157573 | Tanaka | Apr 2012 | B2 |
8162675 | Regnier | Apr 2012 | B2 |
8187038 | Kamiya | May 2012 | B2 |
8192222 | Kameyama | Jun 2012 | B2 |
8226441 | Regnier | Jul 2012 | B2 |
8308491 | Nichols et al. | Nov 2012 | B2 |
8337243 | Elkhatib et al. | Dec 2012 | B2 |
8338713 | Fjelstad et al. | Dec 2012 | B2 |
8398433 | Yang | Mar 2013 | B1 |
8419472 | Swanger et al. | Apr 2013 | B1 |
8435074 | Grant | May 2013 | B1 |
8439704 | Reed | May 2013 | B2 |
8449312 | Lan | May 2013 | B2 |
8449330 | Schroll | May 2013 | B1 |
8465302 | Regnier | Jun 2013 | B2 |
8480413 | Minich | Jul 2013 | B2 |
8517765 | Schroll | Aug 2013 | B2 |
8535069 | Zhang | Sep 2013 | B2 |
8540525 | Regnier | Sep 2013 | B2 |
8575529 | Asahi | Sep 2013 | B2 |
8553102 | Yamada | Oct 2013 | B2 |
8575491 | Gundel et al. | Nov 2013 | B2 |
8588561 | Zbinden | Nov 2013 | B2 |
8597055 | Regnier | Dec 2013 | B2 |
8651890 | Chiarelli | Feb 2014 | B2 |
8672707 | Nichols et al. | Mar 2014 | B2 |
8690604 | Davis | Apr 2014 | B2 |
8715003 | Buck et al. | May 2014 | B2 |
8740644 | Long | Jun 2014 | B2 |
8747158 | Szczesny | Jun 2014 | B2 |
8753145 | Lang | Jun 2014 | B2 |
8758051 | Nonen et al. | Jun 2014 | B2 |
8764483 | Ellison | Jul 2014 | B2 |
8784122 | Soubh | Jul 2014 | B2 |
8787711 | Zbinden | Jul 2014 | B2 |
8794991 | Ngo | Aug 2014 | B2 |
8804342 | Behziz et al. | Aug 2014 | B2 |
8814595 | Cohen et al. | Aug 2014 | B2 |
8834190 | Ngo | Sep 2014 | B2 |
8864521 | Atkinson et al. | Oct 2014 | B2 |
8888533 | Westman et al. | Nov 2014 | B2 |
8905767 | Putt, Jr. et al. | Dec 2014 | B2 |
8911255 | Scherer et al. | Dec 2014 | B2 |
8926342 | Vinther | Jan 2015 | B2 |
8926377 | Kirk | Jan 2015 | B2 |
8992236 | Wittig | Mar 2015 | B2 |
8992237 | Regnier | Mar 2015 | B2 |
8992258 | Raschilla | Mar 2015 | B2 |
9011177 | Lloyd | Apr 2015 | B2 |
9028281 | Kirk | May 2015 | B2 |
9035183 | Kodama et al. | May 2015 | B2 |
9040824 | Guetig et al. | May 2015 | B2 |
9054432 | Yang | Jun 2015 | B2 |
9071001 | Scherer et al. | Jun 2015 | B2 |
9118151 | Tran et al. | Aug 2015 | B2 |
9119292 | Gundel | Aug 2015 | B2 |
9136652 | Ngo | Sep 2015 | B2 |
9142921 | Wanha et al. | Sep 2015 | B2 |
9155214 | Ritter | Oct 2015 | B2 |
9160123 | Pao | Oct 2015 | B1 |
9160151 | Vinther | Oct 2015 | B2 |
9161463 | Takamura | Oct 2015 | B2 |
9166320 | Herring | Oct 2015 | B1 |
9196983 | Saur et al. | Nov 2015 | B2 |
9203171 | Yu | Dec 2015 | B2 |
9209539 | Herring | Dec 2015 | B2 |
9214756 | Nishio | Dec 2015 | B2 |
9214768 | Pao | Dec 2015 | B2 |
9232676 | Sechrist et al. | Jan 2016 | B2 |
9246251 | Regnier | Jan 2016 | B2 |
9277649 | Ellison | Mar 2016 | B2 |
9312618 | Regnier | Apr 2016 | B2 |
9331432 | Phillips | May 2016 | B1 |
9350108 | Long | May 2016 | B2 |
9356366 | Moore | May 2016 | B2 |
9385455 | Regnier | Jul 2016 | B2 |
9391407 | Bucher | Jul 2016 | B1 |
9401563 | Simpson | Jul 2016 | B2 |
9413090 | Nagamine | Aug 2016 | B2 |
9413112 | Helster | Aug 2016 | B2 |
9431773 | Chen | Aug 2016 | B2 |
9437981 | Wu | Sep 2016 | B2 |
9455538 | Nishio | Sep 2016 | B2 |
9484671 | Zhu | Nov 2016 | B2 |
9484673 | Yang | Nov 2016 | B1 |
9490587 | Phillips | Nov 2016 | B1 |
9496655 | Huang | Nov 2016 | B1 |
9515429 | DeGeest | Dec 2016 | B2 |
9525245 | Regnier | Dec 2016 | B2 |
9543688 | Pao | Jan 2017 | B2 |
9553381 | Regnier | Jan 2017 | B2 |
9559465 | Phillips | Jan 2017 | B2 |
9565780 | Nishio | Feb 2017 | B2 |
9608388 | Kondo | Mar 2017 | B2 |
9608590 | Hamner | Mar 2017 | B2 |
9627818 | Chen | Apr 2017 | B1 |
9660364 | Wig et al. | May 2017 | B2 |
9666998 | deBoer | May 2017 | B1 |
9673570 | Briant | Jun 2017 | B2 |
9812799 | Wittig | Nov 2017 | B2 |
9985367 | Wanha et al. | May 2018 | B2 |
20010016438 | Reed | Aug 2001 | A1 |
20020111067 | Sakurai et al. | Aug 2002 | A1 |
20020157865 | Noda | Oct 2002 | A1 |
20020180554 | Clark et al. | Dec 2002 | A1 |
20030064616 | Reed et al. | Apr 2003 | A1 |
20030073331 | Peloza et al. | Apr 2003 | A1 |
20030222282 | Fjelstad et al. | Dec 2003 | A1 |
20040094328 | Fjelstad et al. | May 2004 | A1 |
20040121633 | David et al. | Jun 2004 | A1 |
20040155328 | Kline | Aug 2004 | A1 |
20040155734 | Kosemura et al. | Aug 2004 | A1 |
20040229510 | Lloyd et al. | Nov 2004 | A1 |
20040264894 | Cooke | Dec 2004 | A1 |
20050006126 | Aisenbrey | Jan 2005 | A1 |
20050051810 | Funakura | Mar 2005 | A1 |
20050093127 | Fjelstad et al. | May 2005 | A1 |
20050130490 | Rose | Jun 2005 | A1 |
20050142944 | Ling et al. | Jun 2005 | A1 |
20050239339 | Pepe | Oct 2005 | A1 |
20060001163 | Kolbehdari et al. | Jan 2006 | A1 |
20060035523 | Kuroda et al. | Feb 2006 | A1 |
20060038287 | Hamasaki | Feb 2006 | A1 |
20060067066 | Meier | Mar 2006 | A1 |
20060079102 | DeLessert | Apr 2006 | A1 |
20060079119 | Wu | Apr 2006 | A1 |
20060091507 | Fjelstad et al. | May 2006 | A1 |
20060114016 | Suzuki | Jun 2006 | A1 |
20060160399 | Dawiedczyk | Jul 2006 | A1 |
20060189212 | Avery | Aug 2006 | A1 |
20060194475 | Miyazaki | Aug 2006 | A1 |
20060216969 | Bright | Sep 2006 | A1 |
20060228922 | Morriss | Oct 2006 | A1 |
20060234556 | Wu | Oct 2006 | A1 |
20060238991 | Drako | Oct 2006 | A1 |
20060282724 | Roulo | Dec 2006 | A1 |
20060292898 | Meredith | Dec 2006 | A1 |
20070032104 | Yamada | Feb 2007 | A1 |
20070141871 | Scherer | Jun 2007 | A1 |
20070243741 | Yang | Oct 2007 | A1 |
20080131997 | Kim et al. | Jun 2008 | A1 |
20080171476 | Liu | Jul 2008 | A1 |
20080242127 | Murr | Oct 2008 | A1 |
20080297988 | Chau | Dec 2008 | A1 |
20080305689 | Zhang et al. | Dec 2008 | A1 |
20090023330 | Stoner et al. | Jan 2009 | A1 |
20090166082 | Liu et al. | Jul 2009 | A1 |
20090215309 | Mongold et al. | Aug 2009 | A1 |
20100068944 | Scherer | Mar 2010 | A1 |
20100112850 | Rao | May 2010 | A1 |
20100159829 | McCormack | Jun 2010 | A1 |
20100177489 | Yagisawa | Jul 2010 | A1 |
20100203768 | Kondo | Aug 2010 | A1 |
20110074213 | Schaffer | Mar 2011 | A1 |
20110080719 | Jia | Apr 2011 | A1 |
20110136387 | Matsuura | Jun 2011 | A1 |
20110177699 | Crofoot et al. | Jul 2011 | A1 |
20110212633 | Regnier | Sep 2011 | A1 |
20110230104 | Lang | Sep 2011 | A1 |
20110263156 | Ko | Oct 2011 | A1 |
20110300757 | Regnier | Dec 2011 | A1 |
20110304966 | Schrempp | Dec 2011 | A1 |
20120003848 | Casher et al. | Jan 2012 | A1 |
20120034820 | Lang | Feb 2012 | A1 |
20120225585 | Lee | Sep 2012 | A1 |
20120246373 | Chang | Sep 2012 | A1 |
20130005178 | Straka et al. | Jan 2013 | A1 |
20130012038 | Kirk | Jan 2013 | A1 |
20130017715 | Van Laarhoven | Jan 2013 | A1 |
20130040482 | Ngo | Feb 2013 | A1 |
20130092429 | Ellison | Apr 2013 | A1 |
20130148321 | Liang | Jun 2013 | A1 |
20130340251 | Regnier | Dec 2013 | A1 |
20140041937 | Lloyd et al. | Feb 2014 | A1 |
20140073173 | Yang | Mar 2014 | A1 |
20140073174 | Yang | Mar 2014 | A1 |
20140073181 | Yang | Mar 2014 | A1 |
20140111293 | Madeberg et al. | Apr 2014 | A1 |
20140217571 | Ganesan et al. | Aug 2014 | A1 |
20140242844 | Wanha | Aug 2014 | A1 |
20140273551 | Resendez | Sep 2014 | A1 |
20140273594 | Jones et al. | Sep 2014 | A1 |
20140335736 | Regnier | Nov 2014 | A1 |
20150079845 | Wanha | Mar 2015 | A1 |
20150090491 | Dunwoody | Apr 2015 | A1 |
20150180578 | Leigh et al. | Jun 2015 | A1 |
20150207247 | Regnier et al. | Jul 2015 | A1 |
20160013596 | Regnier | Jan 2016 | A1 |
20160064119 | Grant | Mar 2016 | A1 |
20160104956 | Santos | Apr 2016 | A1 |
20160181713 | Peloza | Jun 2016 | A1 |
20160190720 | Lindkamp | Jun 2016 | A1 |
20160190747 | Regnier | Jun 2016 | A1 |
20160197423 | Regnier | Jul 2016 | A1 |
20160218455 | Sayre | Jul 2016 | A1 |
20160233598 | Wittig | Aug 2016 | A1 |
20160233615 | Scholeno | Aug 2016 | A1 |
20160336692 | Champion | Nov 2016 | A1 |
20160380383 | Lord | Dec 2016 | A1 |
20170033482 | Liao | Feb 2017 | A1 |
20170033509 | Liao | Feb 2017 | A1 |
20170077621 | Liao | Mar 2017 | A1 |
20170098901 | Regnier | Apr 2017 | A1 |
20170110222 | Liptak et al. | Apr 2017 | A1 |
20170162960 | Wanha | Jun 2017 | A1 |
20170302036 | Regnier | Oct 2017 | A1 |
20170365942 | Regnier | Oct 2017 | A1 |
20180034175 | Lloyd | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
1316802 | Oct 2001 | CN |
2624465 | Jul 2004 | CN |
1647323 | Jul 2005 | CN |
102365907 | Feb 2012 | CN |
3447556 | Jul 1986 | DE |
02-079571 | Jun 1990 | JP |
04-14372 | Feb 1992 | JP |
05-059761 | Aug 1993 | JP |
2008-041285 | Feb 2008 | JP |
2008-059857 | Mar 2008 | JP |
2009-043590 | Feb 2009 | JP |
2010-017388 | Jan 2010 | JP |
2010-123274 | Jun 2010 | JP |
2013-016394 | Jan 2013 | JP |
M359141 | Jun 2009 | TW |
M408835 | Aug 2011 | TW |
201225455 | Jun 2012 | TW |
WO 2008-072322 | Jun 2008 | WO |
WO 2012-078434 | Jun 2012 | WO |
WO 2013-006592 | Jan 2013 | WO |
2016112379 | Jul 2016 | WO |
Entry |
---|
Amphenol TCS, “Amphenol TCS expands the XCede Platform with 85 Ohm Connectors and High-Speed Cable Solutions,” Press Release, Published Feb. 25, 2009, http://www.amphenol.com/about/news_archive/2009/58. |
Amphenol Aerospace, “Size 8 High Speed Quadrax and Differential Twinax Contacts for Use in MIL-DTL-38999 Special Subminiature Cylindrical and ARINC 600 Rectangular Connectors”, published May 2008. Retrieved from www.peigenesis.com/images/content/news/amphenol_quadrax.pdf. |
Hitachi Cable America Inc., “Direct Attach Cables: OMNIBIT supports 25 Gbit/s interconnections”. Retrieved Aug. 10, 2017 from www.hca.hitachi-cable.com/products/hca/catalog/pdfs/direct-attach-cable-assemblies.pdf. |
U.S. Appl. No. 61/714,871, filed Oct. 17, 2012, Wig et al. |
Agilent, “Designing Scalable 10G Backplane Interconnect Systems Utilizing Advanced Verification Methodologies,” White Paper, Published May 5, 2012, USA. |
International Search Report and Written Opinion received for PCT application No. PCT/US2016/012848, dated Apr. 25, 2016, 11 pages. |
International Preliminary Report on Patentability received for PCT Application No. PCT/US2016/012848, dated Jul. 20, 2017, 10 pages. |
“File:Wrt54gl-layout.jpg-Embedded Xinu”, Internet Citation, Sep. 8, 2006. Retrieved from the Internet: URL:http://xinu.mscs.mu.edu/File:Wrt54gl-layout.jpg [retrieved on Sep. 23, 2014]. |
Number | Date | Country | |
---|---|---|---|
61148685 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15271903 | Sep 2016 | US |
Child | 13987296 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2010/022738 | Feb 2010 | US |
Child | 13987296 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13987296 | Feb 2011 | US |
Child | 15715939 | US | |
Parent | 13987296 | Feb 2011 | US |
Child | 15271903 | US |