The present disclosure relates to digital to analog converters and analog to digital converters.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Digital to analog converters (DACs) convert a digital signal to an analog signal. Analog to digital converters (ADCs) convert an analog signal to a digital signal. For example only, some audio signals are stored in digital form (for example MP3s and CDs). The digital signals must be converted into analog signals in order to be heard through speakers. Video signals from a digital source must be converted to analog signals if they are to be displayed on an analog monitor.
Referring now to
The analog signals output by the DAC 24 are input to an intermediate frequency (IF) filter 28, which may perform filtering such as bandpass filtering in a first frequency range. An output of the IF filter 28 is input to a mixer 32 that also receives a signal from a local oscillator (LO) 34. An output of the mixer 32 is input to an IF filter 38, which performs filtering such as bandpass filtering in a second frequency range. An output of the IF filter 38 is input to a mixer 40, which also receives a signal from a variable LO 42. An output of the mixer 40 is input to a radio frequency (RF) filter 46. An output of the RF filter 46 is amplified and output to a buffer/amplifier 48. An output of the buffer amplifier 48 generates the RF output signal at 49.
Digital modulation such as quadrature amplitude modulation (QAM) may be performed by the circuit 20 in the digital domain. The digital modulated carrier signal is converted to an analog carrier signal by the DAC 24. The IF filter 28 removes an image and other spurious content from the output of the DAC 24.
One or more frequency conversions are performed to convert the analog carrier frequency to a signal at a desired channel frequency. In FIG. 1, a low intermediate frequency (IF) signal produced by the DAC 24 is up-converted to a high IF signal. The high IF signal is filtered by the second IF filter 38. The high IF signal is then converted to an RF carrier signal by the mixer 40 and the variable LO 42. The output of the mixer 40 is filtered by the IF filter 46, which passes the entire cable band. The buffer/amplifier 48 provides the final RF output.
With the availability of high-speed, high-performance DACs, it is possible to directly produce the desired RF output signal. Referring now to
While having many advantages, the direct approach has increased exposure to DAC spurious outputs. In the system 10 of
A system includes a first circuit including a scrambling module that receives N digital data streams and that scrambles the N digital data streams using a scrambling sequence. A data bus receives the N scrambled digital data streams and the scrambling sequence. A second circuit communicates with the data bus and includes a first processing module that processes the N scrambled digital data streams and that outputs M digital data streams, where M and N are integers greater than one. The second circuit includes one or more descrambling and processing modules that receive the M digital data streams, that descramble the M digital data streams based on the scrambling sequence and that further process the M digital data streams. The second circuit includes a digital to analog converter (DAC) module that receives an output of the one or more descrambling and processing modules.
In other features, the first circuit comprises one of a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC). The second circuit comprises an integrated circuit. The first circuit further comprises a demultiplexer that outputs the N digital data streams to the scrambling module. The first processing module of the second circuit comprises a multiplexer. The one or more descrambling and processing modules perform thermometer decoding. The scrambling module comprises a plurality of XOR logic gates.
In other features, first drivers receive the N scrambled digital data streams and output N pairs of differential signals to the data bus. First receivers receive the N pairs of differential signals from the data bus and output the N scrambled digital data streams to the first processing module. A second driver receives the scrambling sequence and outputs second differential signals to the data bus. A second receiver receives the second differential signals from the data bus and outputs the scrambling sequence to the one or more descrambling and processing modules.
In other features, the differential signals comprise one of low voltage differential signals (LVDS), Pseudo (or Positive) Emitter Coupled Logic (PECL) signals, and differential high speed transceiver logic (HSTL) signals.
A method includes scrambling N digital data streams using a scrambling sequence in a first circuit; transferring the N scrambled digital data streams and the scrambling sequence over a data bus to a second circuit; processing the N scrambled digital data streams in the second circuit using a first processing module to generate M digital data streams, where M and N are integers greater than one; further descrambling and processing the output of the first processing module at the second circuit using one or more descrambling and processing modules; and performing digital to analog conversion on an output of the one or more descrambling and processing modules.
In other features, the first circuit comprises one of a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC). The second circuit comprises an integrated circuit. The method further includes converting the scrambling sequence and the N scrambled digital data streams into N+1 pairs of differential signals using the first circuit; transmitting the N+1 pairs of differential signals over the data bus; and converting the N+1 pairs of differential signals to the N scrambled digital data streams and the scrambling sequence.
In other features, the differential signals comprise one of low voltage differential signals (LVDS), Pseudo (or Positive) Emitter Coupled Logic (PECL) signals, and differential high speed transceiver logic (HSTL) signals.
A system includes a first circuit including an analog to digital converter module that receives an analog input and that outputs M digital data streams, a scrambling module that receives the M digital data streams and that scrambles the M digital data streams using a scrambling sequence, and a first processing module that receives the scrambled M digital data streams and that outputs N digital data streams, where N and M are integers greater than one. A data bus receives the N digital data streams. A second circuit comprises a second processing module that receives the N digital data streams and that processes the N digital data streams and one or more descrambling and processing modules that receive an output of the first processing module, that descramble the output of the second processing module based on the scrambling sequence and that further process the output of the second processing module.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical or. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
As used herein, the term module refers to an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
In some applications, data buses connect the circuit providing the digital data (such as the FPGA or ASIC) to another circuit (such as an integrated circuit) including the DAC. Coupling from the signal lines of the data bus into sensitive analog lines is one possible source of spurious outputs. The data bus may carry signals that are correlated with the desired output signal. The present disclosure uses data scrambling to de-correlate signals on data buses from the desired output. The scrambling is maintained through one more data processing modules of the DAC.
Referring now to
The N scrambled parallel data streams are transferred by the data bus 112 to the DAC 114 where they are processed by a first data processing module 122. A data bus 124 is connected to an output of the first data processing module 122 and includes M parallel data streams. Data on the data bus 124 remains scrambled. M may be an integer equal to or different than the input bus width N. The scrambling is maintained on one or more internal data buses of the DAC 114 and may be received by zero (
In
As can be appreciated, the data descrambling and processing modules 126 and 130 may adjust for delays between scrambling at the scrambling module 118 and descrambling performed by data descrambling and processing modules 126 and 130.
Spurious signals present in the data buses 112, 124, 142 and/or 152 may couple directly or via clock lines or power and ground lines (both not shown) to sensitive analog signals. Maintaining scrambling as described herein can help prevent discrete spurious tones or harmonically related spurious outputs from corrupting the output of the DAC modules 134.
Referring now to
For example only, the first predetermined rate may be 4.6 Gbps and T may be equal to 4. Therefore, each of the parallel data streams operates at ¼ of the DAC update rate for a maximum speed of 1.15 Gbps on each digital input pin.
An output of the demultiplexer 220 is input to a scrambling module 224. The scrambling module 224 may also receive a scrambling sequence. For example only, the scrambling module 224 may include T*N logic gates such as an exclusive OR (XOR) gate. The data bus 212 supplies parallel data streams to a multiplexer 230 of the DAC 214. The multiplexer 230 may be a T:S multiplexer. For example only, when T=4 and S=2, the demultiplexer 230 may be a 4:2 demultiplexer.
Outputs of the multiplexer 230 are received by descrambling modules 232-1 and 232-2 (collectively descrambling modules 232). In some implementations, the descrambling modules 232-1 and 232-2 comprise XOR logic gates. Outputs of the descrambling modules 232 are input to decoders 234-1, respectively. Outputs of the decoders 234 are input to DAC modules 236-1 and 236-2 (collectively DAC modules 236). For example only, the decoders 234 may comprise binary-to-thermometer decoders. Outputs of the DAC modules 236 are input to an interleaving module 240. As can be appreciated, the ordering of the descrambling modules 232 and decoders 234 can be reversed from that shown in
In use, scrambled digital data is output by the circuit 210 and transmitted to the DAC 214. Once received by the DAC 214, the data streams are multiplexed into high speed data streams that drive each of the DAC modules 236. The multiplexed data is still scrambled. The pseudorandom spreading sequence is provided to the descrambling modules along with the scrambled data. This prevents on-chip coupling from introducing harmonically related spurious signals in the analog output.
Referring now to
The N scrambled parallel data streams and the scrambling sequence are output to drivers 338 and 340. In some implementations, the drivers 338 and 340 comprise differential signal drivers. Outputs of the drivers 338 and 340 are transferred by the data bus 312 to receivers 342 and 344 associated with the DAC 314 that convert the signals to single ended signals. The differential signal drivers may employ a differential signaling such as low voltage differential signals (LVDS), Pseudo (or Positive) Emitter Coupled Logic (PECL) signals, differential high speed transceiver logic (HSTL) signals, or other suitable differential signaling approaches.
The signals are processed by a first data processing module 322. A data bus 324 is connected to an output of the first data processing module 322 and includes M parallel data streams. Data on the data bus 324 remains scrambled. M may be an integer equal to or different than the input bus width N. The scrambling is maintained on one or more internal data buses of the DAC 314 and may be received by zero or more additional processing modules (for example, see
A similar problem exists in analog-to-digital converters. The on-chip digital data buses may have spectral contents which are highly correlated with the input signal. Undesired coupling has the potential to create harmonic distortion products. Maintaining data scrambling through various digital processing modules may reduce the undesirable affects of any coupling.
Referring now to
Spectral content of the signals on the data buses (the input buses and multiplexed buses) is correlated with the RF carriers. In a typical application, the RF carriers that are produced by the DAC are band limited in nature. As a result, the data buses contain significant energy that is concentrated in frequency bands that are related to RF carrier frequencies. In addition, the multiplexer and bus repeaters produce power supply disturbances that have a frequency content that is correlated with the RF carriers. The present disclosure uses spreading sequences to reduce or eliminate harmonic content of digital data by maintaining scrambling through one or more digital processing modules of the DAC or the ADC to avoid problems with coupling from digital buses to analog signals or coupling of harmonics through supply/ground interconnects.
The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification, and the following claims.
Number | Name | Date | Kind |
---|---|---|---|
7123718 | Moskowitz et al. | Oct 2006 | B1 |
7664264 | Moskowitz et al. | Feb 2010 | B2 |
8160249 | Moskowitz et al. | Apr 2012 | B2 |
20010021199 | Lee et al. | Sep 2001 | A1 |
20010038422 | Yamada et al. | Nov 2001 | A1 |
20010043417 | Watanabe et al. | Nov 2001 | A1 |
20020027609 | Oku et al. | Mar 2002 | A1 |
20020048366 | Moriyama | Apr 2002 | A1 |
20020066099 | Ohno | May 2002 | A1 |
20020067811 | Matsumoto | Jun 2002 | A1 |
20020075943 | Kurihara | Jun 2002 | A1 |
20020114348 | McCrosky et al. | Aug 2002 | A1 |
20020126351 | Chung et al. | Sep 2002 | A1 |
20020140572 | Gardner et al. | Oct 2002 | A1 |
20020181569 | Goldstein et al. | Dec 2002 | A1 |
20030014565 | Kawamura et al. | Jan 2003 | A1 |
20030067552 | Leyvi et al. | Apr 2003 | A1 |
20030137440 | Ranganathan et al. | Jul 2003 | A1 |
20030151528 | Adams et al. | Aug 2003 | A1 |
20030197633 | Adams et al. | Oct 2003 | A1 |
20030210734 | Kaku | Nov 2003 | A1 |
20040028234 | Wuidart | Feb 2004 | A1 |
20050036562 | Ranganathan et al. | Feb 2005 | A1 |
20050047512 | Neff et al. | Mar 2005 | A1 |
20070036173 | McCrosky et al. | Feb 2007 | A1 |
20070064940 | Moskowitz et al. | Mar 2007 | A1 |
20090067625 | Patel et al. | Mar 2009 | A1 |
20100153734 | Moskowitz et al. | Jun 2010 | A1 |
Entry |
---|
Quevedo et al.; Multistep optimal analog-to-digital conversion; Published in: Circuits and Systems I: Regular Papers, IEEE Transactions on (vol. 52 , Issue: 3 ); Date of Publication: Mar. 2005; pp. 503-515; IEEE Xplore. |
Liebhold et al.; Toward an open environment for digital video; Published in: Magazine Communications of the ACM—Special issue on digital multimedia systems CACM Homepage archive vol. 34 Issue 4, Apr. 1991; pp. 103-112; ACM Digital Library. |
Schematic, Data Conversion Systems, Feb. 27, 1995, Drawing No. OL-CD-D0002-S20.2; File No. 5Z0COZ. |
Harris, Steven, et al, “Techniques to Measure and Maximize the Performance of a 120 dB, 24-bit, 96 kHz A/D Converter Integrated Circuit”, Crystal Semiconductor Corporation, Austin, TX, USA, 21 pages. |
Number | Date | Country | |
---|---|---|---|
20110299688 A1 | Dec 2011 | US |