High speed electrical connector and printed circuit board thereof

Information

  • Patent Grant
  • 11757215
  • Patent Number
    11,757,215
  • Date Filed
    Monday, March 8, 2021
    3 years ago
  • Date Issued
    Tuesday, September 12, 2023
    a year ago
Abstract
A stacked I/O connector with surface mountable tails and a printed circuit board (PCB) configured to receive the connector. The connector may avoid terminal deformations or scratches when the connector is mounted to the PCB. The PCB may include solder pads on a single surface or both surfaces. The sold pads may be configured for the tails of the connector to be attached with a surface mount soldering technique. As a result, the connector has high density and high speed, requires, requires a smaller mounting area on a PCB, relaxes the limitations in routing PCB traces, and reduces the electrical performance deterioration caused by PCB trace routing limitations. The connector may have row-oriented terminal subassemblies, holes in the connector housing and other features to facilitate reliable manufacture and operation of the connector.
Description
FIELD OF THE INVENTION

This disclosure relates generally to electronic systems and more specifically to electrical connectors able to carry high-frequency signals and printed circuit boards thereof.


BACKGROUND

Electrical connectors are used in many electronic systems. In general, various electronic devices (e.g., smart phones, tablet computers, desktop computers, notebook computers, digital cameras, and the like) have been provided with assorted types of connectors whose primary purpose is to enable an electronic device to exchange data, commands, and/or other signals with one or more other electronic devices. Electrical connectors are basic components needed to make some electrical systems functional. Signal transmission to transfer information (e.g., data, commands, and/or other electrical signals) often utilize electrical connectors between electronic devices, between components of an electronic device, and between electrical systems that may include multiple electronic devices.


It is generally easier and more cost effective to manufacture an electrical system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be communicatively joined together with electrical connectors. In some scenarios, the PCBs to be joined may each have connectors mounted on them. The connectors may be mated together directly to interconnect the PCBs.


To facilitate manufacture of different parts of electronic devices in different places by different companies, aspects of the receptacle connectors and the plug connectors may be standardized, either through a formal standard-setting process or through adoption of a particular design by a large number of manufacturers. An example of an interconnection standard is the SAS or Serial Attached SCSI (Small Computer System Interface) standard. Another example is the SFP or Single Form-Factor Pluggable standard, as well as its variations: SFP+, QSFP, QSFP+, etc. Connectors made according to these pluggable standards are sometimes called I/O connectors, because they mate with plugs terminating cables that carry signals into or out of an electronic device. I/O connectors are commonly made with press fit terminal tails that make connections between the terminals in the connector and traces within a PCB when the terminal tails are pressed into holes in the PCB that pass through the traces.


I/O connectors according to these pluggable standards have one or more ports, each configured to receive a plug terminating a cable. It is sometimes desirable for there to be multiple ports in an electronic device, so that the device may communicate through cables with multiple other devices. The ports may be configured in rows and columns, and I/O connectors are sometimes made in a stacked configuration with 2 ports, one above the other. When multiple stacked connectors are mounted on a surface of a PCB, the ports are arrayed in rows and columns. Rows and columns of ports may also be made by mounting I/O connectors on opposite sides of the PCB, one above the other. This configuration is sometimes called “belly to belly.”


For electronic devices that require a high-density, high-speed connector, techniques may be used to reduce interference between conductive elements within the connectors, and to provide other desirable electrical properties. One such technique involves the use of shield members between or around adjacent signal conductive elements of a connector system. The shields may prevent signals carried on one conductive element from creating “crosstalk” on another conductive element. The shields may also have an impact on an impedance of the conductive elements, which may further contribute to desirable electrical properties of the connector system.


Another technique that may be used to control performance characteristics of a connector entails transmitting signals differentially. Differential signals result from signals carried on a pair of conducting paths, called a “differential pair.” The voltage difference between the conductive paths represents the differential signal. In general, a differential pair is designed with preferential coupling between the conducting paths of the pair. For example, the two conducting paths of a differential pair may be arranged to run closer to each other than to other adjacent signal paths in the connector.


SUMMARY

Aspects of the present application relate to a high speed electrical connector and an applicable printed circuit board thereof.


Some embodiments relate to an electrical connector. The electrical connector comprises a housing comprising a cavity and a first slot and a second slot extending into the cavity in a first direction, a first terminal subassembly comprising a first plurality of terminals held in a first row of terminals, a second terminal subassembly comprising a second plurality of terminals held in a second row of terminals, a third terminal subassembly comprising a third plurality of terminals held in a third row of terminals, and a fourth terminal subassembly comprising a fourth plurality of terminals held in a fourth row of terminals. Each of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, the fourth plurality of terminals comprises a mating portion, a tail and an intermediate portion joining the mating portion and the tail. The first terminal subassembly, the second terminal subassembly, the third terminal subassembly, and the fourth terminal subassembly are disposed within the cavity with the mating portions extending into a respective slot of the first slot and the second slot. The tails extend at a right angle from respective intermediate portions in four parallel rows in a plane parallel to the first direction.


In some embodiments, the tails in the four parallel rows are spaced, center to center, by 0.7 to 1 mm.


In some embodiments, the tails have a width of 0.25 mm.


In some embodiments, the housing further comprises at least two posts extending through and perpendicular to the plane.


In some embodiments, a plurality of anchor pins attached to the housing. Each anchor pin comprises a pair of opposing spring arms extending through and perpendicular to the plane.


In some embodiments, the tails of the first and fourth terminal subassemblies bend, with respect to intermediate portions of respective terminals, in the first direction. The tails of the second and third terminal subassemblies bend, with respect to intermediate portions of respective terminals, in a second direction opposite the first direction.


In some embodiments, the first terminal subassembly comprises a first row of tails of the four parallel rows. The second terminal subassembly comprises a second row of tails of the four parallel rows. The third terminal subassembly comprises a third row of tails of the four parallel rows. The fourth terminal subassembly comprises a fourth row of tails of the four parallel rows. The first row of tails is adjacent to and offset, in a direction perpendicular to the first direction, from the second row of tails. The third row of tails is adjacent to and offset, in a direction perpendicular to the first direction, from the fourth row of tails.


In some embodiments, the first terminal subassembly comprises a first insulative member holding the first plurality of terminals in the first row of terminals. The second terminal subassembly comprises a second insulative member holding the second plurality of terminals in the second row of terminals. The third terminal subassembly comprises a third insulative member holding the third plurality of terminals in the third row of terminals. The fourth terminal subassembly comprises a fourth insulative member holding the fourth plurality of terminals in the fourth row of terminals. The first insulative member abuts the second insulative member. The third insulative member abuts the fourth insulative member.


In some embodiments, the cavity of the housing is a first cavity. The first insulative member comprises a second cavity. The second insulative member comprises a third cavity. The first terminal subassembly and the second terminal subassembly are positioned with the second cavity aligned with the third cavity. The connector further comprises a ground member disposed in the second cavity and the third cavity, the ground member comprising projecting portions extending towards respective terminals in the first terminal subassembly and the second terminal subassembly.


In some embodiments, the ground member comprises a metal strip. The projecting portions of the ground member comprise spring fingers extending from the metal strip.


In some embodiments, the ground member is a composite lossy member comprising a strip of electrically lossy material. The metal strip is disposed within the strip of lossy material.


In some embodiments, the composite lossy member is a first composite lossy member of a plurality of composite lossy members disposed between the first terminal subassembly and the second terminal subassembly.


In some embodiments, the first insulative member comprises a first projection engaging the housing so as to block movement of the first terminal subassembly in the first direction and a second projection engaging the second insulative member so as to block movement of the second terminal subassembly in the first direction.


In some embodiments, the housing comprises an exterior face between the first slot and the second slot. The exterior face comprises a plurality of openings therethrough.


In some embodiments, the housing between the exterior face and the cavity comprises a lattice defined by walls bounding the plurality of openings.


In a further aspect, an electronic assembly comprises the electrical connector of any of the above mentioned embodiments, a printed circuit board comprising four parallel rows of pads on a surface thereof. The tails in each of the first row of tails, the second row of tails, the third row of tails, the fourth row of tails are soldered to respective pads of the four parallel rows of pads.


Some embodiments relate to an electrical connector. The electrical connector comprises a first plurality of terminals held in a first row, a second plurality of terminals held in a second row parallel to the first row, a third plurality of terminals held in a third row parallel to the first row, a fourth plurality of terminals held in a fourth row parallel to the first row, and a housing comprising a first slot and a second slot, each of the first and second slots extending in a direction parallel to the first row, the second row separated from the first slot in a direction perpendicular to the first row. The first plurality of terminals and the second plurality of terminals are disposed in the first slot. The third plurality of terminals and the fourth plurality of terminals are disposed in the second slot. Each of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, the fourth plurality of terminals comprises a mating portion, a tail and an intermediate portion joining the mating portion and the tail. Each intermediate portion comprises first and second parts extending in a right angle. The connector comprises a first ground member between the first parts of the intermediate portions of the first and second plurality of terminals, and a second ground member between the second parts of the intermediate portions of the first and second plurality of terminals.


In some embodiments, each of the first and second ground members comprises a strip of electrically lossy material.


In some embodiments, the first plurality of terminals comprise differential pairs of signal terminals separated by ground terminals. The ground terminals of the first plurality of terminals are electrically connected to each other through at least one of the first and second ground members.


In some embodiments, the second plurality of terminals comprise differential pairs of signal terminals separated by ground terminals. The ground terminals of the second plurality of terminals are electrically connected to the ground terminals of the first plurality of terminals through at least one of the first and second ground members.


In some embodiments, a third ground member between the first parts of the intermediate portions of the third and fourth plurality of terminals.


In some embodiments, the third plurality of terminals comprise differential pairs of signal terminals separated by ground terminals. The fourth plurality of terminals comprise differential pairs of signal terminals separated by ground terminals. The ground terminals of the third plurality of terminals are electrically connected to each other and to the ground terminals of the fourth plurality of terminals through the third ground members.


Some embodiments relate to a printed circuit board for receiving an electrical connector, the electrical connector having tails of four parallel rows of terminals extending at a right angle from respective intermediate portions of the four parallel rows of terminals. The printed circuit board comprises a first plurality of solder pads on a first surface of the printed circuit board, the first plurality of solder pads configured to receive a first row of tails of the four parallel rows; a second plurality of solder pads on the first surface, the second plurality of solder pads configured to receive a second row of tails of the four parallel rows; a third plurality of solder pads on the first surface, the third plurality of solder pads configured to receive a third row of tails of the four parallel rows; a fourth plurality of solder pads on the first surface, and the fourth plurality of solder pads configured to receive a fourth row of tails of the four parallel rows. The second plurality of solder pads are adjacent to and offset, in a first direction perpendicular to a second direction that the four parallel rows extend, from the first plurality of solder pads. The fourth plurality of solder pads are adjacent to and offset, in the first direction, from the third plurality of solder pads in the direction. The first plurality of solder pads and the third plurality of solder pads are aligned in the first direction.


In some embodiments, the solder pads of each of the first plurality of solder pad, the second plurality of solder pads, the third plurality of solder pads, and the fourth plurality of solder pads are spaced, center to center, by 0.7 to 1 mm.


In some embodiments, the solder pads have a width greater than respective tails' width.


In some embodiments, the printed circuit board comprises a fifth plurality of solder pads on a second surface of the printed circuit board, the second surface opposite the first surface, the fifth plurality of solder pads aligned to the first row and offset from the first plurality of solder pads; a sixth plurality of solder pads on the second surface, the sixth plurality of solder pads aligned to the second row and offset from the second plurality of solder pads; a seventh plurality of solder pads on the second surface, the seventh plurality of solder pads aligned to the third row and offset from the third plurality of solder pads; and an eighth plurality of solder pads on the second surface, the eighth plurality of solder pads aligned to the fourth row and offset from the fourth plurality of solder pads.


In some embodiments, the printed circuit board comprises first and second through-holes on a first side of the first plurality of solder pad, the second plurality of solder pads, the third plurality of solder pads, and the fourth plurality of solder pads; and third and fourth through-holes on a second side of the first plurality of solder pad, the second plurality of solder pads, the third plurality of solder pads, and the fourth plurality of solder pads, the second side opposite the first side. The first, second, third, and fourth through-holes are configured to receive anchor pins of the connector.


In some embodiments, the first, second, third, and fourth through-holes are not greater in size than the anchor pins of the connector.


In some embodiments, the printed circuit board comprises two locating holes configured to receive respective posts extending from a housing of the connector.


In some embodiments, the two locating holes are greater in size than the posts from the housing of the connector.


The foregoing features may be used, separately or together in any combination, in any of the embodiments discussed herein.





BRIEF DESCRIPTION OF DRAWINGS

Various aspects and embodiments of the present technology disclosed herein are described below with reference to the accompanying figures. It should be appreciated that the figures are not necessarily drawn to scale. Items appearing in multiple figures may be indicated by the same reference numeral. For the purposes of clarity, not every component may be labeled in every figure.



FIG. 1 is a perspective view of an exemplary embodiment of a connector and a printed circuit board configured to receive the connector.



FIG. 2 is a perspective view of the connector of FIG. 1, with a side wall of the housing cut away, illustrating parts of the connector.



FIG. 3 is an exploded view of the connector of FIG. 1.



FIG. 4 is an exploded view of the first signal transmitting portion of FIG. 1.



FIG. 5 is an exploded view of the second signal transmitting portion of FIG. 1.



FIG. 6 is a side view of partial structures of the first signal transmitting portion of FIG. 4 and the second signal transmitting portion of FIG. 5, with insulative members cut away.



FIG. 7 is a perspective view of a metal strip of a ground member of the connector of FIG. 1.



FIG. 8 is a perspective view of the printed circuit board of FIG. 1.





DETAILED DESCRIPTION

The inventors have recognized and appreciated advantages and techniques for making stacked I/O connectors that are suitable for surface mounting. For example, the inventors have recognized and appreciated that stacked I/O connectors configured for surface mounting may reduce manufacturing defects of devices using those connectors and/or may provide better signal integrity in operation. In contrast to surface mount, connectors with press-fit terminal tails require printed circuit boards (PCBs) including holes configured to receive the press-fit terminal tails. When connectors are mounted to the PCBs, the press-fit pins tend to bend and scratch the plating on the PCBs, which creates manufacturing defects or reduces signal integrity in operation.


Further, the inventors have recognized and appreciated designs for high-speed I/O connectors that facilitate mounting I/O connectors on both the front and back sides of the PCBs, including one above the other in a belly to belly configuration. A large number of holes in the PCB may be required to receive high-speed connectors on both sides, particularly for stacked connector, which increases the difficulty in manufacturing these PCB s and in routing traces within the PCB. The inventors have recognized and appreciated that these difficulties are exacerbated for I/O connectors using press-fit terminal tails, as is conventional, because the holes required for press fit terminals must be sufficiently large to receive the press-fit terminal tails. Making press-fit tails smaller, so that the holes smaller, can increase the risk that the terminal tails will be damaged when the connector is pressed onto the PCB.


The inventors have recognized and appreciated that with surface mountable tails, deformation of the terminal tails and/or scratches on the PCB may be avoided when the connector is mounted to the PCB. Moreover, the holes in the PCB required to make connections between traces in the PCB and surface mount pads can be made smaller than holes that receive press-fit tails, increasing the density of the connector and/or facilitating belly to belly mounting of I/O connectors. Belly to belly mounting may be further facilitated by offsetting rows of terminal tails with respect to each other such that, when I/O connectors with similar footprints are mounted on opposite sides of the PCB, the vias for each connector are offset with respect to each other. The offset configuration may enable the vias making connections to each connector to fit within the same area of the PCB. Such an offset configuration may be simply created as a result of terminal subassemblies, each with a row of terminals.


The PCB may include solder pads on a single surface or both surfaces. The solder pads may be configured for the tails of the connector to be attached to them, such as through a reflow solder operation. As a result, the connector has high density and high speed, requires, requires a smaller mounting area on a PCB, relaxes the limitations in routing PCB traces, and reduces the electrical performance deterioration caused by PCB trace routing limitations.


The inventors have recognized features for an I/O connector, including a stacked I/O connector, to support a robust electronic system when using I/O connectors that are surface mounted to a PCB. The housing of a stacked I/O connector, for example, may be made with openings between ports in combination with terminal subassemblies that enable air flow so as to avoid deformation during a surface mount solder operation. Alternatively or additionally, the I/O connector may have one or more structures that reduce the risk of damage to solder joints when a plug is inserted into the stacked I/O connector or the connectors otherwise stressed during operation.



FIG. 1 shows an electrical assembly 100, including a connector 200 and a printed circuit board 800 configured to receive the connector 200. The connector 200 may include a housing 1, a first signal transmitting portion 2, anchor pins 3, and a second signal transmitting portion 4. The first signal transmitting portion 2, the second signal transmitting portion 4, and the anchor pins 3 may be held together by the housing 1. The housing 1 may be made from a liquid crystal polymer (LCP) and the anchor pins 3 may be made by stamping a copper alloy.



FIG. 2 shows a perspective view of the connector 200, with a side wall of the housing 1 cut away. FIG. 3 is an exploded view of the connector of FIG. 1. The first and second signal transmitting portions 2 and 4 may be arranged as row-oriented arrays, including a plurality of row terminal subassemblies disposed one above the other in a direction perpendicular to a surface of the PCB 800.


Each row terminal subassembly may include a mating interface configured to receive, for example, a card, a mounting interface configured to, for example, mount to a PCB, and a body extending between the mating interface and the mount interface. The body may include a first part connected to the mating interface, and a second part connected to the mounting interface. The first and second parts may extend in a right angle such that a card inserted in one of the signal transmitting portions 2 and 4 extends parallel to a PCB that the connector is mounted to.


In the illustrated example, the first signal transmitting portion 2 includes a first upper row terminal subassembly 21 and a first lower row terminal subassembly 22. The second signal transmitting portion 4 includes a second upper row terminal subassembly 41 and a second lower row terminal subassembly 42. The first upper row terminal subassembly 21 and the first lower row terminal subassembly 22 may be held together in an upper installation slot 11 by the housing 1. The second upper row terminal subassembly 41 and the second lower row terminal subassembly 42 may be held together in a lower installation slot 17 by the housing 1.


Additionally or alternatively, the first upper row terminal subassembly 21 and the first lower row terminal subassembly 22 may be held together before being assembled into the housing 1. The second upper row terminal subassembly 41 and the second lower row terminal subassembly 42 may be held together before being assembled into the housing 1. The first and second upper and lower row terminal subassemblies may include attachment features, or otherwise be attached to one another in some embodiments.


The housing 1 may include the upper installation slot 11 and the lower installation slot 17, insertion slots 12 and 18, recesses 14, 16 and 19, posts 13, and openings 15. The installation slots 11 and 17 may be inside the housing 1. The upper installation slot 11 may extend a shorter length then the lower installation slot 17 such that the mounting interfaces of the first signal transmitting portion 2 and the mounting interfaces of the second signal transmitting portion 4 are offset in a direction perpendicular to a row direction that a row terminal extends. The installation slots 11 and 17 may be bounded by insulative material, such as housing 1, with grooves 111 and 171. The grooves may be positioned to remove insulative material along signal terminals so as to change the effective dielectric constant of material surrounding the signal conductors, which can adjust impedance of those signal terminals.


The insertion slots 12 and 18 may be arranged on the front side of the housing 1. The mating interface of the first signal transmitting portion 2 including, for example, mating portions 2113, 2213 (FIG. 6), may be held in the insertion slot 12. The mating interface of the second signal transmitting portion 4 including, for example, mating portions 4113, 4213 (FIG. 6), may be held in the insertion slot 18. The mating portions may be positioned in this way to make contact with pads on a paddle card of a plug inserted into the insertion slots 12 and 18.


Features, for example, recesses 14 in housing 1, may retain anchor pins 3. The anchor pins 3 each may include a body 31, a mounting hole 32, and spring arms 33. The mounting hole 32 may be located above the terminal body 31. The two spring arms 33 may extend from the terminal body 31 and towards opposite directions. The outside size of the swinging arms 33 may be 1.1 mm. After being soldered to a PCB, the anchor pins 3 may fix the connector to the PCB. Anchor pins 3 may also prevent the connector from floating during surface mounted technology (SMT) soldering of the first signal transmitting portion 2 and the second signal transmitting portion 4 of the connector to the PCB, thus avoiding dry joints.


The recesses 16 and 19 in surfaces of the housing 1 are configured to receive matching structures from the first signal transmitting portion 2 and the second signal transmitting portion 4, holding the signal transmitting portions in hosing 1. In the illustrated example, four anchor pins 3 each is held in a respective recess 14. The four recesses 14 are asymmetrically distributed on the two sides of the housing 1. The recesses 16 includes top recesses 161 and side recesses 162 and 163. The recesses 19 may include recesses 191 and 192.


The openings 15 may be arranged between the installation slots 11 and 17. The openings 15 may extend through surfaces of the housing 1 and substantially parallel to installation slots 11 and 17. The openings 15 may reduce the weight of the housing 1, and may also facilitate ventilation and heat dissipation during a surface mount solder operation. In the illustrated example, the housing 1 includes a lattice defined by walls bounding a plurality of openings 15.


In the illustrated embodiment, airflow through the openings may be enabled by the row-oriented terminal subassemblies in which each subassembly, such as first upper row terminal subassembly 21 and a first lower row terminal subassembly 22, has a row of terminals with space between the terminals. The insulative members holding the row of terminals together covers only a portion of the length of the intermediate portions of the terminals. As a result, air flow through openings 15 and around the terminals—allowing flow from front to back of the receptacle connector.


The posts 13 may extend from the bottom of the housing 1. The housing 1 may include at least two posts 13 such that the connector 200 may be first aligned to a footprint on a PCB (e.g., PCB 800) though the posts 13. After inserting the posts 13 into matching holes in the PCB, the solders pins may be aligned to respective solder pads on the PCB before being soldered to the pads. The posts 13 may have a the diameter of 1.0 mm.



FIG. 4 is an exploded view of the first signal transmitting portion 2. FIG. 5 is an exploded view of the second signal transmitting portion 4. FIG. 6 is a side view of partial structures of the first signal transmitting portion 2 and the second signal transmitting portion 4, with insulative members cut away. FIG. 7 is a perspective view of a metal strip of a ground member of the connector 200.


The first signal transmitting portion 2 may include the first upper row terminal subassembly 21, the first lower row terminal subassembly 22, and plurality of ground members, of which ground members 24 and 25 are numbered. The ground members 24 and 25 may be assembled between the first terminal subassembly 21 and the second terminal subassembly 22, with spring arms 244 close to or pressing against ground terminals in the terminal subassemblies.


The first terminal subassembly 21 may include a plurality of upper row terminals 211, insulative member 212, and insulative member 215. The insulative member 212 and insulative member 215 may be plastics molded over the plurality of upper row terminals 211. The insulative members 212 and 215 may include projections configured to be inserted into the recesses 16, and 19 of the housing 1 such that the first terminal subassembly 21 is fixedly held in the housing 1. In the illustrated example, the insulative member 212 includes projection 213 (FIG. 3) configured to be inserted into recess 161, two projections 216 arranged on two sides of the insulative member 215 configured to be inserted into recesses 163.


The second terminal subassembly 22 may include a plurality of lower row terminals 221, insulative member 222, and insulative member 225. The insulative member 222 and insulative member 225 may be plastic molded over the plurality of lower row terminals 222. The insulative member 212 and insulative member 222 may be assembled together. The insulative member 215 and insulative member 225 may be assembled together. The insulative member 215 and insulative member 225 may be confined in recess 191 of housing 1.


The plurality of upper row terminals 211 each may include solder pin 2111, intermediate portion 2112, and mating portion 2113 that extends between the solder pin 2111 and the mating portion 2113. The solder pins 2111 extend in a right angle from the intermediate portions 2112, and may serve as solder mount terminal tails. The plurality of upper row terminals 211 may include differential pairs of signals terminals separated by ground terminals.


In the illustrated example, the plurality of upper row terminals 211 include nineteen terminals disposed horizontally. The plurality of upper row terminals 211 include ground terminals 2114 and signal terminals 2115. The ground terminals 2114 and signal terminals 2115 are arranged at intervals. The first, fourth, seventh, thirteenth, sixteenth and nineteenth (counted from left to right) of the upper row terminals 211 are ground terminals 2114 and the others are signal terminals 2115. The center-to-center distance between the adjacent upper row terminals 211 may be 0.8 mm.


The plurality of lower row terminals 221 may include solder pin 2211, intermediate portion 2212, and mating portion 2213 that extends between the solder pin 2211 and the mating portion 2213. The solder pins 2211 extend in a right angle from the intermediate portions 2212, and opposite to a direction that solder pins 2111 extend. The solder pins 2211 may also serve as solder mount terminal tails. The plurality of lower row terminals 221 may include differential pairs of signals terminals separated by ground terminals.


In the illustrated example, the plurality of lower row terminals 221 include nineteen terminals disposed horizontally. The lower row terminals 221 include ground terminals 2214 and signal terminals 2215. The ground terminals 2214 and signal terminals 2215 are arranged at intervals. The first, fourth, seventh, thirteenth, sixteenth and nineteenth (counted from left to right) of the lower row terminals 221 are ground terminals 2214 and the others are signal terminals 2215. The central distance between the adjacent lower row terminals 221 may be 0.8 mm.


The upper row terminals 211 and lower row terminals 221 may be made by stamping a copper alloy. The width of the first solder pin 2111 and second solder pin 2211 may be 0.25 mm. The ground member 24 may electrically connect a plurality of ground terminals 2114 and ground terminals 2214, which may reduce the insertion loss and crosstalk interference during signal transmission.


The insulative member 212 of the first terminal subassembly 21 may include a mounting area 214. The insulative member 222 of the second terminal subassembly 22 may include a mounting area 223. The ground member 24 may be fit in the mounting areas 214 and 223, and between the first terminal subassembly 21 and the second terminal subassembly 22.


The first terminal subassembly 21 and second terminal subassembly 22 may include additional ground members in between, for example, ground members 25. The insulative member 215 of the first terminal subassembly may include additional mounting areas, for example, mounting areas 217. The insulative member 225 of the second terminal subassembly 22 may include additional mounting areas, for example, mounting area 226. The ground member 25 may be fit in the mounting areas 217 and 226. The ground member 25 may provide electrical connections between the plurality of ground terminals 2114 and ground terminals 2214, which may further reduce the insertion loss and crosstalk interference during signal transmission.


The ground members 24 and 25 may be made with metal and/or lossy portions. The ground members may have projections extending towards, and in some embodiments, contacting, the ground terminals.


In the illustrated example, the ground members 24 and 25 each includes a metal stripe 241 and a stripe of lossy material 242 molded over the metal stripe 241. The metal stripe 241 includes a body 243 and six spring arms 244 extending from the body 243. The spring arms 244 contact ground terminals 2114 and ground terminal 2214.


Any suitable lossy material may be used for these and other structures that are “lossy.” Materials that conduct, but with some loss, or material which by another physical mechanism absorbs electromagnetic energy over the frequency range of interest are referred to herein generally as “lossy” materials. Electrically lossy materials can be formed from lossy dielectric and/or poorly conductive and/or lossy magnetic materials. Magnetically lossy material can be formed, for example, from materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest. Electrically lossy material can be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. Electrically lossy materials can also be formed from materials that are generally thought of as conductors, but are either relatively poor conductors over the frequency range of interest, contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity or otherwise are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor such as copper over the frequency range of interest.


Electrically lossy materials typically have a bulk conductivity of about 1 Siemen/meter to about 10,000 Siemens/meter and preferably about 1 Siemen/meter to about 5,000 Siemens/meter. In some embodiments material with a bulk conductivity of between about 10 Siemens/meter and about 200 Siemens/meter may be used. As a specific example, material with a conductivity of about 50 Siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through electrical simulation using known simulation tools to determine a suitable conductivity that provides a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.


Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1Ω/square and 100,000Ω/square. In some embodiments, the electrically lossy material has a surface resistivity between 10Ω/square and 1000Ω/square. As a specific example, the material may have a surface resistivity of between about 20Ω/square and 80Ω/square.


In some embodiments, electrically lossy material is formed by adding to a binder a filler that contains conductive particles. In such an embodiment, a lossy member may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a filler to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal plated carbon particles may be used. Silver and nickel are suitable metal plating for fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flake. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some embodiments, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connector. Examples of such materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials such as thermosetting resins or adhesives may be used.


Also, while the above described binder materials may be used to create an electrically lossy material by forming a binder around conducting particle fillers, the invention is not so limited. For example, conducting particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” encompasses a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.


Preferably, the fillers will be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when metal fiber is used, the fiber may be present in about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.


Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation which can be filled with carbon fibers or stainless steel filaments. A lossy material, such as lossy conductive carbon filled adhesive preform, such as those sold by Techfilm of Billerica, Mass., US may also be used. This preform can include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder surrounds carbon particles, which act as a reinforcement for the preform. In some embodiments, the preform may adhere to a metal member through the adhesive in the preform, which may be cured in a heat treating process. In some embodiments, the adhesive may take the form of a separate conductive or non-conductive adhesive layer.


Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated may be used. Non-woven carbon fiber is one suitable material. Other suitable materials, such as custom blends as sold by RTP Company, can be employed, as the present invention is not limited in this respect.


The second signal transmitting portion 4 may include a second upper row terminal subassembly 41, a second lower row terminal subassembly 42, and a ground member 44.


a second ground member 44, the second ground member 44 is assembly-connected with the second upper row terminal subassembly 41 and the second lower row terminal subassembly 42, and the second upper row terminal subassembly 41 is assembly-connected with the second lower row terminal subassembly 42.


The second upper row terminal subassembly 41 may include a plurality of upper row terminals 411, insulative member 412 and insulative member 415, which may be molded over the upper row terminals 411. The insulative member 412 may include projection 413. The insulative member 412 may include mounting area 414. The insulative member 415 may be confined in locating slot 192 of the housing 1.


The second lower row terminal subassembly 42 may include a plurality of lower row terminals 421 and insulative member 422, which may be molded over the lower row terminals 421. The insulative member 412 and insulative member 422 may be assembled together through the installation slot 17 of the housing 1. The insulative member 422 may include mounting area 423. The ground member 44 may fit in the mounting area 414 and mounting area 423 between the second upper row terminal subassembly 41 and the second lower row terminal subassembly 42. The ground member 44 may be structurally the same as the ground member 24.


In the illustrated example, each upper row terminal 411 comprises solder pin 4111, intermediate portion 4112 and mating portion 4113 connected in series. In the illustrated embodiment, there are nineteen upper row terminal 411 in a row. The upper row terminals 411 may be ground terminals 4114 or signal terminals 4115. The terminal 4114 and terminal 4115 are arranged at intervals, such as in a repeating pattern of a pair of signal terminals followed by a ground terminal. Each lower row terminal 421 comprises solder pin 4211, connecting body 4212 and mating portion 4213 in series. There are nineteen lower row terminal 421 in a row. The lower row terminals 421 may be ground terminals 4214 and signal terminals 4215. The ground terminals 4214 and signal terminals 4215 are arranged at intervals, and may have the same pattern of ground and signal terminals as the upper row. Solder pin 4111 and solder pin 4211 point in opposite directions. The ground member 44 electrically connects ground terminal 4114 and ground terminal 4214.


The center-to-center spacing between the adjacent upper row terminals 411 may be 0.8 mm. The first, fourth, seventh, thirteenth, sixteenth and nineteenth (counted from left to right) of the upper row terminals 411 may be terminals 4114 and the others may be terminals 4115. The center-to-center spacing between the adjacent lower row terminals 421 may be 0.8 mm. The first, fourth, seventh, thirteenth, sixteenth and nineteenth (counted from left to right) of the lower row terminals 421 may be terminals 4214 and the others may be terminals 4215. The upper row terminals 411 and lower row terminals 421 may be made by stamping a copper alloy. The width of the solder pin 4111 and solder pin 4211 may be 0.25 mm. The ground member 44 may electrically connect terminals 4114 and terminals 4214 to reduce the insertion loss and crosstalk during signal transmission.



FIG. 8 is a perspective view of the printed circuit board 800. The PCB 800 may be configured to receive the connector 200. The PCB 800 may include a board body 5, which may include locating holes 51 configured to receive posts 13, solder pads 52 configured to receive solder pins 2111 and solder pins 2211, solder pad 53 configured to receive solder pins 4111 and solder pins 4211, and holes 54, which may be through holes, configured to receive anchor pins 3.


In the illustrated example, the diameter of the locating holes 51 is 1.1 mm and two locating holes are provided. The diameter of the through holes 54 is 1.05 mm and four holes 54 are provided. Two rows of solder pads 52 and two rows of solder pads 53 are respectively provided, with nineteen solder pads in each row. The width of the solder pads 52 is 0.35 mm and the width of the solder pads 53 is 0.35 mm, which may be greater than a respective solder pin's width such that low-resistance solder joints may be formed. The center-to-center spacing in a horizontal direction between adjacent the solder pads 52 or solder pads 53 is 0.8 mm. The solder pads 52 and solder pads 53 are distributed on the front side of the PCB. Although the solder pads 52 and 53 are illustrated on the front side, the PCB may include additional solder pads on its back side for a connector with a belly to belly configuration.


Solder pins are adopted for the terminals of the first signal transmitting portion 2 and the second signal transmitting portion 4 to be soldered to a PCB. The solder pins 2111 and solder pins 2211 may be surface-mounted on solder pads 52 of the PCB 800. Solder pins 4111 and solder pins 4211 are surface-mounted on solder pads 53 of the PCB 800. In contrast to conventional mounting of a connector with press-fits, the connector has high density and high speed, and requires a smaller mounting area on a PCB, relaxes the limitations in routing PCB traces, and reduces the electrical performance deterioration caused by PCB trace routing limitations. The terminals 2214 and terminals 2215 are distributed at intervals, improving signal integrity and alleviating signal crosstalk during signal transmission.


In the embodiment illustrated in FIG. 8 pads 53 are in two parallel rows, corresponding to a row to receive solder pins 4111 and another row to receive solder pins 4211. Those rows are offset from each other in the row direction. The row of solder pins 4111 is offset from the row of solder pins 4211 by the same amount. Such an offset in the solder pins 4111 with respect to solder pins 4211 may result from the entirety of each of the terminals 411 being substantially in the same plane and each of the terminals 421 being substantially in the same plane, but the row of terminals 411 being offset from the row of terminals 421. In such a configuration, the mating portions, as well as the intermediate portions of terminals 411 will also be offset from the terminals 421. Alternatively, the terminals 411 and/or 421 may not be substantially within a plane. The solder pins 4111 and/or solder pins 4211 may bend out of the plane containing the mating portions of their respective terminals, for example. As a result, the mating portions of terminals 411 and 421 may be aligned, in a direction perpendicular to the surface of PCB 800, though other portions of opposing terminals may be offset in the row direction.


Similar offsets for some or all of the terminals in rows 211 and 221, which are mounted to pads 52, which are also arrayed in two rows on PCB 800. As with pads 53, the two rows of pads 52 are offset with respect to each other.


It should be understood that various alterations, modifications, and improvements may be made to the structures, configurations, and methods discussed above, and are intended to be within the spirit and scope of the invention disclosed herein.


Further, although advantages of the present invention are indicated, it should be appreciated that not every embodiment of the invention will include every described advantage. Some embodiments may not implement any features described as advantageous herein. Accordingly, the foregoing description and attached drawings are by way of example only.


It should be understood that some aspects of the present technology may be embodied as one or more methods, and acts performed as part of a method of the present technology may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than shown and/or described, which may include performing some acts simultaneously, even though shown and/or described as sequential acts in various embodiments.


Various aspects of the present invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.


Further, terms denoting direction have been used, such as “left”, “right”, “forward” or “up”. These terms are relative to the illustrated embodiments, as depicted in the drawings, for ease of understanding. It should be understood that the components as described herein may be used in any suitable orientation.


Use of ordinal terms such as “first,” “second,” “third,” etc., in the description and the claims to modify an element does not by itself connote any priority, precedence, or order of one element over another, or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element or act having a certain name from another element or act having a same name (but for use of the ordinal term) to distinguish the elements or acts.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.


As used herein in the specification and in the claims, the phrase “equal” or “the same” in reference to two values (e.g., distances, widths, etc.) means that two values are the same within manufacturing tolerances. Thus, two values being equal, or the same, may mean that the two values are different from one another by ±5%.


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Use of terms such as “including,” “comprising,” “comprised of,” “having,” “containing,” and “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


The terms “approximately” and “about” if used herein may be construed to mean within ±20% of a target value in some embodiments, within ±10% of a target value in some embodiments, within ±5% of a target value in some embodiments, and within ±2% of a target value in some embodiments. The terms “approximately” and “about” may equal the target value.


The term “substantially” if used herein may be construed to mean within 95% of a target value in some embodiments, within 98% of a target value in some embodiments, within 99% of a target value in some embodiments, and within 99.5% of a target value in some embodiments. In some embodiments, the term “substantially” may equal 100% of the target value.

Claims
  • 1. An I/O connector comprising: a first plurality of terminals held in a first row;a second plurality of terminals held in a second row parallel to the first row;a third plurality of terminals held in a third row parallel to the first row;a fourth plurality of terminals held in a fourth row parallel to the first row; anda housing comprising a first slot and a second slot, each of the first and second slots extending in a direction parallel to the first row, wherein: terminals of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, and the fourth plurality of terminals each comprises a mating portion, a tail and an intermediate portion joining the mating portion and the tail,at least the mating portions of the first plurality of terminals and the second plurality of terminals are disposed in the first slot,at least the mating portions of the third plurality of terminals and the fourth plurality of terminals are disposed in the second slot,the first slot is separated from the second slot in a direction perpendicular to the first row and away from the tails of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, and the fourth plurality of terminals,the intermediate portions of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, and the fourth plurality of terminals each comprises a first part and a second part bent at an angle with respect to the first part,the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, and the fourth plurality of terminals are configured as signal terminals or ground terminals,the connector further comprises a plurality of ground members each comprising a plurality of first portions and a plurality of second portions joining the first portions,the first portions of at least a first one of the plurality of ground members are connected to the intermediate portions of ground terminals of the first plurality of terminals at the first parts of the intermediate portions, andthe first portions of at least a second one of the plurality of ground members are connected to the intermediate portions of the ground terminals of the first plurality of terminals at the second parts of the intermediate portions.
  • 2. The I/O connector of claim 1, wherein: each of the plurality of ground members comprises a strip of material having a bulk conductivity between 1 and 5,000 Siemens/meter.
  • 3. The I/O connector of claim 1, wherein: the first portions of the at least first one of the plurality of ground members are connected to the intermediate portions of the ground terminals of the second plurality of terminals at the first parts of the intermediate portions, andthe first portions of the at least second one of the plurality of ground members are connected to the intermediate portions of the ground terminals of the second plurality of terminals at the second parts of the intermediate portions.
  • 4. The I/O connector of claim 1, wherein: the first plurality of terminals comprise signal terminals configured as differential pairs of signal terminals separated by ground terminals.
  • 5. The I/O connector of claim 4, wherein: the second plurality of terminals comprise signal terminals configured as differential pairs of signal terminals separated by ground terminals; andthe ground terminals of the second plurality of terminals are electrically connected to the ground terminals of the first plurality of terminals through at least two of the plurality of ground members.
  • 6. The I/O connector of claim 1, wherein: at least a third one of the plurality of ground members is positioned between the first parts of the intermediate portions of the third and fourth plurality of terminals.
  • 7. The I/O connector of claim 6, wherein: the third plurality of terminals comprise signal terminals configured as differential pairs of signal terminals separated by ground terminals; andthe fourth plurality of terminals comprise signal terminals configured as differential pairs of signal terminals separated by ground terminals.
  • 8. The I/O connector of claim 1, wherein: the plurality of ground members comprise metal members extending parallel to the first row.
  • 9. The I/O connector of claim 8, wherein: the first portions of at least three of the plurality of ground members are connected to ground terminals of the first plurality of terminals.
  • 10. The I/O connector of claim 8, wherein: the at least first one of the plurality of ground members connected to the intermediate portions of the ground terminals of the first plurality of terminals at the first parts of the intermediate portions is a first ground member of the plurality of ground members,the at least second one of the plurality of ground members connected to the intermediate portions of the ground terminals of the first plurality of terminals at the second parts of the intermediate portions is a second ground member of the plurality of ground members,the first portions of the first ground member contact the first parts of the intermediate portions of the first plurality of terminals andcontact the first parts of the intermediate portions of the second plurality of terminals.
  • 11. The I/O connector of claim 10, wherein: the plurality of second portions of the first and second ground members comprise body portions separated from the signal terminals of the first plurality of terminals, andthe plurality of first portions of the first and second ground members comprise projections extending towards the ground terminals of the first plurality of terminals.
  • 12. The I/O connector of claim 1, wherein: the tails of the first plurality of terminals and the tails of the second plurality of terminals comprise solder pins configured for soldering to a pad on a surface of a printed circuit board,the solder pins of the first plurality of terminals extend in a first direction, andthe solder pins of the second plurality of terminals extend in a second direction, opposite the first direction.
  • 13. The I/O connector of claim 12, wherein: the tails of the third plurality of terminals and the tails fourth plurality of terminals comprise solder pins configured for soldering to a pad on a surface of a printed circuit board,the solder pins of the third plurality of terminals extend in the first direction, andthe solder pins of the fourth plurality of terminals extend in the second direction.
  • 14. The I/O connector of claim 13, wherein: the housing comprises a mounting face and the tails of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, and the fourth plurality of terminals are exposed at the mounting face;the housing comprises at least one post extending from the mounting face; andthe I/O connector further comprises a plurality of anchor pins attached to the housing, each of the anchor pins comprising a pair of spring arms extending towards opposite directions.
  • 15. An electrical connector comprising: a housing comprising first and second slots each extending in a row direction and separated from each other in a direction perpendicular to the row direction;a first terminal subassembly comprising a first plurality of terminals and a first insulative member molded over the first plurality of terminals to hold the first plurality of terminals in a first row of terminals;a second terminal subassembly comprising a second plurality of terminals and a second insulative member molded over the second plurality of terminals to hold the second plurality of terminals in a second row of terminals;a third terminal subassembly comprising a third plurality of terminals and a third insulative member molded over the third plurality of terminals to hold the third plurality of terminals in a third row of terminals;a fourth terminal subassembly comprising a fourth plurality of terminals and a fourth insulative member molded over the fourth plurality of terminals to hold the fourth plurality of terminals in a fourth row of terminals; andfirst and second ground members each comprising a plurality of first portions and a plurality of second portions joining the first portions, wherein: the terminals of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, the fourth plurality of terminals each comprises a mating portion, a solder pin and an intermediate portion joining the mating portion and the solder pin,the mating portions of the first and second terminal subassemblies extend into the first slot,the mating portions of the third and fourth terminal subassemblies extend into the second slot,the solder pins are configured for soldering to a pad on a surface of a printed circuit board,the solder pins of the first plurality of terminals are offset, in the row direction, from the solder pins of the second plurality of terminals,the solder pins of the first plurality of terminals extend in a first direction perpendicular to the row direction,the solder pins of the second plurality of terminals extend in a second direction perpendicular to the row direction, opposite from the first direction, [[and]]the solder pins of the third plurality of terminals are offset, in the row direction, from the solder pins of the fourth plurality of terminals,the first plurality of terminals are configured as signal terminals or ground terminals,the plurality of second portions of the first and second ground members comprise body portions separated from the signal terminals of the first plurality of terminals, andthe plurality of first portions of the first and second ground members comprise projections extending towards the ground terminals of the first plurality of terminals.
  • 16. The electrical connector of claim 15, wherein: the terminals of the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, and the fourth plurality of terminals comprise terminals configured as signal terminals and ground terminals,the connector comprises a plurality of ground members each comprising a plurality of first portions and a plurality of second portions, joining the first portions,the plurality of ground members connect the ground terminals of the first plurality of terminals at a plurality of locations, andthe plurality of ground members connect the ground terminals of the second plurality of terminals at a plurality of locations.
  • 17. The electrical connector of claim 16, wherein: the plurality of ground members connect the ground terminals of the first plurality of terminals at at least three locations, andthe plurality of ground members connect the ground terminals of the second plurality of terminals at at least three locations.
  • 18. The electrical connector of claim 15, wherein: the mating portions of the first plurality of terminals are offset, in the row direction, from the mating portions of the second plurality of terminals, andthe mating portions of the third plurality of terminals are offset, in the row direction, from the mating portions of the fourth plurality of terminals.
  • 19. The electrical connector of claim 15, wherein: the intermediate portions of the first plurality of terminals are offset, in the row direction, from the intermediate portions of the second plurality of terminals, andthe intermediate portions of the third plurality of terminals are offset, in the row direction, from the intermediate portions of the fourth plurality of terminals.
  • 20. The electrical connector of claim 15, wherein: the solder pins extend at a right angle from respective intermediate portions in four parallel rows.
  • 21. An electrical connector, comprising: a housing comprising first and second slots each extending in a row direction and separated from each other in a direction perpendicular to the row direction;a first terminal subassembly comprising a first plurality of terminals and a first insulative member molded over the first plurality of terminals to hold the first plurality of terminals in a first row of terminals;a second terminal subassembly comprising a second plurality of terminals and a second insulative member molded over the second plurality of terminals to hold the second plurality of terminals in a second row of terminals;a third terminal subassembly comprising a third plurality of terminals and a third insulative member molded over the third plurality of terminals to hold the third plurality of terminals in a third row of terminals;a fourth terminal subassembly comprising a fourth plurality of terminals and a fourth insulative member molded over the fourth plurality of terminals to hold the fourth plurality of terminals in a fourth row of terminals; anda plurality of ground members, wherein:the first insulative member, the second insulative member, the third insulative member and the fourth insulative member comprise openings therein exposing the first plurality of terminals, the second plurality of terminals, the third plurality of terminals, the fourth plurality of terminals, respectively, andground members of the plurality of ground members are disposed within the openings of the first insulative member, the second insulative member, the third insulative member and the fourth insulative member.
Priority Claims (1)
Number Date Country Kind
201821577530.2 Sep 2018 CN national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/415,456, filed on May 17, 2019, entitled “HIGH SPEED ELECTRICAL CONNECTOR AND PRINTED CIRCUIT BOARD THEREOF,” which claims priority to and the benefit of Chinese Patent Application No. 201821577530.2, filed on Sep. 26, 2018. The entire contents of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (746)
Number Name Date Kind
2996710 Pratt Aug 1961 A
3002162 Garstang Sep 1961 A
3134950 Cook May 1964 A
3243756 Ruete et al. Mar 1966 A
3322885 May et al. May 1967 A
3390369 Zavertnik et al. Jun 1968 A
3390389 Bluish Jun 1968 A
3505619 Bishop Apr 1970 A
3573677 Detar Apr 1971 A
3731259 Occhipinti May 1973 A
3743978 Fritz Jul 1973 A
3745509 Woodward et al. Jul 1973 A
3786372 Epis et al. Jan 1974 A
3825874 Peverill Jul 1974 A
3848073 Simons et al. Nov 1974 A
3863181 Glance et al. Jan 1975 A
3999830 Herrmann, Jr. et al. Dec 1976 A
4155613 Brandeau May 1979 A
4175821 Hunter Nov 1979 A
4195272 Boutros Mar 1980 A
4215910 Walter Aug 1980 A
4272148 Knack, Jr. Jun 1981 A
4276523 Boutros et al. Jun 1981 A
4371742 Manly Feb 1983 A
4408255 Adkins Oct 1983 A
4447105 Ruehl May 1984 A
4457576 Cosmos et al. Jul 1984 A
4471015 Ebneth et al. Sep 1984 A
4472765 Hughes Sep 1984 A
4484159 Whitley Nov 1984 A
4490283 Kleiner Dec 1984 A
4518651 Wolfe, Jr. May 1985 A
4519664 Tillotson May 1985 A
4519665 Althouse et al. May 1985 A
4571014 Robin et al. Feb 1986 A
4605914 Harman Aug 1986 A
4607907 Bogursky Aug 1986 A
4632476 Schell Dec 1986 A
4636752 Saito Jan 1987 A
4655518 Johnson et al. Apr 1987 A
4674812 Thom et al. Jun 1987 A
4678260 Gallusser et al. Jul 1987 A
4682129 Bakermans et al. Jul 1987 A
4686607 Johnson Aug 1987 A
4728762 Roth et al. Mar 1988 A
4737598 O'Connor Apr 1988 A
4751479 Parr Jun 1988 A
4761147 Gauthier Aug 1988 A
4806107 Arnold et al. Feb 1989 A
4824383 Lemke Apr 1989 A
4836791 Grabbe et al. Jun 1989 A
4846724 Sasaki et al. Jul 1989 A
4846727 Glover et al. Jul 1989 A
4871316 Herrell et al. Oct 1989 A
4876630 Dara Oct 1989 A
4878155 Conley Oct 1989 A
4889500 Lazar et al. Dec 1989 A
4902243 Davis Feb 1990 A
4948922 Varadan et al. Aug 1990 A
4970354 Iwasa et al. Nov 1990 A
4971726 Maeno et al. Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4984992 Beamenderfer et al. Jan 1991 A
4992060 Meyer Feb 1991 A
5000700 Masubuchi et al. Mar 1991 A
5037330 Fulponi et al. Aug 1991 A
5046084 Barrett et al. Sep 1991 A
5046952 Cohen et al. Sep 1991 A
5046960 Fedder Sep 1991 A
5066236 Broeksteeg Nov 1991 A
5135405 Fusselman et al. Aug 1992 A
5141454 Garrett et al. Aug 1992 A
5150086 Ito Sep 1992 A
5166527 Solymar Nov 1992 A
5167531 Broschard, III Dec 1992 A
5168252 Naito Dec 1992 A
5168432 Murphy et al. Dec 1992 A
5176538 Hansell, III et al. Jan 1993 A
5190472 Voltz et al. Mar 1993 A
5246388 Collins et al. Sep 1993 A
5259773 Champion et al. Nov 1993 A
5266055 Naito et al. Nov 1993 A
5280191 Chang Jan 1994 A
5280257 Cravens et al. Jan 1994 A
5281152 Takahashi et al. Jan 1994 A
5281762 Long et al. Jan 1994 A
5287076 Johnescu et al. Feb 1994 A
5318463 Broschard, III et al. Jun 1994 A
5323299 Weber Jun 1994 A
5332397 Ingalsbe Jul 1994 A
5334050 Andrews Aug 1994 A
5335146 Stucke Aug 1994 A
5336109 Hillbish et al. Aug 1994 A
5340334 Nguyen Aug 1994 A
5346410 Moore, Jr. Sep 1994 A
5352123 Sample et al. Oct 1994 A
5403206 McNamara et al. Apr 1995 A
5407622 Cleveland et al. Apr 1995 A
5429520 Morlion et al. Jul 1995 A
5429521 Morlion et al. Jul 1995 A
5433617 Morlion et al. Jul 1995 A
5433618 Morlion et al. Jul 1995 A
5453016 Clark et al. Sep 1995 A
5456619 Belopolsky et al. Oct 1995 A
5461392 Mott et al. Oct 1995 A
5474472 Niwa et al. Dec 1995 A
5484310 McNamara et al. Jan 1996 A
5490372 Schlueter Feb 1996 A
5496183 Soes et al. Mar 1996 A
5499935 Powell Mar 1996 A
5539148 Konishi et al. Jul 1996 A
5551893 Johnson Sep 1996 A
5554050 Marpoe, Jr. Sep 1996 A
5562497 Yagi et al. Oct 1996 A
5564949 Wellinsky Oct 1996 A
5571991 Highum et al. Nov 1996 A
5597328 Mouissie Jan 1997 A
5605469 Wellinsky et al. Feb 1997 A
5620340 Andrews Apr 1997 A
5637015 Tan et al. Jun 1997 A
5651702 Hanning et al. Jul 1997 A
5660551 Sakurai Aug 1997 A
5669789 Law Sep 1997 A
5702258 Provencher et al. Dec 1997 A
5755597 Panis et al. May 1998 A
5786986 Bregman et al. Jul 1998 A
5795191 Preputnick et al. Aug 1998 A
5796323 Uchikoba et al. Aug 1998 A
5797770 Davis et al. Aug 1998 A
5803768 Zell et al. Sep 1998 A
5808236 Brezina et al. Sep 1998 A
5831491 Buer et al. Nov 1998 A
5833486 Shinozaki Nov 1998 A
5833496 Hollander et al. Nov 1998 A
5842887 Andrews Dec 1998 A
5848914 Lang et al. Dec 1998 A
5865646 Ortega et al. Feb 1999 A
5870528 Fukuda Feb 1999 A
5885095 Cohen et al. Mar 1999 A
5887158 Sample et al. Mar 1999 A
5904594 Longueville et al. May 1999 A
5924890 Morin et al. Jul 1999 A
5924899 Paagman Jul 1999 A
5931686 Sasaki et al. Aug 1999 A
5959591 Aurand Sep 1999 A
5961355 Morlion et al. Oct 1999 A
5971809 Ho Oct 1999 A
5980321 Cohen et al. Nov 1999 A
5981869 Kroger Nov 1999 A
5982253 Perrin et al. Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
5997361 Driscoll et al. Dec 1999 A
6019616 Yagi et al. Feb 2000 A
6022239 Wright Feb 2000 A
6042394 Mitra et al. Mar 2000 A
6083047 Paagman Jul 2000 A
6102747 Paagman Aug 2000 A
6116926 Ortega et al. Sep 2000 A
6120306 Evans Sep 2000 A
6123554 Ortega et al. Sep 2000 A
6132255 Verhoeven Oct 2000 A
6132355 Derie Oct 2000 A
6135824 Okabe et al. Oct 2000 A
6146202 Ramey et al. Nov 2000 A
6152274 Blard et al. Nov 2000 A
6152742 Cohen et al. Nov 2000 A
6152747 McNamara Nov 2000 A
6159040 Chang et al. Dec 2000 A
6163464 Ishibashi et al. Dec 2000 A
6168469 Lu Jan 2001 B1
6171115 Mickievicz et al. Jan 2001 B1
6171149 van Zanten Jan 2001 B1
6174202 Mitra Jan 2001 B1
6174203 Asao Jan 2001 B1
6174944 Chiba et al. Jan 2001 B1
6179651 Huang Jan 2001 B1
6179663 Bradley et al. Jan 2001 B1
6196853 Harting et al. Mar 2001 B1
6203396 Asmussen et al. Mar 2001 B1
6206729 Bradley et al. Mar 2001 B1
6210182 Elco et al. Apr 2001 B1
6210227 Yamasaki et al. Apr 2001 B1
6215666 Hileman et al. Apr 2001 B1
6217372 Reed Apr 2001 B1
6227875 Wu et al. May 2001 B1
6231391 Ramey et al. May 2001 B1
6238241 Zhu et al. May 2001 B1
6238245 Stokoe et al. May 2001 B1
6267604 Mickievicz et al. Jul 2001 B1
6273758 Lloyd et al. Aug 2001 B1
6283786 Margulis et al. Sep 2001 B1
6293827 Stokoe Sep 2001 B1
6296496 Trammel Oct 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299483 Cohen et al. Oct 2001 B1
6299484 Van Woensel Oct 2001 B2
6299492 Pierini et al. Oct 2001 B1
6328572 Higashida et al. Dec 2001 B1
6328601 Yip et al. Dec 2001 B1
6333468 Endoh et al. Dec 2001 B1
6343955 Billman et al. Feb 2002 B2
6343957 Kuo et al. Feb 2002 B1
6347962 Kline Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6358088 Nishio et al. Mar 2002 B1
6358092 Siemon et al. Mar 2002 B1
6364711 Berg et al. Apr 2002 B1
6364713 Kuo Apr 2002 B1
6375510 Asao Apr 2002 B2
6379188 Cohen et al. Apr 2002 B1
6380485 Beaman et al. Apr 2002 B1
6392142 Uzuka et al. May 2002 B1
6394839 Reed May 2002 B2
6396712 Kuijk May 2002 B1
6398588 Bickford Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6413119 Gabrisko, Jr. et al. Jul 2002 B1
6428344 Reed Aug 2002 B1
6431914 Billman Aug 2002 B1
6435913 Billman Aug 2002 B1
6435914 Billman Aug 2002 B1
6441313 Novak Aug 2002 B1
6454605 Bassler et al. Sep 2002 B1
6461202 Kline Oct 2002 B2
6471549 Lappohn Oct 2002 B1
6478624 Ramey et al. Nov 2002 B2
6482017 Van Doorn Nov 2002 B1
6491545 Spiegel et al. Dec 2002 B1
6503103 Cohen et al. Jan 2003 B1
6506076 Cohen et al. Jan 2003 B2
6517360 Cohen Feb 2003 B1
6517382 Flickinger et al. Feb 2003 B2
6520803 Dunn Feb 2003 B1
6527587 Ortega et al. Mar 2003 B1
6528737 Kwong et al. Mar 2003 B1
6530790 McNamara et al. Mar 2003 B1
6533613 Turner et al. Mar 2003 B1
6537087 McNamara et al. Mar 2003 B2
6538524 Miller Mar 2003 B1
6538899 Krishnamurthi et al. Mar 2003 B1
6540522 Sipe Apr 2003 B2
6540558 Paagman Apr 2003 B1
6540559 Kemmick et al. Apr 2003 B1
6541712 Gately et al. Apr 2003 B1
6544072 Olson Apr 2003 B2
6544647 Hayashi et al. Apr 2003 B1
6551140 Billman et al. Apr 2003 B2
6554647 Cohen et al. Apr 2003 B1
6561847 Xiang et al. May 2003 B1
6565387 Cohen May 2003 B2
6565390 Wu May 2003 B2
6579116 Brennan et al. Jun 2003 B2
6582244 Fogg et al. Jun 2003 B2
6585540 Gutierrez et al. Jul 2003 B2
6589061 Korsunsky et al. Jul 2003 B1
6592381 Cohen et al. Jul 2003 B2
6595802 Watanabe et al. Jul 2003 B1
6600865 Hwang Jul 2003 B2
6602095 Astbury, Jr. et al. Aug 2003 B2
6607402 Cohen et al. Aug 2003 B2
6608762 Patriche Aug 2003 B2
6609933 Yamasaki Aug 2003 B2
6612871 Givens Sep 2003 B1
6616482 De La Cruz et al. Sep 2003 B2
6616864 Jiang et al. Sep 2003 B1
6621373 Mullen et al. Sep 2003 B1
6652318 Winings et al. Nov 2003 B1
6652319 Billman Nov 2003 B1
6655966 Rothermel et al. Dec 2003 B2
6663427 Billman et al. Dec 2003 B1
6663429 Korsunsky et al. Dec 2003 B1
6692231 Calvert Feb 2004 B1
6692272 Lemke et al. Feb 2004 B2
6705895 Hasircoglu Mar 2004 B2
6706974 Chen et al. Mar 2004 B2
6709294 Cohen et al. Mar 2004 B1
6712648 Padro et al. Mar 2004 B2
6713672 Stickney Mar 2004 B1
6717825 Volstorf Apr 2004 B2
6722897 Wu Apr 2004 B1
6741141 Kormanyos May 2004 B2
6743057 Davis et al. Jun 2004 B2
6749444 Murr et al. Jun 2004 B2
6749448 Bright et al. Jun 2004 B2
6762941 Roth Jul 2004 B2
6764341 Lappoehn Jul 2004 B2
6776645 Roth et al. Aug 2004 B2
6776649 Pape et al. Aug 2004 B2
6776659 Stokoe et al. Aug 2004 B1
6786771 Gailus Sep 2004 B2
6792941 Andersson Sep 2004 B2
6806109 Furuya et al. Oct 2004 B2
6808419 Korsunsky et al. Oct 2004 B1
6808420 Whiteman, Jr. et al. Oct 2004 B2
6811326 Keeble et al. Nov 2004 B2
6814519 Policicchio et al. Nov 2004 B2
6814619 Stokoe et al. Nov 2004 B1
6816376 Bright et al. Nov 2004 B2
6816486 Rogers Nov 2004 B1
6817870 Kwong et al. Nov 2004 B1
6823587 Reed Nov 2004 B2
6830478 Ko et al. Dec 2004 B1
6830483 Wu Dec 2004 B1
6830489 Aoyama Dec 2004 B2
6846115 Shang et al. Jan 2005 B1
6857899 Reed et al. Feb 2005 B2
6872085 Cohen et al. Mar 2005 B1
6872094 Murr et al. Mar 2005 B1
6875031 Korsunsky et al. Apr 2005 B1
6899566 Kline et al. May 2005 B2
6903939 Chea, Jr. et al. Jun 2005 B1
6913490 Whiteman, Jr. et al. Jul 2005 B2
6932649 Rothermel et al. Aug 2005 B1
6957967 Petersen et al. Oct 2005 B2
6960103 Tokunaga Nov 2005 B2
6971916 Tokunaga Dec 2005 B2
6979202 Benham et al. Dec 2005 B2
6979226 Otsu et al. Dec 2005 B2
6982378 Dickson Jan 2006 B2
7004793 Scherer et al. Feb 2006 B2
7021969 Matsunaga Apr 2006 B2
7044794 Consoli et al. May 2006 B2
7057570 Irion, II et al. Jun 2006 B2
7070446 Henry Jul 2006 B2
7074086 Cohen et al. Jul 2006 B2
7094102 Cohen et al. Aug 2006 B2
7108556 Cohen et al. Sep 2006 B2
7120327 Bozso et al. Oct 2006 B2
7137849 Nagata Nov 2006 B2
7163421 Cohen et al. Jan 2007 B1
7175444 Lang et al. Feb 2007 B2
7182643 Winings et al. Feb 2007 B2
7198519 Regnier et al. Apr 2007 B2
7214074 Osada May 2007 B2
7229318 Winings et al. Jun 2007 B2
7258573 Lee Aug 2007 B1
7261591 Korsunsky et al. Aug 2007 B2
7270573 Houtz Sep 2007 B2
7285018 Kenny et al. Oct 2007 B2
7303427 Swain Dec 2007 B2
7303438 Dawiedczyk et al. Dec 2007 B2
7309239 Shuey et al. Dec 2007 B2
7316585 Smith et al. Jan 2008 B2
7322855 Mongold et al. Jan 2008 B2
7331830 Minich Feb 2008 B2
7335063 Cohen et al. Feb 2008 B2
7347721 Kameyama Mar 2008 B2
7351114 Benham et al. Apr 2008 B2
7354274 Minich Apr 2008 B2
7365269 Donazzi et al. Apr 2008 B2
7371117 Gailus May 2008 B2
7390218 Smith et al. Jun 2008 B2
7390220 Wu Jun 2008 B1
7407413 Minich Aug 2008 B2
7422483 Avery et al. Sep 2008 B2
7448897 Dawiedczyk et al. Nov 2008 B2
7494383 Cohen et al. Feb 2009 B2
7540747 Ice et al. Jun 2009 B2
7540781 Kenny et al. Jun 2009 B2
7543142 Sydir Jun 2009 B2
7554096 Ward et al. Jun 2009 B2
7575471 Long Aug 2009 B2
7581990 Kirk et al. Sep 2009 B2
7585186 McAlonis et al. Sep 2009 B2
7585188 Regnier Sep 2009 B2
7588464 Kim Sep 2009 B2
7588467 Chang Sep 2009 B2
7594826 Kobayashi et al. Sep 2009 B2
7604490 Chen et al. Oct 2009 B2
7604502 Pan Oct 2009 B2
7674133 Fogg et al. Mar 2010 B2
7690946 Knaub et al. Apr 2010 B2
7699644 Szczesny et al. Apr 2010 B2
7699663 Little et al. Apr 2010 B1
7722401 Kirk et al. May 2010 B2
7731537 Amleshi et al. Jun 2010 B2
7753731 Cohen et al. Jul 2010 B2
7758357 Pan et al. Jul 2010 B2
7764504 Phillips et al. Jul 2010 B2
7771233 Gailus Aug 2010 B2
7781294 Mauder et al. Aug 2010 B2
7789676 Morgan et al. Sep 2010 B2
7794240 Cohen et al. Sep 2010 B2
7794278 Cohen et al. Sep 2010 B2
7806698 Regnier Oct 2010 B2
7806729 Nguyen et al. Oct 2010 B2
7828595 Mathews Nov 2010 B2
7871294 Long Jan 2011 B2
7871296 Fowler et al. Jan 2011 B2
7874873 Do et al. Jan 2011 B2
7887371 Kenny et al. Feb 2011 B2
7887379 Kirk Feb 2011 B2
7896659 Westman et al. Mar 2011 B1
7906730 Atkinson et al. Mar 2011 B2
7914304 Cartier et al. Mar 2011 B2
7927143 Heister et al. Apr 2011 B2
7985097 Gulla Jul 2011 B2
8018733 Jia Sep 2011 B2
8057267 Johnescu Nov 2011 B2
8083553 Manter et al. Dec 2011 B2
RE43427 Dawiedczyk et al. May 2012 E
8182289 Stokoe et al. May 2012 B2
8215968 Cartier et al. Jul 2012 B2
8216001 Kirk Jul 2012 B2
8251745 Johnescu Aug 2012 B2
8267721 Minich Sep 2012 B2
8272877 Stokoe et al. Sep 2012 B2
8358504 McColloch et al. Jan 2013 B2
8371875 Gailus Feb 2013 B2
8382524 Khilchenko et al. Feb 2013 B2
8465320 Long Jun 2013 B2
8469738 Long Jun 2013 B2
8475210 Wang Jul 2013 B2
8480413 Minich et al. Jul 2013 B2
8540525 Regnier et al. Sep 2013 B2
8550861 Cohen et al. Oct 2013 B2
8597045 Zhu Dec 2013 B2
8657627 McNamara et al. Feb 2014 B2
8678860 Minich et al. Mar 2014 B2
8715003 Buck et al. May 2014 B2
8715005 Pan May 2014 B2
8740644 Long Jun 2014 B2
8771016 Atkinson et al. Jul 2014 B2
8830679 Scholeno Sep 2014 B2
8864521 Atkinson et al. Oct 2014 B2
8870471 Ito et al. Oct 2014 B2
8926377 Kirk et al. Jan 2015 B2
8944831 Stoner et al. Feb 2015 B2
8998642 Manter et al. Apr 2015 B2
9004942 Paniauqa Apr 2015 B2
9011177 Lloyd et al. Apr 2015 B2
9022806 Cartier, Jr. et al. May 2015 B2
9028201 Kirk et al. May 2015 B2
9028281 Kirk et al. May 2015 B2
9065230 Milbrand, Jr. Jun 2015 B2
9077115 Yang Jul 2015 B2
9083130 Casher et al. Jul 2015 B2
9118151 Tran et al. Aug 2015 B2
9124009 Atkinson et al. Sep 2015 B2
9210817 Briant Dec 2015 B2
9219335 Atkinson et al. Dec 2015 B2
9225085 Cartier, Jr. et al. Dec 2015 B2
9246262 Brown Jan 2016 B2
9246280 Neer Jan 2016 B2
9257794 Wanha et al. Feb 2016 B2
9276358 Ista Mar 2016 B2
9300074 Gailus Mar 2016 B2
9368916 Heyvaert et al. Jun 2016 B2
9389368 Sharf Jul 2016 B1
9450344 Cartier, Jr. et al. Sep 2016 B2
9461378 Chen Oct 2016 B1
9484674 Cartier, Jr. et al. Nov 2016 B2
9509101 Cartier, Jr. et al. Nov 2016 B2
9509102 Sharf et al. Nov 2016 B2
9520689 Cartier, Jr. et al. Dec 2016 B2
9653829 Long May 2017 B2
9666998 de Boer et al. May 2017 B1
9668378 Phillips May 2017 B2
9671582 Yeh Jun 2017 B2
9692188 Godana et al. Jun 2017 B2
9705255 Atkinson et al. Jul 2017 B2
9711901 Scholeno Jul 2017 B2
9748698 Morgan et al. Aug 2017 B1
9761974 L'Esperance et al. Sep 2017 B2
9829662 Kurashima Nov 2017 B2
9831588 Cohen Nov 2017 B2
9843135 Guetig et al. Dec 2017 B2
9859658 Champion Jan 2018 B2
9899774 Gailus Feb 2018 B2
9915560 Ho et al. Mar 2018 B2
9929500 Ista Mar 2018 B1
10020614 Bucher Jul 2018 B1
10109968 Khazen Oct 2018 B2
10122129 Milbrand, Jr. Nov 2018 B2
10128627 Kazav Nov 2018 B1
10153571 Kachlic Dec 2018 B2
10186814 Khilchenko et al. Jan 2019 B2
10211577 Milbrand, Jr. et al. Feb 2019 B2
10243304 Kirk Mar 2019 B2
10276995 Little Apr 2019 B2
10348040 Cartier, Jr. et al. Jul 2019 B2
10367283 L'Esperance et al. Jul 2019 B2
10374355 Ayzenberg et al. Aug 2019 B2
10381767 Milbrand, Jr. et al. Aug 2019 B1
10431936 Horning et al. Oct 2019 B2
10446960 Guy Ritter et al. Oct 2019 B2
10511118 Beltran et al. Dec 2019 B2
10511128 Kirk et al. Dec 2019 B2
10551580 Regnier et al. Feb 2020 B2
10555437 Little Feb 2020 B2
10588243 Little Mar 2020 B2
10601181 Lu et al. Mar 2020 B2
10630002 Huang et al. Apr 2020 B2
10630010 Tracy Apr 2020 B2
10651606 Little May 2020 B2
10777921 Lu et al. Sep 2020 B2
10797417 Scholeno Oct 2020 B2
10847930 Ayzenberg et al. Nov 2020 B2
10862240 Bakshan et al. Dec 2020 B2
10873149 Chen Dec 2020 B2
10916894 Kirk et al. Feb 2021 B2
10931050 Cohen Feb 2021 B2
10944189 Xu Mar 2021 B2
11189971 Lu Nov 2021 B2
20010012730 Ramey et al. Aug 2001 A1
20010041477 Billman et al. Nov 2001 A1
20010042632 Manov et al. Nov 2001 A1
20010046810 Cohen et al. Nov 2001 A1
20020042223 Belopolsky et al. Apr 2002 A1
20020086582 Nitta et al. Jul 2002 A1
20020089464 Joshi Jul 2002 A1
20020098738 Astbury et al. Jul 2002 A1
20020102885 Kline Aug 2002 A1
20020111068 Cohen et al. Aug 2002 A1
20020111069 Astbury et al. Aug 2002 A1
20020115335 Saito Aug 2002 A1
20020123266 Ramey et al. Sep 2002 A1
20020136506 Asada et al. Sep 2002 A1
20020146926 Fogg et al. Oct 2002 A1
20020168898 Billman et al. Nov 2002 A1
20020172469 Benner et al. Nov 2002 A1
20020181215 Guenthner Dec 2002 A1
20020192988 Droesbeke et al. Dec 2002 A1
20020197043 Hwang Dec 2002 A1
20030003803 Billman et al. Jan 2003 A1
20030008561 Lappoehn Jan 2003 A1
20030008562 Yamasaki Jan 2003 A1
20030022555 Vicich et al. Jan 2003 A1
20030027439 Johnescu et al. Feb 2003 A1
20030109174 Korsunsky et al. Jun 2003 A1
20030143894 Kline et al. Jul 2003 A1
20030147227 Egitto et al. Aug 2003 A1
20030220018 Winings et al. Nov 2003 A1
20030220021 Whiteman et al. Nov 2003 A1
20040001299 van Haaster et al. Jan 2004 A1
20040005815 Mizumura et al. Jan 2004 A1
20040020674 McFadden et al. Feb 2004 A1
20040043661 Okada et al. Mar 2004 A1
20040072473 Wu Apr 2004 A1
20040097112 Minich et al. May 2004 A1
20040115968 Cohen Jun 2004 A1
20040121652 Gailus Jun 2004 A1
20040166708 Kiely Aug 2004 A1
20040171305 McGowan et al. Sep 2004 A1
20040196112 Welbon et al. Oct 2004 A1
20040224559 Nelson et al. Nov 2004 A1
20040235352 Takemasa Nov 2004 A1
20040259419 Payne et al. Dec 2004 A1
20050006119 Cunningham et al. Jan 2005 A1
20050020135 Whiteman et al. Jan 2005 A1
20050039331 Smith Feb 2005 A1
20050048838 Korsunsky et al. Mar 2005 A1
20050048842 Benham et al. Mar 2005 A1
20050070160 Cohen et al. Mar 2005 A1
20050090299 Tsao et al. Apr 2005 A1
20050133245 Katsuyama et al. Jun 2005 A1
20050148239 Hull et al. Jul 2005 A1
20050176300 Hsu et al. Aug 2005 A1
20050176835 Kobayashi et al. Aug 2005 A1
20050215121 Tokunaga Sep 2005 A1
20050233610 Tutt et al. Oct 2005 A1
20050255726 Long Nov 2005 A1
20050277315 Mongold et al. Dec 2005 A1
20050283974 Richard et al. Dec 2005 A1
20050287869 Kenny et al. Dec 2005 A1
20060009080 Regnier et al. Jan 2006 A1
20060019517 Raistrick et al. Jan 2006 A1
20060019538 Davis et al. Jan 2006 A1
20060024983 Cohen et al. Feb 2006 A1
20060024984 Cohen et al. Feb 2006 A1
20060068640 Gailus Mar 2006 A1
20060073709 Reid Apr 2006 A1
20060104010 Donazzi et al. May 2006 A1
20060141866 Shiu Jun 2006 A1
20060160429 Dawiedczyk et al. Jul 2006 A1
20060166551 Korsunsky et al. Jul 2006 A1
20060216969 Bright et al. Sep 2006 A1
20060249820 Ice et al. Nov 2006 A1
20060255876 Kushta et al. Nov 2006 A1
20060292932 Benham et al. Dec 2006 A1
20070004282 Cohen et al. Jan 2007 A1
20070004828 Khabbaz Jan 2007 A1
20070021000 Laurx Jan 2007 A1
20070021001 Laurx et al. Jan 2007 A1
20070021002 Laurx et al. Jan 2007 A1
20070021003 Laurx et al. Jan 2007 A1
20070021004 Laurx et al. Jan 2007 A1
20070037419 Sparrowhawk Feb 2007 A1
20070042639 Manter et al. Feb 2007 A1
20070054554 Do et al. Mar 2007 A1
20070059961 Cartier et al. Mar 2007 A1
20070111597 Kondou et al. May 2007 A1
20070141872 Szczesny et al. Jun 2007 A1
20070155241 Lappohn Jul 2007 A1
20070218765 Cohen et al. Sep 2007 A1
20070258682 Bright et al. Nov 2007 A1
20070275583 McNutt et al. Nov 2007 A1
20080050968 Chang Feb 2008 A1
20080194146 Gailus Aug 2008 A1
20080246555 Kirk et al. Oct 2008 A1
20080248658 Cohen et al. Oct 2008 A1
20080248659 Cohen et al. Oct 2008 A1
20080248660 Kirk et al. Oct 2008 A1
20080318455 Beaman et al. Dec 2008 A1
20080318476 Weber et al. Dec 2008 A1
20090011620 Avery et al. Jan 2009 A1
20090011641 Cohen et al. Jan 2009 A1
20090011643 Amleshi et al. Jan 2009 A1
20090011645 Laurx et al. Jan 2009 A1
20090035955 McNamara Feb 2009 A1
20090061661 Shuey et al. Mar 2009 A1
20090117386 Vacant et al. May 2009 A1
20090149045 Chen et al. Jun 2009 A1
20090203259 Nguyen et al. Aug 2009 A1
20090239395 Cohen et al. Sep 2009 A1
20090258516 Hiew et al. Oct 2009 A1
20090291593 Atkinson et al. Nov 2009 A1
20090305533 Feldman et al. Dec 2009 A1
20090305553 Thomas et al. Dec 2009 A1
20100018738 Chen et al. Jan 2010 A1
20100048058 Morgan et al. Feb 2010 A1
20100078738 Chambers et al. Apr 2010 A1
20100081302 Atkinson et al. Apr 2010 A1
20100099299 Moriyama et al. Apr 2010 A1
20100144167 Fedder et al. Jun 2010 A1
20100248544 Xu et al. Sep 2010 A1
20100273359 Walker et al. Oct 2010 A1
20100291806 Minich et al. Nov 2010 A1
20100294530 Atkinson et al. Nov 2010 A1
20110003509 Gailus Jan 2011 A1
20110034075 Feldman et al. Feb 2011 A1
20110067237 Cohen et al. Mar 2011 A1
20110081114 Togami Apr 2011 A1
20110104948 Girard, Jr. et al. May 2011 A1
20110130038 Cohen et al. Jun 2011 A1
20110212649 Stokoe et al. Sep 2011 A1
20110212650 Amleshi et al. Sep 2011 A1
20110230095 Atkinson et al. Sep 2011 A1
20110230096 Atkinson et al. Sep 2011 A1
20110256739 Toshiyuki et al. Oct 2011 A1
20110287663 Gailus et al. Nov 2011 A1
20120003848 Casher et al. Jan 2012 A1
20120052712 Wang Mar 2012 A1
20120058665 Zerebilov Mar 2012 A1
20120077380 Minich et al. Mar 2012 A1
20120094536 Khilchenko et al. Apr 2012 A1
20120115371 Chuang et al. May 2012 A1
20120156929 Manter et al. Jun 2012 A1
20120164860 Wang Jun 2012 A1
20120184154 Frank et al. Jul 2012 A1
20120202363 McNamara et al. Aug 2012 A1
20120202370 Mulfinger et al. Aug 2012 A1
20120202386 McNamara et al. Aug 2012 A1
20120202387 McNamara Aug 2012 A1
20120214343 Buck et al. Aug 2012 A1
20120214344 Cohen et al. Aug 2012 A1
20130012038 Kirk et al. Jan 2013 A1
20130017733 Kirk et al. Jan 2013 A1
20130034999 Szczesny et al. Feb 2013 A1
20130065454 Milbrand Jr. Mar 2013 A1
20130078870 Milbrand, Jr. Mar 2013 A1
20130078871 Milbrand, Jr. Mar 2013 A1
20130090001 Kagotani Apr 2013 A1
20130109232 Paniaqua May 2013 A1
20130143442 Cohen et al. Jun 2013 A1
20130164970 Regnier et al. Jun 2013 A1
20130196553 Gailus Aug 2013 A1
20130217263 Pan Aug 2013 A1
20130225006 Khilchenko et al. Aug 2013 A1
20130273781 Buck et al. Oct 2013 A1
20130288513 Masubuchi et al. Oct 2013 A1
20130316590 Hon Nov 2013 A1
20130340251 Regnier et al. Dec 2013 A1
20140004724 Cartier, Jr. et al. Jan 2014 A1
20140004726 Cartier, Jr. et al. Jan 2014 A1
20140004746 Cartier, Jr. et al. Jan 2014 A1
20140035755 Ward Feb 2014 A1
20140057498 Cohen Feb 2014 A1
20140154912 Hirschy Jun 2014 A1
20140193993 Meng Jul 2014 A1
20140273557 Cartier, Jr. et al. Sep 2014 A1
20140273627 Cartier, Jr. et al. Sep 2014 A1
20150056856 Atkinson et al. Feb 2015 A1
20150072561 Schmitt et al. Mar 2015 A1
20150093083 Tsai et al. Apr 2015 A1
20150111427 Foxconn Apr 2015 A1
20150132990 Nong Chou et al. May 2015 A1
20150236451 Cartier, Jr. et al. Aug 2015 A1
20150236452 Cartier, Jr. et al. Aug 2015 A1
20150255926 Paniagua Sep 2015 A1
20150280368 Bucher Oct 2015 A1
20150288110 Tanguchi et al. Oct 2015 A1
20150380868 Chen et al. Dec 2015 A1
20160000616 Lavoie Jan 2016 A1
20160004022 Ishii Jan 2016 A1
20160054527 Tang et al. Feb 2016 A1
20160104990 Laurx et al. Apr 2016 A1
20160131859 Ishii et al. May 2016 A1
20160149343 Atkinson et al. May 2016 A1
20160156133 Masubuchi et al. Jun 2016 A1
20160172794 Sparrowhawk et al. Jun 2016 A1
20160174412 Karaaslan et al. Jun 2016 A1
20160211618 Gailus Jul 2016 A1
20160211623 Sharf et al. Jul 2016 A1
20160336692 Champion et al. Nov 2016 A1
20170054234 Kachlic Feb 2017 A1
20170077643 Zbinden et al. Mar 2017 A1
20170285282 Regnier et al. Oct 2017 A1
20180062323 Kirk et al. Mar 2018 A1
20180089966 Ward Mar 2018 A1
20180145438 Cohen May 2018 A1
20180166828 Gailus Jun 2018 A1
20180198220 Sasame et al. Jul 2018 A1
20180212385 Little Jul 2018 A1
20180219331 Cartier, Jr. et al. Aug 2018 A1
20180278000 Regnier Sep 2018 A1
20180287280 Ratkovic Oct 2018 A1
20180309214 Lloyd et al. Oct 2018 A1
20190013617 Ayzenberg et al. Jan 2019 A1
20190115677 Kachlic Apr 2019 A1
20190181582 Beltran et al. Jun 2019 A1
20190319395 Bakshan et al. Oct 2019 A1
20190326703 Chen Oct 2019 A1
20190334292 Cartier, Jr. et al. Oct 2019 A1
20200021052 Milbrand, Jr. et al. Jan 2020 A1
20200076132 Yang et al. Mar 2020 A1
20200076455 Sharf Mar 2020 A1
20200091637 Scholeno et al. Mar 2020 A1
20200099149 Xu et al. Mar 2020 A1
20200220289 Scholeno et al. Jul 2020 A1
20200235529 Kirk et al. Jul 2020 A1
20200244025 Winey et al. Jul 2020 A1
20200259294 Lu Aug 2020 A1
20200266584 Lu Aug 2020 A1
20200266585 Paniagua et al. Aug 2020 A1
20200274267 Zerebilov Aug 2020 A1
20200274295 Briant Aug 2020 A1
20210098927 Si et al. Apr 2021 A1
20210159643 Kirk et al. May 2021 A1
20210175670 Cartier, Jr. et al. Jun 2021 A1
20210203096 Cohen Jul 2021 A1
20210234314 Johnescu et al. Jul 2021 A1
20210234315 Ellison et al. Jul 2021 A1
20210242632 Trout et al. Aug 2021 A1
20220094099 Liu et al. Mar 2022 A1
20220102916 Liu et al. Mar 2022 A1
Foreign Referenced Citations (184)
Number Date Country
1075390 Aug 1993 CN
1098549 Feb 1995 CN
1237652 Dec 1999 CN
1265470 Sep 2000 CN
2400938 Oct 2000 CN
1276597 Dec 2000 CN
1280405 Jan 2001 CN
1299524 Jun 2001 CN
2513247 Sep 2002 CN
2519434 Oct 2002 CN
2519458 Oct 2002 CN
2519592 Oct 2002 CN
1394829 Feb 2003 CN
1398446 Feb 2003 CN
1471749 Jan 2004 CN
1489810 Apr 2004 CN
1491465 Apr 2004 CN
1516723 Jul 2004 CN
1179448 Dec 2004 CN
1561565 Jan 2005 CN
1203341 May 2005 CN
1639866 Jul 2005 CN
1650479 Aug 2005 CN
1681218 Oct 2005 CN
1764020 Apr 2006 CN
1799290 Jul 2006 CN
2798361 Jul 2006 CN
2865050 Jan 2007 CN
1985199 Jun 2007 CN
101032060 Sep 2007 CN
201000949 Jan 2008 CN
101132094 Feb 2008 CN
101176389 May 2008 CN
101208837 Jun 2008 CN
101273501 Sep 2008 CN
201112782 Sep 2008 CN
101312275 Nov 2008 CN
101316012 Dec 2008 CN
201222548 Apr 2009 CN
201252183 Jun 2009 CN
101552410 Oct 2009 CN
101600293 Dec 2009 CN
201374433 Dec 2009 CN
101752700 Jun 2010 CN
101790818 Jul 2010 CN
101120490 Nov 2010 CN
201690009 Dec 2010 CN
101964463 Feb 2011 CN
201846527 May 2011 CN
102106041 Jun 2011 CN
102106046 Jun 2011 CN
102148462 Aug 2011 CN
102195173 Sep 2011 CN
102232259 Nov 2011 CN
102239605 Nov 2011 CN
102282731 Dec 2011 CN
102292881 Dec 2011 CN
101600293 May 2012 CN
102570100 Jul 2012 CN
102598430 Jul 2012 CN
102738621 Oct 2012 CN
102859805 Jan 2013 CN
202695788 Jan 2013 CN
202695861 Jan 2013 CN
103036081 Apr 2013 CN
103594871 Feb 2014 CN
103969768 Aug 2014 CN
204190038 Mar 2015 CN
104577577 Apr 2015 CN
205043936 Feb 2016 CN
205212085 May 2016 CN
102820589 Aug 2016 CN
105826740 Aug 2016 CN
106099546 Nov 2016 CN
109994892 Jul 2019 CN
111555069 Aug 2020 CN
213636403 Jul 2021 CN
4109863 Oct 1992 DE
4238777 May 1993 DE
19853837 Feb 2000 DE
102006044479 May 2007 DE
60216728 Nov 2007 DE
0 560 551 Sep 1993 EP
0 635 912 Jan 1995 EP
0 774 807 May 1997 EP
0 903 816 Mar 1999 EP
1 018 784 Jul 2000 EP
1 779 472 May 2007 EP
2 169 770 Mar 2010 EP
2 388 867 Nov 2011 EP
2 405 537 Jan 2012 EP
1272347 Apr 1972 GB
2161658 Jan 1986 GB
2283620 May 1995 GB
1043254 Sep 2002 HK
H05-54201 Mar 1993 JP
H05-234642 Sep 1993 JP
H06-029061 Feb 1994 JP
H07-57813 Mar 1995 JP
H07-302649 Nov 1995 JP
H09-63703 Mar 1997 JP
H09-274969 Oct 1997 JP
2711601 Feb 1998 JP
H11-67367 Mar 1999 JP
2896836 May 1999 JP
H11-233200 Aug 1999 JP
H11-260497 Sep 1999 JP
2000-013081 Jan 2000 JP
2000-311749 Nov 2000 JP
2001-068888 Mar 2001 JP
2001-510627 Jul 2001 JP
2001-217052 Aug 2001 JP
2002-042977 Feb 2002 JP
2002-053757 Feb 2002 JP
2002-075052 Mar 2002 JP
2002-075544 Mar 2002 JP
2002-117938 Apr 2002 JP
2002-246107 Aug 2002 JP
2003-017193 Jan 2003 JP
2003-309395 Oct 2003 JP
2004-192939 Jul 2004 JP
2004-259621 Sep 2004 JP
3679470 Aug 2005 JP
2006-344524 Dec 2006 JP
2009-043717 Feb 2009 JP
2009-110956 May 2009 JP
2010-266729 Nov 2010 JP
1656986 Apr 2020 JP
1668637 Sep 2020 JP
1668730 Sep 2020 JP
10-2015-0067010 Jun 2015 KR
10-2015-0101020 Sep 2015 KR
10-2016-0038192 Apr 2016 KR
9907324 Aug 2000 MX
466650 Dec 2001 TW
517002 Jan 2003 TW
534494 May 2003 TW
200501874 Jan 2005 TW
200515773 May 2005 TW
M274675 Sep 2005 TW
M329891 Apr 2008 TW
M357771 May 2009 TW
200926536 Jun 2009 TW
M403141 May 2011 TW
M494411 Jan 2015 TW
1475770 Mar 2015 TW
M518837 Mar 2016 TW
WO 8502265 May 1985 WO
WO 8805218 Jul 1988 WO
WO 9835409 Aug 1998 WO
WO 0139332 May 2001 WO
WO 0157963 Aug 2001 WO
WO 2002061892 Aug 2002 WO
WO 03013199 Feb 2003 WO
WO 03047049 Jun 2003 WO
WO 2004034539 Apr 2004 WO
WO 2004051809 Jun 2004 WO
WO 2004059794 Jul 2004 WO
WO 2004059801 Jul 2004 WO
WO 2004114465 Dec 2004 WO
WO 2005011062 Feb 2005 WO
WO 2005114274 Dec 2005 WO
WO 2006039277 Apr 2006 WO
WO 2007005597 Jan 2007 WO
WO 2007005598 Jan 2007 WO
WO 2007005599 Jan 2007 WO
WO 2008124052 Oct 2008 WO
WO 2008124054 Oct 2008 WO
WO 2008124057 Oct 2008 WO
WO 2008124101 Oct 2008 WO
WO 2009111283 Sep 2009 WO
WO 2010030622 Mar 2010 WO
WO 2010039188 Apr 2010 WO
WO 2011100740 Aug 2011 WO
WO 2011106572 Sep 2011 WO
WO 2011139946 Nov 2011 WO
WO 2011140438 Nov 2011 WO
WO 2011140438 Dec 2011 WO
WO 2012106554 Aug 2012 WO
WO 2013059317 Apr 2013 WO
WO 2015112717 Jul 2015 WO
WO 2016008473 Jan 2016 WO
WO 2018039164 Mar 2018 WO
WO 2021070273 Apr 2021 WO
Non-Patent Literature Citations (171)
Entry
Office Action for CN 201180033750.3 dated Aug. 13, 2014.
Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020.
Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019.
Chinese Invalidation Request dated Aug. 17, 2021 in connection with Chinese Application No. 200580040906.5.
Chinese Invalidation Request dated Jun. 1, 2021 in connection with Chinese Application No. 200680023997.6.
Chinese Invalidation Request dated Sep. 9, 2021 in connection with Chinese Application No. 201110008089.2.
Chinese Invalidation Request dated Jun. 15, 2021 in connection with Chinese Application No. 201180033750.3.
Chinese Supplemental Observations dated Jun. 17, 2021 in connection with Chinese Application No. 201210249710.9
Chinese Invalidation Request dated Mar. 17, 2021 in connection with Chinese Application No. 201610952606.4.
Chinese Office Action for Chinese Application No. 201880057597.X, dated Jan. 5, 2021.
Chinese Office Action for Chinese Application No. 201880057597.X, dated Dec. 3, 2021.
Chinese Office Action for Chinese Application No. 202010467444.1 dated Apr. 2, 2021.
Chinese Office Action for Chinese Application No. 202010825662.8 dated Sep. 3, 2021.
Chinese Office Action for Chinese Application No. 202010922401.8 dated Aug. 6, 2021.
Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020.
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012.
International Search Report and Written Opinion dated Dec. 28, 2021 in connection with International Application No. PCT/CN2021/119849.
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006.
International Preliminary Report on Patentability for International Application No. PCT/US2005/034605 dated Apr. 3, 2007.
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007.
International Preliminary Report on Patentability for International Application No. PCT/US2006/025562 dated Jan. 9, 2008.
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011.
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011.
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012.
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013.
International Preliminary Report on Patentability for International Application No. PCT/US2012/060610 dated May 1, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015.
International Preliminary Report on Patentability for International Application No. PCT/US2015/012463 dated Aug. 4, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017.
International Preliminary Report on Patentability for International Application No. PCT/US2017/047905, dated Mar. 7, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2018/039919, dated Nov. 8, 2018.
International Preliminary Report on Patentability for International Application No. PCT/US2018/039919 dated Jan. 16, 2020.
International Search Report and Written Opinion for International Application No. PCT/US2020/014799, dated May 27, 2020.
International Preliminary Report on Patentability dated Aug. 5, 2021 in connection with International Application No. PCT/US2020/014799.
International Search Report and Written Opinion for International Application No. PCT/US2020/014826, dated May 27, 2020.
International Preliminary Report on Patentability dated Aug. 5, 2021 in connection with International Application No. PCT/US2020/014826.
International Search Report and Written Opinion for International Application No. PCT/US2020/052397 dated Jan. 15, 2021.
Taiwanese Office Action dated Mar. 5, 2021 in connection with Taiwanese Application No. 106128439.
Taiwanese Office Action dated Mar. 15, 2022 in connection with Taiwanese Application No. 110140608.
Petition for Inter Partes Review. Luxshare Precision Industry Co., Ltd v. Amphenol Corp. U.S. Pat. No. 10,381,767. IPR2022-00132. Nov. 4, 2021. 112 pages.
Decision Invalidating CN Patent Application No. 201610952606.4, which issued as CN Utility Model Patent No. 107069274B, and Certified Translation.
In re Certain Electrical Connectors and Cages, Components Thereof, and Prods. Containing the Same, Inv. No. 337-TA-1241, Order No. 31 (Oct. 19, 2021): Construing Certain Terms of the Asserted Claims of the Patents at Issue.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Initial Post-Hearing Brief. Public Version. Nov. 23, 2021. 348 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Reply Post-Hearing Brief. Public Version. Dec. 6, 2021. 165 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Corrected Initial Post-Hearing Brief. Public Version. Jan. 5, 2022. 451 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Post-Hearing Reply Brief. Public Version. Dec. 6, 2021. 159 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Notice of Prior Art. Jun. 3, 2021. 319 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Respondents' Pre-Hearing Brief. Redacted. Oct. 21, 2021. 219 pages.
Invalidity Claim Charts Based on CN 201112782Y (“Cai”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 25. May 7, 2021. 147 pages.
Invalidity Claim Charts Based on U.S. Pat. No. 6,179,651 (“Huang”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 26. May 7, 2021. 153 pages.
Invalidity Claim Charts Based on U.S. Pat. No. 7,261,591 (“Korsunsky”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 27. May 7, 2021. 150 pages.
[No Author Listed], All About ESD Plastics. Evaluation Engineering. Jul. 1, 1998. 8 pages. https://www.evaluationengineering.com/home/article/13001136/all-about-esdplastics [last accessed Mar. 14, 2021].
[No Author Listed], AMP Incorporated Schematic, Cable Assay, 2 Pair, HMZD. Oct. 3, 2002. 1 page.
[No Author Listed], Board to Backplane Electrical Connector. The Engineer. Mar. 13, 2001, [last accessed Apr. 30, 2021]. 2 pages.
[No Author Listed], Borosil Vision Mezzo Mug Set of 2. Zola. 3 pages. https://www.zola.com/shop/product/borosil_vision_mezzao_mug_setof2_3.25. [date retrieved May 4, 2021].
[No Author Listed], Cable Systems. Samtec. Aug. 2010. 148 pages.
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013.
[No Author Listed], Coating Electrical Contacts. Brush Wellman Engineered Materials. Jan. 2002;4(1). 2 pages.
[No Author Listed], Common Management Interface Specification. Rev 4.0. MSA Group. May 8, 2019. 265 pages.
[No Author Listed], Electronics Connector Overview. FCI. Sep. 23, 2009. 78 pages.
[No Author Listed], EMI Shielding Compounds Instead of Metal. RTP Company. Last Accessed Apr. 30, 2021. 2 pages.
[No Author Listed], EMI Shielding Solutions and EMC Testing Services from Laird Technologies. Laird Technologies. Last acessed Apr. 30, 2021. 1 page.
[No Author Listed], EMI Shielding, Dramatic Cost Reductions for Electronic Device Protection. RTP. Jan. 2000. 10 pages.
[No Author Listed], Excerpt from The Concise Oxford Dictionary, Tenth Edition. 1999. 3 pages.
[No Author Listed], Excerpt from The Merriam-Webster Dictionary, Between. 2005. 4 pages.
[No Author Listed], Excerpt from Webster's Third New International Dictionary, Contact. 1986. 3 pages.
[No Author Listed], FCI—High Speed Interconnect Solutions, Backpanel Connectors. FCI. [last accessed Apr. 30, 2021). 2 pages.
[No Author Listed], General Product Specification for GbX Backplane and Daughtercard Interconnect System. Revision “B”. Teradyne. Aug. 23, 2005. 12 pages.
[No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 2008. 1-40 pages.
[No Author Listed], HOZOX EMI Absorption Sheet and Tape. Molex. Laird Technologies. 2013. 2 pages.
[No Author Listed], INF-8074i Specification for SFP (Small Formfactor Pluggable) Transceiver. SFF Committee. Revision 1.0. May 12, 2001. 39 pages.
[No Author Listed], INF-8438i Specification for QSFP (Quad Small Formfactor Pluggable) Transceiver. Rev 1.0 Nov. 2006. SFF Committee. 75 pages.
[No Author Listed], INF-8628 Specification for QSFP-DD 8X Transceiver (QSFP Double Density) Rev 0.0 Jun. 27, 2016. SNIA SFF TWG Technology Affiliate. 1 page.
[No Author Listed], Interconnect Signal Integrity Handbook. Samtec. Aug. 2007. 21 pages.
[No Author Listed], Metallized Conductive Products: Fabric-Over-Foam, Conductive Foam, Fabric, Tape. Laird Technologies. 2003. 32 pages.
[No Author Listed], Metral® 2000 Series. FCI. 2001. 2 pages.
[No Author Listed], Metral® 2mm High-Speed Connectors 1000, 2000, 3000 Series. FCI. 2000. 119 pages.
[No Author Listed], Metral® 3000 Series. FCI. 2001. 2 pages.
[No Author Listed], Metral® 4000 Series. FCI. 2002. 2 pages.
[No Author Listed], Metral® 4000 Series: High-Speed Backplane Connectors. FCI, Rev. 3. Nov. 30, 2001. 21 pages.
[No Author Listed], Military Fibre Channel High Speed Cable Assembly, www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.--fibre . . . Last archive date Apr. 6, 2008.
[No Author Listed], Molex Connectors as InfiniBand Solutions. Design World. Nov. 19, 2008. 7 pages, https://www.designworldonline.com/molex-connectors-as-infiniband-solutions/. [last accessed May 3, 2021].
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.11. OSFP MSA. Jun. 26, 2017. 53 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.12. OSFP MSA. Aug. 1, 2017. 53 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 2.0 OSFP MSA. Jan. 14, 2019. 80 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 3.0 OSFP MSA. Mar. 14, 2020. 99 pages.
[No Author Listed], Photograph of Molex Connector. Oct. 2021. 1 page.
[No Author Listed], Photograph of TE Connector. Oct. 2021. 1 page.
[No Author Listed], Pluggable Form Products. Tyco Electronics. Mar. 5, 2006. 1 page.
[No Author Listed], Pluggable Input/Output Solutions. Tyco Electronics Catalog 1773408-1. Revised Feb. 2009. 40 pages.
[No Author Listed], QSFP Market Evolves, First Products Emerge. Lightwave. Jan. 22, 2008. pp. 1-8. https://www.lightwaveonline.com/home/article/16662662.
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 3.0. QSFP-DD MSA. Sep. 19, 2017. 69 pages.
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 4.0. QSFP-DD MSA. Sep. 18, 2018. 68 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiever. Revision 5.0. QSFP-DD-MSA. Jul. 9, 2019. 82 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 5.1. QSFP-DD MSA. Aug. 7, 2020. 84 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 1.0. QSFP-DD-MSA. Sep. 15, 2016. 69 pages.
[No Author Listed], QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver Specification, Rev. 2.0. QSFP-DD MSA. Mar. 13, 2017. 106 pages.
[No Author Listed], RTP Company Introduces “Smart” Plastics for Bluetooth Standard. Press Release. RTP. Jun. 4, 2001. 2 pages.
[No Author Listed], RTP Company Specialty Compounds. RTP. Mar. 2002. 2 pages.
[No Author Listed], RTP Company—EMI/RFI Shielding Compounds (Conductive) Data Sheets. RTP Company. Last accessed Apr. 30, 2021. 4 pages.
[No Author Listed], Samtec Board Interface Guide. Oct. 2002. 253 pages.
[No Author Listed], SFF Committee SFF-8079 Specification for SFP Rate and Application Selection. Revision 1.7. SFF Committee. Feb. 2, 2005. 21 pages.
[No Author Listed], SFF Committee SFF-8089 Specification for SFP (Small Formfactor Pluggable) Rate and Application Codes. Revision 1.3. SFF Committee. Feb. 3, 2005. 18 pages.
[No Author Listed], SFF Committee SFF-8436 Specification for QSFP+ 4X 10 GB/s Pluggable Transceiver. Revision 4.9. SFF Committee. Aug. 31, 2018. 88 pages.
[No Author Listed], SFF Committee SFF-8665 Specification for QSFP+ 28 GB/s 4X Pluggable Transceiver Solution (QSFP28). Revision 1.9. SFF Committee. Jun. 29, 2015. 14 pages.
[No Author Listed], SFF-8075 Specification for PCI Card Version of SFP Cage. Rev 1.0. SFF Committee. Jul. 3, 2001. 11 pages.
[No Author Listed], SFF-8431 Specifications for Enhanced Small Form Factor Pluggable Module SFP+. Revision 4.1. SFF Committee. Jul. 6, 2009. 132 pages.
[No Author Listed], SFF-8432 Specification for SFP+ Module and Cage. Rev 5.1. SFF Committee. Aug. 8, 2012. 18 pages.
[No Author Listed], SFF-8433 Specification for SFP+ Ganged Cage Footprints and Bezel Openings. Rev 0.7. SFF Committee. Jun. 5, 2009. 15 pages.
[No Author Listed], SFF-8477 Specification for Tunable XFP for ITU Frequency Grid Applications. Rev 1.4. SFF Committee. Dec. 4, 2009. 13 pages.
[No Author Listed], SFF-8663 Specification for QSFP+ 28 GB/s Cage (Style A) Rev 1.7. Oct. 19, 2017. SNIA SFF TWG Technology Affiliate. 18 pages.
[No Author Listed], SFF-8672 Specification for QSFP+ 4x 28 GB/s Connector (Style B). Revision 1.2. SNIA. Jun. 8, 2018. 21 pages.
[No Author Listed], SFF-8679 Specification for QSFP+ 4X Base Electrical Specification. Rev 1.7. SFF Committee. Aug. 12, 2014. 31 pages.
[No Author Listed], SFF-8682 Specification for Qsfp+ 4X Connector. Rev 1.1. SNIA SFF TWG Technology Affiliate. Jun. 8, 2018. 19 pages.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 1 page.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20030226182710/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_3.htm.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20021223144443/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_2.htm.
[No Author Listed], Signal Integrity-Multi-Gigabit Transmission Over Backplane Systems. International Engineering Consortium. 2003;1-8.
[No Author Listed], Signal Integrity Considerations for 10Gbps Transmission over Backplane Systems. DesignCon2001. Teradyne Connections Systems, Inc. 2001. 47 pages.
[No Author Listed], Specification for OSFP Octal Small Form Factor Pluggable Module. Rev 1.0. OSFP MSA. Mar. 17, 2017. 53 pages.
[No Author Listed], TB-2092 GbX Backplane Signal and Power Connector Press-Fit Installation Process. Teradyne. Aug. 8, 2002;1-9.
[No Author Listed], Teradyne Beefs Up High-Speed GbX Connector Platform. EE Times. Sep. 20, 2005. 3 pages.
[No Author Listed], Teradyne Connection Systems Introduces the GbX L-Series Connector. Press Release. Teradyne. Mar. 22, 2004. 5 pages.
[No Author Listed], Teradyne Schematic, Daughtercard Connector Assembly 5 Pair GbX, Drawing No. C-163-5101-500. Nov. 6, 2002. 1 page.
[No Author Listed], Tin as a Coating Material. Brush Wellman Engineered Materials. Jan. 2002;4(2). 2 pages.
[No Author Listed], Two and Four Pair HM-Zd Connectors. Tyco Electronics. Oct. 14, 2003;1-8.
[No Author Listed], Tyco Electronics Schematic, Header Assembly, Right Angle, 4 Pair HMZd, Drawing No. C-1469048. Jan. 10, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 2 Pair 25mm HMZd, Drawing No. C-1469028. Apr. 24, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 3 Pair 25mm HMZd, Drawing No. C1469081. May 13, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 4 Pair HMZd, Drawing No. C1469001. Apr. 23, 2002. 1 page.
[No Author Listed], Tyco Electronics Z-Dok+ Connector. May 23, 2003. pp. 1-15. http://zdok.tycoelectronics.com.
[No Author Listed], Tyco Electronics, SFP System. Small Form-Factor Pluggable (SFP) System. Feb. 2001. 1 page.
[No Author Listed], Typical conductive additives—Conductive Compounds. RTP Company. https://www.rtpcompany.com/products/conductive/additives.htm. Last accessed Apr. 30, 2021. 2 pages.
[No Author Listed], Z-Pack HM-Zd Connector, High Speed Backplane Connectors. Tyco Electronics. Catalog 1773095. 2009;5-44.
[No Author Listed], Z-Pack HM-Zd: Connector Noise Analysis for XAUI Applications. Tyco Electronics. Jul. 9, 2001. 19 pages.
Atkinson et al., High Frequency Electrical Connector, U.S. Appl. No. 15/645,931, filed Jul. 10, 2017.
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7.
Chung, Electrical applications of carbon materials. J. of Materials Science. 2004;39:2645-61.
Dahman, Recent Innovations of Inherently Conducting Polymers for Optimal (106-109 Ohm/Sq) ESD Protection Materials. RTD Company. 2001. 8 pages.
Do et al., A Novel Concept Utilizing Conductive Polymers on Power Connectors During Hot Swapping in Live Modular Electronic Systems. IEEE Xplore 2005; downloaded Feb. 18, 2021;340-345.
Eckardt, Co-Injection Charting New Territory and Opening New Markets. Battenfeld GmbH. Journal of Cellular Plastics. 1987;23:555-92.
Elco, Metral® High Bandwidth—A Differential Pair Connector for Applications up to 6 GHz. FCI. Apr. 26, 1999;1-5.
Feller et al., Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Materials Letters. Feb. 21, 2002;57:64-71.
Getz et al., Understanding and Eliminating EMI in Microcontroller Applications. National Semiconductor Corporation. Aug. 1996. 30 pages.
Grimes et al., A Brief Discussion of EMI Shielding Materials. IEEE. 1993:217-26.
Housden et al., Moulded Interconnect Devices. Prime Faraday Technology Watch. Feb. 2002. 34 pages.
McAlexander, CV of Joseph C. McAlexander III. Exhibit 1009. 2021. 31 pages.
McAlexander, Declaration of Joseph C. McAlexander III in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,381,767. Exhibit 1002. Nov. 4, 2021. 85 pages.
Nadolny et al., Optimizing Connector Selection for Gigabit Signal Speeds. Sep. 2000. 5 pages.
Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. CRC. 1995. 246 pages.
Okinaka, Significance of Inclusions in Electroplated Gold Films for Electronics Applications. Gold Bulletin. Aug. 2000;33(4):117-127.
Ott, Noise Reduction Techniques in Electronic Systems. Wiley. Second Edition. 1988. 124 pages.
Palkert (ed), QSFP-DD Overview. Mar. 14, 2017. 19 pages. URL:http://www.qsfp-dd.com.
Patel et al., Designing 3.125 Gbps Backplane System. Teradyne. 2002. 58 pages.
Preusse, Insert Molding vs. Post Molding Assembly Operations. Society of Manufacturing Engineers. 1998. 8 pages.
Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91.
Ross, Focus on Interconnect: Backplanes Get Reference Designs. EE Times. Oct. 27, 2003 [last accessed Apr. 30, 2021]. 4 pages.
Ross, GbX Backplane Demonstrator Helps System Designers Test High-Speed Backplanes. EE Times. Jan. 27, 2004 [last accessed May 5, 2021]. 3 pages.
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56.
Silva et al., Conducting Materials Based on Epoxy/Graphene Nanoplatelet Composites With Microwave Absorbing Properties: Effect of the Processing Conditions and Ionic Liquid. Frontiers in Materials. Jul. 2019;6(156):1-9. doi: 10.3389/fmats.2019.00156.
Tracy, Rev. 3.0 Specification IP (Intellectual Property). Mar. 20, 2020. 8 pages.
Violette et al., Electromagnetic Compatibility Handbook. Van Nostrand Reinhold Company Inc. 1987. 229 pages.
Wagner et al., Recommended Engineering Practice to Enhance the EMI/EMP Immunity of Electric Power Systems. Electric Research and Management, Inc. Dec. 1992. 209 pages.
Weishalla, Smart Plastic for Bluetooth. RTP Tmagineering Plastics. Apr. 2001. 7 pages.
White, A Handbook on Electromagnetic Shielding Materials and Performance. Don Whie Consultants. 1998. Second Edition. 77 pages.
White, EMI Control Methodology and Procedures. Don White Consultants, Inc. Third Edition 1982. 22 pages.
Williams et al., Measurement of Transmission and Reflection of Conductive Lossy Polymers at Millimeter-Wave Frequencies. IEEE Transactions on Electromagnetic Compatibility. Aug. 1990;32(3):236-240.
Related Publications (1)
Number Date Country
20220052467 A1 Feb 2022 US
Continuations (1)
Number Date Country
Parent 16415456 May 2019 US
Child 17195403 US