High speed, high density interconnection device

Abstract
An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and chassis ground circuit, the intercoupling component may include a segment formed of electrically insulative material and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint, one or more a shield members formed of electrically conductive material disposed within the segment and configured to connect to the chassis ground circuit of the system and a frame formed of electrically conductive material and configured to connect with the chassis ground circuit of the system. The intercoupling component may include an array of electrically conductive contacts grouped to multi-contact groupings configured to transmit single-ended or differential signals. The intercoupling component may include a cavity located between signal contacts to adjust the differential impedance between signal contacts.
Description




TECHNICAL FIELD




This description relates to interconnection devices, and more particularly to interconnection devices which connect an array of contacts within a digital or analog transmission system.




BACKGROUND




High speed communication between two printed circuit cards over an interconnection device with a dense array of contacts may result in cross-talk between communication channels within the interconnection device and a resulting degradation of signal integrity. In addition to cross-talk between communication channels, high speed communication across an interconnection device may generate undesirable levels of noise. Reduction of cross-talk and noise while at the same time maintaining a dense array of contacts within an interconnection device is often a design goal.




SUMMARY




In an aspect, the invention features an intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit. A plurality of electrically conductive contacts are disposed within holes formed on a segment formed of insulative material. One or more electrically conductive shields are disposed within the segment and are configured to connect to the chassis ground circuit of the system.




Embodiments may include one or more of the following. At least some of the plurality of the electrically conductive contacts disposed within the holes on the segment may be configured to electrically connect with the electrical ground circuit of the system.




A frame formed of electrically conductive material may surround the segment and be in electrical contact with both the shield member and the electrical ground circuit of the system. The frame may be molded around the segments.




One or more ground planes which are configured to electrically connect with the electrical ground circuit of the system may be disposed within the segment. One or more cavities filled with air may be disposed on the segment.




The intercoupling component may further include a retention member configured to releasably retain an array mating of contacts with the plurality of electrically conductive contacts.




In another aspect, the invention features an intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit. A plurality of electrically conductive contacts are disposed within holes formed on a plurality of segments, each formed of insulative material. One or more electrically conductive shields are disposed within gaps between adjacent segments and are connected to the chassis ground circuit of the system.




In another aspect, the invention features an intercoupling component for receiving an array of contacts within a digital or analog transmission system having one or more segments formed of electrically insulative material and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts and a plurality of electrically conductive contacts each disposed within each hole on the upper surface of the segment. The plurality of contacts are arranged in a plurality of multi-contact groupings, with at least one multi-contact grouping including a first electrically conductive contact and a reference contact. The reference contact is located at a distance D from the first electrically conductive contact and is configured to electrically connect to the electrical ground circuit of the system.




Embodiments may include one or more of the following. The first electrically conductive contact and reference may be configured to form a transmission line electrically equivalent to a co-axial transmission line. The first electrically conductive contact may be configured to transmit single-ended signals. Additionally, each multi-contact grouping may be located a distance of ≧D from adjacent multi-contact groupings.




The intercoupling component may also include a second electrically conductive contact member located at a distance D


2


from the first electrically conductive contact. The first and second electrically conductive contacts may form a transmission line electrically equivalent to a twin-axial differential transmission line. The first and second electrically conductive contacts within each multi-contact grouping may be configured to transmit disparate single-ended signals or low-voltage differential signals. Additionally, each multi-contact grouping may be located a distance ≧D


2


from adjacent multi-contact groupings.




The first and second electrically conductive contacts may have substantially the same cross-section, initial characteristic impedance, capacitance, and inductance.




The intercoupling component may also include one or more shield members formed of electrically conductive material disposed within the segment and configured to connect to the chassis ground circuit of the system. Additionally, the intercoupling component may include a frame disposed around the one or more segments.




In another aspect of the invention, a circuit card for use in a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the circuit card includes a printed circuit board having a plurality of contact pads arranged in a predetermined footprint; and an interconnection device. The interconnection device includes one or more segments having an upper and lower surface, the upper surface of the segment having a plurality of holes arranged in a predetermined footprint to match the predetermined footprint of the plurality of surface mount pads, a plurality of electrically conductive contact member disposed within each of the holes and electrically connected to their respective surface mount pad, and one or more a shield members formed of electrically conductive material disposed within the segment. Additionally, a frame formed of electrically conductive material surrounds the one or more segments and the frame is electrically connected the shield member and to the chassis ground circuit of the system.




Additional embodiments include one or more of the following features. The plurality of contacts may be arranged in a plurality of multi-contact groupings which includes a first electrically conductive contact; and a reference contact located at a distance D from the first electrically conductive contact and connected to the electrical ground circuit of the system.




The plurality of multi-contact groupings may also include a second electrically conductive contact located a distance D


2


from the first electrically conductive contact.




The first and second electrically conductive contacts have substantially the same cross-section, capacitance and inductance. The first and second electrically conductive contacts may be configured to transmit low voltage differential signals or disparate single ended signals.




In another aspect of the invention, an intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit, the intercoupling component includes a segment formed of a material having a dielectric constant Er


1


. The segment has an upper and lower surface and a plurality of holes are disposed on the upper surface of the segment. A first signal contact disposed within a first hole on the segment and a second signal contact disposed within a second hole on the segment adjacent to the first hole in which the first signal contact is disposed. The segment also includes a cavity formed between the first and second signal contacts.




Additional embodiments include one or more of the following features. The cavity may be formed on the upper surface, lower surface or within the segment and may be is open to air. An insert formed of a material having a dielectric constant of Er


1


may be disposed within the cavity.




The intercoupling component may include a plurality of first signal contacts disposed within a plurality of holes and a plurality of second signal contacts each disposed within a hole that is adjacent to a hole containing a first signal contact. The segment may include a cavity disposed between each pair of first and second signal contacts. The intercoupling component may also include ground contacts disposed within holes on the segment or a ground plane.




In another aspect of the invention, a method for adjusting the differential impedance of a pair of differential transmission lines in a interconnection device for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit, the intercoupling component. The method includes providing a segment having a dielectric constant Er


1


and having an upper and lower surface and including a plurality of holes disposed on its upper surface. Providing a pair of signal contacts disposed within two adjacent holes on the segment, the pair of signal contacts configured to transmit differential signals. Spacing the pair of signal contacts such that they create a certain differential impedance of the two contacts in the pair of signal contacts. Providing a cavity in the segment between the two signal contacts in the pair of signal contacts to adjust the differential impedance between the pair of signal contacts.




Additional embodiments include one or more of the following steps. Inserting a material having a dielectric constant of Er


2


in the cavity in the segment.




Providing a plurality of pairs of signal contacts disposed with a plurality of adjacent holes on the segment, the plurality of pairs of signal contacts forming an array of pairs of signal contacts disposed in the segment. Providing a plurality of cavities disposed in the segment between the two signal contacts in each pair of signal contacts to adjust the differential impedance of the two signal contacts in each pair of signal contacts.




Providing a plurality of ground contacts disposed within a plurality of holes on the segment and within the array of pairs of signal contacts, the plurality of ground contacts electrically connected to the electrical ground circuit of the system.




Providing a ground plane disposed within the segment and within the array of pairs of signal contacts, the ground plane configured to electrically connect with the electrical ground of the system.




Embodiments of the invention may have one or more of the following advantages.




One or more contacts disposed within the array of contacts and are configured to connect to the electrical ground of the system may help to reduce cross-talk between two or more contacts during signal transmission. Additionally, the use of a electrically conductive shield member connected to the chassis ground of the system and disposed within or between one or more segments may help to reduce undesired electromagnetic fields generated by high-speed electron flow over the contact array during operation.




The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.











DESCRIPTION OF DRAWINGS





FIG. 1

is a is a perspective view, partially exploded, of an plug on a secondary circuit board and a matching socket on a primary circuit board within an digital or analog signal transmission system.





FIG. 2A

is a perspective view of a plug.





FIG. 2B

is a side view of a plug, partially cut away.





FIG. 3A

is a perspective view of a plug shield.





FIG. 3B

is a perspective view of a plug segment.





FIG. 3C

is a bottom view of a plug.





FIG. 4A

is a perspective view of a socket, partially exploded.





FIG. 4B

is a side view of a socket, partially cut away, partially exploded.





FIG. 5A

is a perspective view of socket shield.





FIG. 5B

is a perspective view of a socket segment.





FIG. 5C

is a bottom view of a socket.





FIG. 6

is a schematic of an interconnection device in operation.





FIG. 7

is a partial view of three contact groupings within a socket.





FIG. 8

is a partial view of three contact groupings within a socket and air cavities disposed on the socket.





FIG. 9

is a partial view of three contact groupings and a continuous ground plane disposed within another interconnection device.





FIG. 10

is a partial view of three contact groupings and a number of ground planes disposed within another interconnection device.





FIG. 11

is a partial view of three contact groupings and a number of ground planes disposed within another interconnection device.











DETAILED DESCRIPTION




Referring to

FIG. 1

, in a digital or analog signal transmission system


10


, a plug


12


and matching socket


14


releasably connect two printed circuit boards, a primary circuit board


18


and a secondary circuit board


16


.




Digital or analog transmission system


10


may be any system which transmits digital or analog signals over one or more transmission lines, such as a computer system (as illustrated in FIG.


1


), a telephony switch, a multiplexor/demultiplexor (MUX/DMUX), or a LAN/WAN cross-connect/router.




Secondary circuit board


16


may include a central processing unit (CPU), application specific integrated circuit (ASIC), memory, or similar active or passive devices and components. In this example, secondary circuit board


16


includes an ASIC device


24


, and primary circuit board


18


is a daughter board connected to a motherboard


20


by a card slot connector


22


. In another embodiment, the primary circuit board may be a self-contained system or board, not connecting to any other system or motherboard, as in the case of a single board computer.




The socket


14


includes a frame


30


formed of electrically conductive material that surrounds a number of segments


32


. The segments


32


are formed of electrically insulative material. A shield (not shown in

FIG. 1

) formed of electrically conductive material is located between each of the segments


32


and is in electrical contact with the frame


30


, thus forming an electrically conductive “cage” around the perimeter of each segment


32


. As will be explained in greater detail below, the frame


30


is electrically connected to the chassis ground circuit (shown in

FIG. 6

) of the system


10


.




The socket


14


has an array of holes arranged in a series of three-hole groupings


35


on each segment


32


. A female socket assembly


34


(not shown in

FIG. 1

) is located within each of the holes


33




a


-


33




c


and is configured to releasably receive a male pin. As will be explained in greater detail below, the three-contact grouping


35


includes a first signal contact (disposed within hole


33




a


), a second signal contact (disposed within hole


33




b


) and a reference contact (disposed within hole


33




c


). The reference contact is electrically connected to the electrical ground circuit (Vcc) (shown in

FIG. 6

) of the system


10


.




Plug


12


, which mates with socket


14


, also includes a frame


40


formed of electrically conductive material that surrounds a number of segments


42


. Like the socket segments


32


, the plug segments


42


are formed of electrically insulative material. A shield (not shown in

FIG. 1

) formed of electrically conductive material is located between each of the segments


42


and is in electrical contact with the frame


40


, thus forming an electrically conductive “cage” around the perimeter of each segment


42


within the plug


12


. As will be explained more below, the frame


40


is electrically connected to the chassis ground circuit (shown in FIG.


6


)of the system


10


.




The plug


12


has an array of male pins


44


arranged in a series of three-pin groupings


45


on each segment


42


. Each three-pin grouping


45


includes a first signal pin


44




a


, a second signal pin


44




b


and a reference pin


44




c


. As will be explained in greater detail below, these three pins mate with their respective sockets to form a twin-axial communication channel and a reference ground return between the plug


12


and socket


14


.




Each of the male pins


44


protrude from the upper surface of the segments


42


and are received by the matching array of female sockets (not shown) disposed within each of the holes


34


on the socket


14


. Each male pin and female socket attach to a solder ball (not shown in

FIG. 1

) that protrudes from the bottom surface of the plug


12


and socket


14


, respectively, and is mounted via a solder reflow process to contact pads on the respective printed circuit boards,


16


,


18


. Thus, when the plug


12


is inserted into the socket


14


, an electrical connection is formed between the secondary circuit board


16


and primary circuit board


18


. In separate embodiments, the male pins


44


and female sockets


34


may not be terminated by a solder reflow process using solder balls, but may employ other methods for mounting the pins or sockets to a printed circuit card, such as through-hole soldering, surface mount soldering, through-hole compliant pin, or surface pad pressure mounting.




The plug frame


40


includes three guide notches


46




a


,


46




b


,


46




c


which mate with the three guide tabs


36




a


,


36




b


,


36




c


on the socket frame


30


in order to ensure proper orientation of the plug


12


and the socket


14


when mated together.




Referring to

FIGS. 2A-B

, each male pin


44


extends from the lower surface of the plug


12


and protrudes from the upper surface of the segments


42


. A solder ball


50


is attached (e.g., by soldering) to the terminal end of each male pin


44


and protrudes from the bottom surface of the plug. The array of solder balls


50


attached to the terminal end of each male pin


44


may be mounted (e.g., by a solder reflow process) to contact pads located on the secondary circuit board


16


.




The plug frame


40


is formed of electrically conductive material and includes solder balls


52


are attached (e.g., by a solder reflow process) to the bottom surface of the plug frame


40


. When the plug


14


is mounted to the secondary circuit board


16


, the solder balls


52


attached to the plug frame


40


are electrically connected to the chassis ground circuit of the system


10


.




Referring to

FIGS. 3A-C

, a shield (FIG.


3


A), a segment (

FIG. 3B

) and the bottom surface of the plug (

FIG. 3C

) is shown. A shield


60


formed of electrically conductive material is located between each of the segments


42


. Each shield


60


is generally U-shaped and includes two short sides


61


,


62


on each side of a longer middle portion


63


. When assembled into the plug, the two short sides


61


,


62


of each shield


60


are in electrical contact with the frame


40


, while the middle portion


63


of each shield


60


is located between each of the segments


42


. Thus, the frame


40


and shields


60


form a electrically conductive “cage” around the perimeter of each segment


42


. This electrically conductive “cage” is connected to the chassis ground circuit (shown in

FIG. 6

) of the system


10


via solder balls


52


on the bottom of the frame


40


. The chassis ground circuit is a circuit within system


10


which connects to the metal structure on or in which the components of the system are mounted.




In this example, each shield


60


has four notches: two on the short sides of the shield


64


,


65


and two on the middle portion of the shield


66


,


67


. When the shields


60


are assembled into the plug


12


, the two notches on the short sides of each shield


64


,


65


mate with the two dog-eared tabs


71


,


72


on each corresponding segment


42


. Similarly, the two notches located on the middle portion


66


,


67


of each shield


60


mate with two corresponding tabs (not shown) on each segment


42


. Each shield


60


also has three tabs


68


on it's middle portion


63


which are pressed in opposite directions by adjacent segments


42


after the plug


12


assembled and helps to secure the shields


60


in place.




Each segment


42


includes two dog-eared tabs


71


,


72


located at each end of the segment


42


. The two dog-eared tabs


71


,


72


fit into two matching grooves


81


,


82


formed on the bottom surface of the frame


40


. The two triangular bump-outs


73


,


74


on each of the segments


42


press against adjacent shields


60


and segments


42


in order to secure the segments


42


and the shields


60


within the frame


40


. It should be noted that there are many ways to secure the segments


42


and shields within the frame


40


such as by glue, adhesive, cement, screws, clips, bolts, lamination or the like. The frame


40


may also be constructed by partially encapsulating the segments


42


with an electrically conductive resin or other material.




Referring to

FIGS. 4A-B

, the socket


14


has an array of holes (e.g.,


33




a


,


33




b


,


33




c


) disposed on the segments


32


. A female socket contact


34


is disposed within each of the holes and is configured to releasably receive a corresponding male pin


44


. A solder ball contact


90


is attached (e.g., by soldering) to the terminal end of each female socket contact


34


and protrudes from the bottom surface of the socket


12


. The array of solder balls


90


attached to the terminal end of each female socket contact


34


may be mounted (e.g., by soldering) to contact pads located on the primary circuit board


18


.




Like the plug frame


40


, the socket frame


30


is formed of electrically conductive material and includes solder balls


92


attached (e.g., by soldering) to the bottom surface of the socket frame


30


. When the socket


14


is mounted to the primary circuit board


18


, the solder ball contacts


92


attached to the socket frame


30


are electrically connected to contact pads which are connected to the chassis ground circuit of the system


10


. Additionally, when the plug


12


is inserted into the socket


14


, the plug frame


40


and socket frame


30


are electrically connected to each other and are, in turn, electrically connected to the chassis ground circuit of the system


10


.




As shown in

FIGS. 5A-C

, the assembly of the socket


14


is similar to the assembly of the plug


12


depicted in

FIGS. 3A-C

. Dog-eared tabs


102


,


103


located on the socket segments


32


fit into corresponding notches


104


,


105


disposed on the socket frame


30


. A shield


100


is located between each of the segments and electrically contacts the socket frame


30


, thus forming an electrically conductive “cage” around the perimeter of each socket segment


32


.




The male pins


44


on the plug


12


and corresponding female socket contacts


34


disposed within the socket


14


may be any mating pair of interconnection contacts and not restricted to pin-and-socket technology. For example, other embodiments may use fork and blade, beam-on-beam, beam-on-pad, or pad-on-pad interconnection contacts. As will be explained in greater detail below, the choice of contact may effect the differential impedance of the signal channels.




Referring to

FIG. 6

, in digital or analog signal transmission system


10


, differential signal communication over a single three-contact grouping between secondary circuit board


16


and primary circuit board


18


is illustrated. The plug


12


mounted to the secondary circuit board


16


is plugged into the socket


14


mounted to the primary circuit board


18


, forming an electrical connection between the primary and secondary circuit boards,


16


,


18


. Within the three-contact grouping, three male pins (not shown in

FIG. 6

) of the plug


12


and three corresponding female socket contacts of socket


14


couple to form a first signal channel


108


, a second signal channel


110


, and a reference channel


112


. The first and second signal channels


108


,


110


are coupled with a resistor


118


to form a symmetric differential pair transmission line. The reference channel


112


is electrically connected to the electrical ground circuit (Vcc)


114


of the system


10


. The electrical ground circuit (Vcc)


114


is a circuit within system


10


that is electrically connected to the power supply (not shown) of system


10


and provides the reference ground for system


10


. Additionally, the plug frame


40


and socket frame


50


are in electrical contact with each another and with the chassis ground circuit


120


of the system


10


.




In this example, an ASIC chip


24


mounted to the secondary circuit board


18


includes a driver


100


which sends signals over the first and second signal channels,


108


,


110


. The primary circuit board


18


includes a receiver


116


which receives the signals generated by the driver


100


. The receiver


116


may be incorporated within a memory device, a central processing unit (CPU), an ASIC, or another active or passive device. The receiver


116


includes a resistor


118


between the first signal channel


108


and the second signal channel


110


. In order to avoid signal reflection due to mismatched impedance, the differential impedance of the first and second signal channels,


108


,


110


should be such that it approximately matches the value of the resistor


118


.




The driver


100


includes a current source


102


and four driver gates


104




a-




104




b


,


106




a


-


106




b


and drives the differential pair line (i.e., first and second signal channels


108


,


110


). The receiver


116


has a high DC input impedance, so the majority of driver


100


current flows across the resistor


118


, generating a voltage across the receiver


116


inputs. When driver gates


106




a


-


106




b


are closed (i.e., able to conduct current) and driver gates


104




a


-


104




b


are open (i.e., not able to conduct current), a positive voltage is generated across the receiver


116


inputs which may be associated with a valid “one” logic state. When the driver switches and driver gates


104




a


-


104




b


are closed and driver gates


106




a


-


106




b


are open, a negative voltage is generated across the receiver inputs which may be associated with a valid “zero” logic state.




The use of differential signaling creates two balanced signals propagating in opposite directions over the first and second signal channels,


108


,


110


. The electromagnetic field generated by current flow of the signal propagating over the first signal channel


108


is partially cancelled by the electromagnetic field generated by the current flow of the signal propagating over the second signal channel


110


once the differential signals become co-incidental or “in-line” with one another. Thus, the differential signaling reduces cross-talk between the first and second signal channels and between adjacent contact groupings.




The addition of the reference channel


112


in close proximity to the first and second channels


108


,


110


functions to help bleed off the parasitic electromagnetic field to circuit ground


114


, which may further reduce cross-talk between signal channels and between contact groupings.




The driver


100


may also be configured to operate in an “even” mode where two signals propagate across the first and second channel at the same time in the same direction. In this mode, current travels in the same direction over the first and second signal channels,


108


and


110


, and, therefore the electromagnetic fields generated by the current flow would largely add. However, the reference channel


112


would still operate to bleed off the electromagnetic field and reduce cross-talk between adjacent contacts and contact groupings.




The socket


12


and plug


14


also feature electrically conductive “cages” formed by the frame and the shields around the perimeter of the segments,


34


,


44


. The plug frame


40


and socket frame


30


are in electrical contact with each other and with the chassis ground


120


of the system


10


. When high speed communication takes place over an interconnection device, electromagnetic fields substantially parallel to the board are created due to the electron flow at high frequencies. The frames


30


,


40


and the shields


32


,


42


, act as “cages” to contain the electromagnetic fields generated by the electron flow across the device, which may reduce the amount of noise emitted by the interconnection device. Additionally, the “cages” act to absorb electromagnetic fields which might otherwise be introduced into the socket


12


and plug


14


, and which may adversely affect the primary or secondary circuit boards


18


,


16


and any associated active or passive devices and components mounted thereto.




Referring again to

FIG. 6

, when a pair of interconnection devices are mated, the differential impedance for the first and second signal channels should be approximately equal to the value of resistor


118


in order to avoid reflection of the signal. In a Low Voltage Differential Signaling (LVDS) application, the value of the resistor


118


is typically 100 ohms. Thus, in a pair of interconnection devices for use in an LVDS application, the first and second signal channels should be designed such the differential impedance is approximately 100 ohms. The differential impedance of the first and second channel signal is a complex calculation that will depend on a number of variables including the characteristic impedance of the contacts, the dielectric constant of the medium surrounding the contacts, and the spatial orientation of the signal contacts and the reference ground contacts. One simplified analytical approach to determining the differential impedance, might be as follows:




(1) First determine the self inductance and self capacitance for each of the signal channels with respect to the reference channel within a unit given a selected conductor cross section and spatial relationship.




(2) Determine the differential mutual inductance and capacitance between the two signal channels within a unit given the selected conductor cross section and spatial relationship; and




(3) Combine the self impedance (i.e., the self inductance plus self capacitance) and differential mutual impedance (i.e., the differential mutual inductance plus differential mutual capacitance) to approximate the differential impedance of the two signal channels.




A similar analytical approach may be used to orient the units with respect to one another. It should be noted, however, that these analytical approaches are idealized and does not account for parasitics produced in real-world transmission lines. Due to the complexity of the calculations for real-world transmission lines, computer modeling and simulations using different parameters is often an efficient way to arrange the contacts for a particular application.




Referring to

FIG. 7

, the spacing between the three groups of three-contact arrays


35




a


-


35




c


within a segment


32


on socket


14


is shown. In this embodiment, the interconnection device


14


is adapted to be used in an LVDS application. Each contact array


35




a-




35




c


includes a pair of signal contacts,


34




a-




34




b


,


34




d-




34




e


,


34




g-




34




h


, and a reference contact


34




c


,


34




f


,


34




i


. Each of the signal contacts,


34




a


-


34




b


,


34




d


-


34




e


,


34




g


-


34




h


, and the corresponding male pins (not shown) are formed of copper alloy and have an initial characteristic impedance of approximately 50 ohms (single-ended). The segment


32


is formed of polyphenylene sulfide (PPS) having a dielectric constant of approximately 3.2. Two shield members


60




a


,


60




b


are located adjacent to the top and bottom edge of the segment


32


. Table I provides the spatial orientation between contacts within a group as well as between adjacent groups in order to produce a differential impedance in the first and second signal channels of a mated pair of interconnection devices of approximately 100 ohms.















TABLE I











Dimension




Value













A




.070″







B




.063″







C




.037″







D




.050″







E




.048″







F




.083″







G




.150″







H




.004″















The spatial orientation for the mating plug to socket


14


shown in

FIG. 7

would have similar spacing in order to properly plug into socket


14


.




The differential impedance of the differential signal channels may be adjusted by inserting material with a different dielectric constant than the segment between the differential signal contacts. For example, an air cavity (air having a dielectric constant of approximately 1) or a Teflon® insert may be inserted between the differential signal contacts in the segment in order to create a composite dielectric having a dielectric constant that is greater or less than the dielectric constant of the segment itself. This will have the effect of lowering or raising the resulting differential impedance between the differential signal contacts on the interconnection device.




The absolute value of a materials dielectric constant (Er) between adjacent conductors is inversely proportional to the resulting differential impedance between those conductors. Thus, the lower the resulting dielectric constant (Er) of a composite dielectric material b/w signal contacts, the higher the resulting differential impedance between the contacts. Similarly, the higher the resulting dielectric constant (Er) of a composite dielectric material b/w signal contacts, the lower the resulting differential impedance between the contacts.




As shown in

FIG. 8

, a plug


14


includes a segment


32


with three contact groupings


35




a


,


35




b


,


35




c


. Each contact grouping includes a first signal contact


34




a


,


34




d


,


34




g


, a second signal contact


34




b


,


34




e


,


34




h


, and a reference contact


34




c


,


34




f


,


34




i


. A cavity


130




a


-


130




c


is formed on the segment


32


centered between the first and second signal contact of each grouping. The cavities are open to air and extends from the top surface to approximately 0.113″ within the segment


32


. Table II provides the dimensions of the air cavities shown in

FIG. 8

, given the same parameters specified in the description of FIG.


7


.













TABLE II









Dimension




Value











A




.021″






B




.021″






C




.011″






D




.0753″














By adding this air cavity between the signal contacts in the plug


14


, the differential impedance of the differential signal channels on the female side of the interconnection device is increased. The size and shape of the air cavity will depend on the desired value for the differential impedance of the differential signal channels. In an LVDS application, the desired differential impedance for the first and second signal channels formed by a mating pair of male and female contacts should be 100 Ohms, +/−5 Ohms. Thus, the female side alone may have a differential impedance of more or less than 100 Ohms and the male side may have a differential impedance of more or less than 100 Ohms, but the pair when mated have an average differential impedance of 100 Ohms (+/−5 Ohms). Male and female differential impedance values should be equal to eliminate any impedance mismatch (dissimilar impedance values) between the two. Any impedance mismatch usually results in an increased signal reflection of the applied energy back towards the signal source thereby reducing the amount of energy being transmitted through the mated connectors. The introduction of a composite dielectric as described herein can minimize the differential impedance mismatch between male and female connectors, thus minimizing reflection of the applied energy back towards the signal source, thereby increasing the amount of energy being transmitted through the mated connectors.




While an air cavity between differential signal pairs is depicted in

FIG. 8

, any material having a different dielectric constant than the segment may be inserted between the signal contacts on either the male or female side. For example, a Teflon® insert, air-filled glass balls, or other material having a lower dielectric constant than the material of the segment (e.g., PPS resin) may be disposed between the signal contacts in order to create a composite dielectric which reduces the resulting dielectric constant of the segment between signal contacts. Similarly, material with a higher dielectric constant may be added between the signal contacts in order to create a composite dielectric which will raise the dielectric constant of the segment between contacts.




As shown in

FIG. 9

, another interconnection device


140


includes a segment


32


with three contact grouping


35




a


-


35




c


is shown. Each contact grouping includes a pair of differential signal contacts,


34




a


and


34




b


,


34




d


and


34




e


,


34




g


and


34




h


, and a ground reference contact


34




c


,


34




f


,


34




i


. A continuous ground plane


150


is disposed within segment


32


and is in contact with each of the reference ground contacts,


34




c


,


34




f


,


34




i


. The ground plane


150


separates the differential signal contacts from each other and will have the effect of raising the differential impedance of each pair of differential signal contacts. Additionally, the ground plane


150


will further reduce cross talk between pairs of differential signal contacts by bleeding off remnant electromagnetic fields generated by electron flow across the differential signal contacts.




As shown in

FIG. 10

, another interconnection devices


142


include a number of ground planes


152




a


-


152




h


disposed within the segment


32


. Each of the ground planes


152




a


-


152




h


is configured to electrically connect with the reference ground (Vcc) of the system. Similarly, as shown in

FIG. 11

, another interconnection device


144


includes a number of ground planes


154




a


-


154




d


which are configured to electrically connect with the reference ground of the system. Like the continuous ground plane shown in

FIG. 9

, the multiple ground planes illustrated in

FIGS. 10-11

will effect the differential impedance of the differential signal contacts as well as further reduce cross talk between pairs of differential signal contacts.




The illustrations shown in

FIGS. 1-11

show a twin-axial arrangement of differential pair contacts within a system using differential signaling. However, the technique for reducing cross-talk using a reference pin connected to ground in close proximity to one or more signal channels is not limited to systems using differential signaling, but could be used in systems using other communication techniques. For example, in a system in which individual disparate electrical signals are transmitted (e.g., single ended or point-to-point signaling), a signal contact and reference contact may be arranged in a pseudo co-axial arrangement where a signal contact and a reference contact form a contact-grouping and do not physically share a common longitudinal axis (as would a traditional co-axial transmission line), but electrically performs like a traditional co-axial transmission line. In a pseudo co-axial arrangement, the signal contact and reference contact are physically arranged such that the signal contact and the reference contact are substantially parallel to each other but do not share a common longitudinal axis. The reference contacts within the field of contacts will help to absorb electromagnetic fields generated by the signal contacts and may reduce cross-talk between single-ended transmission lines.




The examples illustrated in

FIGS. 1-11

show contact groupings consisting of three contacts, a first signal contact, second signal contact and reference contact. However, contact groupings in other embodiments may include more or less than three contacts. For example, a contact grouping may include a first signal contact and second signal contact (forming differential transmission line), a third and fourth signal contact (forming second differential transmission line) and a reference contact. Additionally, in a system which uses point-to-point or single-ended signaling, a contact grouping may include one or more signal contacts and a reference contact within the contact grouping.




In whatever transmission arrangement is used (e.g., differential or single-ended), the spatial orientation of the contacts within a contact grouping can be selected such that the contacts are electrically equivalent to traditional twin-axial or coaxial wire or cable with respect to cross-sectional construction and electrical signal transmission capabilities. Additionally, the spatial relationship between adjacent contact groupings should be selected to approximate electrical isolation and preserve signal fidelity within a grouping via the reduction of electromagnetic coupling.




The arrays of twin-axial contact grouping depicted in

FIGS. 1-5

and

FIGS. 7-11

, are intended to match the multi-layer circuit board routing processes in order to permit the interconnection device,


12


,


14


, to be mounted to contact pads of printed circuit board without the need for routing with multiple Z-axis escapes as the case with traditional “uniform grid” or “interstitial grid” connector footprints. Thus, the orientation of the contacts on plug


12


and socket


14


permit it to be mounted and interconnected with the internal circuitry of a multi-layer circuit board using less layers within the circuit board than traditional connectors.




A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.




For example, the interconnection device does not need to be formed of multiple segments with shield members located between adjacent segments as illustrated in

FIGS. 1-5

and


7


-


11


. A single segment may be created around one or more shield members by forming (e.g., by injection molding) non-conductive resin or other material around one or more shield members. The frame may then be formed around the segment and the shield(s) by forming (e.g., by injection molding) a conductive resin or other material around the perimeter of the segment.




Additionally, the shield member and frame do not need to be two separate pieces. The shield and frame may consist of a one-piece construction with the segment molded or inserted within the single-piece shield-frame member.




In the illustration shown in

FIG. 1

, the plug and socket are releasably retained to each other by the mating array of pins and sockets and the mating of the plug and socket frames. A clip, pin, screw, bolt, or other means may be used to further secure the plug and socket to each other.




The interconnection device described herein may be used to connect any array of transmission lines in a digital or analog transmission system, such as an array of transmission lines on a printed circuit board (as illustrated in FIG.


1


), an active or passive device or a cable bundle.




Accordingly, other embodiments are within the scope of the following claims.



Claims
  • 1. An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the intercoupling component comprising:a segment formed of electrically insulative material and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; a shield member formed of electrically conductive material and at least partially disposed within the segment and configured to electrically connect to the chassis ground circuit; a plurality of electrically conductive signal contacts configured to transmit a digital or analog communication signal, each signal contact disposed within a hole on the upper surface of the segment forming an array of signal contacts, and wherein the shield member is at least partially disposed within the array of signal contacts; and a frame formed of electrically conductive material at least partially surrounding the segment and in electrical contact with the shield member and configured to electrically connect to the chassis ground circuit.
  • 2. The intercoupling component of claim 1, further comprising:a plurality of electrically conductive reference contacts each disposed within a hole on the upper surface of the segment, wherein the electrically conductive reference contacts are configured to electrically connect to the reference ground circuit of the system.
  • 3. The intercoupling component of claim 2, wherein the plurality of electrically conductive reference contacts is disposed within the array of signal contacts.
  • 4. The intercoupling component of claim 1, further comprising:a ground plane disposed at least partially within the segment and within the array of signal contacts, and wherein the ground plane is configured to electrically connect with the electrical ground circuit of the system.
  • 5. The intercoupling component of claim 4, further comprising:a plurality of ground planes disposed at least partially within the segment and within the array of signal contacts, and wherein the plurality of ground planes is configured to electrically connect with the electrical ground circuit of the system.
  • 6. The intercoupling component of claim 1, further comprising a plurality of shield members disposed within the segment and each in electrical contact with the frame.
  • 7. The intercoupling component of claim 1, wherein the segment is molded at least partially around the shield member.
  • 8. The intercoupling component of claim 1, wherein the segment further includes at least one cavity disposed on the segment and within the array of signal contacts.
  • 9. The intercoupling component of claim 1, further comprising a retention member configured to releasably retain the array of contacts with the plurality of signal contact and reference contacts.
  • 10. An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the intercoupling component comprising:a plurality of segments formed of electrically insulative material, spaces between adjacent segments defining at least one gap, each segment having an upper and lower surface and including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; a shield member formed of electrically conductive material disposed within at least one gap between adjacent segments and configured to electrically connect with the chassis ground circuit of the system; a plurality of shield members formed of electrically conductive material disposed within a plurality of gaps between adjacent segments configured to electrically connect with the chassis ground circuit of the system; and a frame formed of electrically conductive material surrounding the plurality of segments and in electrical contact with the plurality of shield members.
  • 11. The intercoupling component of claim 10, further comprising:a plurality of electrically conductive contacts each disposed within a hole on the upper surface of the segment and configured to releasably retain the array of contacts.
  • 12. The intercoupling component of claim 11, wherein at least one of the plurality of electrically conductive contacts is configured to electrically connect with the electrical ground of the system.
  • 13. The intercoupling component of claim further comprising:a ground plane disposed at least partially within the segment, wherein the ground plane is configured to electrically connect with the reference ground circuit of the system.
  • 14. An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the intercoupling component comprising:a segment formed of electrically insulative material and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; a plurality of electrically conductive contacts each disposed within each hole on the upper surface of the segment, wherein the plurality of contacts are arranged in a plurality of multi-contact groupings, at least one multi-contact grouping comprising: a first electrically conductive contact; and a reference contact located at a distance D from the first electrically conductive contact and configured to electrically connect to the electrical ground circuit of the system, and wherein the first electrically conductive contact and the reference contact form a transmission line electrically equivalent to a co-axial transmission line.
  • 15. The intercoupling component of claim 14, wherein each multi-contact grouping is located a distance of ≧D from adjacent multi-contact groupings.
  • 16. The intercoupling component of claim 14, further comprising:a shield member formed of electrically conductive material disposed within the segment and configured to electrically connect with the chassis ground circuit of the system.
  • 17. The intercoupling component of claim 16, further comprising:a frame formed of electrically conductive material surrounding the segment and in electrical contact with the shield member and configured to electrically connect with the chassis ground circuit of the system.
  • 18. The intercoupling component of claim 14, further comprising: p1 a plurality of segments formed of electrically insulative material, spaces between adjacent segments defining at least one gap, each segment having an upper and lower surface and including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; anda shield member formed of electrically conductive material disposed within at least one gap between adjacent segments and is in electrical contact with the electrical ground of the system.
  • 19. The intercoupling component of claim 18, further comprising:a frame formed of electrically conductive material surrounding the plurality of segments and in electrical contact with the plurality of shield members and configured to electrically connect with the chassis ground circuit of the system.
  • 20. The intercoupling component of claim 14, further comprising:a ground plane disposed at least partially within the segment, wherein the ground plane is configured to electrically connect with the reference ground circuit of the system.
  • 21. An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the intercoupling component comprising:a segment formed of electrically insulative material and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; a plurality of electrically conductive contacts each disposed within each hole on the upper surface of the segment, wherein the plurality of contacts are arranged in a plurality of multi-contact groupings, at least one multi-contact grouping comprising: a first electrically conductive contact; and a reference contact located at a distance D from the first electrically conductive contact and configured to electrically connect to the electrical ground circuit of the system, and wherein the first electrically conductive contact is configured to transmit single-ended signals.
  • 22. The intercoupling component of claim 21, wherein each multi-contact grouping is located a distance of ≧D from adjacent multi-contact groupings.
  • 23. The intercoupling component of claim 21, further comprising:a shield member formed of electrically conductive material disposed within the segment and configured to electrically connect with the chassis ground circuit of the system.
  • 24. The intercoupling component of claim 23, further comprising:a frame formed of electrically conductive material surrounding the segment and in electrical contact with the shield member and configured to electrically connect with the chassis ground circuit of the system.
  • 25. The intercoupling component of claim 21, further comprising:a plurality of segments formed of electrically insulative material, spaces between adjacent segments defining at least one gap, each segment having an upper and lower surface and including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; and a shield member formed of electrically conductive material disposed within at least one gap between adjacent segments and is in electrical contact with the electrical ground of the system.
  • 26. The intercoupling component of claim 25, further comprising:a frame formed of electrically conductive material surrounding the plurality of segments and in electrical contact with the plurality of shield members and configured to electrically connect with the chassis ground circuit of the system.
  • 27. The intercoupling component of claim 21, further comprising:a ground plane disposed at least partially within the segment, wherein the ground plane is configured to electrically connect with the reference ground circuit of the system.
  • 28. An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the intercoupling component comprising:a segment formed of electrically insulative material and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; a plurality of electrically conductive contacts each disposed within each hole on the upper surface of the segment, wherein the plurality of contacts are arranged in a plurality of multi-contact groupings, at least one multi-contact grouping comprising: a first electrically conductive contact; a second electrically conductive contact member located at a distance from the first electrically conductive contact; and a reference contact located at a distance D2 from the first electrically conductive contact and configured to electrically connect to the electrical ground circuit of the system.
  • 29. The intercoupling component of claim 28, wherein the first and second electrically conductive contacts form a transmission line electrically equivalent to a twin-axial differential transmission line.
  • 30. The intercoupling component of claim 28, wherein each multi-contact grouping is located a distance ≧D2 from adjacent multi-contact groupings.
  • 31. The intercoupling component of claim 30, wherein D>D2.
  • 32. The intercoupling component of claim 30, wherein D=D2.
  • 33. The intercoupling component of claim 28, wherein the first and second electrically conductive contacts within each multi-contact grouping are configured to transmit disparate single-ended signals.
  • 34. The intercoupling component of claim 28, wherein the first and second electrically conductive contacts have substantially the same cross-section.
  • 35. The intercoupling component of claim 28 wherein the first, second and reference electrically conductive contacts have substantially the same cross-section.
  • 36. The intercoupling component of claim 28, wherein the first and second electrically conductive contacts have substantially the same initial characteristic impedance.
  • 37. The intercoupling component of claim 28, wherein the first and second electrically conductive contacts within each multi-contact grouping are configured to transmit low voltage differential signals.
  • 38. The intercoupling component of claim 37, wherein the differential impedance of the first and second electrically conductive contacts within each multi-contact grouping is approximately 100 ohms.
  • 39. The intercoupling component of claim 30, further comprising:a shield member formed of electrically conductive material disposed within the segment and configured to electrically connect with the chassis ground circuit of the system.
  • 40. The intercoupling component of claim 39, further comprising:a frame formed of electrically conductive material surrounding the segment and in electrical contact with the shield member and configured to electrically connect with the chassis ground circuit of the system.
  • 41. The intercoupling component of claim 30, further comprising:a plurality of segments formed of electrically insulative material, spaces between adjacent segments defining at least one gap, each segment having an upper and lower surface and including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; and a shield member formed of electrically conductive material disposed within at least one gap between adjacent segments and is in electrical contact with the electrical ground of the system.
  • 42. The intercoupling component of claim 41, further comprising:a frame formed of electrically conductive material surrounding the plurality of segments and in electrical contact with the plurality of shield members and configured to electrically connect with the chassis ground circuit of the system.
  • 43. The intercoupling component of claim 30, further comprising:a ground plane disposed at least partially within the segment, wherein the ground plane is configured to electrically connect with the reference ground circuit of the system.
  • 44. The intercoupling component of claim 30 wherein a plurality of cavities is disposed within the segment, each cavity located between the first and second contact.
  • 45. The intercoupling component of claim 44, wherein each cavity is filled with air.
  • 46. A circuit card for use in a digital or analog transmission system having an electrical ground circuit and a chassis ground circuit, the circuit card comprising:a printed circuit board having a plurality of contact pads arranged in a predetermined footprint; and an interconnection device comprising: a segment having an upper and lower surface, the segment having a plurality of holes extending through the upper and lower surfaces and arranged in a predetermined footprint to match the predetermined footprint of the plurality of surface mount pads; a plurality of electrically conductive contact member disposed within each of the holes and electrically connected to their respective surface mount pad; a shield member formed of electrically conductive material disposed within the segment; and a frame formed of electrically conductive material surrounding the segment, the frame electrically connected to the shield member and to the chassis ground circuit of the system.
  • 47. The circuit card of claim 46, wherein the plurality of contacts are arranged in a plurality of multi-contact groupings, each multi-contact grouping comprising:a first electrically conductive contact; and a reference contact located at a distance D from the first electrically conductive contact and connected to the electrical ground circuit of the system.
  • 48. The circuit card of claim 47, wherein the multi-contact grouping further comprises:a second electrically conductive contact located a distance D2 from the first electrically conductive contact.
  • 49. The circuit card of claim 47, wherein the interconnection device further comprises:a ground plane disposed at least partially within the segment, wherein the ground plane is configured to electrically connect with the reference ground circuit of the system.
  • 50. The circuit card of claim 48, wherein the first and second electrically conductive contacts form a transmission line electrically equivalent to a twin-axial differential transmission line.
  • 51. An intercoupling component for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit, the intercoupling component comprising:a segment formed of a material having a dielectric constant Er1, and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface and arranged in a predetermined footprint corresponding to the array of a contacts; a first signal contact disposed within a first hole on the segment; a second signal contact disposed within a second hole on the segment adjacent to the first hole in which the first signal contact is disposed, and wherein a cavity is formed in the segment between the first and second hole; and an insert formed of a material having a dielectric constant of Er2, the insert disposed within the cavity.
  • 52. The intercoupling component of claim 51, wherein Er1<Er2.
  • 53. The intercoupling component of claim 51, wherein Er1<Er2.
  • 54. A method for adjusting the differential impedance of a pair of differential transmission lines in a interconnection device for receiving an array of contacts within a digital or analog transmission system having an electrical ground circuit, the intercoupling component comprising, the method comprising:providing a segment formed of a material having a dielectric constant Er1 and having an upper and lower surface, the segment including a plurality of holes disposed on its upper surface; providing a plurality of pairs of signal contacts, each pair disposed with two adjacent holes on the segment and configured to transmit differential signals the plurality of pairs of signal contacts forming an array of pairs of signal contacts disposed in the segment, spacing the pairs of signal contacts such that they create a certain differential impedance between the two contacts in each pair of signal contacts; and providing a plurality of cavities disposed in the segment between the two signal contacts in each pair of signal contacts to adjust the differential impedance of the two signal contacts in each pair of signal contacts.
  • 55. The method of claim 54, further comprising: inserting a material having a dielectric constant of Er2 in each of the plurality of cavities in the segment.
  • 56. The method of claim 54, further comprising:providing a plurality of ground contacts disposed within a plurality of holes on the segment and within the array of pairs of signal contacts, the plurality of ground contacts electrically connected to the electrical ground circuit of the system.
  • 57. The method of claim 54, further comprising:providing a ground plane disposed within the segment and within the array of pairs of signal contacts, the ground plane configured to electrically connect with the electrical ground of the system.
US Referenced Citations (33)
Number Name Date Kind
3904265 Hollyday et al. Sep 1975 A
4239318 Schwartz Dec 1980 A
4449778 Lane May 1984 A
4718866 Yamaguchi Jan 1988 A
4789357 Yamaguchi et al. Dec 1988 A
4808126 Wilson Feb 1989 A
4898546 Elco et al. Feb 1990 A
4909743 Johnson et al. Mar 1990 A
4938704 Fujiura Jul 1990 A
4974075 Nakajima Nov 1990 A
5055069 Townsent et al. Oct 1991 A
5133679 Fusselman et al. Jul 1992 A
5135405 Fusselman et al. Aug 1992 A
5256086 Ponn Oct 1993 A
5282268 Mieras et al. Jan 1994 A
5310354 Oswald, Jr. May 1994 A
5360349 Provencher et al. Nov 1994 A
5403206 McNamara et al. Apr 1995 A
5409400 Davis Apr 1995 A
5588851 Morlion et al. Dec 1996 A
5672064 Provencher et al. Sep 1997 A
5702255 Murphy et al. Dec 1997 A
5748449 Tahmassebpur May 1998 A
5795191 Preputnick et al. Aug 1998 A
5993259 Stokoe et al. Nov 1999 A
5997361 Driscoll et al. Dec 1999 A
6206729 Bradley et al. Mar 2001 B1
6213787 Murphy Apr 2001 B1
6234827 Nishio et al. May 2001 B1
6281715 DeClue et al. Aug 2001 B1
20020119701 Olson Aug 2002 A1
20020125967 Garrett et al. Sep 2002 A1
20030022555 Vicich et al. Jan 2003 A1
Foreign Referenced Citations (1)
Number Date Country
WO 0227598 May 2002 WO
Non-Patent Literature Citations (3)
Entry
Douglass Brooks, “Differential Impedance: What's the Difference?” Printed Circuit Design. Aug., 1998, Atlanta, U.S.A.
National Semiconductor, LVDS Owners Manual: A General Guide for National's Low Voltage Differential Signalling (LVDS) and Bus LVDS Products. 2nd ed. Spring, 2000.
Bishop & Associates, Connector Business is Getting Better, The Bishop Report, Issue No. 131, vol. 4Q03, pp. 7-9, Oct. 2003.