High speed photosensitive devices and associated methods

Information

  • Patent Grant
  • 9761739
  • Patent Number
    9,761,739
  • Date Filed
    Monday, December 22, 2014
    10 years ago
  • Date Issued
    Tuesday, September 12, 2017
    7 years ago
Abstract
High speed optoelectronic devices and associated methods are provided. In one aspect, for example, a high speed optoelectronic device can include a silicon material having an incident light surface, a first doped region and a second doped region forming a semiconductive junction in the silicon material, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.
Description
BACKGROUND

Many imaging applications such as hands-free gesture control, video games, medical, and machine vision, as well as communication applications utilize various optoelectronic devices, such as photodetectors and imaging arrays of photodetectors. Communication applications typically use, for example, fiber optical networks because such networks perform well in the near infrared wavelengths of light where optical fibers experience lower signal loss. Applications for laser marking and range finding commonly use lasers with near infrared wavelengths such 1064 nm. Other applications such as depth perception applications utilize imagers that can detect near infrared wavelengths such as 850 nm or 940 nm. These wavelengths are commonly generated from light emitting diodes or laser diodes made with gallium arsenide (GaAs). All of these applications require detectors or detector arrays with fast response time, typically faster than what can be achieved with a thick (eg >100 um) thick active layer of silicon. Therefore, the silicon devices utilized for these applications are often thin and have specific design considerations included to reduce response time. However, as the active layer of silicon becomes thinner, the response at longer wavelengths (eg 850 nm, 940 nm, and 1064 nm) because much lower than that of a thick silicon device layer. Thick silicon devices with high response at longer wavelengths, on the other hand, have slow response time and are difficult to deplete.


SUMMARY

The present disclosure provides high speed optoelectronic devices and associated methods. In one aspect, for example, a high speed optoelectronic device can include a silicon material having an incident light surface, a first doped region and a second doped region forming a semiconductive junction in the silicon material, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm. In another aspect, the optoelectronic device has a responsivity of greater than or equal to about 0.5 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm. In yet another aspect, the optoelectronic device has a responsivity of greater than or equal to about 0.45 A/W for electromagnetic radiation having a wavelength of about 850 nm. In a further aspect, the silicon material has a thickness of from about 1 μm to about 100 μm. In yet a further aspect, dark current of the device during operation is from about 100 pA/cm2 to about 10 nA/cm2.


In another aspect, a high speed optoelectronic device can include a silicon material having an incident light surface, a first doped region and a second doped region forming a semiconductive junction in the silicon material, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.3 A/W for electromagnetic radiation having a wavelength of about 940 nm.


In yet another aspect, high speed optoelectronic device can include a silicon material having an incident light surface, a first doped region and a second doped region forming a semiconductive junction in the silicon material, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.05 A/W for electromagnetic radiation having a wavelength of about 1060 nm.


In another aspect, a photodiode array can include a silicon material having an incident light surface, at least two photodiodes in the silicon material, each photodiode including a first doped region and a second doped region forming a junction, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The photodiode array has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm. In one aspect, the silicon material has a thickness of from about 1 μm to about 100 μm.


In yet another aspect, a method of increasing the speed of an optoelectronic device can include doping at least two regions in a silicon material to form at least one junction, and texturing the silicon material to form a textured region positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm. In one aspect, the device can include a further doped region intended to quickly bring carriers from the side opposite junction to the junction region.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphical representation of the absorption characteristics of a fast (or thin) photodetector device based on standard silicon compared to the absorption characteristics of a photodetecting device based on silicon but having a textured region in accordance with one aspect of the present disclosure;



FIG. 2 is a schematic view of a photosensitive device in accordance with another aspect of the present disclosure;



FIG. 3 is a schematic view of a photosensitive device in accordance with yet another aspect of the present disclosure;



FIG. 4 is a schematic view of a photosensitive device in accordance with a further aspect of the present disclosure;



FIG. 5 is a schematic view of a photosensitive device in accordance with yet a further aspect of the present disclosure;



FIG. 6 is a schematic view of a photosensitive device in accordance with another aspect of the present disclosure;



FIG. 7 is a schematic view of a photosensitive device in accordance with yet another aspect of the present disclosure;



FIG. 8 is a schematic view of a photosensitive array device in accordance with a further aspect of the present disclosure;



FIG. 9 is an illustration of a time of flight measurement in accordance with another aspect of the present disclosure;



FIG. 10a is a schematic view of a pixel configuration for a photoimager array in accordance with another aspect of the present disclosure;



FIG. 10b is a schematic view of a pixel configuration for a photoimager array in accordance with another aspect of the present disclosure;



FIG. 10c is a schematic view of a pixel configuration for a photoimager array in accordance with another aspect of the present disclosure;



FIG. 11 is a schematic diagram of a six transistor imager in accordance with another aspect of the present disclosure;



FIG. 12 is a schematic diagram of an eleven transistor imager in accordance with another aspect of the present disclosure;



FIG. 13 is a schematic view of a photosensitive array device in accordance with yet a further aspect of the present disclosure;



FIG. 14 is a schematic view of a photosensitive array device in accordance with another aspect of the present disclosure; and



FIG. 15 is a depiction of a method of increasing the speed of an optoelectronic device in accordance with yet another aspect of the present disclosure.





DETAILED DESCRIPTION

Before the present disclosure is described herein, it is to be understood that this disclosure is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.


Definitions


The following terminology will be used in accordance with the definitions set forth below.


It should be noted that, as used in this specification and the appended claims, the singular forms “a,” and, “the” can include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a dopant” can include one or more of such dopants and reference to “the layer” can include reference to one or more of such layers.


As used herein, “quantum efficiency” (QE) is defined as the percentage of photons incident on an optoelectronic device that are converted into electrons. External QE (EQE) is defined as the current obtained outside of the device per incoming photon. As such, EQE therefore depends on both the absorption of photons and the collection of charges. The EQE is lower than the QE due to recombination effects and optical losses (e.g. transmission and reflection losses).


As used herein, “responsivity” is a measure of the input-output gain of a detector system. In the case of a photodetector, responsivity is a measure of the electrical output per optical input. Responsivity of a photodetector is expressed in amperes per watt of incident radiant power. Additionally, responsivity is a function of the wavelength of the incident radiation and of the properties of the device, such as the bandgap of the material of which the device is made. One expression for responsivity (Rλ) is shown in Equation I, where η is the external quantum efficiency of the detector for a given wavelength (λ), q is the charge of an electron, h is Planks constant, and v is the frequency of light.










R
λ

=



q
hv

×
η





λ

(
µm
)


1.23985

×
η






(
I
)







As used herein, the terms “electromagnetic radiation” and “light” can be used interchangeably, and can represent wavelengths across a broad range, including visible wavelengths (approximately 350 nm to 800 nm) and non-visible wavelengths (longer than about 800 nm or shorter than 350 nm). The infrared spectrum is often described as including a near infrared portion of the spectrum including wavelengths of approximately 800 to 1300 nm, a short wave infrared portion of the spectrum including wavelengths of approximately 1300 nm to 3 micrometers, and a mid to long wave infrared (or thermal infrared) portion of the spectrum including wavelengths greater than about 3 micrometers up to about 30 micrometers. These are generally and collectively referred to herein as “infrared” portions of the electromagnetic spectrum unless otherwise noted.


As used herein, “response time” refers to the rise time or fall time of a detector device. In one aspect, “rise time” is the time difference between the 10% point and the 90% point of the peak amplitude output on the leading edge of the electrical signal generated by the interaction of light with the device. “Fall time” is measured as the time difference between the 90% point and the 10% point of the trailing edge of the electrical signal. In some aspects, fall time can be referred to as the decay time.


As used herein, the terms “disordered surface” and “textured surface” can be used interchangeably, and refer to a surface having a topology with nano- to micron-sized surface variations. Such a surface topology can be formed by the irradiation of a laser pulse or laser pulses, chemical etching, lithographic patterning, interference of multiple simultaneous laser pulses, or reactive ion etching. While the characteristics of such a surface can be variable depending on the materials and techniques employed, in one aspect such a surface can be several hundred nanometers thick and made up of nanocrystallites (e.g. from about 10 to about 50 nanometers) and nanopores. In another aspect, such a surface can include micron-sized structures (e.g. about 1 μm to about 60 μm). In yet another aspect, the surface can include nano-sized and/or micron-sized structures from about 5 nm and about 500 μm.


As used herein, the term “fluence” refers to the amount of energy from a single pulse of laser radiation that passes through a unit area. In other words, “fluence” can be described as the energy density of one laser pulse.


As used herein, the terms “surface modifying” and “surface modification” refer to the altering of a surface of a semiconductor material using laser irradiation, chemical etching, reactive ion etching, lithographic patterning, etc. In one specific aspect, surface modification can include processes using primarily laser radiation or laser radiation in combination with a dopant, whereby the laser radiation facilitates the incorporation of the dopant into a surface of the semiconductor material. Accordingly, in one aspect surface modification includes doping of a semiconductor material.


As used herein, the term “target region” refers to an area of a semiconductor material that is intended to be doped or surface modified. The target region of a semiconductor material can vary as the surface modifying process progresses. For example, after a first target region is doped or surface modified, a second target region may be selected on the same semiconductor material.


As used herein, the term “detection” refers to the sensing, absorption, and/or collection of electromagnetic radiation.


As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, a composition that is “substantially free of” particles would either completely lack particles, or so nearly completely lack particles that the effect would be the same as if it completely lacked particles. In other words, a composition that is “substantially free of” an ingredient or element may still actually contain such item as long as there is no measurable effect thereof.


As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.


As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.


Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.


This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.


The Disclosure


Many applications for optoelectronic devices can benefit from high speed operation. For example, a photodetector used in applications such as communicating data, laser range finding, laser marking, time of flight imaging, and the like, can be a limiting factor in how fast data can be transmitted. Thus, a photodetector having a faster responsivity can recieve data at a correspondingly higher rate. The speed of many optoelectronic devices such as photo detectors is dependent, at least in part, on the speed with which charge carriers are swept from the photodetector. The speed at which carriers are swept from a photodetector can depend on the distance a carrier has to travel, whether the carriers are generated in a region of the device with an electric field, and the likelihood of a carrier being trapped or slowed in a defect within the device layer. In some cases, a bias can be applied to the photodetector to decrease the response time by increasing the drift velocity of the carriers. Additionally, many traditional data communication applications utilize electromagnetic radiation in the red and infrared spectrum as a data carrier. In a typical silicon device, electromagnetic radiation in the red and infrared spectrum generate carriers deep into the silicon device, thus increasing the distance the carrier has to travel to be collected. Thus it can be beneficial for a photodetector to absorb infrared radiation in a thin device in order to increase communication speeds and to reduce dark current.


Silicon is one material that can be used as a photodetector semiconductor. Thin silicon photodetectors are limited, however, in their ability to detect infrared wavelengths, particularly when functioning at higher data communication speeds. Traditional silicon materials require substantial absorption depths to detect photons having wavelengths longer than about 700 nm. While visible light can be absorbed at relatively shallow depths in silicon, absorption of longer wavelengths (e.g. 900 nm) in silicon of a thin wafer depth (e.g. approximately 100 μm) is poor if at all. Because short wave infrared light is mostly transparent to silicon-based photodetectors, other materials (e.g. InGaAs) have traditionally been used to detect infrared electromagnetic radiation having wavelengths greater than about 1100 nm. Using such other materials, however, is expensive, increases dark current relative to silicon devices, and limits the detection of electromagnetic radiation in the visible spectrum (i.e. visible light, 350 nm-800 nm). As such, silicon is often used because it is relatively cheap to manufacture and can be used to detect wavelengths in the visible spectrum.


Accordingly, the present disclosure provides optoelectronic devices and associated methods that increase the electromagnetic radiation absorption range of thin silicon devices into the infrared region, thus allowing the absorption of visible and infrared light by such devices. Additionally, such devices can be configured to operate at much higher data rates and have increased external quantum efficiencies and responsivities as compared to traditional thin silicon devices operating in the infrared spectrum. In one aspect, for example, a silicon photodetector is provided that includes a textured region to increase the absorption, external quantum efficiency, and to decrease response times in the infrared wavelengths. Such unique and novel devices can operate at high data rates in the visible and infrared spectrums. Such an increased sensitivity in a silicon-based device can thus reduce processing cost of photodetectors, reduce the power needed in light sources, increase the depth resolution in 3D types imaging, increase the distance over which data can be transmitted, improve laser range finding, and increases opportunities to use longer wavelengths of electromagnetic radiation for communicating data.


In one aspect, for example, a high speed optoelectronic device is provided. Such a device can include a silicon material having an incident light surface, a first doped region and a second doped region forming a semiconductive junction in the silicon material, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm. For example, FIG. 1 shows an absorption/responsivity graph where the dashed line 12 represents the absorption characteristics of a photodetector device based on standard fast silicon device and the solid line 14 represents the absorption characteristics of a photo detecting device based on silicon but having a textured region. Notably, the absorption of a standard fast silicon photodiode in the infrared, i.e. the 800 nm to 1200 nm region, results in relatively low responsivity.


Additionally, in one aspect the response time of the optoelectronic device is from about 1 picosecond to about 1 nanosecond. In another aspect, the response time of the optoelectronic device is from about 1 picosecond to about 500 picoseconds.


In another aspect, the optoelectronic device has a responsivity of greater than or equal to about 0.5 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm. In yet another aspect, the optoelectronic device has a responsivity of greater than or equal to about 0.45 A/W for electromagnetic radiation having a wavelength of about 850 nm. In a further aspect, the optoelectronic device has a responsivity of greater than or equal to about 0.3 A/W for electromagnetic radiation having a wavelength of about 940 nm. In yet a further aspect, the optoelectronic device has a responsivity of greater than or equal to about 0.05 A/W for electromagnetic radiation having a wavelength of about 1060 nm.


In some aspects, the thickness of the device can dictate the responsivity and response time. However standard silicon devices need to be thick, i.e. greater than 100 μm in order to detect wavelengths in the infrared spectrum, and such detection with thick devices results in a slow response and high dark current. It has now been discovered that a textured region positioned to interact with electromagnetic radiation can increase the absorption of infrared light in a device, thereby improving the infrared responsivity while allowing for fast operation. Diffuse scattering and reflection can result in increased path lengths for absorption, particularly if combined with total internal reflection, resulting in large improvements of responsivity in the infrared for silicon photodiodes, photodetectors, photodiode arrays, and the like. Because of the increased path lengths for absorption, thinner silicon materials can be used to absorb electromagnetic radiation up into the infrared regions. One advantage of thinner silicon material devices is that charge carriers are more quickly swept from the device, thus decreasing the response time. Conversely, thick silicon material devices sweep charge carriers therefrom more slowly, at least in part due to diffusion.


Thus, the devices of the present disclosure increase the absorption path length of silicon materials by increasing the absorption path length for longer wavelengths as compared to traditional silicon devices. The absorption depth in silicon photodetectors is the depth into silicon at which the radiation intensity is reduced to about 36% of the value at the surface of the silicon material. The increased absorption path length results in an apparent reduction in the absorption depth, or a reduced apparent or effective absorption depth. For example, the effective absorption depth of silicon can be reduced such that longer wavelengths can be absorbed at depths of less than or equal to about 100 μm. By increasing the absorption path length, such devices are able to absorb longer wavelengths (e.g. >1000 nm for silicon) within a thin semiconductor material. In addition to decreasing the effective absorption depth, the response time can be decreased using thinner semiconductor materials.


Accordingly, optoelectronic devices according to aspects of the present disclosure provide, among other things, enhanced response in the infrared light portion of the optical spectrum and improved response and quantum efficiency in converting electromagnetic radiation to electrical signals. As such, high quantum efficiencies and high speeds can be obtained in the infrared for devices thinner than about 100 μm. In other words, the response is higher than that found in thicker devices at infrared wavelengths.


In one aspect, as is shown in FIG. 2 for example, an optoelectronic device can include a silicon material 22 having a first doped region 24 and a second doped region 26 associated therewith. The first and second doped regions thus form a semiconductive junction. Numerous configurations are contemplated, and any type of junction configuration is considered to be within the present scope. For example, the first and second doped regions can be distinct from one another, contacting one another, overlapping one another, etc. In some cases, an intrinsic region can be located at least partially between the first and second doped regions.


The optoelectronic device can also include a textured region 28 coupled to the silicon material 22 and positioned to interact with incoming electromagnetic radiation 29. In this case, the textured region is located on a side of the silicon material that is opposite to the first doped region 24 and the second doped region 26. Electromagnetic radiation that passes through the silicon material to contact the textured region can be reflected back through the silicon material, thus effectively increasing the absorption path length of the silicon material. The textured region can be associated with an entire surface of the silicon material or only a portion thereof. Additionally, in some aspects the textured region can be specifically positioned to maximize the absorption path length of the silicon material. In other aspects, a third doping can be included near the textured region to improve the collection of carriers generated near the textured region.


The silicon material can be of any thickness that allows electromagnetic radiation detection and conversion functionality, and thus any such thickness of silicon material is considered to be within the present scope. Although any thickness of the silicon material is considered to be within the present scope, thin silicon layer materials can be particularly beneficial in decreasing the response time and/or the capacitance of the device. As has been described, charge carriers can be more quickly swept from thinner silicon material layers as compared to thicker silicon material layers. The thinner the silicon, the less material the electron/holes have to traverse in order to be collected, and the lower the probability of a generated charge carrier encountering a defect that could trap or slow the collection of the carrier. Thus one objective to implementing a fast photo response is to utilize a thin silicon material for the body region of the photodiode. Such a device can be nearly depleted of charge carriers by the built in potential of the photodiode and any applied bias to provide for a fast collection of the photo generated carriers by drift in an electric field. Charge carriers remaining in any undepleted region of the photodiode are collected by diffusion transport, which is slower than drift transport. For this reason, it is desirable to have the thickness of any region where diffusion may dominate to be much thinner than the depleted drift regions. In silicon materials having the proper doping provides a depletion region of about 10 μm with no applied bias. As such, in some aspects it can be useful to utilize a silicon material layer having a thickness less of less than about 100 μm, or less than about 10 μm. In another aspect, the silicon material can have a thickness and substrate doping concentration such that an applied bias generates an electrical field sufficient for saturation velocity of the charge carriers. It should be noted that operating a photodiode, as disclosed herein, at a zero bias can result in low noise but at a longer response time. When bias is applied however, the dark current is increased, resulting in higher noise, but with a decreased response time. The increased dark current can be compensated if the incident radiation signal is strong. The amount of dark current increase can be minimized, however, with a thinner device layer.


Accordingly, in one aspect the silicon material has a thickness of from about 1 μm to about 100 μm. In another aspect, the silicon material has a thickness of from about 1 μm to about 50 μm. In yet another aspect, the silicon material has a thickness of from about 5 μm to about 10 μm. In a further aspect, the silicon material has a thickness of from about 1 μm to about 5 μm.


As has been described, the response time of an optoelectronic device is limited by the transit time of the photo generated carriers across the thickness of the substrate. The RC time constant of the load resistance, (R) and the capacitance (C) of the entire electronic device structure can be kept less than this transit time value by using small load resistors and keeping the capacitance of the photodiodes small by limiting the doping density of the silicon material and area of the photodiodes. For example, photodiodes doped at 1015/cm3 can have a capacitance that may be 10nF/cm2 without any applied bias. Small area photodiodes with 50 ohm load resistors can have very fast RC time constants. A photodiode with an area of 0.01 cm2 can have a RC time constant of 0.5 nanoseconds. Given that the response time will be limited by the maximum charge carrier transit time across the photodiode, then diffusion rates can place an upper limit on the response time for photodiodes of different thickness. For example, if the photodiodes have a thickness of less than d=100 μm, then the diffusion transit time can be calculated by Equation (II) below, where D is the diffusion coefficient for electrons.










d
2


2





D





(
II
)







The response time is bound by an upper limit of 2 μs. For light having a wavelength of about 900 nm, only about 35% is absorbed in the first pass or a device thinner than 100 μm and approximately 30% is reflected at the first surface, thereby giving a responsivity on the order 10% or 0.1 A/W. The responsivity, R, can be increased at least five fold by using multiple internal reflections to achieve a value of R=0.5 A/W.


In one aspect, a photodiode can have a thickness of less than about d=10 μm. Using equation (I) above, the resultant upper response time limit is about 20 ns. For light having a wavelength of about 700 nm with about 33% absorbed in the first pass and about 30% being reflected at the first surface, the responsivity can be on the order 10% or 0.3 Ampere/Watt. The responsivity, R, can be increased at least two fold by using multiple internal reflections as described herein to achieve a value of R=0.6 A/W.


In one aspect, for example, an optoelectronic device has a response time of from about 100 picoseconds to about 1 nanosecond. In another aspect, an optoelectronic device has a responsivity of from about 0.4 A/W to about 0.55 A/W for at least one wavelength of from about 800 nm to about 1200 nm relative to standard silicon. In yet another aspect, an optoelectronic device has a responsivity of from about 0.1 A/W to about 0.55 A/W for at least one wavelength of from about 1000 nm to about 1200 nm relative to standard silicon. In another aspect, the optoelectronic device has an increased external quantum efficiency of at least 10% for at least one wavelength of from about 550 nm to about 1200 nm relative to a silicon device with comparable thickness and response time. In yet another aspect, an optoelectronic device has a data rate greater than or equal to about 1 Gbs. In a further aspect, an optoelectronic device has a data rate greater than or equal to about 2 Gbs.


As has been described, optoelectronic devices according to aspects of the present disclosure can exhibit lower levels of dark current as compared to traditional devices. Although a variety of reasons are possible, one exemplary reason may be that a thinner silicon material layer can have fewer crystalline defects responsible for the generation of dark current. In one aspect, for example, the dark current of an optoelectronic device during operation is from about 100 pA/cm2 to about 10 nA/cm2. In another aspect, the maximum dark current of an optoelectronic device during operation is less than about 1 nA/cm2.


Various types of silicon materials are contemplated, and any such material that can be incorporated into an optoelectronic device is considered to be within the present scope. In one aspect, for example, the silicon material is monocrystalline. In another aspect, the silicon material is multicrystalline. In yet another aspect, the silicon material is microcrystalline.


The silicon materials of the present disclosure can also be made using a variety of manufacturing processes. In some cases the manufacturing procedures can affect the efficiency of the device, and may be taken into account in achieving a desired result. Exemplary manufacturing processes can include Czochralski (Cz) processes, magnetic Czochralski (mCz) processes, Float Zone (FZ) processes, epitaxial growth or deposition processes, and the like. In one aspect, the silicon material is epitaxially grown.


As has been described, the textured region can function to diffuse electromagnetic radiation, to redirect electromagnetic radiation, and to absorb electromagnetic radiation, thus increasing the QE of the device. The textured region can include surface features to increase the effective absorption length of the silicon material. The surface features can be cones, pyramids, pillars, protrusions, microlenses, quantum dots, inverted features and the like. Factors such as manipulating the feature sizes, dimensions, material type, dopant profiles, texture location, etc. can allow the diffusing region to be tunable for a specific wavelength. In one aspect, tuning the device can allow specific wavelengths or ranges of wavelengths to be absorbed. In another aspect, tuning the device can allow specific wavelengths or ranges of wavelengths to be reduced or eliminated via filtering.


As has been described, a textured region according to aspects of the present disclosure can allow a silicon material to experience multiple passes of incident electromagnetic radiation within the device, particularly at longer wavelengths (i.e. infrared). Such internal reflection increases the effective absorption length to be greater than the thickness of the semiconductor substrate. This increase in absorption length increases the quantum efficiency of the device, leading to an improved signal to noise ratio. The textured region can be associated with the surface nearest the impinging electromagnetic radiation, or the textured region can be associated with a surface opposite in relation to impinging electromagnetic radiation, thereby allowing the radiation to pass through the silicon material before it hits the textured region. Additionally, the textured region can be doped. In one aspect, the textured region can be doped to the same or similar doping polarity as the silicon substrate so as to provide a doped contact region on the backside of the device.


The textured region can be formed by various techniques, including lasing, chemical etching (e.g. anisotropic etching, isotropic etching), nanoimprinting, additional material deposition, reactive ion etching, and the like. One effective method of producing a textured region is through laser processing. Such laser processing allows discrete locations of the semiconductor substrate to be textured. A variety of techniques of laser processing to form a textured region are contemplated, and any technique capable of forming such a region should be considered to be within the present scope. Laser treatment or processing can allow, among other things, enhanced absorption properties and thus increased electromagnetic radiation focusing and detection.


In one aspect, for example, a target region of the silicon material can be irradiated with laser radiation to form a textured region. Examples of such processing have been described in further detail in U.S. Pat. Nos. 7,057,256, 7,354,792 and 7,442,629, which are incorporated herein by reference in their entireties. Briefly, a surface of a silicon material is irradiated with laser radiation to form a textured or surface modified region. Such laser processing can occur with or without a dopant material. In those aspects whereby a dopant is used, the laser can be directed through a dopant carrier and onto the silicon surface. In this way, dopant from the dopant carrier is introduced into the target region of the silicon material. Such a region incorporated into a silicon material can have various benefits in accordance with aspects of the present disclosure. For example, the target region typically has a textured surface that increases the surface area of the laser treated region and increases the probability of radiation absorption via the mechanisms described herein. In one aspect, such a target region is a substantially textured surface including micron-sized and/or nano-sized surface features that have been generated by the laser texturing. In another aspect, irradiating the surface of the silicon material includes exposing the laser radiation to a dopant such that irradiation incorporates the dopant into the semiconductor. Various dopant materials are known in the art, and are discussed in more detail herein. It is also understood that in some aspects such laser processing can occur in an environment that does not substantially dope the silicon material (e.g. an argon atmosphere).


Thus the surface of the silicon material that forms the textured region is chemically and/or structurally altered by the laser treatment, which may, in some aspects, result in the formation of surface features appearing as nanostructures, microstructures, and/or patterned areas on the surface and, if a dopant is used, the incorporation of such dopants into the semiconductor material. In some aspects, such features can be on the order of 50 nm to 20 μm in size and can assist in the absorption of electromagnetic radiation. In other words, the textured surface can increase the probability of incident radiation being absorbed by the silicon material.


The type of laser radiation used to surface modify a silicon material can vary depending on the material and the intended modification. Any laser radiation known in the art can be used with the devices and methods of the present disclosure. There are a number of laser characteristics, however, that can affect the surface modification process and/or the resulting product including, but not limited to the wavelength of the laser radiation, pulse width, pulse fluence, pulse frequency, polarization, laser propagation direction relative to the silicon material, etc. In one aspect, a laser can be configured to provide pulsatile lasing of a silicon material. A short-pulsed laser is one capable of producing femtosecond, picosecond and/or nanosecond pulse durations. Laser pulses can have a central wavelength in a range of about from about 10 nm to about 12 μm, and more specifically from about 200 nm to about 1600 nm. The pulse width of the laser radiation can be in a range of from about tens of femtoseconds to about hundreds of nanoseconds. In one aspect, laser pulse widths can be in the range of from about 50 femtoseconds to about 50 picoseconds. In another aspect, laser pulse widths can be in the range of from about 50 picoseconds to 100 nanoseconds. In another aspect, laser pulse widths are in the range of from about 50 to 500 femtoseconds.


The number of laser pulses irradiating a target region can be in a range of from about 1 to about 5000. In one aspect, the number of laser pulses irradiating a target region can be from about 2 to about 1000. Further, the repetition rate or frequency of the pulses can be selected to be in a range of from about 10 Hz to about 10 MHz, or in a range of from about 1 kHz to about 1 MHz, or in a range from about 10 Hz to about 10 kHz. Moreover, the fluence of each laser pulse can be in a range of from about 1 kJ/m2 to about 20 kJ/m2, or in a range of from about 3 kJ/m2 to about 8 kJ/m2.


A variety of dopants are contemplated, and any such material that can be used in doping the first doped region, the second doped region, the textured region, or any other doped portion of the optoelectronic device is considered to be within the present scope. It should be noted that the particular dopant utilized can vary depending on the silicon material being laser treated, as well as the intended uses of the resulting silicon material.


A dopant can be either electron donating or hole donating. In one aspect, non-limiting examples of dopants can include S, F, B, P, N, As, Se, Te, Ge, Ar, Ga, In, Sb, and combinations thereof. It should be noted that the scope of dopants should include, not only the dopants themselves, but also materials in forms that deliver such dopants (i.e. dopant carriers). For example, S dopants includes not only S, but also any material capable being used to dope S into the target region, such as, for example, H2S, SF6, SO2, and the like, including combinations thereof. In one specific aspect, the dopant can be S. Sulfur can be present at an ion dosage level of between about 5×1014 and about 1×1016 ions/cm2. Non-limiting examples of fluorine-containing compounds can include ClF3, PF5, F2 SF6, BF3, GeF4, WF6, SiF4, HF, CF4, CHF3, CH2F2, CH3F, C2F6, C2HF5, C3F8, C4F8, NF3, and the like, including combinations thereof. Non-limiting examples of boron-containing compounds can include B(CH3)3, BF3, BCl3, BN, C2B10H12, borosilica, B2H6, and the like, including combinations thereof. Non-limiting examples of phosphorous-containing compounds can include PF5, PH3, and the like, including combinations thereof. Non-limiting examples of chlorine-containing compounds can include Cl2, SiH2Cl2, HCl, SiCl4, and the like, including combinations thereof. Dopants can also include arsenic-containing compounds such as AsH3 and the like, as well as antimony-containing compounds. Additionally, dopant materials can include mixtures or combinations across dopant groups, i.e. a sulfur-containing compound mixed with a chlorine-containing compound. In one aspect, the dopant material can have a density that is greater than air. In one specific aspect, the dopant material can include Se, H2S, SF6, or mixtures thereof. In yet another specific aspect, the dopant can be SF6 and can have a predetermined concentration range of about 5.0×10−8 mol/cm3 to about 5.0×10−4 mol/cm3. SF6 gas is a good carrier for the incorporation of sulfur into the semiconductor material via a laser process without significant adverse effects on the silicon material. Additionally, it is noted that dopants can also be liquid solutions of n-type or p-type dopant materials dissolved in a solution such as water, alcohol, or an acid or basic solution. Dopants can also be solid materials applied as a powder or as a suspension dried onto the wafer.


Accordingly, the first doped region and the second doped region can be doped with an electron donating or hole donating species to cause the regions to become more positive or negative in polarity as compared to each other and/or the silicon substrate. In one aspect, for example, either doped region can be p-doped. In another aspect, either doped region can be n-doped. In one aspect, for example, the first doped region can be negative in polarity and the second doped region can be positive in polarity by doping with p+ and n− dopants. In some aspects, variations of n(−−), n(−), n(+), n(++), p(−−), p(−), p(+), or p(++) type doping of the regions can be used. Additionally, in some aspects the silicon material can be doped in addition to the first and second doped regions. The silicon material can be doped to have a doping polarity that is different from one or more of the first and second doped regions, of the silicon material can be doped to have a doping polarity that is the same as one or more of the first and second doped regions. In one specific aspect, the silicon material can be doped to be p-type and one or more of the first and second doped regions can be n-type. In another specific aspect, the silicon material can be doped to be n-type and one or more of the first and second doped regions can be p-type. In one aspect, at least one of the first or second doped regions has a surface area of from about 0.1 μm2 to about 32 μm2.


In another aspect, at least a portion of the textured region and/or the silicon material can be doped with a dopant to generate a back surface field. A back surface field can function to repel generated charge carriers from the backside of the device and toward the junction to improve collection efficiency and speed. The addition of a back surface field can increase charge carrier collection and depletion. The presence of a back surface field also acts to suppress dark current contribution from the surface of a device.


In another aspect, as is shown in FIG. 3, an optoelectronic device can include a silicon material 32 having a first doped region 34 and a second doped region 36 associated therewith, where the first and second doped regions form a semiconductive photodiode junction. A textured region 38 is coupled to the silicon material, and is positioned to interact with electromagnetic radiation. The optoelectronic device can also include a first contact 37 to provide electrical contact to one side of the device, and a second contact 39 to provide electrical contact with the other side of the device. In one aspect, the first contact and the second contact are opposite in voltage polarity from one another. Note that in some aspects, the first and second contacts can be on the same side of the device (not shown). Additionally, a support substrate 35 can be coupled to the device in order to provide structural stability thereto. In one aspect, the one of the contacts can be a doped portion of the textured region. Either a portion of the textured region or the entire textured region can be doped to create one of the contacts.


While the optoelectronic devices according to aspects of the present disclosure can operate in the absence of a bias at high speeds, in one aspect a reverse bias is applied across the first and second contacts. Such a reverse bias can function to decrease the response time of the device by more quickly sweeping charge carriers from the silicon material. Accordingly, for those situations whereby a bias is used, any bias voltage capable of sweeping charge carriers from the silicon material is considered to be within the present scope. In one aspect, for example, the reverse bias is from about 0.001 V to about 20 V. In another aspect, the reverse bias is from about 0.001 V to about 10 V. In yet another aspect, the reverse bias is from about 0.001 V to about 5 V. In a further aspect, the reverse bias is from about 0.001 V to about 3 V. In yet a further aspect, the reverse bias is from about 3 V to about 5 V. In some aspects, the reverse bias can be absent, or in other words, 0 V is applied across the first and second contacts. In such cases, the charge carriers can be depleted from the silicon material by the junction potential created by the first and second doped regions.


In some aspects, the first and second doped regions can be on opposite sides of the silicon material. As is shown in FIG. 4, for example, a silicon material 42 can include a first doped region 44 associated with one surface of the silicon material and a second doped region 46 associated with the opposite side of the silicon material. Furthermore, the textured region can be associated with either doped region. As is shown in FIG. 5, for example, a silicon material 52 can include a first doped region 54 associated with one surface of the silicon material and a second doped region 56 associated with the opposite side of the silicon material, where a textured region 58 is associated with the first doped region. In another aspect, the textured region is associated with the second doped region (not shown). In a further aspect, a textured region can be associated with each doped region (not shown).


In another aspect, as is shown in FIG. 6, a silicon material 62 can have a first doped region 64 and a second dope region 66 on one surface, and a textured region 68 on an opposing surface. In this case, electromagnetic radiation 69 is incident on the side of the silicon material having the textured surface. In another aspect, as is shown in FIG. 7, a silicon material 72 can have a first doped region 74 and a second doped region 76 on an opposing surface to a textured region 78. An antireflective layer 77 can be coupled to the silicon material on the opposite surface to the textured layer. In some aspects, the antireflective layer can be on the same side of the silicon material as the textured region (not shown). Furthermore, in some aspects a lens can be optically coupled to the silicon material and positioned to focus incident electromagnetic radiation into the silicon material.


In another aspect of the present disclosure, a photodiode array is provided. Such an array can include a silicon material having an incident light surface, at least two photodiodes in the silicon material, where each photodiode includes a first doped region and a second doped region forming a junction, and a textured region coupled to the silicon material and positioned to interact with electromagnetic radiation. The textured region can be a single textured region or multiple textured regions. Additionally, the photodiode array has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.


As is shown in FIG. 8, for example, a silicon material 88 can include at least two photodiodes 83 each having a first doped region 84 and a second doped region 86. A textured region 88 is positioned to interact with electromagnetic radiation. FIG. 8 shows a separate textured region for each photodiode. In some aspects, a single textured region can be used to increase the absorption path lengths of multiple photodiodes in the array. Furthermore, an isolation structure 57 can be positioned between the photodiodes to electrically and/or optically isolate the photodiodes from one another. In another aspect, the photodiode array can be electronically coupled to electronic circuitry to process the signals generated by each photodiode.


Various types of isolation structures are contemplated, and any such isolation is considered to be within the present scope. The isolation structure can be shallow or deep trench isolation. Furthermore, the isolation structure can include depths between traditional shallow and deep isolation, depending on the device design. Isolation structures can include dielectric materials, reflective materials, conductive materials, and combinations thereof, including textured regions and other light diffusing features. Thus the isolation structure can be configured to reflect incident electromagnetic radiation, in some cases until it is absorbed, thereby increasing the effective absorption length of the device.


Photodiode arrays can have a variety of uses. For example, in one aspect such an array can be an imager. Numerous types of imagers are contemplated, and any such imager or imaging application is considered to be within the present scope. Non-limiting examples include 3D imaging, machine vision, night vision, security and surveillance, various commercial applications, laser range finding and marking, and the like. Thus, in the case of 3D imaging for example, the array is operable to detect a phase delay between a reflected and an emitted optical signal.


As one example, various applications can benefit from depth information, such as hands-free gesture control, video games, medical applications, machine vision, etc. Time-of-flight (TOF) is a technique developed for use in radar and LIDAR (Light Detection and Ranging) systems to provide depth information. The basic principle of TOF involves sending a signal and measuring a property of the returned signal from a target. The measured property is used to determine the TOF. Distance to the target is therefore derived by multiplication of half the TOF and the velocity of the signal.



FIG. 9 illustrates a time of flight measurement with a target having multiple surfaces that are separated spatially. Equation (III) can be used to measure the distance to a target where d is the distance to the target and c is the speed of light.









d
=


TOF
*
c

2





(
III
)








By measuring the time (e.g. TOF) it takes for light to be emitted from a light source 92, travel to and from a target 94, the distance between the light source (e.g. a light emitting diode (LED)) and the surface of the target can be derived. For an imager, if each pixel can perform the above TOF measurement, a 3D image of the target can be achieved. The distance measurements become difficult with TOF methods when the target is relatively near the source due to the high speed of light. In one aspect, therefore, a TOF measurement can utilize a modulated LED light pulse and measure the phase delay between emitted light and received light. Based on the phase delay and the LED pulse width, the TOF can be derived.


TOF concept has been utilized in both CMOS and CCD sensor to obtain depth information from each pixel. In many traditional 3D TOF sensors, an infrared LED or laser emits a modulated light pulse to illuminate a target. The measured phase shift between emitted and received light can be used to derive the depth information. Such methods, however, can have various problematic issues. For example, ambiguity (e.g. aliasing) occurs if the TOF difference between two targets is equal to half period of light source modulation frequency. To solve the ambiguity issue, an often used approach is to measure the same scene with multiple modulation frequencies. In addition, due to the use of near infrared LED or laser, a good color image normally cannot be achieved by the same 3D TOF sensor since an infrared (IR) cut filter cannot be used. Further, many current 3D TOF sensors operate in a rolling shutter mode. In rolling shutter mode an image is captured by scanning across the frame either vertically or horizontally. Motion artifacts are known to accompany cameras that use the rolling shutter mode and can severely degrade the quality of the depth map. Another issue occurs when ambient light creates an un-wanted offset in the signal output. The photon-shot noise related to the signal offset will degrade the signal-to-noise (SNR) ratio of the useful signal related to modulated near infrared (NIR) light emitting diode (LED). Therefore, many current 3D TOF imagers cannot operate outdoors (e.g. bright ambient light). In addition to the ambient light, any dark current will also contribute to the un-wanted offset, which is same as normal visible pixel.


As one example, a 3D pixel, such as a TOF 3D pixel with enhanced infrared response can improve depth accuracy. In one aspect, a photoimager array can include at least one 3D infrared detecting pixel and at least one visible light detecting pixel arranged monolithically in relation to each other. FIGS. 10a-c show non-limiting example configurations of pixel arrangements of such arrays. FIG. 10a shows one example of a pixel array arrangement having a red pixel 102, a blue pixel 104, and a green pixel 106. Additionally, two 3D TOF pixels (108 and 109) having enhanced responsivity or detectability in the infrared regions of the light spectrum are included. The combination of two 3D pixels allows for better depth perception. In FIG. 10b, the pixel arrangement shown includes an imager as described in FIG. 10a and three arrays of a red pixel, a blue pixel, and two green pixels. Essentially, one TOF pixel (108 and 109) replaces one quadrant of a RGGB pixel design. In this configuration, the addition of several green pixels allows for the capture of more green wavelengths that is needed for green color sensitivity need for the human eye, while at the same time capturing the infrared light for depth perception. It should be noted that the present scope should not be limited by the number or arrangements of pixel arrays, and that any number and/or arrangement is included in the present scope. FIG. 10c shows another arrangement of pixels according to yet another aspect.


Various imager configurations and components are contemplated, and any such should be considered to be within the present scope. Non-limiting examples of such components can include a carrier wafer, an antireflective layer, a dielectric layer, circuitry layer, a via(s), a transfer gate, an infrared filter, a color filter array (CFA), an infrared cut filter, an isolation feature, and the like. Additionally, such devices can have light absorbing properties and elements as has been disclosed in U.S. patent application Ser. No. 12/885,158, filed on Sep. 17, 2010 which is incorporated by reference in its entirety.


As has been described, a TOF pixel can have an on-pixel optical narrow band pass filter. The narrow band pass filter design can match the modulated light source (either LED or laser) emission spectrum and may significantly reduce unwanted ambient light that can further increase the signal to noise ratio of modulated infrared light. Another benefit of increased infrared QE is the possibility of high frame rate operation for high speed 3D image capture. An integrated infrared cut filter can allow a high quality visible image with high fidelity color rendering. Integrating an infrared cut filter onto the sensor chip can also reduce the total system cost of a camera module (due to the removal of typical IR filter glass) and reduce module profile (good for mobile applications).


The thickness and responsivity of a QE enhanced imager can have significant impact on a TOF pixel operation, due to the increased speed and detection. The increased QE will contribute to higher image signal to noise, which will greatly reduce depth error. Further, increased QE on a silicon material having a thickness of less than about 100 μm can allow the pixel to reduce the diffusion component of signal so that the charge collection and transfer speed can be increased, which is good for TOF pixel operation. In general, the photo-generated carrier created inside pixel will depend on two mechanisms for collection: drift and diffusion. For light having shorter wavelengths, most of the charge carriers will be generated in a shallow region of the device and within the depletion region of the diode. Those carriers can be collected relatively fast, via drift. For infrared light, the majority of photo carriers are be generated deeper inside the silicon material. To achieve higher QE, normally thick silicon layers are used. As such, most of the charge carriers carrier will be generated outside the diode's depletion region and will depend on diffusion to be collected. For a 3D TOF pixel, however, a fast sampling of photo generated charge is beneficial.


For the devices according to aspects of the present disclosure, a high QE can be achieved within a thin (i.e. less than 100 μm) layer of silicon material. Therefore, substantially all of the carriers generated can be collected via drift mechanism. This allows a fast charge collection and transfer.



FIG. 11 shows an exemplary schematic for a six-transistor (6-T) architecture which will allow global shutter operation according to one aspect of the present disclosure. The pixel can include a photodiode (PD), a global reset (Global_RST), a global transfer gate (Global_TX), a storage node, a transfer gate (TX1), reset (RST), source follower (SF), floating diffusion (FD), row select transistor (RS), power supply (Vaapix) and voltage out (Vout). Due to the use of extra transfer gate and storage node, correlated-double-sampling (CDS) is allowed. Therefore, the read noise should be able to match typical CMOS 4T pixels.



FIG. 12 shows an exemplary schematic of a 3D TOF pixel according to one aspect of the present disclosure. The 3D TOF pixel can have 11 transistors for accomplishing the depth measurement of the target. In this embodiment the 3D pixel can comprise a photodiode (PD), a global reset (Global_RST), a first global transfer gate (Global_TX1), a first storage node, a first transfer gate (TX1), a first reset (RST1), a first source follower (SF1), a first floating diffusion (FD1), a first row select transistor (RS1), a second global transfer gate (Global_TX2), a second storage node, a second transfer gate (TX2), a second reset (RST2), a second source follower (SF2), a second floating diffusion (FD2), a second row select transistor (RS2), power supply (Vaapix) and voltage out (Vout). Other transistors can be included in the 3D architecture and should be considered within the scope of the present invention. The specific embodiment with 11 transistors can reduce motion artifacts due to the global shutter operation, thereby giving more accurate measurements.


As has been described, a photodiode array can be used in various communication applications. For example, the array can be used to detect pulsed optical signals. Such pulsed signals can be used to carry data at high speeds. By utilizing photodiodes having fast response times, very short pulse widths can be detected, thus increasing the speed of data communication. In one aspect, for example, the pulsed optical signals can have pulse widths from about 1 femtosecond to about 1 microsecond. In another aspect, the at least two photodiodes are operable to transmit data at a rate of at least 1 Gbps. In yet another aspect, the at least two photodiodes are operable to transmit data at a rate of at least 2 Gbps.


In one aspect, an array of four photodiodes forming a quad photodiode array (quad array) is provided. A quad array can be used in a variety of applications, including communications, laser range finding, laser alignment, and the like. In some aspects, the four photodiodes can have uniform photo response, or in other words, are selective to the same wavelength range. It can also be beneficial to have little to no electrical and/or optical cross talk between the photodiodes in the quad array. For this reason, isolation structures can be disposed between the photodiodes can be beneficial. Some application can also benefit from the high speed operation of the photodiodes according to aspects of the present disclosure. FIGS. 13 and 14 show exemplary configurations of quad arrays. FIG. 13 shows a quad array of four photodiodes 130 including a silicon material 132 and a doped region 134. The doped region is made up of multiple doped regions forming a junction. An isolation structure 136 is located between the photodiodes to electrically and/or optically isolate the photodiodes against undesirable cross talk. FIG. 14 shows a similar arrangement in a circular configuration. This array includes four photodiodes 140 including a silicon material 142, a doped region 144, and an isolation structure 146. In addition to those materials discussed herein, the isolation structure can include a dielectric material for electrical isolation and a metal material for a high reflectivity to the light incidence on the walls of the trench. In one aspect, the sides and surfaces of the diode between the isolation regions can be more heavily doped than the silicon material in order to pin the Fermi level at the band edge and reduce the dark current. The photodiode can also include a buried layer of opposite conductivity type to the silicon material. In some aspects, the doping of the silicon material can be kept low and the thickness can be thinned to provide a fast response time to the optical signal. A textured region can function to backside scatter light that passes through the silicon material, thus improving near infrared responsivity.


In yet another aspect, a method of increasing the speed of an optoelectronic device is provided. As is shown in FIG. 15, such a method can include doping at least two regions in a silicon material to form at least one junction 152 and texturing the silicon material to form a textured region positioned to interact with electromagnetic radiation 154. The optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.


Of course, it is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements. Thus, while the present invention has been described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.

Claims
  • 1. A high speed optoelectronic device for detecting infrared radiation, comprising: a silicon material having a thickness in a range of about 1 micron to about 100 microns and having a surface for receiving incident radiation;a first doped region and a second doped region forming a semiconductive junction in the silicon material; anda textured region having nanosized features and coupled to the silicon material and positioned to interact with electromagnetic radiation;wherein the optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.
  • 2. The device of claim 1, wherein the optoelectronic device has a responsivity of greater than or equal to about 0.5 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.
  • 3. The device of claim 1, wherein the optoelectronic device has a response time of from 1 picosecond to about 1 nanosecond.
  • 4. The device of claim 1, wherein the optoelectronic device has a data rate greater than or equal to about 1 Gbs.
  • 5. The device of claim 1, further comprising a first contact and a second contact wherein the first contact is opposite in voltage polarity from the second contact.
  • 6. The device of claim 5, wherein a reverse bias is applied across the first and second contacts.
  • 7. The device of claim 6, wherein a bias is not applied across the first and second contacts during use.
  • 8. The device of claim 1, wherein dark current of the device during operation is from about 100 pA/cm2 to about 10 nA/cm2.
  • 9. The device of claim 1, wherein the textured region is positioned on an opposite side of the silicon material from the surface for receiving incident light.
  • 10. The high speed optoelectronic device of claim 1, wherein said textured region is laser generated.
  • 11. A high speed optoelectronic device for detecting infrared radiation, comprising: a silicon material having a thickness in a range of about 1 micron to about 10 microns and having a surface for receiving incident radiation;a first doped region and a second doped region forming a semiconductive junction in the silicon material; anda textured region having nanosized features and coupled to the silicon material and positioned to interact with electromagnetic radiation;wherein the optoelectronic device has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.05 A/W for electromagnetic radiation having a wavelength of about 1060 nm.
  • 12. A photodiode array for detecting infrared radiation, comprising a silicon material having a thickness in a range of about 1 micron to about 100 microns and having a surface for receiving incident radiation;at least two photodiodes in the silicon material, each photodiode including a first doped region and a second doped region forming a junction; anda textured region having nanosized features and coupled to the silicon material and positioned to interact with electromagnetic radiation;wherein the photodiode array has a response time of from about 1 picosecond to about 5 nanoseconds and a responsivity of greater than or equal to about 0.4 A/W for electromagnetic radiation having at least one wavelength from about 800 nm to about 1200 nm.
  • 13. The array of claim 12, wherein the at least two photodiodes are four photodiodes forming a quad array.
  • 14. The array of claim 13, wherein the four photodiodes of the quad array are selective to a single wavelength range.
  • 15. The array of claim 12, wherein the array is an image sensor.
  • 16. The array of claim 12, wherein the array is operable to detect a phase delay between a reflected and an emitted optical signal.
  • 17. The array of claim 12, wherein the array is operable to detect pulsed optical signals.
  • 18. The array of claim 12, wherein the at least two photodiodes are operable to transmit data at a rate of at least 1 Gbps.
  • 19. The photodiode array of claim 12, wherein said textured region is laser generated.
PRIORITY DATA

This application is continuation of U.S. patent application Ser. No. 13/164,630, filed Jun. 20, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/356,536, filed on Jun. 18, 2010, each of which are incorporated herein by reference.

US Referenced Citations (525)
Number Name Date Kind
3487223 St. John Dec 1969 A
3922571 Smith Nov 1975 A
3973994 Redfield Aug 1976 A
3994012 Warner, Jr. Nov 1976 A
4017887 Davies et al. Apr 1977 A
4149174 Shannon Apr 1979 A
4176365 Kroger Nov 1979 A
4201450 Trapani May 1980 A
4242149 King et al. Dec 1980 A
4253882 Dalal Mar 1981 A
4277793 Webb Jul 1981 A
4322571 Stanbery Mar 1982 A
4419533 Czubatyj et al. Dec 1983 A
4452826 Shields et al. Jun 1984 A
4493942 Sheng et al. Jan 1985 A
4514582 Tiedje et al. Apr 1985 A
4536608 Sheng et al. Aug 1985 A
4568960 Petroff et al. Feb 1986 A
4593303 Dyck et al. Jun 1986 A
4593313 Nagasaki Jun 1986 A
4617593 Dudley Oct 1986 A
4630082 Sakai Dec 1986 A
4648936 Ashby et al. Mar 1987 A
4663188 Kane May 1987 A
4672206 Suzuki Jun 1987 A
4673770 Mandelkorn Jun 1987 A
4679068 Lillquist et al. Jul 1987 A
4751571 Lillquist Jun 1988 A
4775425 Guha et al. Oct 1988 A
4777490 Sharma et al. Oct 1988 A
4829013 Yamazaki May 1989 A
4883962 Elliot Nov 1989 A
4886958 Merryman Dec 1989 A
4887255 Handa et al. Dec 1989 A
4894526 Bethea et al. Jan 1990 A
4910568 Taki et al. Mar 1990 A
4910588 Kinoshita et al. Mar 1990 A
4964134 Westbrook et al. Oct 1990 A
4965784 Land et al. Oct 1990 A
4968372 Maass Nov 1990 A
4999308 Nishiura et al. Mar 1991 A
5021100 Ishihara et al. Jun 1991 A
5021854 Huth Jun 1991 A
5080725 Green et al. Jan 1992 A
5081049 Green et al. Jan 1992 A
5100478 Kawabata Mar 1992 A
5101260 Nath Mar 1992 A
5114876 Weiner May 1992 A
5127964 Hamakawa et al. Jul 1992 A
5164324 Russell et al. Nov 1992 A
5208822 Haus et al. May 1993 A
5223043 Olson et al. Jun 1993 A
5234790 Lang et al. Aug 1993 A
5244817 Hawkins et al. Sep 1993 A
5296045 Banerjee et al. Mar 1994 A
5309275 Nishimura et al. May 1994 A
5322988 Russell et al. Jun 1994 A
5346850 Kaschmitter et al. Sep 1994 A
5351446 Langsdorf Oct 1994 A
5370747 Noguchi et al. Dec 1994 A
5373182 Norton Dec 1994 A
5381431 Zayhowski Jan 1995 A
5383217 Uemura Jan 1995 A
5390201 Tomono et al. Feb 1995 A
5413100 Barthelemy et al. May 1995 A
5449626 Hezel Sep 1995 A
5454347 Shibata et al. Oct 1995 A
5502329 Pezzani Mar 1996 A
5523570 Hairston Jun 1996 A
5559361 Pezzani Sep 1996 A
5569615 Yamazaki et al. Oct 1996 A
5578858 Mueller et al. Nov 1996 A
5580615 Itoh et al. Dec 1996 A
5589008 Kepper Dec 1996 A
5589704 Levine Dec 1996 A
5597621 Hummel et al. Jan 1997 A
5600130 VanZeghbroeck Feb 1997 A
5626687 Campbell May 1997 A
5627081 Tsuo et al. May 1997 A
5635089 Singh et al. Jun 1997 A
5640013 Ishikawa et al. Jun 1997 A
5641362 Meier Jun 1997 A
5641969 Cooke et al. Jun 1997 A
5705413 Harkin et al. Jan 1998 A
5705828 Noguchi et al. Jan 1998 A
5708486 Miyawaki et al. Jan 1998 A
5710442 Watanabe et al. Jan 1998 A
5714404 Mititsky et al. Feb 1998 A
5727096 Ghirardi et al. Mar 1998 A
5731213 Ono Mar 1998 A
5751005 Wyles et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5766964 Rohatgi et al. Jun 1998 A
5773820 Osajda et al. Jun 1998 A
5779631 Chance Jul 1998 A
5781392 Clark Jul 1998 A
5792280 Ruby et al. Aug 1998 A
5808350 Jack et al. Sep 1998 A
5859446 Nagasu et al. Jan 1999 A
5861639 Bernier Jan 1999 A
5923071 Saito Jul 1999 A
5935320 Graef et al. Aug 1999 A
5942789 Morikawa Aug 1999 A
5943584 Shim et al. Aug 1999 A
5963790 Matsuno et al. Oct 1999 A
5977603 Ishikawa Nov 1999 A
6071796 Voutsas Jun 2000 A
6072117 Matsuyama et al. Jun 2000 A
6080988 Ishizuya et al. Jun 2000 A
6082858 Grace et al. Jul 2000 A
6097031 Cole Aug 2000 A
6106689 Matsuyama Aug 2000 A
6107618 Fossum et al. Aug 2000 A
6111300 Cao et al. Aug 2000 A
6147297 Wettling et al. Nov 2000 A
6160833 Floyd et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6194722 Fiorini et al. Feb 2001 B1
6204506 Akahori et al. Mar 2001 B1
6229192 Gu May 2001 B1
6252256 Ugge et al. Jun 2001 B1
6290713 Russell Sep 2001 B1
6291302 Yu Sep 2001 B1
6313901 Cacharelis Nov 2001 B1
6320296 Fujii et al. Nov 2001 B1
6327022 Nishi Dec 2001 B1
6331445 Janz et al. Dec 2001 B1
6331885 Nishi Dec 2001 B1
6340281 Haraguchi Jan 2002 B1
6372591 Mineji et al. Apr 2002 B1
6372611 Horikawa Apr 2002 B1
6379979 Connolly Apr 2002 B1
6420706 Lurie et al. Jul 2002 B1
6429036 Nixon et al. Aug 2002 B1
6429037 Wenham et al. Aug 2002 B1
6465860 Shigenaka et al. Oct 2002 B2
6475839 Zhang et al. Nov 2002 B2
6483116 Kozlowski et al. Nov 2002 B1
6483929 Murakami et al. Nov 2002 B1
6486522 Bishay et al. Nov 2002 B1
6493567 Krivitski et al. Dec 2002 B1
6498336 Tian et al. Dec 2002 B1
6500690 Yamagishi et al. Dec 2002 B1
6504178 Carlson et al. Jan 2003 B2
6580053 Voutsas Jun 2003 B1
6583936 Kaminsky et al. Jun 2003 B1
6597025 Lauter et al. Jul 2003 B2
6607927 Ramappa et al. Aug 2003 B2
6624049 Yamazaki Sep 2003 B1
6639253 Duane et al. Oct 2003 B2
6667528 Cohen et al. Dec 2003 B2
6677655 Fitzergald Jan 2004 B2
6677656 François Jan 2004 B2
6683326 Iguchi et al. Jan 2004 B2
6689209 Falster et al. Feb 2004 B2
6753585 Kindt Jun 2004 B1
6759262 Theil et al. Jul 2004 B2
6790701 Shigenaka et al. Sep 2004 B2
6800541 Okumura Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6803555 Parrish et al. Oct 2004 B1
6815685 Wany Nov 2004 B2
6818535 Lu et al. Nov 2004 B2
6822313 Matsushita Nov 2004 B2
6825057 Heyers et al. Nov 2004 B1
6864156 Conn Mar 2005 B1
6864190 Han et al. Mar 2005 B2
6867806 Lee et al. Mar 2005 B1
6900839 Kozlowski et al. May 2005 B1
6907135 Gifford Jun 2005 B2
6911375 Guarini et al. Jun 2005 B2
6919587 Ballon et al. Jul 2005 B2
6923625 Sparks Aug 2005 B2
6927432 Holm et al. Aug 2005 B2
6984816 Holm et al. Jan 2006 B2
7008854 Forbes Mar 2006 B2
7041525 Clevenger et al. May 2006 B2
7057256 Carey, III et al. Jun 2006 B2
7075079 Wood Jul 2006 B2
7091411 Falk et al. Aug 2006 B2
7109517 Zaidi Sep 2006 B2
7126212 Enquist et al. Oct 2006 B2
7132724 Merrill Nov 2006 B1
7202102 Yao Apr 2007 B2
7211501 Liu et al. May 2007 B2
7235812 Chu et al. Jun 2007 B2
7247527 Shimomura et al. Jul 2007 B2
7247812 Tsao Jul 2007 B2
7256102 Nakata et al. Aug 2007 B2
7271445 Forbes Sep 2007 B2
7271835 Iizuka et al. Sep 2007 B2
7285482 Ochi Oct 2007 B2
7314832 Kountz et al. Jan 2008 B2
7354792 Carey, III et al. Apr 2008 B2
7358498 Geng et al. Apr 2008 B2
7375378 Manivannan et al. May 2008 B2
7390689 Mazur et al. Jun 2008 B2
7432148 Li et al. Oct 2008 B2
7442629 Mazur et al. Oct 2008 B2
7446359 Lee et al. Nov 2008 B2
7446807 Hong Nov 2008 B2
7456452 Wells et al. Nov 2008 B2
7482532 Yi et al. Jan 2009 B2
7498650 Lauxtermann Mar 2009 B2
7504325 Koezuka et al. Mar 2009 B2
7504702 Mazur et al. Mar 2009 B2
7511750 Murakami Mar 2009 B2
7521737 Augusto Apr 2009 B2
7528463 Forbes May 2009 B2
7542085 Altice, Jr. et al. Jun 2009 B2
7547616 Fogel et al. Jun 2009 B2
7551059 Farrier Jun 2009 B2
7560750 Niira et al. Jul 2009 B2
7564631 Li et al. Jul 2009 B2
7582515 Choi et al. Sep 2009 B2
7592593 Kauffman et al. Sep 2009 B2
7595213 Kwon et al. Sep 2009 B2
7605397 Kindem et al. Oct 2009 B2
7615808 Pain et al. Nov 2009 B2
7618839 Rhodes Nov 2009 B2
7619269 Ohkawa Nov 2009 B2
7629582 Hoffman et al. Dec 2009 B2
7648851 Fu et al. Jan 2010 B2
7649156 Lee Jan 2010 B2
7705879 Kerr et al. Apr 2010 B2
7731665 Lee et al. Jun 2010 B2
7741666 Nozaki et al. Jun 2010 B2
7745901 McCaffrey et al. Jun 2010 B1
7763913 Fan et al. Jul 2010 B2
7772028 Adkisson et al. Aug 2010 B2
7781856 Mazur et al. Aug 2010 B2
7800192 Venezia et al. Sep 2010 B2
7800684 Tatani Sep 2010 B2
7816220 Mazur et al. Oct 2010 B2
7828983 Weber et al. Nov 2010 B2
7847253 Carey et al. Dec 2010 B2
7847326 Park et al. Dec 2010 B2
7855406 Yamaguchi et al. Dec 2010 B2
7875498 Elbanhawy et al. Jan 2011 B2
7880168 Lenchenkov Feb 2011 B2
7884439 Mazur et al. Feb 2011 B2
7884446 Mazur et al. Feb 2011 B2
7897942 Bareket Mar 2011 B1
7910964 Kawahito et al. Mar 2011 B2
7923801 Tian et al. Apr 2011 B2
7968834 Veeder Jun 2011 B2
8008205 Fukushima et al. Aug 2011 B2
8013411 Cole Sep 2011 B2
8030726 Sumi Oct 2011 B2
8035343 Seman, Jr. Oct 2011 B2
8058615 McCaffrey Nov 2011 B2
8080467 Carey et al. Dec 2011 B2
8088219 Knerer et al. Jan 2012 B2
8093559 Rajavel Jan 2012 B1
RE43169 Parker Feb 2012 E
8164126 Moon et al. Apr 2012 B2
8207051 Sickler et al. Jun 2012 B2
8247259 Grolier et al. Aug 2012 B2
8259293 Andreou et al. Sep 2012 B2
8288702 Veeder Oct 2012 B2
8470619 Bour Jun 2013 B2
8476681 Haddad et al. Jul 2013 B2
8564087 Yamamura et al. Oct 2013 B2
8603902 Mazur et al. Dec 2013 B2
8629485 Yamamura et al. Jan 2014 B2
8680591 Haddad et al. Mar 2014 B2
8742528 Yamamura et al. Jun 2014 B2
8884226 Miyazaki et al. Nov 2014 B2
8906670 Gray Dec 2014 B2
8916945 Sakamoto et al. Dec 2014 B2
8994135 Yamamura et al. Mar 2015 B2
9184204 Hu Nov 2015 B2
9190551 Yamamura et al. Nov 2015 B2
9209345 Haddad Dec 2015 B2
9369641 Hu Jun 2016 B2
20010017344 Aebi Aug 2001 A1
20010022768 Takahashi Sep 2001 A1
20010044175 Barrett et al. Nov 2001 A1
20010044266 Katsuoka Nov 2001 A1
20020020893 Lhorte Feb 2002 A1
20020024618 Imai Feb 2002 A1
20020056845 Iguchi et al. May 2002 A1
20020060322 Tanabe et al. May 2002 A1
20020079290 Holdermann Jun 2002 A1
20020117699 Francois Aug 2002 A1
20020148964 Dausch et al. Oct 2002 A1
20020182769 Campbell Dec 2002 A1
20030029495 Mazur et al. Feb 2003 A1
20030030083 Lee et al. Feb 2003 A1
20030045092 Shin Mar 2003 A1
20030057357 Uppal et al. Mar 2003 A1
20030111106 Nagano et al. Jun 2003 A1
20030210332 Frame Nov 2003 A1
20030213515 Sano et al. Nov 2003 A1
20030214595 Mabuchi Nov 2003 A1
20030228883 Kusakari et al. Dec 2003 A1
20040014307 Shin et al. Jan 2004 A1
20040016886 Ringermacher et al. Jan 2004 A1
20040041168 Hembree et al. Mar 2004 A1
20040046224 Rossel et al. Mar 2004 A1
20040077117 Ding et al. Apr 2004 A1
20040080638 Lee Apr 2004 A1
20040130020 Kuwabara et al. Jul 2004 A1
20040161868 Hong Aug 2004 A1
20040222187 Lin Nov 2004 A1
20040252931 Belleville et al. Dec 2004 A1
20050051822 Manning Mar 2005 A1
20050062041 Terakawa et al. Mar 2005 A1
20050088634 Kosugi Apr 2005 A1
20050093100 Chen et al. May 2005 A1
20050101100 Kretchmer et al. May 2005 A1
20050101160 Garg et al. May 2005 A1
20050127401 Mazur et al. Jun 2005 A1
20050134698 Schroeder et al. Jun 2005 A1
20050150542 Madan Jul 2005 A1
20050158969 Binnis et al. Jul 2005 A1
20050211996 Krishna et al. Sep 2005 A1
20050227390 Shtein et al. Oct 2005 A1
20060006482 Rieve et al. Jan 2006 A1
20060011954 Ueda et al. Jan 2006 A1
20060011955 Baggenstoss Jan 2006 A1
20060060848 Chang et al. Mar 2006 A1
20060071254 Rhodes Apr 2006 A1
20060079062 Mazur et al. Apr 2006 A1
20060086956 Furukawa et al. Apr 2006 A1
20060097172 Park May 2006 A1
20060118781 Rhodes Jun 2006 A1
20060121680 Tanaka Jun 2006 A1
20060128087 Bamji et al. Jun 2006 A1
20060132633 Nam et al. Jun 2006 A1
20060138396 Lin et al. Jun 2006 A1
20060145148 Hirai et al. Jul 2006 A1
20060145176 Lee Jul 2006 A1
20060160343 Chong et al. Jul 2006 A1
20060166475 Mantl Jul 2006 A1
20060175529 Harmon et al. Aug 2006 A1
20060180885 Rhodes Aug 2006 A1
20060181627 Farrier Aug 2006 A1
20060210122 Cleveland Sep 2006 A1
20060214121 Schrey et al. Sep 2006 A1
20060228897 Timans Oct 2006 A1
20060231914 Carey et al. Oct 2006 A1
20060238632 Shah Oct 2006 A1
20060244090 Roy et al. Nov 2006 A1
20060255340 Manivannan et al. Nov 2006 A1
20060257140 Seger Nov 2006 A1
20070035849 Li et al. Feb 2007 A1
20070035879 Hall et al. Feb 2007 A1
20070051876 Sumi et al. Mar 2007 A1
20070052050 Dierickx Mar 2007 A1
20070076481 Tennant Apr 2007 A1
20070115554 Breitung et al. May 2007 A1
20070123005 Hiura et al. May 2007 A1
20070138590 Wells et al. Jun 2007 A1
20070145505 Kim et al. Jun 2007 A1
20070178672 Tanaka et al. Aug 2007 A1
20070187670 Hsu et al. Aug 2007 A1
20070189583 Shimada et al. Aug 2007 A1
20070194356 Moon et al. Aug 2007 A1
20070194401 Nagai et al. Aug 2007 A1
20070195056 Lloyd Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070201859 Sarrat Aug 2007 A1
20070235827 Altice Oct 2007 A1
20070237504 Nakashiba Oct 2007 A1
20070247414 Roberts Oct 2007 A1
20070262366 Baek et al. Nov 2007 A1
20070290283 Park et al. Dec 2007 A1
20070296060 Tanabe et al. Dec 2007 A1
20080002863 Northcott Jan 2008 A1
20080020555 Shimomura et al. Jan 2008 A1
20080026550 Werner et al. Jan 2008 A1
20080036022 Hwang et al. Feb 2008 A1
20080044943 Mazur et al. Feb 2008 A1
20080076240 Veschetti et al. Mar 2008 A1
20080099804 Venezia May 2008 A1
20080121280 Carnel et al. May 2008 A1
20080121805 Tweet et al. May 2008 A1
20080158398 Yaffe et al. Jul 2008 A1
20080170173 Park et al. Jul 2008 A1
20080173620 Grek Jul 2008 A1
20080174685 Shan et al. Jul 2008 A1
20080178932 Den Boer et al. Jul 2008 A1
20080179762 Cho et al. Jul 2008 A1
20080191310 Wu et al. Aug 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080192133 Abiru et al. Aug 2008 A1
20080196761 Nakano et al. Aug 2008 A1
20080198251 Xu et al. Aug 2008 A1
20080202576 Hieslmair Aug 2008 A1
20080213936 Hatai Sep 2008 A1
20080223436 den Boer et al. Sep 2008 A1
20080237759 Hasegawa Oct 2008 A1
20080242005 Dozen et al. Oct 2008 A1
20080257409 Li et al. Oct 2008 A1
20080258604 Mazur et al. Oct 2008 A1
20080266434 Sugawa et al. Oct 2008 A1
20080266435 Agranov et al. Oct 2008 A1
20080281174 Dietiker Nov 2008 A1
20080284884 Makino et al. Nov 2008 A1
20080309913 Fallon Dec 2008 A1
20090002528 Manabe et al. Jan 2009 A1
20090014056 Hockaday Jan 2009 A1
20090027640 Shibazaki Jan 2009 A1
20090038669 Atanackovic Feb 2009 A1
20090039397 Chao Feb 2009 A1
20090050944 Hong Feb 2009 A1
20090056797 Barnett et al. Mar 2009 A1
20090057536 Hirose Mar 2009 A1
20090065051 Chan et al. Mar 2009 A1
20090078316 Khazeni et al. Mar 2009 A1
20090095887 Saveliev Apr 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090109305 Dai et al. Apr 2009 A1
20090114630 Hawryluk May 2009 A1
20090142879 Isaka et al. Jun 2009 A1
20090146240 Carey, III et al. Jun 2009 A1
20090160983 Lenchenkov Jun 2009 A1
20090180010 Adikisson et al. Jul 2009 A1
20090194671 Nozaki et al. Aug 2009 A1
20090200454 Barbier et al. Aug 2009 A1
20090200586 Mao et al. Aug 2009 A1
20090200626 Qian et al. Aug 2009 A1
20090200631 Tai et al. Aug 2009 A1
20090206237 Shannon et al. Aug 2009 A1
20090211627 Meier et al. Aug 2009 A1
20090213883 Mazur et al. Aug 2009 A1
20090218493 McCaffrey et al. Sep 2009 A1
20090223561 Kim et al. Sep 2009 A1
20090227061 Bateman et al. Sep 2009 A1
20090242032 Yamazaki Oct 2009 A1
20090242933 Hu et al. Oct 2009 A1
20090256156 Hsieh Oct 2009 A1
20090256226 Tatani Oct 2009 A1
20090261255 Nakamura et al. Oct 2009 A1
20090283807 Adkisson et al. Nov 2009 A1
20090294787 Nakaji et al. Dec 2009 A1
20090308450 Adibi et al. Dec 2009 A1
20090308457 Smith et al. Dec 2009 A1
20100000597 Cousins Jan 2010 A1
20100013036 Carey Jan 2010 A1
20100013039 Qian et al. Jan 2010 A1
20100013593 Luckhardt Jan 2010 A1
20100024871 Oh et al. Feb 2010 A1
20100032008 Adekore Feb 2010 A1
20100037952 Lin Feb 2010 A1
20100038523 Venezia et al. Feb 2010 A1
20100038542 Carey et al. Feb 2010 A1
20100040981 Kiesel et al. Feb 2010 A1
20100044552 Chen Feb 2010 A1
20100051809 Onat et al. Mar 2010 A1
20100052088 Carey Mar 2010 A1
20100053382 Kuniba Mar 2010 A1
20100055887 Piwczyk Mar 2010 A1
20100059385 Li Mar 2010 A1
20100059803 Gidon et al. Mar 2010 A1
20100072349 Veeder Mar 2010 A1
20100074396 Schmand et al. Mar 2010 A1
20100083997 Hovel Apr 2010 A1
20100084009 Carlson et al. Apr 2010 A1
20100096718 Hynecek et al. Apr 2010 A1
20100097609 Jaeger et al. Apr 2010 A1
20100102206 Cazaux et al. Apr 2010 A1
20100109060 Mao et al. May 2010 A1
20100116312 Peumans et al. May 2010 A1
20100117181 Kim et al. May 2010 A1
20100118172 McCarten et al. May 2010 A1
20100128937 Yoo et al. May 2010 A1
20100133635 Lee et al. Jun 2010 A1
20100140733 Lee et al. Jun 2010 A1
20100140768 Zafiropoulo Jun 2010 A1
20100143744 Gupta Jun 2010 A1
20100147383 Carey et al. Jun 2010 A1
20100200658 Olmstead et al. Aug 2010 A1
20100219506 Gupta Sep 2010 A1
20100224229 Pralle et al. Sep 2010 A1
20100240169 Petti et al. Sep 2010 A1
20100245647 Honda et al. Sep 2010 A1
20100258176 Kang et al. Oct 2010 A1
20100264473 Adkisson et al. Oct 2010 A1
20100289885 Lu et al. Nov 2010 A1
20100290668 Friedman et al. Nov 2010 A1
20100300505 Chen Dec 2010 A1
20100300507 Heng et al. Dec 2010 A1
20100313932 Kroll et al. Dec 2010 A1
20110056544 Ji et al. Mar 2011 A1
20110073976 Vaillant Mar 2011 A1
20110095387 Carey et al. Apr 2011 A1
20110104850 Weidman et al. May 2011 A1
20110127567 Seong Jun 2011 A1
20110140221 Venezia et al. Jun 2011 A1
20110194100 Thiel et al. Aug 2011 A1
20110220971 Haddad Sep 2011 A1
20110227138 Haddad Sep 2011 A1
20110251478 Wieczorek Oct 2011 A1
20110260059 Jiang et al. Oct 2011 A1
20110266644 Yamamura et al. Nov 2011 A1
20110292380 Bamji Dec 2011 A1
20110303999 Sakamoto et al. Dec 2011 A1
20120024364 Carey et al. Feb 2012 A1
20120038811 Ellis-Monaghan et al. Feb 2012 A1
20120043637 King et al. Feb 2012 A1
20120049242 Atanackovic et al. Mar 2012 A1
20120111396 Saylor et al. May 2012 A1
20120171804 Moslehi et al. Jul 2012 A1
20120187190 Wang et al. Jul 2012 A1
20120222396 Clemen Sep 2012 A1
20120291859 Vineis et al. Nov 2012 A1
20120300037 Laudo Nov 2012 A1
20120305063 Moslehi et al. Dec 2012 A1
20120312304 Lynch et al. Dec 2012 A1
20120313204 Haddad et al. Dec 2012 A1
20120313205 Haddad et al. Dec 2012 A1
20120326008 Mckee et al. Dec 2012 A1
20130001553 Vineis et al. Jan 2013 A1
20130082343 Fudaba et al. Apr 2013 A1
20130135439 Kakuko et al. May 2013 A1
20130168792 Haddad et al. Jul 2013 A1
20130168803 Haddad et al. Jul 2013 A1
20130200251 Velichko Aug 2013 A1
20130207214 Haddad et al. Aug 2013 A1
20130285130 Ting Oct 2013 A1
20140198240 Rhoads Jul 2014 A1
20140247378 Sharma et al. Sep 2014 A1
Foreign Referenced Citations (75)
Number Date Country
3666484 Jun 1985 AU
19838439 Apr 2000 DE
0473439 Mar 1992 EP
0566156 Oct 1993 EP
1630871 Jan 2006 EP
1873840 Jan 2008 EP
2073270 May 2012 EP
2509107 Oct 2012 EP
2827707 Jan 2003 FR
2030766 Apr 1980 GB
S5771188 May 1982 JP
S57173966 Oct 1982 JP
S63116421 May 1988 JP
H02152226 Jun 1990 JP
H02237026 Sep 1990 JP
H03183037 Aug 1991 JP
H04318970 Nov 1992 JP
H06104414 Apr 1994 JP
H06244444 Sep 1994 JP
H06267868 Sep 1994 JP
H06275641 Sep 1994 JP
H07183484 Jul 1995 JP
9148594 Jun 1997 JP
H09298308 Nov 1997 JP
11077348 Mar 1999 JP
11097724 Apr 1999 JP
2000164914 Jun 2000 JP
2001007381 Jan 2001 JP
2001024936 Jan 2001 JP
2001189478 Jul 2001 JP
2001257927 Sep 2001 JP
2001339057 Dec 2001 JP
2002043594 Feb 2002 JP
2002134640 May 2002 JP
2002513176 May 2002 JP
2003163360 Jun 2003 JP
2003242125 Aug 2003 JP
2003308130 Oct 2003 JP
2004273886 Sep 2004 JP
2004273887 Sep 2004 JP
2005339425 Dec 2005 JP
2006173381 Jun 2006 JP
2006255430 Sep 2006 JP
2007165909 Jun 2007 JP
2007180642 Jul 2007 JP
2007180643 Jul 2007 JP
2007305675 Nov 2007 JP
2008187003 Aug 2008 JP
2008283219 Nov 2008 JP
2009021479 Jan 2009 JP
2010278472 Dec 2010 JP
2011091128 May 2011 JP
20010061058 Apr 2001 KR
2005039273 Apr 2005 KR
100825808 Apr 2008 KR
20090077274 Jul 2009 KR
20100118864 Nov 2010 KR
20060052278 May 2016 KR
WO 9114284 Sep 1991 WO
WO 0031679 Jun 2000 WO
WO 0241363 May 2002 WO
WO 03059390 Jul 2003 WO
WO 2006086014 Aug 2006 WO
WO 2008091242 Jul 2008 WO
WO 2008099524 Aug 2008 WO
WO 2008145097 Dec 2008 WO
WO 2009016846 Feb 2009 WO
WO 2009100023 Aug 2009 WO
WO 2009147085 Dec 2009 WO
WO 2010033127 Mar 2010 WO
WO 2011003871 Jan 2011 WO
WO 2011035188 Mar 2011 WO
WO 2011119618 Mar 2011 WO
WO 2012174752 Dec 2012 WO
WO 2014110484 Jul 2014 WO
Non-Patent Literature Citations (141)
Entry
A. Arndt, J.F. Allison, J.G. Haynos, and A. Meulenberg, Jr., “Optical Properties of the COMSAT Non-reflective Cell,” 11th IEEE Photovoltaic Spec. Conf., p. 40, 1975.
Asom et al., Interstitial Defect Reactions in Silicon; Appl. Phys. Lett.; Jul. 27, 1987; pp. 256-258; vol. 51(4); American Institute of Physics.
Berger, Michael; Moth Eyes Inspire Self-Cleaning Antireflection Nanotechnology Coatings; 2008; 3 pages; Nanowerk LLC.
Berger, O., Inns, D. and Aberle, A.E. “Commercial White Paint as Back Surface Reflector for Thin-Film Solar Cells”, Solar Energy Materials & Solar Cells, vol. 91, pp. 1215-1221,2007.
Betta et al.; Si-PIN X-Ray Detector Technology; Nuclear Instruments and Methods in Physics Research; 1997; pp. 344-348; vol. A, No. 395; Elsevier Science B.V.
Boden, S.A. et al.; Nanoimprinting for Antireflective Moth-Eye Surfaces; 4 pages; 2008.
Bogue: “From bolometers to beetles: the development of the thermal imaging sensors;” sensor Review; 2007; pp. 278-281; Emerald Group Publishing Limited (ISSN 0260-2288).
Borghesi et al.; “Oxygen Precipitation in Silicon,” J. Appl. Phys., v. 77(9), pp. 4169-4244 (May 1, 1995).
Born, M. and E.Wolf, “Princip les of Optics, 7th Ed.”, Cambridge University Press, 1999, pp. 246-255.
Brieger,S., O.Dubbers, S.Fricker, A.Manzke, C.Pfahler, A.Plettl, and P.Zlemann, “An Approach for the Fabrication of Hexagonally Ordered Arrays of Cylindrical Nanoholes in Crystalline and Amorphous Silicon Based on the Self-Organization of Polymer Micelles”, Nanotechnology, vol. 17, pp. 4991-4994, 2006, doi:10.1088/0957-4884/17/19/036.
Buttgen, B.; “Demodulation Pixel Based on Static Drift Fields”; IEEE Transactions on Electron Devices, vol. 53, No. 11, Nov. 2006.
Carey et al., “Femtosecond-Laser-Assisted Microstructuring of Silicon Surfaces”, Optics and Photonics News, 2003. 14, 32-36.
Carey, et al. “Femtosecond Laser-Assisted Microstructuring of Silicon for Novel Detector, Sensing and Display Technologies”, LEOS 2003, 481-482, Tuscon, AR.
Carey, et al. “Femtosecond Laser-Assisted Microstructuring of Silicon for Novel Detector, Sensing and Display Technologies”, LEOS; 2002, 97-98, Glasgos, Scotland, 2002.
Carey, et al., “Fabrication of Micrometer-Sized Conical Field Emitters Using Femtosecond Laser-Assisted Etching of Silicon,” Proc. IVMC 2001, 75-76, UC Davis, Davis, CA.
Carey, et al., “Field Emission from Silicon. Microstructures Formed by Femtosecond Laser Assisted Etching,” Proc. CLEO 2001 (Baltimore, MD 2001) 555-557.
Carey, et al., “High Sensitivity Silicon-Based VIS/NIR Photodetectors”, Optical Society of America (2003) 1-2.
Carey, III; “Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices”; Harvard University, Jul. 2004; (Thesis).
Chang, S.W., V.P.Chuang, S.T.Boles, and C.V.Thompson, “Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement”, Advanced Functional Materials, vol. 20, No. 24, pp. 4364-4370, 2010.
Chen, Q. et al.; Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting; Applied Physics Letters 94; pp. 263118-1-263118-3; 2009; American Institute of Physics.
Chien et al, “Pulse Width Effect in Ultrafast Laser Processing of Materials,” Applied Physics A, 2005, 1257-1263, 81, Springer Berlin, Heidelberg, Germany.
Chiang, Wen Jen et al., “Silicon Nanocrystal-Based Photosensor on Low-Temperature Polycrystalline-Silicone Panels”, Applied Physics Letters, 2007, 51120-1-51120-3, Ltt. 91, American Inst. of Physics, Melville, NY.
Cilingiroglu et al., “An evaluation of MOS Interface-Trap Charge Pump as and Ultralow Constant-Current Generator,” IEEE Journal of Solid-State Circuit, 2003, vol. 38, No. 1, Jan. 2003, 71-83.
CMOSIS; “Global Shutter Image Sensors for Machine Vision Application”; Image Sensors Europe 2010, Mar. 23-25, 2010; .COPYRGT. copyright 2010.
Cotter, Jeffrey E.; Optical intensity of light in layers of silicon with rear diffuse reflectors; Journal of Applied Physics; Jul. 1, 1998; pp. 618-624; vol. 84, No. 1; American Institute of Physics.
Crouch et al., “Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon” Appl. Phys. Lett., 2004, 84,1850-1852.
Crouch et al., “Infrared Absorption by Sulfur-Doped Silicon Formed by Femtosecond Laser Irradiation”, Appl. Phys. A, 2004, 79, 1635-1641.
Despeisse, et al.; “Thin Film Silicon Solar Cell on Highly Textured Substrates for High Conversion Efficiency”; 2004.
Detection of X-ray and Gamma-ray Photons Using Silicon Diodes; Dec. 2000; Detection Technology, Inc.; Micropolis, Finland.
Dewan, Rahul et al.; Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture; Optics Express; vol. 17, No. 25; Dec. 7, 2009; Optical Society of America.
Deych et al.; Advances in Computed Tomography and Digital Mammography; Power Point; Nov. 18, 2008; Analogic Corp.; Peabody, MA.
Dobie, et al.; “Minimization of reflected light in photovoltaic modules”; Mar. 1, 2009.
Dobrzanski, L.A. et al.; Laser Surface Treatment of Multicrystalline Silicon for Enhancing Optical Properties; Journal of Materials Processing Technology; p. 291-296; 2007; Elsevier B.V.
Dolgaev et al., “Formation of Conical Microstructures Upon Laser Evaporation of Solids”, Appl. Phys. A, 2001, 73, 177-181.
Duerinckx, et al.; “Optical Path Length Enhancement for >13% Screenprinted Thin Film Silicon Solar Cells”; 2006.
Dulinski, Wojciech et al.; Tests of backside illumincated monolithic CMOS pixel sensor in an HPD set-up; Nuclear Instruments and methods in Physics Research; Apr. 19, 2005; pp. 274-280; Elsevier B.V.
Forbes; “Texturing, reflectivity, diffuse scattering and light trapping in silicon solar cells”; 2012.
Forbes, L. and M.Y. Louie, “Backside Nanoscale Texturing to Improve IR Response of Silicon Photodetectors and Solar Cells,” Nanotech, vol. 2, pp. 9-12, Jun. 2010.
Fowlkes et al., “Surface Microstructuring and Long-Range Ordering of Silicon Nanoparticles”, Appl. Phys. Lett., 2002, 80 (20), 3799-3801.
Gjessing, J. et al.; 2D back-side diffraction grating for impored light trapping in thin silicon solar cells; Optics Express; vol. 18, No. 6; pp. 5481-5495; Mar. 15, 2010; Optical Society of America.
Gjessing, J. et al.; 2D blazed grating for light trapping in thin silicon solar cells; 3 pages; 2010; Optical Society of America.
Gloeckler et al. Band-Gap Grading in CU(In,GA)Se2 Solar Cells, Journal of Physics and Chemistry of Solids; 2005; pp. 189-194; vol. 66.
Goetzberger, et al.; “Solar Energy Materials & Solar Cells”; vol. 92 (2008) pp. 1570-1578.
Han et al., “Evaluation of a Small Negative Transfer Gate Bias on the Performance of 4T CMOS Image Sensor Pixels,” 2007 International Image Sensor Workshop, 238-240, Ogunquit, Maine.
Haug, et al.; “Light Trapping effects in thin film silicon solar cells”; 2009.
Her et al., “Microstructuring of Silicon with Femtosecond Laser Pulses,” Applied Physics Letters, 1998, 1673-1675, vol. 73, No. 12, American Institute of Physics.
Her et al., “Novel Conical Microstructures Created in Silicon With Femtosecond Laser Pulses”, CLEO 1998, 511-512, San Francisco, CA.
Her, et al., “Femtosecond laser-induced formation of spikes on silicon,” Applied Physics A, 2000, 70, 383-385.
Hermann, S. et al.; Impact of Surface Topography and Laser Pulse Duration for Laser Ablation of Solar Cell Front Side Passivating SiNx Layers; Journal of Applied Physics; vol. 108, No. 11; pp. 114514-1-114514-8; 2010; American Institute of Physics.
High—Performance Technologies for Advanced Biomedical Applications; .COPYRGT. 2004Brochure; pp. 1-46; PerkinElmerOptoelectronics.
Holland; Fabrication of Detectors and Transistors on High-Resistivity Silicon; Nuclear Instruments and Methods in Physics Research, vol. A275, pp. 537-541 (1989).
Hong et al., “Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe,”, 1999, IEEE Transactions on Electron Devices, vol. 46, No. 6, pp. 1127-1134.
Hsieh et al., “Focal-Plane-Arrays and CMOS Readout Techniques of Infrared Imaging Systems,” IEE Transactions on Circuits and Systems for Video Technology, 1997, vol. 7, No. 4, Aug. 1997, 594-605.
Hu et al., “Solar Cells from Basic to Advanced Systems,” McGraw Hill Book Co., 1983, 39, New York, New York.
Huang, et al.; “Microstructured silicon photodetector”; Applied Physics Letters 89, 033506; 2006 American Institute of Physics; 2006.
Hüpkes, J. et al.; Light Scattering and Trapping in Different Thin Film Photovoltaic Devices; 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany (Sep. 21-25, 2009); pp. 2766-2769.
Igalson et al. Defect States in the CIGS Solar cells by Photocapacitance and Deep Level Optical Spectroscopy; Bulletin of the Polish Academy of Sciences Technical Sciences; 2005; pp. 157-161; vol. 53(2).
“Infrared Absorption by Sulfur-Doped Silicon formed by Femtosecond Laser Irradiation”; Springer Berline/Heidelberg, vol. 79, Nov. 2004.
Job et al., “Doping of Oxidized Float Zone Silincon by Thermal Donors—A low Thermal Budget Doping Method for Device Applications?” Mat. Res. Soc. Symp. Pro.; v. 719, F9.5.1-F9.5.6 (2002).
Joy, T. et al.; Development of a Production-Ready, Back-Illuminated CMOS Image Sensor with Small Pixels; Electron Devices Meeting; pp. 1007-1010; 2007; IEEE.
Juntunen et al.; Advanced Photodiode Detector for Medical CT Imaging: Design and Performance; 2007; pp. 2730-2735; IEEE.
Kim et al.; “Strong Sub-Band-Gap Infrared Absorption in Silicon Supersaturated with Sulfur”; 2006 Appl. Phys. Lett. 88, 241902-1-241902-3.
Kolasinski et al., “Laser Assisted and Wet Chemical Etching of Silicon Nanostructures,” J. Vac. Sci. Technol., A 24(4), Jul./Aug. 2006, 1474-1479.
Konstantatos et al., “Engineering the Temproal Response of Photoconductive Photodetectors via Selective Introduction of Surface Trap States,” Nano Letters, v. 8(5), pp. 1446-1450 (Apr. 2, 2008).
Konstantatos et al., “PbS Colloidal Quantum Dot Photoconductive Photodetectors: Transport, Traps, and Gain,” Appl. Phys. Lett., v. 91, pp. 173505-1-173505-3 (Oct. 23, 2007).
Kray, D. et al.; Laser-doped Silicon Soalr Cells by Laser Chemical Processing (LCP) exceeding 20% Efficiency; 33rd IEEE Photovoltaic Specialist Conference; 3 pages; May 2008; IEEE.
Kroning et al.; X-ray Imaging Systems for NDT and General Applications; 2002; Fraunhofer Institute for Nondestructive Testing; Saarbrucken and Dresden, Germany.
Kryski; A High Speed 4 Megapixel Digital CMOS Sensor; 2007 International Image Sensor Workshop; Jun. 6-10, 2007.
Li, “Design and Simulation of an Uncooled Double-Cantilever Microbolometer with the Potential for .about.mK NETD,” 2004, Sensors and Actuators A, 351-359, vol. 112, Elsevier B.V.
Li et al., “Gettering in High Resistive Float Zone Silicon Wafers,” Transaction on Nuclear Science, vol. 36(1), pp. 290-294 (Feb. 1, 1989).
Li, Hongsong et al.; An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces; Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies II; 2005; pp. 25780V-1-25780V-15; vol. 5878; SPIE Bellingham, WA.
Lin, A. et al.; Optimization of Random Diffraction Gratings in Thin-Film Solar Cells Using Genetic Algorithms; 2007; 1 page; SSEL Annual Report.
Low Dose Technologies; Power Point.
Madzharov, et al.; “Light trapping in thin-firm silicon solar cells for superstrate and substrate configuration” Abstract #1614, 218.sup.th ECS Meeting .COPYRGT. 2010 the Electrochemical Society.
“Masimo Rainbow SET Pulse CO-Oximetry,” 2010, Masimo Corporation, Irvine, California, http://www.masimo.com/Rainbow/about.htm.
Mateus; C.F.R. et al.; Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating; Photonics Technology Letters; vol. 16, Issue No. 2; pp. 518-520; Feb. 2004; IEEE.
Matsuno, Shigeru et al.; Advanced Technologies for High Efficiency Photovoltaic Systems; Mitsubishi Electric Advance; vol. 122; pp. 17-19; Jun. 2008.
Meynants, et al.; “Backside illuminated global shutter COMOS image sensors”; 2011 International Image Sensor Workshop; Jun. 11, 2011.
Moloney, A.M. et al.; Novel Black Silicon PIN Photodiodes; 8 pages; Jan. 25, 2006; SPIE.
Moon et al. Selective emitter using porous silicon for crystalline silicon solar cells. Solar Energy Materials & Solar Cells, v. 93, pp. 846-850 (2009).
Moses; Nuclear Medical Imaging—Techniques and Challenges; Power Point; Feb. 9, 2005; Lawrence Berkeley National Laboratory Department of Functional Imaging.
Murkin, JM and Arangol, M, “Near Infrared spectroscopy as an index of rain and tissue oxygenation,” Bri. J. of Anathesia (BJA/PGA Supplement):13-i13 (2009).
Munday, J.N. et al.; Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings; Nano Letters; vol. 11, No. 6; pp. 2195-2201; Oct. 14, 2010; American Chemical Society.
Nauka et al., Intrinsic Gettering in Oxygen-Free Silicon; App. Phys. Lett., vol. 46(7), Apr. 4, 1985.
Nauka et al., “New Intrinsic Gettering Process in Silicon Based on Interactions of Silicon Interstitials,” J. App. Phys., vol. 60(2), pp. 615-621, Jul. 15, 1986.
Nayak et al, “Semiconductor Laesr Crystallization of a-Si:H,” SPIE Digital Library, 2003, 277-380, vol. 4977, Bellingham, Washington. 2003.
Nayak et al, “Ultrafast-Laser-Assisted Chemical Restructuring of Silicon and Germanium Surfaces,” Applied Surface Science, 2007, 6580-6583, vol. 253, Issue 15, Elsevier B.V.
Nayak et al, “Semiconductor Laser Crystallization of a-Si:H on Conducting Tin-Oxide-Coated Glass for Solar Cell and Display Applications,” Applied Physics A, 2005, 1077-1080, 80, Springer Berlin, Heidelberg, Germany.
Nayak, B.K. et al.; Ultrafast Laser Textured Silicon Solar Cells; Mater. Res. Soc. Symp. Proc.; vol. 1123; 6 pages; 2009; Materials Research Society.
Nayak, et al.; “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures”; Progress in Photovoltaics: Research and Applications; 2011.
Oden, et al.; “Optical and Infrared Detection Using Microcantilevers;” SPIE Digital Library on Oct. 13, 2010; vol. 2744; 10 pages.
Pain, Bedabrata; Backside Illumination Technology for SOI-CMOS Image Sensors; 2009 IISW Symposium on Backside Illujination of Solid-State Image Sensors, Bergen Norway; Jun. 25, 2009; pp. 1-23.
Pain, Bedabrata; “A Back-Illuminated Megapixel CMOS Image Sensor”; http://hdl.handle.net/2014/39312; May 1, 2005.
Palm et al. CIGSSe Thin Film PB Modules: From Fundamental Investigators to Advanced Performance and Stability; Thin Solid Films; 2004; pp. 544-551; vol. 451-2.
Payne, D.N.R. et al.; Characterization of Experimental Textured ZnO:Al Films for Thin Film Solar Cell Applications and Comparison with Commercial and Plasmonic Alternatives; Photovoltaic Specialists Conference (PVSC); pp. 1560-1564; 2010; IEEE.
Pedraza et al., “Silicon Microcolumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation”, Appl. Phys. Lett., 1999, 74 (16), 2322-2324, American Institute of Physics.
Pedraza et al., “Surface Nanostructuring of Silicon”, Appl. Phys. A, 2003, 77, 277-284.
Rashkeev et al., “Hydrogen passivation and Activation of Oxygen Complexes in Silicon,” American Institute of Physics, vol. 78(11), pp. 1571-1573 (Mar. 12, 2001).
Russell, et al.; “Nanosecond Eximer Laser Processing for Novel Microelectronic Fabrication”; Nanosecond Excimer Laser Processing; 6 pages; 1989.
Russell, Ramirez and Kelley, “Nanosecond Excimer Laser Processing for Novel Microelectronic Devices,” US Navy, SPAWAR, San Diego, Techical Report, 2003.
Russell, Ramirez, Kelley, “Nanosecond Excimer Laser Processing for Novel Microelectronic Fabrication,” SSC Pacific Technical Reports , pp. 228-233, 2003, vol. 4, US Navy.
Sai, H. et al.; Enhancement of Light Trapping in Thin-Film Hydrogenated Microcrystalline Si Solar Cells Using Back Reflectors with Self-Ordered Dimple Pattern; Applied Physics Letters; vol. 93; 2008; American Institute of Physics.
Sanchez et al., “Whiskerlike Structure Growth on Silicon Exposed to ArF Excimer Laser Irradiation”, Appl. Phys. Lett., 1996, 69 (5), 620-622.
Sanchez et al., “Dynamics of the Hydrodynamical Growth of Columns on Silicon Exposed to ArF Excimer-Laser Irradiation”, Appl. Phys. A, 66, 83-86 (1998).
Sarnet et al.; “Femtosecond laser for black silicon and photovoltaic cells”; Feb. 21, 2008, Proc. of SPIE; vol. 6881; pp. 1-15.
Senoussaoui, N. et al.; Thin-Film Solar Cells with Periodic Grating Coupler; Thin Solid Films; pp. 397-401; 2003; Elsevier B.V.
Serpenguzel et al., “Temperature Dependence of Photluminescence in Non-Crystalline Silicon”, Photonics West (San Jose, CA, 2004) 454-462.
Shen et al., “Formation of Regular Arrays of Silicon Micorspikes by Femotsecond Laser Irradiation Through a Mask”, Appl. Phys. Lett., 82, 1715-1717 (2003).
Solar Energy Research Institute, “Basic Photovoltaic Principles and Methods,” Van Nostrand Reinhold Co., NY 1984, pp. 45-47 and 138-142.
Solhusvik, J. et al. “A 1280x960 3.75um pixel CMOS imager with Triple Exposure HDR,” Proc. of 2009 International Image Sensor Workshop, Bergen, Norway, Jun. 22-28, 2009.
Stone et al.; The X-ray Sensitivity of Amorphous Selenium for Mammography;.Am. Assoc. Phys. Med.; Mar. 2002; pp. 319-324; vol. 29 No. 3; Am. Assoc. Phys. Med.
Szlufcik, J. et al.; Simple Integral Screenprinting process for selective emitter polycrystalline silicon solar cells; Applied Physics Letters; vol. 59, No. 13; Sep. 23, 1991; American Institute of Physics.
Tabbal et al., “Formation of Single Crystal Sulfur Supersaturated Silicon Based Junctions by Pulsed Laser Melting”. 2007, J. Vac. Sci. Technol. B25(6), 1847-1852.
Takayanagi, et al.; “A 600.times.600 Pixel, 500, fps CMOS Image Sensor with a 4.4 jum Pinned Photodiode 5-Transistor Global Shutter Pixel”; 2007 International Image Sensor Workshop; Jun. 6-10, 2007.
Tower, John R. et al.; Large Format Backside Illuminated CCD Imager for Space Surveillance; IEEE Transactions on Electron Devices, vol. 50, No. 1; Jan. 2003; pp. 218-224.
Tull; “Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovotaics”; Harvard University, Jun. 2007 (Thesis).
Uehara et al., “A High-Sensitive Digital Photosensor Using MOS Interface-Trap Charge Pumping,” IEICE Electronics Express, 2004, vol. 1, No. 18, 556-561.
Wilson, “Depth Distributions of Sulfur Implanted Into Silicon as a Function of Ion energy, Ion Fluence, and Anneal Temperature,” 1984, Appl. Phys. 55(10, 3490-3494.
Winderbaum, S. et al.; Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells; Solar Energy Materials and Solar Cells; 1997; pp. 239-248; Elsevier Science B.V.
Wu et al., “Black Silicon: A New Light Absorber,” APS Centennial Meeting (Mar. 23, 1999).
Wu et al., “Femtosecond laser-gas-solid interactions,” Thesis presented to the Department of Physics at Harvard University, pp. 1-113, 126-136, Aug. 2000.
Wu et al., “Visible Luminescence From Silicon Surfaces Microstructured in Air”. Appl. Phys. Lett., vol. 81, No. 11, 1999-2001 (2002).
Wu, et al “Near-Unity Below-Band-Gap Absorption by Microstructured Silicon,” 2001, Applied Physics Letters, 1850-1852, vol. 78, No. 13, American Institute of Physics.
Xu, Y., et al, “Infrared Detection Using Thermally Isolated Diode,” Sensors and Actuators A, Elsevier Sequoia S.A., 1993, vol. 36, 209-217, Lausanne, Switzerland.
Yablonovitch, et al.; “Intensity Enhancement in Textured Optical Sheets for Solar Cells”; .COPYRGT. 1982 IEEE.
Yamamoto, K. et al.; NIR Sensitivity Enhancement by Laser Treatment for Si Detectors; Nuclear Instruments and Methods in Physics Research A; pp. 520-523; Mar. 31, 2010; Elsevier.
Yan, B.; Light Trapping Effect from Randomized Textures of Ag/ZnO Back Reflector on Hyrdrogenated Amorphous and Nanocrystalline Silicon Based Solar Cells; Thin Film Solar Technology II; vol. 7771; 2010; SPIE.
Yasutomi, et al.; “Two-Stage Charge Transfer Pixel Using Pinned Diodes for Low-Noise Global Shutter Imaging”; 2009 International Image Sensor Workshop; Mar. 28, 2009.
Younkin et al., “Infrared Absorption by Conical Silicon Microstructures Made in a Variety of Background Gases Using Femtosecond-Laser Pulses”, J. Appl. Phys., 93, 2626-2629 (2003).
Younkin, “Surface Studies and Microstructure Fabrication Using Femtosecond Laser Pulses,” Thesis presented to the Division of Engineering & Applied sciences at Harvard University (Aug. 2001).
Yuan, et al.; “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules”; American Institute of Physics; Applied Physics Letters 95. 1230501 (2009) 3 pages.
Zaidi, S.H. et al.; Diffraction Grating Structures in Solar Cells; Photovoltaic Specialists Conference, 2000; 4 pages; Sep. 2000; IEEE.
Zhang et al, “Ultra-Shallow P+-Junction Formation in Silicon by Excimer Laser Doping: a Heat and Mass Transfer Perspective,” Int. J. Heat Mass Transfer, 1996, 3835-3844, vol. 39, No. 18, Elsevier Science Ltd., Great Britain.
Zhu et al., “Evolution of Silicon Surface Microstructures by Picosecond and Femtosecond Laser Irradiations,” Applied Surface Science, 2005, 102-108, Elsevie, Amsterdam, NL.Ultra-Shallow P+-Junction Formation in Silicon by Excimer Laser Doping: a Heat and Mass Transfer Perspective, Int. J. Heat Mass Transfer, 1996, 3835-3844, vol. 39, No. 18, Elsevier Science Ltd., Great Britain.
Carey, P.G. et al., “In-situ Doping of Silicon Using Gas Immerson Laser Doping (GILD) Process,” Appl. Surf. Sci. 43, 325-332 (1989).
Chichkov, B.N. et al, “Femtosecond, picosecond and nanosecond laser ablation of solids” Appl. Phys. A 63, 109-115; 1996.
Gibbons, J., “Ion Implantation in Semiconductors-Part II; Damage Production and Annealing”, proceedings of the IEEE vol. 60, No. 9 pp. 1062-1096. Jun. 1972.
Koh et al., “Simple nanostructuring on silicon surfaceby means of focused beam patterning and wet etching”, Applied Surface Science, 2000 pp. 599-603.
Myers, Richard et al., “Enhancing Near-IR Avalanche Photodiodes Performance by Femtosecond Laser Microstructuring” Harvard Dept. Of Physics.
Wu et al., “Black Silicon” Harvard UPS 1999.
Ziou et al., “Depth from defocus using the hermite transform”, Image Processing, 1998. ICIP 98. Intl. Conference on Chicago, IL. Oct. 1998 pp. 958 -962.
Related Publications (1)
Number Date Country
20150349150 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
61356536 Jun 2010 US
Continuations (1)
Number Date Country
Parent 13164630 Jun 2011 US
Child 14580143 US