High strength carbon fiber composite wafers for microfabrication

Information

  • Patent Grant
  • 9174412
  • Patent Number
    9,174,412
  • Date Filed
    Friday, November 2, 2012
    11 years ago
  • Date Issued
    Tuesday, November 3, 2015
    8 years ago
Abstract
A high strength carbon fiber composite (CFC) wafer, and method of making such wafer, with low surface roughness comprising at least one sheet of CFC including carbon fibers embedded in a matrix. The wafer can have a thickness of between 10-500 micrometers. The wafer can have a root mean square surface roughness Rq, on at least one side, of less than 300 nm in an area of 100 micrometers by 100 micrometers and less than 500 nm along a line of 2 millimeter length. The wafer may be cut to form x-ray window support structures, MEMS, or other micrometer sized structures.
Description
FIELD OF THE INVENTION

The present application is related generally to high strength microstructures, such as for example x-ray window support structures.


BACKGROUND

Carbon fiber composite (CFC) wafers can be used in applications where high strength is desired. Barriers to the development of carbon fiber based structures, especially structures with micrometer-sized features, include difficulties in machining or patterning, and high surface roughness of cured composites. A root mean square surface roughness Rq of typical CFC wafers can be greater than 1 micrometer. Root mean square surface roughness Rq can be defined by the following equation: Rq=√{square root over (Σzi2)}. In this equation, z represents a height of the surface at different measured locations i.


SUMMARY

It has been recognized that it would be advantageous to have a carbon fiber composite wafer having high strength and low surface roughness.


In one embodiment, the present invention is directed to a carbon fiber composite (CFC) wafer that satisfies the needs for high strength and low surface roughness. The CFC wafer comprises at least one sheet of CFC including carbon fibers embedded in a matrix. The wafer can have a thickness of between 10-500 micrometers. The wafer can have a root mean square surface roughness Rq, on at least one side, of less than 300 nm in an area of 100 micrometers by 100 micrometers and less than 500 nm along a line of 2 millimeter length. The wafer can have a yield strength at fracture of greater than 0.5 gigapascals, wherein yield strength is defined as the force, in a direction parallel with a plane of the wafer, per unit area, to cause the wafer to fracture. The wafer can have a strain at fracture of more than 0.01, wherein strain is defined as the change in length caused by a force in a direction parallel with a plane of the wafer divided by original length.


In another embodiment, the present invention is directed to a method of making a CFC wafer that satisfies the needs for high strength and low surface roughness. The method comprises pressing a stack of at least one sheet of CFC between pressure plates with a porous breather layer disposed between at least one side of the stack and at least one of the pressure plates; then heating the stack to a temperature of at least 50° C. to cure the stack into a CFC wafer.


In another embodiment, the present invention is directed to an x-ray window including a high strength support structure. The x-ray window can comprise a support frame defining a perimeter and an aperture with a plurality of ribs extending across the aperture of the support frame and carried by the support frame. Openings exist between the plurality of ribs. The support frame and the plurality of ribs comprise a support structure. A film can be disposed over, can be carried by, and can span the plurality of ribs and can be disposed over and can span the openings. The film can be configured to pass x-ray radiation therethrough. The support structure can comprise a carbon fiber composite material (CFC). The CFC material can comprise carbon fibers embedded in a matrix. A thickness of the support structure can be between 10-500 micrometers. A root mean square surface roughness Rq of the support structure on a side facing the film can be less than 500 nm along a line of 2 millimeter length.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic top view of a carbon fiber composite wafer, in accordance with an embodiment of the present invention;



FIGS. 2-3 are schematic cross-sectional side views of a carbon fiber composite wafer, in accordance with an embodiment of the present invention;



FIG. 4 is a schematic cross-sectional side view of portion of a carbon fiber composite wafer, showing measurement of root mean square surface roughness Rq, in accordance with an embodiment of the present invention;



FIG. 5 is a side view of a carbon fiber, in accordance with an embodiment of the present invention;



FIG. 6 is a schematic cross-sectional side view of wafer including multiple carbon fiber composite sheets abutting a polyimide sheet, in accordance with an embodiment of the present invention;



FIG. 7 illustrates a first curing process for manufacture of a carbon fiber composite wafer, in accordance with a method of the present invention;



FIG. 8 illustrates use of o-rings and a vacuum during the first curing process for manufacture of a carbon fiber composite wafer, in accordance with a method of the present invention;



FIG. 9 illustrates a second curing process for manufacture of a carbon fiber composite wafer, in accordance with a method of the present invention;



FIG. 10 is a schematic top view of an x-ray window support structure, in accordance with an embodiment of the present invention;



FIG. 11 is a schematic cross-sectional side view of an x-ray window, in accordance with an embodiment of the present invention;



FIG. 12 is a schematic cross-sectional side view of an x-ray detector, including an x-ray window, in accordance with an embodiment of the present invention.





DEFINITIONS





    • As used herein, the term “carbon fiber” or “carbon fibers” means solid, substantially cylindrically shaped structures having a mass fraction of at least 85% carbon, a length of at least 5 micrometers and a diameter of at least 1 micrometer.

    • As used herein, the term “directionally aligned,” in referring to alignment of carbon fibers with support structure members (such as ribs for example), means that the carbon fibers are substantially aligned with a longitudinal axis of the support structure members and does not require the carbon fibers to be exactly aligned with a longitudinal axis of the support structure members.

    • As used herein, the term “porous” means readily permeable to gas.





DETAILED DESCRIPTION

Illustrated in FIGS. 1-3 are carbon fiber composite (CFC) wafers 10 and 20 comprising at least one CFC sheet 21 including carbon fibers 12 embedded in a matrix 11. The matrix can comprise a material that provides sufficient strength and is compatible with the use of the wafer. For example, if the wafer will be used to fabricate an x-ray window support structure, considerations for matrix material may include a low atomic number elements and low outgassing. The matrix can comprise a material selected from the group consisting of polyimide, bismaleimide, epoxy, or combinations thereof. The matrix can comprise a material selected from the group consisting of amorphous carbon, hydrogenated amorphous carbon, nanocrystalline carbon, microcrystalline carbon, hydrogenated nanocrystalline carbon, hydrogenated microcrystalline carbon, or combinations thereof. The matrix can comprise a ceramic material selected from the group consisting of silicon nitride, boron nitride, boron carbide, aluminum nitride, or combinations thereof.


The carbon fibers 12 can be directionally aligned in a single direction A1, directionally aligned in multiple directions, or disposed in random directions in the matrix. Three CFC sheets 21a-c are shown in FIGS. 2-3. There may be more or less CFC sheets 21 than 3, depending on the desired application. The wafer 20 can have a thickness Thw of between 10-500 micrometers in one aspect, between 20 and 350 micrometers in another aspect, less than or equal to 20 micrometers in another aspect, or greater than or equal to 350 micrometers in another aspect.


CFC wafers per the present invention can have high yield strength. A yield strength at fracture can be greater than 0.1 gigapascals (GPa) in one aspect, greater than 0.5 GPa in another aspect, greater than 2 GPa in another aspect, between 2 GPa and 3.6 GPa in another aspect, or between 0.5 GPa and 6 GPa in another aspect. Yield strength can be defined as a force F in a direction parallel with a plane 33 or 34 of a side 32a or 32b of the wafer, per unit area, to cause the wafer to fracture. If fibers are directionally aligned, the force F can be aligned parallel with the fibers.


CFC wafers per the present invention can have high strain. A strain at fracture can be greater than 0.01 in one aspect, greater than 0.03 in another aspect, greater than 0.05 in another aspect, or between 0.01 and 0.080 in another aspect. Strain can be defined as the change in length L caused by a force F in a direction parallel with a plane 33 or 34 of the wafer divided by original length L. If fibers are directionally aligned, the force F can be aligned parallel with the fibers.


The wafer can have two faces or sides 32a-b and an edge 31. The sides 32a-b can have a substantially larger surface area than the edge 31. The sides 32a-b can be substantially parallel with each other. One side 32a can be disposed along, or parallel with, a single plane 33; and the other side 32b can be disposed along, or parallel with, a different single plane 34.


At least one side 32a and/or 32b of the wafer can be smooth, i.e. can have a low surface roughness. A low surface roughness can be beneficial for improving adhesion to other materials, such as to an x-ray window film for example. One measurement of surface roughness is root mean square surface roughness Rq calculated by the equation Rq=√{square root over (Σzi2)}. The measurement zi can be made along a surface of the wafer by an atomic force microscope. The measurement of zi on a portion of the wafer 40 is shown in FIG. 4. A distance from a plane 43, substantially parallel with the wafer, or substantially parallel with the sides 32a and 32b of the wafer, can differ by small amounts. These small variations can be recorded, squared, summed, then a square root may be taken of this sum to calculate root mean square surface roughness Rq. A low Rq number can indicate a low surface roughness. The root mean square surface roughness Rq of one or both sides of the wafers of the present invention can be less than 300 nm in one aspect, or between 30 nm and 300 nm in another aspect, in an area of 100 micrometers by 100 micrometers. The root mean square surface roughness Rq of one or both sides of the wafers of the present invention can be less than 500 nm in one aspect, or between 50 nm and 500 nm in another aspect, along a line of 2 millimeter length. The root mean square surface roughness Rq of one or both sides of the wafers of the present invention can be less than 200 nanometers in one aspect, or between 20 nm and 200 nm in another aspect, in an area of 100 micrometers by 100 micrometers.


Shown in FIG. 5 is a side view of a carbon fiber 12, in accordance with an embodiment of the present invention. At least 50% of the carbon fibers 12 in a wafer can have a diameter D of between 2 and 10 micrometers in one aspect. At least 90% of the carbon fibers 12 in a wafer can have a diameter D of between 2 and 10 micrometers in another aspect. Substantially all of the carbon fibers 12 in a wafer can have a diameter D of between 2 and 10 micrometers in another aspect.


As shown on wafer 60 in FIG. 6, a polyimide sheet 61 can be cured together with and can abut the sheet(s) 21 of carbon fiber composite. The polyimide sheet can have a thickness Thp, after curing, of between 0.1-100 micrometers.


Also shown on wafer 60 in FIG. 6 are carbon fiber composite sheet thicknesses Tha-c. Each carbon fiber composite sheet 21a-c in the stack can have a thickness Tha-c of between 20 to 350 micrometers (20 μm<Tha<350 μm, 20 μm<Thb<350 μm, and 20 μm<Thc<350 μm) in one aspect, less than or equal to 20 micrometers in another aspect, or greater than or equal to 350 micrometers in another aspect. There may be more or less than the three carbon fiber composite sheets 21a-c. These thicknesses are sheet 21 thicknesses after curing.



FIG. 7 illustrates a first curing process 70 for manufacture of a carbon fiber composite wafer, in accordance with a method of the present invention. The method can comprise providing a stack 71 of at least one sheet of CFC 21a-c, the stack having a first surface 32a and a second surface 32b; pressing P the stack between a first pressure plate 76a and a second pressure plate 76b with a porous breather layer 72 disposed between the first surface 32a of the stack and the first pressure plate 76a; and curing by heating the stack 71 to a temperature of at least 50° C. (defining a first curing process). The amount of pressure to be used can depend on the matrix of the carbon composite. Pressure in the range of 50-200 psi has been successfully used. Pressure may be in the range of 25-500 psi.


A solid, polished layer 73 can be disposed between the second surface 32b of the stack 71 and the second pressure plate 76b during the first curing process. The polished layer 73 can help create a very smooth surface on the second surface 32b of the stack 71. The polished layer 73 can be a highly polished sheet of stainless steel, a silicon wafer, or a glass plate. A fluorine release layer can be used to avoid the stack sticking 71 to the polished layer 73. For example, a fluorinated alkane monolayer can be deposited on silicon wafers to facilitate release by placing in a vacuum desiccator overnight with 5 mL of Trichloro(1H,1H,2H,2H-perfluorooctyl)silane in a glass vial. The polished layer 73 can have a root mean square surface roughness Rq of less than 300 nm in an area of 100 micrometers by 100 micrometers, on a side facing the stack. Thus, it is not necessary for the polished layer 73 to have a polished surface on both sides.


A polyimide sheet 61 can be cured together with and can abut the CFC sheet(s) 21. The polyimide sheet 61 can be disposed between the second surface 32b of the stack 71 and the second pressure plate 76b. The polyimide sheet 61 can be disposed between the second surface 32b of the stack 71 and the polished layer 73 (if a polished layer is used). Alternatively, a polyimide sheet 61 can be disposed on both surfaces 32a and 32b of the stack 71. The polyimide sheet(s) 61 can be useful for improving the surface of the final wafer and/or for improving adhesion of the stack 71 to other materials.


The porous layer 72 can allow gas, emitted by the stack, to escape from the press. A multi-layer porous breather layer 72 can be used. For example, the porous breather layer 72 can comprise a porous polymer layer 72b facing the stack 71 and a nylon mesh 72a facing the first pressure plate 76a. A vacuum can aid in removal of the gas. A vacuum pump 75 can be attached by tubing 74 to the press and can draw a vacuum, such as less than 50 torr, between the pressure plates. The vacuum can be maintained through substantially all of the curing process, or through only part of the curing process, such as at least 50% of the curing process.


Shown in FIG. 8 are more details of the press and vacuum. The layers (stack of CFC, porous breather layer 72, optional polished layer 73, and optional polyimide layer 61) 81 can be in a central portion of the pressure plates 76a-b. An o-ring 82 can surround the layers 81. The o-ring 82 can be disposed at least partly in a channel 83 of at least one of the pressure plates 76a and/or 76b. The vacuum tube 74 can extend into the central portion of the press, between the layers 81 and the o-ring 82.



FIG. 9 illustrates a second curing process 90 for manufacture of a carbon fiber composite wafer in accordance with a method of the present invention. After completion of the first curing process 70, pressure P can be released from the stack and the porous layer 72 can be removed from the stack. A polished layer 73a and 73b can be disposed on each side of the stack. Note that if there was a polyimide sheet 61 in the first curing process, this polyimide sheet 61 can remain for the second curing process 90. The polished layers 73a and 73b can have a root mean square surface roughness Rq of less than 300 nm in an area of 100 micrometers by 100 micrometers, on a side facing the stack. The stack 71 (and optional polyimide sheet 61 if one is used) can be pressed between the polished layers by the first and second pressure plates 76a-b. The stack 71 (and optional polyimide layer 61) can be cured by heating the stack to a temperature of at least 50° C.


A benefit of use of the second curing process 90 is that the gas can be removed during the first curing process 70, then polished layers 73a and 73b can be disposed on both sides 32a and 32b of the stack 71, with the result that both sides of the wafer can be highly polished. Thus, both sides of the wafer can have a root mean square surface roughness Rq as specified above.


Shown in FIG. 10 is a support structure 100 for an x-ray window. The support structure 100 can comprise a support frame 101 defining a perimeter 104 and an aperture 105. A plurality of ribs 102 can extend across the aperture 105 of the support frame 101 and can be carried by the support frame 101, with openings 103 between the ribs 102. The support frame 101 and the plurality of ribs 102 can comprise a support structure 100. The support structure 100 can comprise a carbon fiber composite (CFC) material. The CFC material can comprise carbon fibers embedded in a matrix. Carbon fibers 12 in the composite can be substantially aligned with a direction A1 of the ribs, with at least one direction of the ribs if the ribs extend in multiple directions, or with all directions of all ribs if the ribs extend in multiple directions.


Carbon fibers in a carbon fiber composite can be graphitic, and thus can be highly resistant to chemical etching. Alternative methods have been found for etching or cutting micro-sized structures in CFC wafers in the present invention. The support structure 100 may be made by cutting a CFC wafer to form ribs 102 and openings 103. The CFC wafer may be cut by laser milling or laser ablation. A high power laser can use short pulses of laser to ablate the material to form the openings 103 by ultrafast laser ablation. A femtosecond laser may be used. A nanosecond pulsed YAG laser may be used. Ablating wafer material in short pulses of high power laser can be used in order to avoid overheating the CFC material. Alternatively, a non-pulsing laser can be used and the wafer can be cooled by other methods, such as conductive or convective heat removal. The wafer can be cooled by water flow or air across the wafer. The above mentioned cooling methods can also be used with laser pulses, such as a femtosecond laser, if additional cooling is needed.


As shown in FIG. 11, the support structure 100 can have a thickness Ths of between 10-500 micrometers. Tops of the ribs 102 and support frame 101 can terminate substantially in a single plane 116. A film 114 can be disposed over, can be carried by, and can span the plurality of ribs 102 and can be disposed over and can span the openings 103. The film 114 can be configured to pass radiation therethrough, such as by being made of a material and thickness that will allow x-ray radiation to pass through with minimal attenuation of x-rays and/or minimal contamination of the x-ray signal.


As described above regarding FIGS. 6-9, a polyimide layer 61 can be cured abutting the CFC stack 71. The polyimide layer 61 can be cut into polyimide ribs 111 and a polyimide support frame 112, with openings 103 between the ribs 111, along with the CFC stack 71. The polyimide ribs 111 and the polyimide support frame 112 can be part of the support structure 100. The polyimide ribs 111 and the polyimide support frame 112 can be disposed between the CFC stack 71 and the film 114.


A surface of the support structure 100 facing the film can have low surface roughness. This surface can be CFC 71 or can be polyimide 61. This surface can have a root mean square surface roughness Rq of less than 300 nm in one aspect, or between 30 nm and 300 nm in another aspect, in an area of 100 micrometers by 100 micrometers. This surface can have a root mean square surface roughness Rq of less than 500 nm in one aspect, or between 50 nm and 500 nm in another aspect, along a line of 2 millimeter length. This surface can have a root mean square surface roughness Rq of less than 200 nanometers in one aspect, or between 20 nm and 200 nm in another aspect, in an area of 100 micrometers by 100 micrometers.


The ribs 102 can have a strain at fracture of greater than 0.01 in one aspect, greater than 0.03 in another aspect, greater than 0.05 in another aspect, or between 0.01 and 0.080 in another aspect. Strain can be defined as a change in length caused by a force in a direction parallel with the ribs divided by original length. If fibers are directionally aligned, the force F can be aligned parallel with the fibers.


The wafers described herein can also be micropatterned by laser ablation and/or water jet to form other structures, such as a flexure mechanical mechanism, a mesoscale mechanical mechanism, a microscale mechanical mechanism, and/or elements in a microelectromechanical system (MEMS).


As shown in FIG. 12, an x-ray window 125, including a support structure 100 and a film 114, can be hermetically sealed to a housing 122. The housing can contain an x-ray detector 123. The x-ray detector can be configured to receive x-rays 124 transmitted through the window, and to output a signal based on x-ray energy.

Claims
  • 1. A wafer comprising: a. at least one sheet of carbon fiber composite (CFC) including carbon fibers embedded in a matrix;b. a wafer thickness of between 10-500 micrometers;c. at least one side of the wafer having a root mean square surface roughness Rq of less than 300 nm in an area of 100 micrometers by 100 micrometers and less than 500 nm along a line of 2 millimeter length;d. a yield strength at fracture of greater than 0.5 gigapascals (GPa), wherein yield strength is defined as a force, in a direction parallel with a plane of a side of the wafer, per unit area, to cause the wafer to fracture; ande. a strain at fracture of more than 0.01, wherein strain is defined as the change in length caused by a force in a direction parallel with a plane of the wafer divided by original length.
  • 2. The wafer of claim 1, wherein the yield strength is between 2 GPa and 3.6 GPa.
  • 3. The wafer of claim 1, wherein the root mean square surface roughness is less than 200 nanometers in an area of 100 micrometers by 100 micrometers.
  • 4. The wafer of claim 1, wherein at least 90% of the carbon fibers have a diameter of between 2 and 10 micrometers.
  • 5. The wafer of claim 1, wherein the matrix comprises a material selected from the group consisting of polyimide, bismaleimide, epoxy, or combinations thereof.
  • 6. The wafer of claim 1, further comprising a polyimide sheet cured together with and abutting the at least one sheet of carbon fiber composite.
  • 7. The wafer of claim 6, wherein the polyimide sheet has a thickness of between 0.1-100 micrometers.
  • 8. The wafer of claim 1 micropatterned by laser ablation, water jet, or combinations thereof to form an x-ray window support structure comprising: a. a support frame defining a perimeter and an aperture;b. a plurality of ribs extending across the aperture of the support frame and carried by the support frame;c. openings between the plurality of ribs; andd. the support frame and the plurality of ribs comprising a support structure.
  • 9. An x-ray window comprising: a. a support frame defining a perimeter and an aperture;b. a plurality of ribs extending across the aperture of the support frame and carried by the support frame;c. openings between the plurality of ribs;d. the support frame and the plurality of ribs comprising a support structure;e. the support structure comprising a carbon fiber composite (CFC) material, the CFC material comprising carbon fibers embedded in a matrix;f. the support structure having a thickness of between 10-500 micrometers;g. a film disposed over, carried by, and spanning the plurality of ribs and disposed over and spanning the openings, and configured to pass x-ray radiation therethrough; andh. a surface of the support structure facing the film having a root mean square surface roughness Rq of less than 500 nm along a line of 2 millimeter length.
  • 10. The x-ray window of claim 9, wherein the support structure further comprises a polyimide layer cured together with the CFC material, cut to form ribs, openings, and support frame together with the CFC material, and disposed between the CFC material and the film.
  • 11. The x-ray window of claim 9, further comprising: a. a housing to which the x-ray window is hermetically sealed; andb. an x-ray detector, disposed within the housing, configured to receive x-rays transmitted through the window, and to output a signal based on x-ray energy.
  • 12. The x-ray window of claim 9, wherein the matrix comprises polymide.
  • 13. The x-ray window of claim 9, wherein the matrix comprises bismaleimide.
CLAIM OF PRIORITY

Priority is claimed to U.S. Provisional Patent Application Ser. No. 61/689,392, filed on Jun. 6, 2012; which is hereby incorporated herein by reference in its entirety. This is a continuation-in-part of U.S. patent application Ser. No. 13/453,066, filed on Apr. 23, 2012, which claims priority to U.S. Provisional Patent Application Nos. 61/486,547, filed on May 16, 2011; 61/495,616, filed on Jun. 10, 2011; and 61/511,793, filed on Jul. 26, 2011; all of which are hereby incorporated herein by reference in their entirety.

US Referenced Citations (250)
Number Name Date Kind
1276706 Snook et al. May 1918 A
1881448 Forde et al. Oct 1932 A
1946288 Kearsley Feb 1934 A
2291948 Cassen Aug 1942 A
2316214 Atlee et al. Apr 1943 A
2329318 Atlee et al. Sep 1943 A
2340363 Atlee et al. Feb 1944 A
2502070 Atlee et al. Mar 1950 A
2663812 Jamison et al. Mar 1950 A
2683223 Hosemann Jul 1954 A
2952790 Steen Sep 1960 A
3397337 Denholm Aug 1968 A
3538368 Oess Nov 1970 A
3665236 Gaines et al. May 1972 A
3679927 Kirkendall Jul 1972 A
3691417 Gralenski Sep 1972 A
3741797 Chavasse, Jr. et al. Jun 1973 A
3751701 Gralenski et al. Aug 1973 A
3801847 Dietz Apr 1974 A
3828190 Dahlin et al. Aug 1974 A
3873824 Bean et al. Mar 1975 A
3882339 Rate et al. May 1975 A
3962583 Holland et al. Jun 1976 A
3970884 Golden Jul 1976 A
4007375 Albert Feb 1977 A
4075526 Grubis Feb 1978 A
4126788 Koontz et al. Nov 1978 A
4160311 Ronde et al. Jul 1979 A
4163900 Warren et al. Aug 1979 A
4178509 More et al. Dec 1979 A
4184097 Auge Jan 1980 A
4250127 Warren et al. Feb 1981 A
4368538 McCorkle Jan 1983 A
4393127 Greschner et al. Jul 1983 A
4443293 Mallon et al. Apr 1984 A
4463257 Simpkins et al. Jul 1984 A
4463338 Utner et al. Jul 1984 A
4521902 Peugeot Jun 1985 A
4532150 Endo et al. Jul 1985 A
4573186 Reinhold Feb 1986 A
4576679 White Mar 1986 A
4584056 Perret et al. Apr 1986 A
4591756 Avnery May 1986 A
4608326 Neukermans et al. Aug 1986 A
4645977 Kurokawa et al. Feb 1987 A
4675525 Amingual et al. Jun 1987 A
4679219 Ozaki Jul 1987 A
4688241 Peugeot Aug 1987 A
4696994 Nakajima Sep 1987 A
4705540 Hayes Nov 1987 A
4777642 Ono Oct 1988 A
4797907 Anderton Jan 1989 A
4818806 Kunimune et al. Apr 1989 A
4819260 Haberrecker Apr 1989 A
4837068 Martin et al. Jun 1989 A
4862490 Karnezos et al. Aug 1989 A
4870671 Hershyn Sep 1989 A
4876330 Higashi et al. Oct 1989 A
4878866 Mori et al. Nov 1989 A
4885055 Woodbury et al. Dec 1989 A
4891831 Tanaka et al. Jan 1990 A
4933557 Perkins Jun 1990 A
4939763 Pinneo et al. Jul 1990 A
4957773 Spencer et al. Sep 1990 A
4960486 Perkins et al. Oct 1990 A
4969173 Valkonet Nov 1990 A
4979198 Malcolm et al. Dec 1990 A
4979199 Cueman et al. Dec 1990 A
5010562 Hernandez et al. Apr 1991 A
5055421 Birkle et al. Oct 1991 A
5063324 Grunwald et al. Nov 1991 A
5066300 Isaacson et al. Nov 1991 A
5077771 Skillicorn et al. Dec 1991 A
5077777 Daly Dec 1991 A
5090046 Friel Feb 1992 A
5105456 Rand et al. Apr 1992 A
5117829 Miller et al. Jun 1992 A
5153900 Nomikos et al. Oct 1992 A
5161179 Suzuki et al. Nov 1992 A
5173612 Imai et al. Dec 1992 A
5196283 Ikeda et al. Mar 1993 A
5206534 Birkle et al. Apr 1993 A
5217817 Verspui et al. Jun 1993 A
5226067 Allred et al. Jul 1993 A
RE34421 Parker et al. Oct 1993 E
5258091 Imai et al. Nov 1993 A
5267294 Kuroda et al. Nov 1993 A
5343112 Wegmann Aug 1994 A
5391958 Kelly Feb 1995 A
5392042 Pellon Feb 1995 A
5400385 Blake et al. Mar 1995 A
5422926 Smith et al. Jun 1995 A
5428658 Oettinger et al. Jun 1995 A
5432003 Plano et al. Jul 1995 A
5457041 Ginaven et al. Oct 1995 A
5465023 Garner Nov 1995 A
5469429 Yamazaki et al. Nov 1995 A
5469490 Golden et al. Nov 1995 A
5478266 Kelly Dec 1995 A
5524133 Neale et al. Jun 1996 A
5561342 Roeder et al. Oct 1996 A
5567929 Ouimette Oct 1996 A
RE35383 Miller et al. Nov 1996 E
5571616 Phillips et al. Nov 1996 A
5578360 Viitanen Nov 1996 A
5607723 Plano et al. Mar 1997 A
5616179 Baldwin et al. Apr 1997 A
5621780 Smith et al. Apr 1997 A
5627871 Wang May 1997 A
5631943 Miles May 1997 A
5680433 Jensen Oct 1997 A
5682412 Skillicorn et al. Oct 1997 A
5696808 Lenz Dec 1997 A
5729583 Tang et al. Mar 1998 A
5740228 Schmidt et al. Apr 1998 A
5774522 Warburton Jun 1998 A
5812632 Schardt et al. Sep 1998 A
5835561 Moorman et al. Nov 1998 A
5870051 Warburton Feb 1999 A
5898754 Gorzen Apr 1999 A
5907595 Sommerer May 1999 A
6002202 Meyer et al. Dec 1999 A
6005918 Harris et al. Dec 1999 A
6044130 Inazura et al. Mar 2000 A
6062931 Chuang et al. May 2000 A
6069278 Chuang May 2000 A
6075839 Treseder Jun 2000 A
6097790 Hasegawa et al. Aug 2000 A
6133401 Jensen Oct 2000 A
6134300 Trebes et al. Oct 2000 A
6184333 Gray Feb 2001 B1
6205200 Boyer et al. Mar 2001 B1
6282263 Arndt et al. Aug 2001 B1
6288209 Jensen Sep 2001 B1
6307008 Lee et al. Oct 2001 B1
6320019 Lee et al. Nov 2001 B1
6351520 Inazaru Feb 2002 B1
6385294 Suzuki et al. May 2002 B2
6438207 Chidester et al. Aug 2002 B1
6447880 Coppens Sep 2002 B1
6477235 Chornenky et al. Nov 2002 B2
6487272 Kutsuzawa Nov 2002 B1
6487273 Takenaka et al. Nov 2002 B1
6494618 Moulton Dec 2002 B1
6546077 Chornenky et al. Apr 2003 B2
6567500 Rother May 2003 B2
6646366 Hell et al. Nov 2003 B2
6658085 Sklebitz Dec 2003 B2
6661876 Turner et al. Dec 2003 B2
6738484 Nakabayashi May 2004 B2
6740874 Doring May 2004 B2
6778633 Loxley et al. Aug 2004 B1
6799075 Chornenky et al. Sep 2004 B1
6803570 Bryson, III et al. Oct 2004 B1
6816573 Hirano et al. Nov 2004 B2
6819741 Chidester Nov 2004 B2
6838297 Iwasaki Jan 2005 B2
6852365 Smart et al. Feb 2005 B2
6876724 Zhou Apr 2005 B2
6956706 Brandon Oct 2005 B2
6962782 Livache et al. Nov 2005 B1
6976953 Pelc Dec 2005 B1
6987835 Lovoi Jan 2006 B2
7035379 Turner et al. Apr 2006 B2
7046767 Okada et al. May 2006 B2
7085354 Kanagami Aug 2006 B2
7130380 Lovoi et al. Oct 2006 B2
7130381 Lovoi et al. Oct 2006 B2
7166910 Minervini Jan 2007 B2
7203283 Puusaari Apr 2007 B1
7206381 Shimono et al. Apr 2007 B2
7215741 Ukita May 2007 B2
7224769 Turner May 2007 B2
7233647 Turner et al. Jun 2007 B2
7286642 Ishikawa et al. Oct 2007 B2
7305066 Ukita Dec 2007 B2
7358593 Smith et al. Apr 2008 B2
7364794 Ohnishi et al. Apr 2008 B2
7378157 Sakakura et al. May 2008 B2
7382862 Bard et al. Jun 2008 B2
7428054 Yu et al. Sep 2008 B2
7428298 Bard et al. Sep 2008 B2
7448801 Oettinger et al. Nov 2008 B2
7448802 Oettinger et al. Nov 2008 B2
7486774 Cain Feb 2009 B2
7526068 Dinsmore Apr 2009 B2
7529345 Bard et al. May 2009 B2
7618906 Meilahti Nov 2009 B2
7634052 Grodzins Dec 2009 B2
7649980 Aoki et al. Jan 2010 B2
7657002 Burke et al. Feb 2010 B2
7684545 Damento et al. Mar 2010 B2
7693265 Hauttmann et al. Apr 2010 B2
7709820 Decker et al. May 2010 B2
7737424 Xu et al. Jun 2010 B2
7756251 Davis et al. Jul 2010 B2
7983394 Kozaczek Jul 2011 B2
8498381 Liddiard et al. Jul 2013 B2
8929515 Liddiard Jan 2015 B2
20020075999 Rother Jun 2002 A1
20020094064 Zhou Jul 2002 A1
20030096104 Tobita et al. May 2003 A1
20030117770 Montgomery et al. Jun 2003 A1
20030122111 Glatkowski Jul 2003 A1
20030152700 Asmussen et al. Aug 2003 A1
20040076260 Charles, Jr. et al. Apr 2004 A1
20040131835 Schmitt et al. Jul 2004 A1
20050018817 Oettinger et al. Jan 2005 A1
20050141669 Shimono et al. Jun 2005 A1
20050207537 Ukita Sep 2005 A1
20060098778 Oettinger et al. May 2006 A1
20060233307 Dinsmore Oct 2006 A1
20060269048 Cain Nov 2006 A1
20070025516 Bard et al. Feb 2007 A1
20070087436 Miyawaki et al. Apr 2007 A1
20070111617 Meilahti May 2007 A1
20070133921 Haffner et al. Jun 2007 A1
20070165780 Durst et al. Jul 2007 A1
20070183576 Burke et al. Aug 2007 A1
20080181365 Matoba Jul 2008 A1
20080199399 Chen et al. Aug 2008 A1
20080296479 Anderson et al. Dec 2008 A1
20080296518 Xu et al. Dec 2008 A1
20080317982 Hecht Dec 2008 A1
20090086923 Davis et al. Apr 2009 A1
20100003186 Yoshikawa et al. Jan 2010 A1
20100096595 Prud'Homme et al. Apr 2010 A1
20100126660 O'Hara May 2010 A1
20100140497 Damiano, Jr. et al. Jun 2010 A1
20100239828 Cornaby et al. Sep 2010 A1
20100243895 Xu et al. Sep 2010 A1
20100248343 Aten et al. Sep 2010 A1
20100285271 Davis et al. Nov 2010 A1
20100323419 Aten et al. Dec 2010 A1
20110017921 Jiang et al. Jan 2011 A1
20110031566 Kim et al. Feb 2011 A1
20110089330 Thomas Apr 2011 A1
20110121179 Liddiard May 2011 A1
20120003448 Weigel et al. Jan 2012 A1
20120025110 Davis Feb 2012 A1
20120087476 Liddiard Apr 2012 A1
20120213336 Liddiard Aug 2012 A1
20130051535 Davis Feb 2013 A1
20130064355 Davis Mar 2013 A1
20130077761 Sipila Mar 2013 A1
20130089184 Sipila Apr 2013 A1
20130094629 Liddiard Apr 2013 A1
20130315380 Davis et al. Nov 2013 A1
20140140487 Harker et al. May 2014 A1
20150016593 Larson et al. Jan 2015 A1
Foreign Referenced Citations (36)
Number Date Country
1030936 May 1958 DE
4430623 Mar 1996 DE
19818057 Nov 1999 DE
0297808 Jan 1989 EP
0330456 Aug 1989 EP
0400655 May 1990 EP
0400655 Dec 1990 EP
0676772 Mar 1995 EP
1252290 Nov 1971 GB
57082954 Aug 1982 JP
S6074253 Apr 1985 JP
S6089054 May 1985 JP
3170673 Jul 1991 JP
05066300 Mar 1993 JP
5135722 Jun 1993 JP
06119893 Jul 1994 JP
6289145 Oct 1994 JP
6343478 Dec 1994 JP
8315783 Nov 1996 JP
2001179844 Jul 2001 JP
2003007237 Jan 2003 JP
2003088383 Mar 2003 JP
2003510236 Mar 2003 JP
20033211396 Jul 2003 JP
4171700 Jun 2006 JP
2006297549 Nov 2006 JP
10-2005-0107094 Nov 2005 KR
WO 9965821 Dec 1999 WO
WO 0009443 Feb 2000 WO
WO 0017102 Mar 2000 WO
WO 03076951 Sep 2003 WO
WO 2008052002 May 2008 WO
WO 2009009610 Jan 2009 WO
WO 2009045915 Apr 2009 WO
WO 2009085351 Jul 2009 WO
WO 2010107600 Sep 2010 WO
Non-Patent Literature Citations (49)
Entry
PCT application EP12167551.6; filed May 10, 2012: Robert C. Davis; European search report mailed Nov. 21, 2013.
U.S. Appl. No. 11/756,962, filed Jun. 1, 2007; Anderson et al.
U.S. Appl. No. 12/352,864, filed Jan. 13, 2009; Lines.
U.S. Appl. No. 12/726,120, filed Mar. 17, 2010; Lines.
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek.
U.S. Appl. No. 12/783,707, filed May 20, 2010; Steven D. Liddiard.
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard.
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Lei Pei.
U.S. Appl. No. 13/312,531, filed Dec. 6, 2011; Steven Liddiard.
U.S. Appl. No. 13/312,531, filed Dec. 6, 2011; Steven Liddiard; office action dated Dec. 20, 2013.
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; notice of allowance and fee(s) mailed Jun. 4, 2013.
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7).
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009.
Comfort, J. H., “Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures,” J. Appl. Phys. 65, 1067 (1989).
Grybos et al.; “DEDIX—Development of Fully Integrated Multichannel ASIC for High Count Rate Digital X-ray Imagining systems”; IEEE 2006; Nuclear Science Symposium Conference Record.
Grybos, “Pole-Zero Cancellations Circuit With Pulse Pile-Up Tracking System for Low Noise Charge-Sensitive Amplifiers”; Mar. 25, 2009; from IEEE Xplore.
Grybos, et al “Measurements of Matching and High Count Rate Performance of Multichannel ASIC for Digital X-Ray Imaging Systems”; IEEE Transactions on Nuclear Science, vol. 54, No. 4, 2007.
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride, and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991).
http://www.orau.org/ptp/collection/xraytubescollidge/MachelettCW250.htm, 1999, 2 pgs.
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988).
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989).
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989).
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991).
Maya, L., and L. A. Harris, “Pyrolytic deposition of carbon films containing nitrogen and/or boron,” J. Amer. Ceramic Soc. 73, 1912 (1990).
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985).
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages.
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989).
Nakajima et al; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435; vol. 60, No. 7.
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985).
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159.
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991).
Rankov. A. “A Novel Correlated Double Sampling Poly-Si Circuit for Readout System in Large Area X-Ray Sensors”, 2005.
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989).
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476.
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990).
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No. 5, Oct. 2005.
Tien-Hui Lin et al., “An investigation on the films used as teh windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only.
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985).
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190.
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3.
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991).
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006.
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages.
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages.
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages.
www.moxtek.com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages.
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO—Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp. 17254-17259, vol. III.
U.S. Appl. No. 13/307,579, filed Nov. 30, 2011; Dongbing Wang.
U.S. Appl. No. 13/855,575, filed Apr. 2, 2013; Robert C. Davis.
Related Publications (1)
Number Date Country
20130315380 A1 Nov 2013 US
Provisional Applications (4)
Number Date Country
61689392 Jun 2012 US
61486547 May 2011 US
61495616 Jun 2011 US
61511793 Jul 2011 US
Continuation in Parts (1)
Number Date Country
Parent 13453066 Apr 2012 US
Child 13667273 US