HIGH SURFACE AREA CARBON AND PROCESS FOR ITS PRODUCTION

Information

  • Patent Application
  • 20120094828
  • Publication Number
    20120094828
  • Date Filed
    October 21, 2011
    13 years ago
  • Date Published
    April 19, 2012
    12 years ago
Abstract
The present invention provides a high surface area porous carbon material and a process for making this material. In particular, the carbon material is derived from biomass and has large mesopore and micropore surfaces that promote improved adsorption of materials and gas storage capabilities.
Description
FIELD OF THE INVENTION

The present invention relates to high surface area porous carbon materials and, in particular, biomass-based activated carbon materials.


BACKGROUND OF THE INVENTION

Carbon materials, generally referred to as activated carbons, for adsorption, liquid cleanup, gas cleanup, gas storage, and monolith structures are widely available from many sources. Useful carbon materials have high surface areas and a high density of pores with optimal diameters. Table 1 lists the diameters considered to be critical (i.e., pore diameters below which the molecule would not fit into the pore) for adsorption. Observations and theory tend to agree that the optimal diameter for adsorbing a molecule is about 2.7 times the critical diameter, with optimal pore diameters of 6 Å, 6 Å, and 11 Å for hydrogen, acetylene, and methane, respectively.









TABLE 1







Common molecules and their critical diameters (Dcrit)a










Molecule
Dcrit (Å)













Hydrogen
2.4



Acetylene
2.4



Oxygen
2.8



Nitrogen
3.0



Water
3.2



Methane
4.0



Methanol
4.4






aMineral Adsorbents, Filter Agents and Drying Agents. Aldrich Technical Bulletin. http://www.sigmaaldrich.com/Brands/Aldrich/Tech_Bulletins/AL_143/Molecular_Sieves.html.







The available carbons, whether derived from fossil fuels or biomass, rarely have surface areas in excess of 2000 m2/g and generally have pore diameters and pore volumes such that they are not able to adsorb and store >20% of their weight in natural gas (methane) at ambient temperature and a pressure of 500 psig. Thus, there is a need for a carbon material, preferably derived from biomass and hence renewable, with a high surface area and a high volume of pores with diameters in a range that promotes high storage capacity of natural gas and other energy carriers. Activated carbons having these properties would be useful in a wide range of applications, such as fuel tanks in vehicles, batteries, electrical capacitors, separation and purification devices, and catalysts.


BRIEF SUMMARY OF THE INVENTION

Among the various aspects of the invention, one aspect provides an activated carbon comprising a plurality of particles. Each particle in this aspect has an overall particle size of at least 100 mesh and a total porosity of at least about 70%.


Another aspect provides a process for making an activated carbon adsorbent that includes contacting a biomass feed stock with an acidic solution to form an acid soak having a mass ratio (acid solution: biomass) ranging from about 0.2:1 to about 1.5:1. The acidic solution includes an acid in water at an acid concentration ranging from about 50% to about 70% by mass. The process also includes maintaining the acid soak at a temperature ranging from about 30° C. to about 75° C. for a soak time ranging from about 8 hours to about 14 hours to form an acid-treated biomass. The process further includes forming a char by heating the acid-treated biomass to a char temperature ranging from about 400° C. to about 600° C. at a heating rate of less than about 2° C. per minute, maintaining the char temperature for a char time ranging from about 0.5 hours to about 3 hours, cooling the char to room temperature at a rate of less than about 2° C. per minute, and rinsing the char. The process additionally includes forming an aqueous slurry by contacting the char with an amount of an alkaline material having a pH greater than about 9; the slurry has a mass ratio of alkaline material:char ranging from about 1:1 to about 5:1. The process also additionally includes forming the adsorbent by heating the aqueous slurry to an activation temperature ranging from about 600° C. to about 1000° C. in the absence of oxygen, maintaining the activation temperature for an activating time ranging from about 0.1 hours to about 3 hours, cooling the slurry to room temperature at a cooling rate of less than rate of less than about 2° C. per minute, and rinsing the activated carbon.


Other aspects and features of the invention will be in part apparent and in part pointed out hereinafter.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a block flow diagram illustrating key steps in the preferred carbon synthesis process. Important parameters that may impact the performance of the activated carbon product are listed to the right.



FIG. 2 is a block flow diagram illustrating an alternative synthesis path designed to increase graphite content for producing monolith materials intended for use in electrical devices.



FIG. 3 shows volume-for-volume methane storage isotherms for activated carbon prepared with different rates of base treatment in the base activation step. Uptake is at 20° C.



FIG. 4 shows gravimetric methane storage isotherms for activated carbon prepared with different rates of base treatment in the base activation step. Uptake is at 20° C.



FIG. 5 shows nitrogen isotherms for activated carbon prepared at different rates of base treatment in base activation step. Uptake is at 77 K.



FIG. 6 is a graphic illustration of the impact of pore volume and surface area on methane adsorption.



FIG. 7 illustrates two differed channel options to overcome pressure drops.



FIG. 8 shows nitrogen isotherms for activated carbon prepared at different temperatures of base activation. Uptake is at 77 K.



FIG. 9 shows high-performance gravimetric methane storage isotherms at 20° C. and illustrates that preferred embodiments of this invention are carbons with a large micropore volume and large mesopore volume (e.g., Ba5.32, Table 7) if the target is a minimum-weight methane tank.



FIG. 10 shows high-performance volumetric methane storage isotherms at 20° C. and illustrates that preferred embodiments of this invention are carbons with a large micropore volume and a small mesopore volume (e.g., S-33/k, Table 7) if the target is a minimum-volume methane tank.





DETAILED DESCRIPTION OF THE INVENTION

An activated carbon material has been discovered that has a particularly high mesopore volume and high surface area, such that it has excellent performance advantages in many applications. In certain preferred embodiments, the carbon materials have DFT surface areas in excess of 1500 m2/g. In particular, certain activated carbons of this invention have pore volumes in excess of 1 cc/g for pores whose diameters range from about 10 Å to about 50 Å. This feature of the carbon materials leads to superior performance in application-specific devices as summarized in Table 2. In other embodiments, the activated carbons have DFT surface areas in excess of 2850 m2/g and these carbons provide superior performance in applications that include natural gas (methane) storage, hydrogen storage, removing forms of soluble metals from liquids, and cleanup of gases.


A multi-step process is used in the manufacturing of these activated carbon materials. The process includes a first charring step that produces a desirable initial micropore and mesopore volume and a second step that produces high surface areas with preservation of useful distributions of mesopore and micropore volumes. A briquetting step densifies the activated carbon and provides for monolith-like material useful in applications such as gas storage, electrical devices, and fluid processing cartridges.









TABLE 2







Application-specific uses of the materials of this invention.











Novelty of




Invention


Application
Critical Parameter
Embodiments













methane
pore volume for pores with diameters between 10
>1.0
cc/g


storage tank
and 50 Å




hydrogen
pore volume for pores with at diameters less than
>0.5
cc/g


storage tank
10 Å












weight % of incorporated metal of atomic weight
>1%



less than 60




weight % of co-adsorbent compound with critical
>1%



diameter between 7.5 and 12 Å











acetylene
pore volume for pores with diameters between 10
>0.7
cc/g


storage tank
and 15 Å




separates
pore volume for pores with diameters between 10
>1.0
cc/g.


methane from
and 50 Å




other gases





molecular sieve
pore volume for pores with diameters less than 10 Å
>0.5
cc/g


volatile organic
pore volume for pores with diameters between 10
>1.2
cc/g


compound
and 50 Å




adsorbent





water treatment
pore volume for pores with diameters less than 10 Å
>0.5
cc/g


adsorbent.





electrical
BET surface area
>2500
m2/g


capacitor





battery
pore volume for pores with diameters between 10
>1.0
cc/g



and 50 Å












weight % of incorporated metal selected from the
>5%



group lithium, sodium, lead, cobalt, iron, and




manganese



catalyst support
weight % for incorporated metal selected from the
>0.1%  



group platinum, ruthenium, palladium, copper,




chromium, cobalt, silver, gold, and vanadium or




acidic or basic sites











catalyst support
BET surface area
>1000
m2/g


in a fuel cell





ion exchange
pore volume for pores with diameters between 10
>1.0
cc/g


material
and 50 Å











water treatment
weight % of incorporated metal such as iron
>2%


adsorbent









I. Mesopore Material

One aspect of the invention provides a biomass-based activated carbon that is porous and comprises greater than 50% carbon by weight. Furthermore, the activated carbon has the following properties that improve adsorption: a DFT surface area greater than 1500 m2/g, a pore volume greater than about 0.6 cc/g for pores with diameters between 10 Å and 50 Å, a pore volume greater than about 0.4 cc/g for pores with diameters between 10 Å and 20 Å, and a distribution of pores such that at least about 20% of the pore volume comprises pores with diameters between 20 Å and 50 Å. More preferably the activated carbon has a pore volume greater than about 0.8 cc/g for pores whose diameters range from about 10 Å to about 50 Å. Even more preferably, the activated carbon has a pore volume greater than about 1.1 cc/g for pores whose diameters range from about 10 Å to about 50 Å.


These properties provide for good natural gas (methane) adsorption, including the ability to adsorb greater than 15% of its weight in natural gas at 20° C. and a natural gas pressure of 500 psig. Typically, the micropore volume is between 0.32 and 1.2 cc/g and the mesopore volume is greater than 0.25 cc/g.


Materials for certain applications are more dependent on critical combinations of surface area and pore volume, such as the following:

    • The preferred activated carbon may be used in a methane storage tank, wherein the activated carbon has a pore volume greater than 1.0 cc/g for pores with diameters between 10 Å and 50 Å.
    • The preferred activated carbon may be used in a hydrogen storage tank, wherein the activated carbon has a pore volume greater than 0.5 cc/g for pores with diameters less than 10 Å. Preferably, the activated carbon contains at least 1% by weight of a metal of atomic weight less than 60. The activated carbon of the hydrogen storage tank may incorporate a co-adsorbent compound at a weight percentage greater than 1% with the compound having a critical diameter between 7.5 Å and 12 Å.
    • The preferred activated carbon may be used in a separator that separates methane from other gases, wherein the activated carbon has a pore volume greater than 1.0 cc/g for pores with diameters between 10 Å and 50 Å.
    • The preferred activated carbon may be used in a volatile organic compound adsorbent, wherein the activated carbon has a pore volume greater than 1.2 cc/g for pores with diameters between 10 Å and 50 Å.
    • The preferred activated carbon may be used as a water treatment adsorbent to remove organic compounds from water.


Materials for certain other applications are more dependent on surface area, such as the following:

    • The preferred activated carbon may be used in a battery, wherein the activated carbon has a pore volume greater than 1.0 cc/g for pores with diameters between 10 Å and 50 Å. The activated carbon in this battery may further comprise greater than 5% by weight a metal selected from the group consisting of lithium, sodium, lead, cobalt, iron, and manganese.
    • The preferred activated carbon may be used as a catalyst support, wherein the carbon further comprises greater than 0.1% by weight a metal selected from the group consisting of platinum, ruthenium, palladium, copper, chromium, cobalt, silver, gold, and vanadium.
    • The preferred activated carbon may be used as a catalyst support in a fuel cell.
    • The preferred activated carbon may be used as an ion exchange material, wherein the activated carbon has a pore volume greater than 1.0 cc/g for pores with diameters between 10 Å and 50 Å.
    • The preferred activated carbon may be used as a water treatment adsorbent to remove metals from water. For some water treatment applications the activated carbon may incorporate greater than 2% by weight of a metal to improve adsorption of targeted materials in the water.


II. Micropore Material

Another aspect of the invention provides activated carbon materials that have very high specific surface areas. These biomass-based activated carbon materials are porous, comprise greater than 50% by weight of carbon, and have improved adsorption characteristics. These activated carbons have the following properties: a nitrogen DFT surface area greater than 2850 m2/g and a pore volume greater than 0.5 cc/g for pores with diameters less than 10 Å. More preferably, the material is an activated carbon with a pore volume greater than 0.50 cc/g for pores in the less than 10 Å diameter range. Even more preferably, the material is an activated carbon with a pore volume greater than 0.70 cc/g for pores in the less-than 10 Å diameter range. More preferably, the DFT surface area is greater than 3100 m2/g.


Materials for certain micropore applications are more dependent on critical combinations of surface area and pore volume, such as the following:

    • The preferred activated carbon may be used in a molecular sieve, wherein the activated carbon has a pore volume greater than about 0.50 cc/g for pores with diameters less than about 10 Å.
    • The preferred activated carbon may be used in an acetylene storage tank, wherein the activated carbon has a pore volume greater than about 0.7 cc/g for pores with diameters between about 10 Å and about 15 Å.
    • The preferred activated carbon may be used in an electrical capacitor, wherein the activated carbon has a BET surface area greater than about 2500 m2/g.


III. Volume-Based Storage Material

Still another aspect of the invention encompasses materials that maximize storage on a per-volume basis. The preferred activated carbon comprises greater than about 50% by weight of carbon of recent biomass origin, and a DFT surface area greater than about 1500 m2/g; a 10-20 porosity, which is defined as the volume of pores with diameters between 10 and 20 Å, in cc/g, multiplied by the apparent density, in g/cc, wherein the 10-20 porosity is greater than about 0.25. The activated carbon further comprises a pore volume greater than about 0.4 cc/g for pores whose diameters range from about 10 Å to about 20 Å, and a distribution of pores such that at least about 30% of the pore volume comprises pores whose diameters range from about 10 Å to about 20 Å. More preferably, the activated carbon has a 10-20 porosity, which is defined as the volume of pores with diameters between 10 and 20 Å, in cc/g, multiplied by the apparent density, in g/cc, wherein the 10-20 porosity is greater than about 0.3, and a pore volume greater than about 0.5 cc/g for pores whose diameters range from about 10 Å to about 20 Å. Metals present at a concentration greater than about 10% by weight may enhance performance in applications such as a methane storage tank, a hydrogen storage tank, an acetylene storage tank, a capacitor, a battery, and a molecular sieve.


IV. Fabrication Process for Activated Carbons

A further aspect of the invention provides a process for making an activated carbon. FIG. 1 illustrates in block flow a preferred process of this invention. This embodiment comprises sequential steps of preparing a biomass, acid soaking, charring, and activating the char in the presence of a base. For many applications, water may be used to wash the activated carbon to remove the base. Optionally, the washed base may be recovered for recycle and reuse. Optionally, the phosphoric acid may also be recovered for recycle. Optionally, the activated carbon may be pressed into a briquette. FIG. 2 illustrates an alternative embodiment with higher temperature base activation to prepare higher-graphite materials for use in electrical devices.


In general, the process fabricates an activated carbon that is porous and comprises greater than 50% by weight of carbon of recent biomass origin. The process comprises charring a biomass feed stock containing greater than 40% by weight of carbon at a temperature from about 350° C. to about 850° C. to produce a char having a DFT surface area greater than about 900 m2/g and a pore volume greater than about 1.0 cc/g for pores whose diameters range from about 10 Å to about 50 Å. The process further comprises activating the char in the presence of an alkaline material having a pH greater than about 9 at a temperature from about 600° C. to about 1000° C. to produce an activated carbon having a DFT surface area greater than about 1700 m2/g, a total pore volume greater than 1.1 cc/g, and a distribution of pores such that at least 20% of the pore volume comprises pores whose diameter range from about 20 Å to about 50 Å.


Preferably, the base is a metallic hydroxide selected from the group consisting of potassium hydroxide, sodium hydroxide, lithium hydroxide, and beryllium hydroxide; the biomass is selected from the group consisting of corn cobs, wood products, olive pits, peach pits, coconut shells, and nut shells; the char is produced from a blend of the biomass and phosphoric acid where the mass ratio of phosphoric acid and biomass is between 0.5:1 and 1:1; and the activated carbon is produced from a blend of the char and metallic hydroxide where the mass ratio of metallic hydroxide and biomass is between 1:1 and 5:1.


The fabrication procedure starts with pretreating the biomass and acid soaking the biomass in steps as summarized in Table 3. In general, smaller particle size makes soaking easier at lower temperatures, and ensures that acid reaches the center of the particle. Phosphoric acid (H3PO4) reacts well with the cellulose and lignin contents of the biomass compared to other acids. Higher acid content generally leads to better phosphorylation of the ligno-cellulosic matters of the biomass; however very high values may result in over-activation and loss of microporosity. Lower soaking temperatures generally ensure that the attack of the acid on the lignin and hemi-cellulose is not excessive and, hence, the structural damage is minimal before the actual temperature of phosphorylation and cross-linking is reached. Higher temperatures may cause structural changes in the biomass before the correct temperature is reached. Twelve hours of soaking time generally ensures that the acid reaches the interior of the biomass uniformly.


The preferred means to char the biomass includes selecting a biomass from the group including corn cobs, fruit seeds/pits, and wood; reducing the particle size to 5-100 mesh; using phosphoric acid at a concentration of 50-70% in water and mixing acid to biomass at a mass ratio from about 0.8:1 to about 1.3:1; soaking the biomass-acid mixture at 30-75° C. for 8-14 hours; and evaporating the excess water (from acid) at 170° C. for about 2 hours.


The exemplary means to char the biomass includes selecting corn cobs as the biomass; reducing the particle size to about 20-30 mesh; using phosphoric acid at a concentration of about 70% in water and mixing phosphoric acid to biomass at a mass ratio from about 0.9:1 to about 1:1; soaking the biomass-acid mixture at about 30° C. for about 12 hours; and evaporating the excess water (from acid) at 170° C. for about 2 hours.









TABLE 3







Preferred conditions for the pretreating and acid soaking steps.










Parameters
Broad Description
Preferred
Best










Pretreating of Biomass










Choice of
Any biomass that can be
corn cobs, fruit
corn cobs


biomass
processed to 2-30 mesh
seeds/pits,





wood



Particle size
Smallest dimension less
5-100 mesh
20-30


reduction and
than 5 inches

mesh


control










Acid Soaking










Choice of acid
phosphoric, boric,
phosphoric
phosphoric



sulfuric, zinc chloride
acid
acid



and similar





dehydrating agents




Acid
30-80%
50-70%
70%


concentration





(in water)





Mass ratio of
0.2:1 to 1.5:1
0.8:1 to 1.3:1
0.9:1 to 1:1


acid to biomass





Soak
10-100° C.
30-75° C.
30° C.


temperature





Soak time
2-24 hrs
8-14 hrs
12 hrs


(duration)





Methodology
Contact/wash with water,
Evaporate near



for removing
heat to evaporate residual
170° C. for



excess acid
water and some of
about 2 hours




the acid









Conditions for charring and washing of the char are summarized in Table 4. The rate of heating is slow, but not necessary over entire temperature range. The charring time is the period of time at the final temperature; charring occurs even during the heat-up process at temperatures greater than about 300° C. Preferred particle sizes relate to particle sizes that make soaking easier at lower temperatures, and ensure that the acid reaches the center of the particle.


The preferred charring conditions are heating to the charring temperature of at a rate of less than 2° C./min and charring at a temperature between 400 and 600° C. for 0.5 to 3 hours. Exemplary conditions are heating to the charring temperature at a rate of about 0.5° C./min and charring at a temperature of about 450° C. for 1.5 hours.









TABLE 4







Preferred conditions for the charring and washing of char steps.










Parameters
Broad Description
Preferred
Best










Charring










Rate of heating
Whatever is cost effective,
Less than
0.5° C./min


to charring
faster heating rates may
2° C./min



temperature
require more-costly





equipment




Temperature of
350-850° C.
400-600° C.
450° C.


charring





Charring time
0-24 hr
0.5-3 hr
1.5 hr


(duration)





Methodology
Contact/wash with water
Trickle water



for washing

through bed



char

of carbon





until pH of





water is 7



Particle size
Smallest dimension less
5-200 mesh
20-60


reduction and
than 0.5 inches

mesh


control





Cooling
Whatever is cost effective,
Less than




faster heating rates may
2° C./min




require more-costly





equipment




Rate of heating
Whatever is cost effective

<2° C./min


to charring





temperature









Conditions for adding the base, base activating, and washing to remove the base are summarized in Table 5. The preferred base is KOH since it often produces pores with smaller diameter than other bases. Smaller particle sizes allow for a better reaction of char with KOH.


The preferred conditions for adding base and activating are adding a base to a char having a surface area greater than 900 m2/g and mesopore volume greater than 0.3 cc/g, wherein the base is selected from the group consisting of KOH, NaOH, and LiOH such that the mass ratio of base to char is from about 1.5:1 to about 5:1. Activating is preferably performed at 700-900° C. in the absence of oxygen, such as with a nitrogen purge, for about 0.1 to about 3 hours. For most, but not all, applications the activated carbon is washed with water after cooling to ambient temperature until the wash water has a pH less than 7.0.


Exemplary conditions include using KOH at a mass ratio of about 2.5:1 to about 4:1, activating at about 800° C. in the absence of oxygen for about 1 hour.









TABLE 5







Preferred conditions for adding base, base activating, and washing to


remove base steps.










Parameters
Broad Description
Preferred
Best










Adding Base










Choice of base
KOH, NaOH, LiOH,
KOH, NaOH,
KOH



K2CO3, Na2CO3,
LiOH




pH > 10




Mass ratio of
0.5:1 to 6:1
1.5:1 to 5:1
2.5:1 to


base to char


4:1


Methodology of

Mix base, carbon,



Addition

and water in paste





to slurry





consistency








Base Activating










Rate of heating
Whatever is cost
5-15° C./min
9-10°


to charring
effective, faster heating

C./min


temperature
rates may require





more-costly





equipment




Temperature of
600-1000° C.
700-900° C.
800° C.


activating





Activating time
0.1-24 hr
0.1-3 hr
1 hr


(duration)





Cooling
Whatever is cost
Less than 2°




effective, faster heating
C./min




rates may require





more-costly





equipment









Washing to Remove Base










Methodology for
Contact/wash with water
Trickle water



washing

through bed of





carbon until pH





of water is 7



Handling of
Evaporate excess water
Staged and/or



recovered base
from wash water
countercurrent



for recycle

wash that





concentrates base





in wash water









In some embodiments, the activated carbon may be further processed into briquettes. Preferred conditions for briquetting are summarized in Table 6. Optimum amounts of binder provide enough compression and abrasion strengths to the monoliths and promote higher densities. Higher binder additions can plug pores and decrease micropore volumes. Preferred briquetting temperatures allow the binder to reach the glass transition phase and provide monoliths with better compressive and abrasive strengths. Preferred pressures lead to monoliths with high piece densities (apparent density) and better compressive and abrasive strengths. Pressures even higher than 16000 psi may be effective and, in some cases, preferred. Pressing time and post-treating at elevated temperatures may be needed to open the pore structure in the briquette as some pores may be plugged with binder.


The preferred conditions for briquetting include mixing 40-100 mesh activated carbon particles with about 20-40% of a briquette binder, such as polyvinylidene chloride or modified soybean oil. The preferred method to modify a vegetable oil, preferably soybean oil, for use as a briquette binder is to body the vegetable oil. The preferred bodying process is to heat the oil at a temperature from about 200° C. to about 400° C. in the absence of oxygen for an adequate period of time such that the viscosity is increased to at least 200 cP but less than 40000 cP. Preferably, the briquette is formed by pressing at a temperature of about 150-180° C., at a pressure of about 14000-16000 psi for about 1-2 hours. The preferred post-treatment pyrolysis is at a temperature of about 700-900° C.


Exemplary conditions for briquetting include mixing 50-100 mesh activated carbon particles with about 30% of a briquette binder, such as polyvinylidene chloride or modified soybean oil. The briquette is formed by pressing at a temperature of about 175° C., at a pressure of about 16000 psi for about 990 min, and then heating at a temperature of about 750° C.









TABLE 6







Preferred conditions for briquetting.










Parameters
Broad Description
Preferred
Best










Briquetting










Particle size
20-100 mesh
40-100 mesh
50-100


reduction and


mesh


control





Selection of
Any material capable of
polyvinylidene



binder
polymerizing at
chloride,




temperatures above
modified




100° C., adhesives, or
soybean oil




thermoplastic polymers




Amount of
5-50%
20-40%
30%


binder
Thoroughly mix such
Add carbon to



Methodology
that all components
liquids to



for
have at least some
generate evenly



binder addition
minimum particle
mixed wetted




size
carbon



Temperature of
130-180° C.
150-180° C.
175° C.


pressing





Pressure of
13000-17000 psi
14000-16000
16000 psi


pressing

psi



Dye
No restrictions so long as




specifications
temperature, pressure,





and time constraints are





met throughout mold




Briquette
No restrictions
0.25-6″ height,
1″ height,


dimensions

0.25-4″ dia
3.5″ dia


Time of
0.1-270 min
60-120 min
90 min


pressing





Temperature of
600-1200° C.
700-900° C.
750° C.


post-treatment





pyrolysis





Rate of heating
0.1-5° C./min
0.1-2° C./min
0.1° C./min


during binder


up to


removal


500° C.;





1.5° C./min





up to





750° C.









When preparing briquettes for electro-chemical applications, it is preferred to use activating conditions that lead to higher graphite contents and binders that have or promote electrical conductivity.


By example, applications of the activated carbon material of this invention include: methane storage (especially with briquette embodiments); hydrogen storage (especially with briquette embodiments); purification of methane from landfill gases; purification of methane from natural gas wells; adsorption of volatile organic compounds from gases processed for release from chemical processes; adsorption of catalysts from products of liquid synthesis (including use of cartridges with briquette embodiments); supports for metal and acid catalysts; and electrode assemblies for use in batteries and/or fuel cells. As an example, Example 5 illustrates an application for removing soluble metals from an aqueous solution.


DEFINITIONS

To facilitate understanding of the invention, several terms are defined below.


An “activated carbon,” as used herein, refers to a char that has undergone a second heat treatment method (>300° C.) to increase surface area.


The “BET surface area” is computed from Brunauer-Emmett-Teller (BET) analysis of a nitrogen adsorption isotherm.


The term “biomass”, as used herein refers to recent organic matter, wherein “recent” generally means that it was produced as a direct or indirect result of photosynthesis within the past 10 years. Carbon-14 dating methods may be used to identify whether or not a carbon material is from biomass versus fossil fuels.


The phrase “biomass-based material” refers to a material that was made from biomass by manmade chemical or thermal processes.


The term “char,” as used herein, refers to a biomass that has been heat treated (>300° C.) one time to produce a material with a DFT surface area greater than about 900 m2/g.


The “DFT surface area” is computed from density functional theory (DFT) analysis of a nitrogen adsorption isotherm.


As used herein, a “mesopore” refers to a pore with a diameter from about 20 Å to about 500 Å.


As used herein, a “micropore” refers to a pore with a diameter less than about 20 Å.


The term “10-20 porosity,” as used herein, refers to the volume of pores with diameters between 10 Å and 20 Å, in cc/g, multiplied by the apparent density, in g/cc. The term “7.5-20 porosity,” as used herein, refers to the volume of pores with diameters between 7.5 Å and 20 Å, in cc/g, multiplied by the apparent density, in g/cc.


As various changes could be made in the above-described materials and processes without departing from the scope of the invention, it is intended that all matter contained in the above description and the examples presented below, shall be interpreted as illustrative and not in a limiting sense.


EXAMPLES

The following examples illustrate various embodiments of the invention. The following conclusions may be drawn regarding the embodiments of this invention:

    • The best performing samples of this invention had pore volumes greater than 1.8 cc/g except for S-33/k, which performed well despite not meeting this criterion. More broadly described, the preferred materials had pore volumes greater than 1.2 cc/g. Stated another way, the preferred materials had pore volumes in excess of about 1.0 cc/g for pores whose diameters ranged from about 7.5 Å to about 50 Å in diameter.
    • Methane surface area does correlate with pore volumes greater than 7.5 Å and less than 50 (or 40) Å.
    • Methane uptake does not correlate with pore volumes less than 7.5 Å.
    • Methane uptake at pressures higher than 500 psig (positive slope on excess adsorption at 500 psig) is enhanced by pores in the 20-40 Å diameter range. This is a distinct advantage of the embodiments of this invention with substantial pore volume in the 20-30 Å diameter range.
    • Hydrogen uptake correlates with pore volume in pores with diameters less than 10 Å.
    • Optimal KOH:char ratio is about 2.5:1 to 4.0:1 for methane storage.
    • Slightly reduced combinations of activation temperature and KOH lead to more pores <7.5 Å and very high surface area. Novel materials were made with pore volumes >0.5 cc/g in the <7.5 Å range. An interpretation of the processing is that higher temperatures cause KOH to continue to increase pore diameters to values greater than 10 Å. There are optimal values of activation temperature, KOH concentration, and activation time to maximize the volume of pores with diameters near about 10 Å. These optimal values are near those used to prepare samples S56 and Ba5.1 (see Table 7).
    • Soaking at 80° C. rather than 50° C. leads to greater density. Density tends to increase with soaking at a temperature between 75° C. and 100° C. for at least two hours prior to charring.
    • Higher acid concentration in soaking leads to greater density.
    • Capacitor functionality correlates with high surface area.


Example 1
Preparation and Characterization of Preferred Carbon Samples

A series of experiments were carried out to demonstrate the impact of different parameters (e.g., phosphoric acid treatment and KOH activation) on the final carbon pore volume, pore size distribution, and surface area. For purposes of clarity, the carbon materials prior to base (preferably KOH) activation are referred to as char and after base activation as activated carbon.


Dried crushed corncobs were mixed with different concentrations of phosphoric acid ranging from 0-70% by volume in the weight ratio of 1:1.5 (grams corn cob: grams phosphoric acid/water solution). This is about a 0.8:1 ratio of acid mass to corn cob mass on a water-free basis. The corn cobs were soaked at different temperatures in phosphoric acid for about 8-10 hrs. After that, the excess of phosphoric acid was removed by heating the mixture at 165-175° C. for 2 hrs. Then the soaked corncobs were carbonized at a constant temperature in the range 400-800° C. for 1 hour in nitrogen atmosphere to form a char. After carbonization, the char was washed thoroughly with water until the effluent has a pH of about 7 to remove the excess acid.


In order to get higher pore volumes and higher surface areas the char obtained by phosphoric acid was further treated. The char was mixed with varying amounts of KOH flakes and water to form a slurry. This slurry was then heated to temperatures between 700 to 900° C. in an inert atmosphere (e.g., under nitrogen) for one hour. The final product was then washed thoroughly with water until the effluent had a pH of about 7 to remove potassium solids formed during the reaction. KOH activation of the char formed an activated carbon.


The characterization of all the char/carbon produced was done with N2 adsorption at 77 K using the Autosorb 1-C instrument from Quantachrome. Analysis of isotherms was carried out by applying various methods to obtain different information. The BET equation was used to get the BET surface area from the N2 isotherm. The T-method was used to find the micropore volume and the external surface area of the mesoporous fraction from the volume of N2 adsorbed up to the P/P0=0.0315. The DFT method was used to estimate surface area as a function of pore size, while the BET method was used to report total surface area. Unless otherwise reported, these parameters were used in preparing the activated carbon.


Table 7 summarizes the preparation, characterization, and performance of several embodiments of this invention. For methane storage, the preferred samples had excess methane adsorption greater than 170 g/kg (grams of methane per kilogram of activated carbon). The more preferred samples also had a volume-for-volume methane storage capacity greater than 160 V/V.


Methane Uptake Analysis—A cylindrical pressure vessel of approximately 10 cc in volume was packed to approximately 85% full with a measured mass of carbon. The vessel was closed and subjected to about 0.02 bars absolute pressure (vacuum) for 4 hours at a temperature of 140° C. The mass change due to being subjected to vacuum was measured and the mass of carbon in the container was reduced based on this change. The cylinder was then pressured to 500 psig with methane at 20° C. for an hour to allow equilibration with the pressure and temperature. The mass increase from the vacuum state to equilibrium at these conditions was measured. The mass of the methane uptake minus the amount of mass of methane in the void space in the vessel was divided by the mass of the carbon to obtain the excess adsorption of methane per mass of carbon.









TABLE 7







Preparation conditions, performances, and properties of activated carbon samples with best performances.









Sample Name























S-





B-









Ba5.32
33/k
S-52
S-59
S-58
Ba5.31
S-62
21/k
Ba5.2
S-56
S-55
Ba5.1
S-36
S-30









Alt. Name

























KOH-
KOH-




KOH-
KOH-







KC2.5
KC3
HTT5
HTT4




HTT2
HTT1





Feed
Corn
Corn
Corn
Corn
Corn
Corn
Corn
Corn
Corn
Corn
Corn
Corn
PVDC
Saran



Cob
Cob
Cob
Cob
Cob
Cob
Cob
Cob
Cob
Cob
Cob
Cob
Latex















0.51




Acid Conc.
0.516

0.5
0.5
0.5
0.516


0.516
0.5
0.5
6




Soak T (° C.)
45
80
50
50
50
45
50
80
45
50
50
45




Acid:Feed (g:g)
0.8
0.8
0.8
0.8
0.8
0.8
1
0.8
0.8
0.8
0.8
0.8




Char T (° C.)
450
450
480
480
480
450
480
450
450
480
480
450




Base:Char (g:g)
4
2.5
3
3
3
4
4
2.5
3
3
3
2




Activation time
1 hr

1 hr
1 hr
1 hr
1 hr


1 hr
1 hr
1 hr
1 hr
1 hr
1 hr


Activation T (° C.)
790
790
800
900
850
790
790
790
790
750
700
790
750
750










30%
















binder








Methane Storage
















(20° C., 500 psig)
















Excess Ads (g/kg)a
197
193
193
186
179
176
175
170
158
146
141
135
77
74


Total Ads g/kgb
247
224
241
251
238
228
220
205
195
195
173
182
87
84


Total Ads in g/lb
95
130
100
100
83
89
96
108
99
79
98
76
94
93


Total Ads in V/Vc
145
199
153
152
127
136
146
165
151
121
150
117
143
142


BETd SA1) [m2/g]
3173
2129
2997
2932
3421
2939
3010
2243
2256
3175
1988
2556
660
591


DFTe SA2) <360 Å
2153
2149
2788
1934
2394
1852
2360
2106
2089
3484
2167
3158
954
1062


[m2/g]
















DFTe Sa2) <7.5 Å
543
954
1292
442
570
422
838
987
931
2095
1282
2164
796
895


[m2/g]
















Porosity
0.81
0.71
0.79
0.80
0.83
0.81
0.78
0.74
0.75
0.80
0.72
0.79
0.46
0.45


Apparent Densityf
0.38
0.58
0.41
0.40
0.35
0.39
0.44
0.53
0.51
0.41
0.57
0.42
1.07
1.10


(g/cc)
















Pore Vol <7.5 Å
0.16
0.26
0.38
0.13
0.17
0.12
0.24
0.29
0.27
0.61
0.37
0.63
0.23
0.22


[cc/g]
















Pore Vol <10 Å
0.24
0.39
0.52
0.20
0.27
0.18
0.34
0.39
0.38
0.77
0.43
0.76
0.25
0.25


[cc/g]
















Pore Vol <16 Å
0.62
0.81
0.92
0.49
0.69
0.45
0.77
0.71
0.72
1.16
0.75
0.98
0.28
0.28


[cc/g]
















Pore Vol <20 Å
0.86
0.96
1.15
0.66
0.87
0.64
0.98
0.88
0.87
1.32
0.85
1.03
0.29
0.28


[cc/g]
















Pore Vol <36 Å
1.51
1.05
1.47
1.41
1.67
1.44
1.48
1.09
1.09
1.56
0.97
1.26
0.33
0.31


[cc/g]
















Pore Vol <50 Å
1.66
1.06
1.56
1.72
2.00
1.59
1.56
1.16
1.17
1.64
1.02
1.39
0.36
0.34


[cc/g]
















Pore Vol <360 Å
1.87
1.09
1.72
1.85
2.16
1.83
1.62
1.26
1.31
1.78
1.13
1.69
0.39
0.38


[cc/g]
















Total Pore Vol
2.11
1.22
1.91
2.02
2.37
2.07
1.80
1.40
1.47
1.97
1.26
1.88
0.43
0.41


Direct from
















Isotherm [cc/g]
















Pore Vol (3-10 Å)g
0.24
0.39
0.52
0.20
0.27
0.18
0.34
0.39
0.38
0.77
0.43
0.76
0.25
0.25


Pore Vol (7.5-16 Å)
0.46
0.56
0.55
0.36
0.52
0.33
0.52
0.42
0.45
0.55
0.38
0.36
0.05
0.06


Pore Vol (10-20 Å)
0.62
0.57
0.63
0.45
0.60
0.46
0.64
0.49
0.49
0.55
0.42
0.27
0.04
0.04


Pore Vol (10-50 Å)
1.42
0.67
1.04
1.52
1.73
1.41
1.22
0.77
0.79
0.87
0.59
0.64
0.11
0.09


7.5-20 Porosityh
0.27
0.41
0.32
0.21
0.25
0.20
0.32
0.32
0.30
0.29
0.27
0.17
0.07
0.07


10-20 Porosityh
0.24
0.33
0.26
0.18
0.21
0.18
0.28
0.26
0.25
0.22
0.24
0.11
0.05
0.04


Percent Pores at
37.7
8.8
21.2
52.7
47.4
46.0
32.2
20.0
20.1
16.1
13.6
19.4
15.3
13.4


20-50 Å
















Percent Pores at
29.5
46.3
33.0
22.3
25.5
22.3
35.7
35.1
33.4
28.2
33.4
14.5
9.8
8.8


10-20 Å
















Percent Pores <50 Å
78.5
87.0
81.3
85.1
84.4
77.0
86.8
83.3
79.2
83.2
81.3
74.0
82.9
83.6






aExcess adsorption, mads, e, denotes the difference between the mass of methane adsorbed and the mass of an equal volume of non-adsorbed methane. Excess adsorption depends only on the surface area and how strongly the surface adsorbs methane; i.e., excess adsorption does not depend on the pore volume of the sample.




bThe amount stored, mst, denotes the total mass of methane present in the pore space (adsorbed plus non-adsorbed methane). It was computed from excess adsorption as mst/ms = mads, e/ms + (ρa−1 − ρs−1methane, where ms denotes the mass of the sample, ρa denotes the apparent density of the sample, f ρs denotes the skeletal density of the sample, f and ρmethane denotes the density of bulk methane at the given temperature and pressure. The gravimetric storage capacity, mst/ms, increases if the apparent density, ρa, decreases. The volumetric storage capacity, ρamst/ms, decreases if ρa decreases.




cThe volume-for-volume storage capacity, V/V, was computed as the amount stored, expressed as volume of methane at 25° C. and atmospheric pressure, per volume of sample, ρa/ms.




dComputed from Brunauer-Emmett-Teller (BET) analysis of the nitrogen adsorption isotherm.




eComputed from density functional theory (DFT) analysis of the nitrogen adsorption isotherm.




fApparent density, ρa, denotes the density of the sample including the pore space and was computed from ρa = (Vpore/ms + ρs−1)−1, where Vpore denotes the total pore volume of the sample, ms denotes the mass of the sample, and ρs denotes the skeletal density of the sample (density of the sample without the pore space).




gThe lower limit of 3 Å is implied as a result of nitrogen being used to evaluate porosity. The instrument's software reported this value as <7.5 Å.




h10-20 porosity is defined as the volume of pores with diameters between 10 and 20 Å, in cc/g, multiplied by the apparent density, in g/cc. The 7.5-20 porosity is defined as the volume of pores with diameters between 7.5 and 20 Å, in cc/g, multiplied by the apparent density, in g/cc.







Example 2
Parametric Studies on Charring Process

Table 8 summarizes the parametric study results on charring with phosphoric acid using 40-60 mesh corn cob stock.


The C-series demonstrates the impact of phosphoric acid concentration in which higher concentrations of phosphoric acid lead to higher surface areas for the char that is produced. This charring step consistently produces a char with a BET surface area of at least 900 m2/g.


The ST-series demonstrates the impact of acid soaking temperature. Soak temperatures greater than 80° C. dramatically decreased the BET surface area and increased char density.


The HTT-series demonstrates the impact of charring temperature in which exceeding higher charring temperatures results in decreased micropore volumes and decreased surface areas. Charring temperatures near 450° C. consistently produced a char with a BET surface area of at least 900 m2/g. Charring temperatures above about 450° C. decreased surface areas and micropore volumes.


The N-series re-evaluates the impact of charring temperature at the narrower range of temperatures of 400, 450, and 500° C. and with subsequent KOH activation. Process parameters included: 80% phosphoric acid, 1.5 g/g ratio of acid to feed stock, soaking at 80° C. for 24 hours, heating at 1.5° C./min to the indicated charring temperatures, charring for 1.5 hours at the indicated temperatures, a KOH:char ratio of 2 g/g, heating at maximum oven rate to the activation temperature, activation at 790° C. for 1 hour, cooling overnight, and washing with water to a neutral pH in a vacuum-drawn filter. The mass of carbon for methane uptake studies was at near-constant volume—the higher charring temperatures resulted in higher density carbons. Thus, while excess adsorption (g/g) was nearly constant over the 400-500° C. range, the V/V storage capacity increased with increasing temperature.


The RH-series demonstrates the impact of heating rate. Charring rates above about 0.5° C./min decreased surface areas and micropore volumes.









TABLE 8





Results of parametric study on charring conditions.

























Temper-

Micro-




Temperature
Rate
ature
BET
pore



% of
of
of Heat-
of
Surface
Vol-



H3PO4
Charring
ing ° C./
Soaking
Area
ume


Sample
Solution
° C.
min
° C.
m2/g
cc/g










Impact of Phosphoric Acid Concentration: C-Series













C-1
30
450
1.0
40
 934
0.252


C-2
50
450
1.0
40
 986
0.278


C-3
70
450
1.0
40
1195
0.315







Impact of Acid Soak Temperature: ST-Series













ST-1
50
450
1.0
30
1520
0.174


ST-2
50
450
1.0
80
1017
0.164


ST-3
50
450
1.0
85
 691
0.089







Impact of Charring Temperature: HTT-Series













HTT-1
50
450
1.0
50
 910
0.197


HTT-2
50
650
1.0
50
 826
0.052


HTT-3
50
800
1.0
50
 802
0.047


HTT-4
50
850
1.0
50
 424
0.073














Termperature

Methane



of
Mass
Uptake (excess



Charring
Carbon in
adsorption)


Sample
° C.
Chamber
g/100 g










Impact of Charring Temperature: N-Series










N-4.2-2
400
1.26
0.159


N-2-2
450
2.75
0.166


N-3-2
500
2.55
0.163




















Temper-

Micro-




Temperature

ature
BET
pore



% of
of
Rate of
of
Surface
Vol-



H3PO4
Charring
Heating
Soaking
Area
ume


Sample
Solution
° C.
° C./min
° C.
m2/g
cc/g










Impact of Heating Rate: RH-Series













RH-1
50
450
0.5
80
1135
0.145


RH-2
50
450
1  
80
 754
0.124


RH-3
50
450
1.5
80
 637
0.115









Example 3
Parametric Studies on Activation Process

Table 9 summarizes parametric study results on activation with KOH. The default process conditions of Example 1 apply.


The KC-series demonstrates how KOH:char ratios in excess of 2.0 may be used to attain BET surface areas in excess of 3000 m2/g. Density decreased with increasing KOH:char ratios. Micropore volume decreased at KOH:char ratios greater than 3.0. The samples were activated at a temperature of 800° C. for 1 hour. The char used for this activation was soaked with 50% phosphoric acid at 50° C. for 8 hours, charred at 450° C., and heated to charring temperature at 1° C./min. FIGS. 3, 4, and 5 illustrate the impact of pressure (methane and nitrogen) on adsorption.


The Ba-series re-evaluates the KOH:char ratios with an emphasis on methane uptake. Preparation conditions in addition to those listed in Table 7 included use of 20-40 mesh corn cob feed stock, a 24 hr soak time, heating at 1.5° C./min to the charring temperature, a 1.5 hr charring time, grinding to 40 mesh after charring, cooling overnight in the oven, and KOH activation at 790° C. for 1 hour. FIG. 6 graphically correlates the pore volumes and BET surface areas with methane uptake and conclusively demonstrates the importance of pores with diameters between 20 and 50 Å on excess methane adsorption. The greater the amount of KOH, the greater the amount of carbon lost as vapor during activation. Based on the correlation of FIG. 6, methane uptake for the embodiments of this invention correlated best with the volume of pores with diameters between 7.5 and 50 Å. This finding is different than literature assumptions and/or findings that do not consider pore diameters greater than 20 Å to be of prominence in providing methane uptake. Based on critical molecule diameters, pore volumes between about 6 and 30 Å are the most important for methane uptake at 500 psig and 20° C. Higher storage pressures would make more effective use of the larger pore diameters.


The KOH-HTT-series demonstrates the impact of activation temperature on activated carbon properties. The acid soak was for 8 hours and was heated to charring temperature at 1° C./min. Density decreased with increasing activation temperatures. A maximum in activated carbon BET surface area and total pore volume corresponded to an activation temperature near 850° C. Combined, the optimal values of the critical parameters summarized in the tables define a path through which a biomass such as corn cobs may be converted to an activated carbon with BET surface areas in excess of 3000 m2/g.









TABLE 9





Results of parametric study on activation conditions.
























BET
Micro-
Meso-
Total






Surface
pore
pore
Pore
Particle
Methane



KOH
Area
Volume
Volume
Volume
Density
Uptake


Sample
X C
m2/g
cc/g
cc/g
cc/g
g/cc
V/V










Impact of KOH:Char Ratio: KC-Series














KC1
1.5
1314
3.38E−01
0.21
0.55
0.74
135


KC2
2  
1724
4.90E−01
0.19
0.68
0.69
128


KC3
3  
2997
1.16E+00
0.66
1.72
0.47
159


KC4
4  
3347
5.14E−01
1.68
2.03
0.37
 96


KC5
5  
3837
1.52E−01
1.86
2.01
0.33
 85















Methane


Ratio of



Uptake

Ratio of
Activated



Corrected for

KOH:Char
Carbon



Void Space
Methane
used in
Produced to



(g/100 g
Uptake
Preparation
Char


Sample
carbon)
(V/V)
(g:g)
Consumed










Impact of KOH: Char Ratio: Ba-Series











Ba-5.1
13.5
132
2
0.556


Ba-5.2
15.8
150
3
0.452


Ba-5.31*
17.6
163
4
0.374


Ba-5.32
19.7
179
4
0.398


Ba-5.4
16.8
157
5
0.402



















BET
Micro-
Meso-
Total





Activation
Surface
pore
pore
Pore
Methane
Piece



T
Area
Volume
Volume
Volume
Uptake
Density


Sample
° C.
m2/g
cc/g
cc/g
cc/g
V/V
g/cc










Impact of Activation Temperature: KOH-HTT-Series














KOH-
700
1988
8.19E−01
0.31
1.14
156
0.60


HTT1









KOH-
750
3175
1.29E+00
0.49
1.78
156
0.58


HTT2









KOH-
800
2997
1.16E+00
0.66
1.82
159
0.47


HTT3









KOH-
850
3421
3.39E−01
1.82
2.16
140
0.40


HTT4









KOH-
900
2932
 0.5E−01
1.80
1.85
139
0.35


HTT5





*Ba-5.31 was prepared without a nitrogen purge during most of the activation step.






Example 4
Control Studies with Darco Carbon

The commercial carbons Darco G-60 (24, 227-6, a 100 mesh carbon) and Darco B (27, 810-6) were evaluated for comparison to the carbons of this invention and were prepared in accordance to the carbons of this invention. These commercial products had particle sizes of 100-325 mesh and reported BET surface areas of 600 and 1500 m2/g, respectively.


The Darco G-60 was activated at KOH:carbon ratios of 0, 2, 2.25, and 2.5 under nitrogen flow at 790° C. After the activation each sample was washed in a Buchner funnel until neutral. The respective excess adsorption (g/kg) was 22.2, 85.2, 63.4, and 28.2. The respective bulk densities were 0.149, 0.206, 0.300, and “unknown”, respectively. The Darco B product adsorbed methane at 57.4 g/kg.


By comparing the surface areas of the Darco products without further treatment, these data indicate that surface area, alone, does not lead to high methane storage capabilities. These data also illustrate how a carbon made from a feed stock other than corn cobs can be transformed to a material adsorbing more than 5% methane by weight. These data also illustrate how the treatment of a relatively high surface area carbon can be further enhanced with KOH treatment.


Example 5
Demonstration of Adsorption of Copper Cations for Water

The carbon materials of this invention were evaluated for their ability to remove metals from water. Distilled water was additized with about 9 mg/l copper cations. Emission spectroscopy was performed on this mixture as reported by the Blank sample of Table 10. Equal masses of 5 carbons were mixed with this stock solution to remove the copper. Two commercial products (Calgon and Darco) were tested with results as reported. The last three samples listed in Table 10 are samples prepared by the processes of this embodiment. The best adsorption was demonstrated by the KC4 sample (see Table 9). This example illustrates the effectiveness of the activated carbons of this invention for adsorbing metals from water—especially the materials with greater than 45% of their pore volume in the 20-50 Å diameter range and with total pore volumes greater than 2.0 cc/g.









TABLE 10







Data on Adsorption of Copper Cations from Water.













Absorbance
Concentration




Sample
value
mg/L
pH of Solution















Blank
2.9
8.99
7



Calgon-T
2.1
6.23
5-6



Darco-T
0.15
0.15
6-7



S-22-T
0.4
0.88
6-7



KC4-T
0.11
0.04
6-7



Lab C-T
0.24
0.41
6-7









Example 6
Demonstration of Supporting Catalyst on Activated Carbon

It is known that metals such as Pt, Cu, Pd, Cr, Ni, etc. can be supported on carbon. In order to demonstrate the effectiveness of highly porous carbon based disc catalyst, which will act as nano-scale flow device, copper chromite catalyst was selected for demonstration and further study.


The conditions of this reaction were within the range where they will not cause the gasification of the carbon support of the catalyst. Table 11 shows some of the preliminary data on the conversion of glycerin to propylene glycol using carbon supported copper chromite catalyst in powder-form carried out in plug flow reactor. It also shows the comparison between the conversions and productivities for the conventional copper chromite catalyst and the copper chromite catalyst supported on activated carbon. The reaction was conducted at 220° C., and the hydrogen to glycerin mole ratio was about 20:1. Catalyst 1 and Catalyst 2 are catalysts supported on highly porous carbon (similar to the KC3 of Table 7) with different metal loadings.









TABLE 11







Comparison of Commercial Catalyst and Catalyst Supported on Activated


Carbon of the Invention.













Amt of

Productivity



Catalyst
catalyst (g)
Conversion
(gPG/gcatalyst)















Catalyst-1
1.00
>99%
1.02



Catalyst-2
1.00
>98%
0.95



Commercial
10
>99%
0.16









The size of the metal particles on the carbon (observed with electron microscopy) was less than 20 nm, which shows that the metal particles can be deposited in micropores that constitute the large section of pore size distribution of the carbon. The conversion of glycerol to propylene glycol over copper chromite catalyst will result in product degradation if/when the reaction is carried out for times longer that that required to achieve an equilibrium conversion of propylene glycol and acetol. Due to this, the results (even though the are all over 98% conversion) do demonstrate that the low catalyst loading on the carbon is considerably more effective than the same commercial catalyst. Further increases in productivity are expected in the pressed discs with microreactor configurations. To promote even flow and reduce pressure drops channels are preferably incorporated in the pressed discs such as that illustrated by FIG. 7. The closed channel approach is preferred. One method of creating closed channels is to drill the channels into the briquette from the two opposite faces.


Example 7
Example Pore Size Distribution

Table 12 summarizes an example pore size distribution for a carbon prepared by a method similar to sample KC3 of Table 7.









TABLE 12







Example summary of pore size and pore


volume distributions.









Width
Volume
Area











(nm)
To
(nm)
[cc/g]
[m2/g]














0.0

1.00
0.4



0.79

1.00

1398.1


1.00

1.26
0.083
182.4


1.26

1.58
0.161
283.9


1.58

2.00
0.244
336.5


2.00

2.51
0.234
259.1


2.51

3.16
0.155
134.3


3.16

3.98
0.135
95.4


3.98

5.01
0.044
25.6


5.01

6.31
0.072
31.2


6.31

7.94
0.049
17.2


7.94

10.00
0.039
10.7


10.00

12.59
0.026
5.9


12.59

15.85
0.019
3.4


15.85

19.95
0.014
2.0


19.95

25.12
0.010
1.1


25.12

31.62
0.007
0.6


Total


1.71
2787.5









Example 8
Carbon Paste Capacitor

Activated carbon sample S-56 was evaluated for use in a carbon paste capacitor by methods known in the art. The capacitor performed better than several controls representative of some of the best available carbons for use in carbon paste capacitors. The good performance of S-56 is attributed to the high surface area made possible with a high pore volume in pores of diameter less than 10 Å.


Example 9
Hydrogen Storage

Hydrogen adsorption and storage was evaluated in Sample 5-33/k at 77 and 300 K. At 500 psig, these samples reversibly adsorbed 70 and 10 g/kg (H2:carbon) of hydrogen, respectively.


Example 10
Adsorption at Higher Pressures


FIGS. 3, 4, 5, 8, and 9 illustrate the impact of pressure (methane and nitrogen) on adsorption. FIG. 10 illustrates an additional example of amount stored (total adsorption) for Ba5.32 and S-30 samples.


An advantage of adsorbed natural gas (ANG) storage is to be able to store gas at lower pressures. The principal advantage of ANG storage is to be able to store more gas at the same pressure, relative to storage in the same tank without adsorbent (shown as compressed natural gas, CNG, in FIG. 10). When using ANG at higher pressures, the preferred carbons have isotherms with higher positive slopes on the isotherms at 500 psig, which indicates that higher pressures continue to increase total adsorption. Several embodiments of this invention are particularly good for ANG storage at higher pressures, especially those like KC3 having pore volumes in excess of 1.1 cc/g in pores with diameters between 10 and 50 Å.

Claims
  • 1. An activated carbon adsorbent comprising a plurality of particles, wherein each particle has an overall particle size of at least 100 mesh and a total porosity of at least about 70%.
  • 2. The adsorbent of claim 1, further comprising pores with diameters ranging from about 10 Å to about 20 Å, wherein greater than about 30% of a total pore volume consists of the pores with diameters ranging from about 10 Å to about 20 Å.
  • 3. The adsorbent of claim 2, further comprising a methane gravimetric storage capacity of greater than about 200 g/kg at a temperature of about 20° C. and a pressure of about 500 psig.
  • 4. The adsorbent of claim 2, further comprising a methane volumetric storage capacity of greater than about 175 V/V at a temperature of about 20° C. and a pressure of about 500 psig.
  • 5. A process for making an activated carbon adsorbent, the process comprising: contacting a biomass feed stock with an acidic solution to form an acid soak having a mass ratio of acid solution: biomass ranging from about 0.2:1 to about 1.5:1, wherein the acidic solution comprises an acid in water at an acid concentration ranging from about 50% to about 70% by mass;maintaining the acid soak at a temperature ranging from about 30° C. to about 75° C. for a soak time ranging from about 8 hours to about 14 hours to form an acid-treated biomass;forming a char by heating the acid-treated biomass to a char temperature ranging from about 400° C. to about 600° C. at a heating rate of less than about 2° C. per minute, maintaining the char temperature for a char time ranging from about 0.5 hours to about 3 hours, cooling the char to room temperature at a rate of less than about 2° C. per minute, and rinsing the char;forming an aqueous slurry by contacting the char with an amount of an alkaline material having a pH greater than about 9, wherein the slurry has a mass ratio of alkaline material:char ranging from about 1:1 to about 5:1; andforming the adsorbent by heating the aqueous slurry to an activation temperature ranging from about 600° C. to about 1000° C. in the absence of oxygen, maintaining the activation temperature for an activating time ranging from about 0.1 hours to about 3 hours, cooling the slurry to room temperature at a cooling rate of less than rate of less than about 2° C. per minute, and rinsing the activated carbon.
  • 6. The process of claim 5, wherein the alkaline material is a metallic hydroxide selected from the group consisting of potassium hydroxide, sodium hydroxide, lithium hydroxide, and beryllium hydroxide.
  • 7. The process of claim 5, wherein the acidic solution is phosphoric acid and the mass ratio of phosphoric acid:biomass ranges from about 0.5:1 to about 1:1.
  • 8. The process of claim 5, wherein the adsorbent comprises a plurality of particles, wherein each particle has an overall particle size of at least 100 mesh and a total porosity of at least about 70%.
  • 9. The process of claim 8, wherein the adsorbent further comprises a methane gravimetric storage capacity of greater than about 200 g/kg at a temperature of about 20° C. and a pressure of about 500 psig.
  • 10. The process of claim 8, wherein the adsorbent further comprises a methane volumetric storage capacity of greater than about 175 V/V at a temperature of about 20° C. and a pressure of about 500 psig.
  • 11. The process of claim 5 further comprising pressing the activated carbon with a binder at a temperature ranging from about 130° C. to about 180° C. at a pressure ranging from about 13000 psi to about 17000 psi to form a briquette; and heating the briquette at a temperature ranging from about 600° C. to about 1200° C.
  • 12. A method of adsorbing a gas onto an activated carbon adsorbent comprising contacting the adsorbent with the gas in a pressurized container, wherein the adsorbent comprises an overall particle size of at least 100 mesh and a total porosity of at least about 70%.
  • 13. The method of claim 12, wherein the gas comprises a gas species chosen from methane, hydrogen, helium, oxygen, carbon dioxide, nitrogen, acetylene, and combinations thereof, and wherein the pressurized container is chosen from a gas storage tank, a gas separator, a gas treatment tank, and a volatile organic compound removal chamber.
  • 14. The method of claim 13, wherein the gas is methane, the storage tank is a gas storage tank, and wherein the adsorbent further comprises a gravimetric methane storage capacity of greater than about 200 g/kg at a temperature of about 20° C. and a pressure of about 500 psig.
  • 15. The method of claim 13, wherein the gas is methane, the storage tank is a gas storage tank, and wherein the adsorbent further comprises a volumetric methane storage capacity of greater than about 175 V/V at a temperature of about 20° C. and a pressure of about 500 psig.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 11/937,150, entitled “High Surface Area Carbon and Process for its Production” filed on Nov. 8, 2007, which is hereby incorporated by reference in its entirety. U.S. patent application Ser. No. 11/937,150 claims priority to U.S. Provisional Application Ser. No. 60/857,554 filed on Nov. 8, 2006, which is hereby incorporated by reference in its entirety.

GOVERNMENT SUPPORT

The present invention was made, at least in part, with government support under Award ID 0438469 from the National Science Foundation. Accordingly, the United States Government has certain rights in this invention.

Provisional Applications (1)
Number Date Country
60857554 Nov 2006 US
Divisions (1)
Number Date Country
Parent 11937150 Nov 2007 US
Child 13278754 US