This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present system and techniques, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
The invention relates generally to spray systems and, more particularly, to industrial spray coating systems for applying coatings of paint, stain, and the like. Spray coating devices are used to apply a spray coating to a wide variety of product types and materials, such as wood and metal. The spray coating fluids used for each different industrial application may have much different fluid characteristics and desired coating properties. For example, wood coating fluids (e.g., stains) are generally viscous fluids, which may have significant particulate/ligaments throughout the fluid. Existing spray coating devices, such as air atomizing spray guns, are often unable to breakup such particulate/ligaments to produce a desired coating. That is, the spray coatings that result from insufficient atomization usually have an undesirably inconsistent appearance, which may be characterized by mottling and various other inconsistencies in textures, colors, and overall appearance.
The present embodiments may provide improved atomization in spray devices to reduce the incidence of such undesirable particulates and/or ligaments. For example, in one embodiment, a system is provided that includes a spray coating device. The spray coating device has a liquid passage extending to a liquid outlet configured to output a liquid flow, and an air passage extending to a plurality of air outlets configured to output an air flow. The plurality of air outlets is angled to swirl the air flow.
In another embodiment, a system is provided with a spray head component having a plurality of air outlets. The plurality of air outlets has a plurality of air flow axes, wherein the plurality of air outlets is configured to output an air flow along the plurality of air flow axes. The plurality of air outlets is arranged at least partially around a liquid flow axis, and the plurality of air outlets is angled inwardly toward the liquid flow axis without intersecting the liquid flow axis.
In a further embodiment, a system is provided with a spray head component having a central surface with a central opening configured to allow output of a liquid flow along a liquid flow axis. The spray head component also includes a plurality of air atomization outlets disposed about the central opening along the central surface, and a first air horn protruding from the central surface at a first offset distance from the central opening. The first air horn has a first inner surface that curves circumferentially about the liquid flow axis, and the first inner surface has at least one first air shaping outlet. The spray head component also includes a second air horn protruding from the central surface at a second offset distance from the central opening. The second air horn includes a second inner surface that curves circumferentially about the liquid flow axis, and the second inner surface has at least one second air shaping outlet.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
It should be noted that the spray head component 12 in accordance with the present embodiments is presented in the context of a combination with the spray coating device 10 to facilitate discussion, and that the discussion of the spray coating device 10 and its components is not intended to limit the scope of the present approaches to air swirling to facilitate fluid atomization and spray shaping. Indeed, the spray head component 12 is combinable with a wide variety of spray coating devices including less than or more features than those presently disclosed. Therefore, keeping the operation of the spray head component 12 in mind, the spray coating device 10 also includes features that facilitate handling and spray triggering by a user, interface with various fluid sources (e.g., paint, water, lacquer, or other liquid coating sources, air sources, and so forth), fluid pressure adjustment, and storage, to name a few.
Specifically, in the illustrated embodiment, the spray coating device 10 includes a handle 26 to facilitate use of the spray coating device 10 by a user. The handle 26 is configured to allow gripping by the user's hand, and is disposed proximate a trigger 28 to allow the user to grip and trigger the spray coating device 10 as needed. The trigger 28 is generally configured to allow the liquid flow 22 to be ejected from the device 10 and also to allow air to flow through the spray head component 12 to form the swirled air flow 16. As an example, the trigger 28 may be coupled to one or more valves that are internal to the spray coating device 10, as will be discussed in further detail with respect to
As noted above, the device 10 also includes a liquid adjustment assembly 32 for adjusting liquid flow through the device 10 and an air adjustment assembly 34 for adjusting air flow through the device 10. The liquid adjustment assembly 32 may be coupled to the body 14 of the device 10 by a suitable connection, such as a press-fit, an interference fit, a snap fit, threads, and so on. The liquid adjustment assembly 32, as illustrated, may include a fluid valve adjuster 36 that is configured to move a fluid needle valve 38 between positions to vary fluid flow within the body 14 of the device 10. Similarly, the air adjustment assembly 34 may be coupled to the body 14 via press-fit, an interference fit, a snap fit, threads, and so on. The air adjustment assembly 34 also includes an air valve adjuster 40 that is configured to move an air needle between positions to vary an air flow through the body 14 of the device 10, as will be discussed in further detail below with respect to
The air atomization cap 56 includes a plurality of air outlets 60 disposed in a curved arrangement about the liquid flow axis 24. The plurality of air outlets 60 are generally configured to atomize and/or shape the spray exiting the spray coating device 10. The plurality of air outlets 60 includes a first plurality of air outlets 62 and a second plurality of air outlets 64. The first plurality of air outlets 62 are configured to create the first directional swirl 18 (
The body 14 of the spray coating device 12 includes a variety of controls and supply mechanisms for the spray head component 12. As illustrated, the body 14 includes a fluid delivery assembly 68 having a fluid passage 70 extending from the fluid inlet coupling 42 to the fluid delivery tip assembly 50. The fluid delivery assembly 68 also includes a fluid valve assembly 72 to control fluid flow through the fluid passage 70 and to the fluid delivery tip assembly 50. The illustrated fluid valve assembly 72 includes the fluid needle valve 38 extending movably through the body 14 between the fluid delivery tip assembly 50 and the fluid valve adjuster 36. The fluid needle valve 38 includes a tip portion 74 that protrudes into a removable nozzle and pintle assembly 76. As will be discussed in further detail below, the nozzle and pintle assembly 76 includes features that, in conjunction with the tip portion 74, control the flow of liquid through the fluid tip delivery assembly 50. The fluid valve adjuster 36 is rotatably adjustable against a spring 78 disposed between a rear section 80 of the fluid needle valve 72 and an internal portion 82 of the fluid valve adjuster 36. The fluid needle valve 72 is also coupled to the trigger 28, such that the fluid needle valve 72 may be moved inwardly away from the fluid delivery tip assembly 50 as the trigger 28 is rotated in a first direction 84 (e.g., counterclockwise with respect to
An air supply assembly 88 is also disposed in the body 14 to facilitate atomization at the spray formation assembly 54. The illustrated air supply assembly 88 extends from the air inlet coupling 44 to the air atomization cap 56 via air passages 90 and 92. The air supply assembly 88 also includes a variety of seal assemblies, air valve assemblies, and air valve adjusters to maintain and regulate the air pressure and flow through the spray coating device 12. For example, the illustrated air supply assembly 88 includes an air valve assembly 94 coupled to the trigger 28, such that rotation of the trigger 28 about the pivot joint 30 (e.g., in the first direction 84) opens the air valve assembly 94 to allow air flow from the air passage 90 to the air passage 92. The air supply assembly 88 also includes the air valve adjustor 40 coupled to an air needle 96, such that the needle 96 is movable via rotation of the air valve adjustor 40 to regulate the air flow to the air atomization cap 56. As illustrated, the trigger 28 is coupled to both the fluid valve assembly 72 and the air valve assembly 88, such that fluid and air flow in concert to the spray head component 12 as the trigger 28 is pulled toward the handle 26 of the body 14. The air and the liquid (e.g., liquid paint or other coating) may flow through the body 14 substantially simultaneously, or one fluid may flow through the body 14 prior to the flow of the other fluid, for example using timing features incorporated into the trigger 28. For example, in one embodiment, the fluid may begin flowing through the body 14 prior to the flow of air. Indeed, any timing configuration of the trigger 28 may be utilized in accordance with the disclosed embodiments. As discussed in detail below, once engaged (e.g., triggered), the spray coating device 12 produces an atomized spray with a desired spray pattern and droplet distribution. Again, the illustrated spray coating device 12, as discussed herein, is provided as one embodiment of the disclosed air swirl features. Any suitable type or configuration of a spraying device may benefit from providing an atomizing and/or spray shaping air swirl in accordance with the presently contemplated embodiments.
Turning to the fluid flow through the device 10, the fluid delivery tip assembly 50 includes the nozzle and pintle assembly 76, which includes a sleeve 130 (e.g., a nozzle) disposed about a central member or pintle 132. The illustrated pintle 132 includes a central fluid passage or preliminary chamber 134, which leads to one or more restricted passageways or supply holes 136. These supply holes 136 can have a variety of geometries, angles, numbers, and configurations (e.g., symmetrical or non-symmetrical) to adjust the velocity, direction, and flow rate of the fluid flowing through the fluid delivery tip assembly 50. For example, in certain embodiments, the pintle 132 may have the supply holes 136 disposed symmetrically about the liquid flow axis 24. In operation, when the needle valve 38 is open (i.e., the tip 74 is retracted away from an inner surface 137 of the nozzle and pintle assembly 76), a desired fluid (e.g., paint) flows through fluid passage 70, about the needle valve 38 of the fluid valve assembly 72, as indicated by arrows 138. The fluid then flows into the central fluid passage or preliminary chamber 134 of the pintle 132. As indicated by arrow 138, the supply holes 136 then direct the fluid flow from the preliminary chamber 134 into a secondary chamber or throat 140, which is defined as the space between a forward tip section 142 of the pintle 132 and an inner surface 144 of the sleeve 130. The fluid flow 22 then exits the body 14 of the device 10 via a fluid tip exit 146 (e.g., a liquid outlet) of the nozzle and pintle assembly 76 along the fluid flow axis 24.
In some embodiments, the sleeve 130 and the pintle 132 may have a configuration that results in a geometry of the throat 140 that diverges and converges toward the fluid tip exit 146. During operation of such embodiments, these diverging and converging flow pathways may induce fluid mixing and breakup prior to air atomization and shaping by the air flows 120 and 122. For example, successive diverging and converging flow passages can induce velocity changes in the fluid flow, thereby inducing fluid mixing, turbulence, and breakup of particulate that may be present in the liquid. Moreover, the fluid dynamics (e.g., viscosity, particulate concentration, and so on) of a given liquid may at least partially influence the particular configuration of the nozzle and pintle assembly 76. Accordingly, the nozzle and pintle assembly 76 in accordance with presently contemplated embodiments is swappable (i.e., removable and replaceable) with other assemblies having differing sizes, shapes, and/or extents of the holes 136 and/or throat 140 to suit a particular coating application.
The pintle 132, as noted above, includes the plurality of orifices 136 and the forward tip portion 142 that interfaces with the liquid outlet 146 of the sleeve 130, both of which allow liquid to flow through the nozzle and pintle assembly 76 and out of the device 10 in a controlled manner. In the illustrated embodiment, the liquid outlet 146 is a circular opening, as opposed to an ellipsoidal opening (e.g., a cat-eye opening). However, the use of a cat-eye opening as the liquid outlet 146 is also contemplated herein. Additionally, the pintle 132 includes a rear section 154 having a nozzle portion 156 extending through at least a part of the body 14 of the device 10. The nozzle portion 156 is also removable from the body 14, for example, by pulling on the nozzle portion 156 in a direction away from the body 14. The rear section 154 also includes a plurality of air holes 158 that direct air towards the first plurality of air holes 62 of the air cap 56.
The sleeve 130, as illustrated, includes a first cylindrical section 160, a tapered section 162, and a second cylindrical section 164. The first cylindrical section 160 is generally configured to receive the nozzle portion 156 of the pintle 132, for example to secure the pintle 132 within the air cap 56 and/or the body 14 of the spray coating device 10. The first cylindrical section 160 tapers to the second cylindrical section 164 via the tapered section 162, which generally has a frusto-conical shape to reduce the inner diameter of the sleeve 130 to form a suitable size for the throat 140, which, as noted above, is defined as the cavity between the sleeve 130 (i.e., the second cylindrical section 164) and the forward tip portion 142 of the pintle 132 when the nozzle and pintle assembly 76 is assembled.
As noted above, the air cap 56 includes a plurality of air holes, specifically a first plurality of air holes 62 configured to produce the first directional air swirl 18, and a second plurality of air holes 64 disposed on air horns 66, the second plurality of air holes 64 being configured to produce the second directional air swirl 20. Specifically, in the illustrated embodiment, the air cap 56 includes a first air horn 166 and a second air horn 168 protruding away from the body 14 of the device 10 and having respective second pluralities of air holes 64. The first air horn 166 and the second air horn 168 are disposed at opposite diametrical extents of the air cap 56 and face one another. Specifically, the first air horn 166 includes a first inner surface 170 (e.g., a concave surface) that curves circumferentially about the liquid flow axis 24 of the central opening 150, which may be considered the liquid opening of the air cap 56. Similarly, the second air horn 168 includes a second inner surface 172 (e.g., a concave surface) that curves circumferentially about the liquid flow axis 24 of the central opening 150. The second plurality of air outlets 64 is disposed on the curved first and second inner surfaces 170, 172. In accordance with certain presently contemplated embodiments, the curved geometry of the first and second inner surfaces 170, 172 may facilitate interaction with and/or flattening of the swirling, atomized coating spray 124. For example, the curved surfaces 170, 172 help direct the second directional air swirl 20 radially inward towards the atomized coating spray 124 and against the first directional air swirl 18.
The second plurality of air outlets 64 may be any size and/or shape to the extent that they are disposed on the respective inner surfaces of the air horns 66. As will be appreciated with respect to the illustrated embodiment, the second plurality of air outlets 64 are angled relative to one another as a result of the concave shape of the surfaces on which they are disposed. However, as will be described in further detail with respect to
In a similar manner to the second plurality of air outlets 64, the first plurality of air outlets 62 each have a compound angular geometry, and are disposed on a central surface 174 of the air cap 56. That is, each of the first plurality of air outlets 62 are angled relative to their respective surfaces as well as angled relative to the liquid flow axis 24. As an example, the air outlets 64 may be angled by between about 1° and about 85° relative to and offset from the liquid flow axis 24 (e.g., 1°, 5°, 10°, 25°, 45°, 50°, 55°, 65°, 75°, or 85° from their respective surfaces and relative to the liquid flow axis 24). The compound angular geometry of the first plurality of air outlets 62, in accordance with present embodiments, creates a swirling action of atomizing air, which facilitates particulate breakup as well as homogenization of the liquid flow 22 exiting the device 10.
In the illustrated embodiment, the first plurality of air outlets 62 has a plurality of air flow axes, represented generally as arrows 180. The first plurality of air outlets 62, as noted above, are each configured to output an air flow along their respective air flow axes 180. In the illustrated embodiment, the first plurality of air outlets 62 is arranged symmetrically and circumferentially about the liquid flow axis 24 such that the first plurality of air outlets 62 completely surround the central opening 150 of the air cap 56. In other embodiments, the first plurality of air outlets 62 may be arranged partially about the liquid flow axis 24. In other words, the first plurality of air outlets 62 may or may not completely surround the central opening 150. In accordance with certain presently contemplated embodiments, the first plurality of air outlets 62 is angled radially inward toward the liquid flow axis 24 without intersecting the liquid flow axis 24.
For example, the respective air flow axes 180 of the first plurality of air outlets 62 do not align with the center of the central opening 150, which corresponds to the liquid flow axis 24. In this way, the air flow axes 180 each do not bisect the central opening 150. Indeed, to allow the first plurality of air outlets 62 to swirl air, and therefore the liquid flow 22, each of the first plurality of air outlets 62 is offset at an angle 182 from a radius 184 of the central opening 150. The respective angles 182 of each of the first plurality of air outlets 62 may be the same, or may be different, and may vary between about 1° and 25° offset from radii aligning the liquid flow axis 24 and the respective centers 186 of each of the air outlets 62. For example, the angle 182 may be about 1°, 5°, 10°, 11.5°, 15°, 20°, or 25°, or any angle in between. Moreover, while the first plurality of air outlets 62 is illustrated as including 12 air outlets, in other embodiments the first plurality of air outlets 62 may include 2, 4, 6, 8, 10, 14, or more outlets. Indeed, any number of air outlets 62 configured to produce a swirling effect on the liquid flow 22 as it exits the device 10 is presently contemplated.
While any number of the first plurality of air outlets 62 may be used in accordance with the presently contemplated embodiments, it should be noted that the size of each first plurality of air outlets 62 may at least partially determine a suitable number of the air outlets 62, in addition to the angle 182 that is used for air swirling. While the first plurality of air outlets 62 may each have the same or different dimensions, as an example of certain embodiments, the diameter of each of the first plurality of air outlets 62 may be between about 0.005 inches (in) and about 0.05 in (e.g., about 0.01 in, 0.02 in, 0.03 in, 0.04 in, or 0.05 in). Indeed, the total atomization area for the first plurality of air outlets 62 may be between about 0.01 in2 and 0.05 in2 (e.g., about 0.005 in, 0.01 in2, 0.02 in2, 0.03 in2, 0.04 in2, or 0.05 in2). For example, in one embodiment wherein the air cap 56 has 12 of the first air holes 62, the area of atomization may be about 0.015 in2, with each of the air holes 62 having a diameter of about 0.039 in. It should be noted that while
In some embodiments, the size, shape, and extent of the second plurality of air openings 62 may be at least partially determined by the extent to which the air horns 66 surround the central opening 150. As noted above, the second plurality of air outlets 64 may be any size and/or shape to the extent that they are disposed on the respective inner surfaces of the air horns 66. In the illustrated embodiment, the first air horn 166 protrudes from the central surface 174 of the air cap 56 at a first offset distance 191 away from the center of the central opening 150. The second air horn 168 also protrudes from the central surface 174 and is disposed at a second offset distance 193 away from the central opening 150. The first offset distance and the second offset distance 191, 193 may be substantially the same for both air horns 166, 168, and may be substantially continuous from the central opening to the air horns 166, 168 due to their curved geometry. However, in other embodiments, the distances 191, 193 may be different. The extent that each of the curved air horns 166, 168 curve about the liquid flow axis 24 (or the central opening 150), as represented by arc 190, may range from about 1° to about 180° (e.g., about 10° to about 160°, about 20° to about 140°, about 30° to about 100°, or about 40° to about 80°) around the circumference of the air cap 56. In some embodiments, the arc 190 may be between about 25° to about 60° For example, the arc 190 may be 25°, 30°, 40°, 50°, 60°, or any angle in therein.
The extent of arc 190, as well as the number, sizing, and angles of the second plurality of air outlets 64 may at least partially determine the manner in which the air flow 122 flattens the atomized coating spray 124 described above with respect to
Various configurations of air outlets of the air horns 66 may be further appreciated with respect to
In other configurations, the air outlets 64 of the air horns 66 may be replaced by one or more slots.
As noted above, it may be desirable to incorporate feature that facilitate the use of the air cap configured to swirl air in conjunction with a variety of spray devices. For example, it may be desirable to provide an air cap in accordance with the presently contemplated embodiments that has the capability to receive a variety of geometries (e.g., shapes, and sizes) and configurations of valves, liquid outlets and internal flow patterns. One embodiment may include a relatively small liquid outlet for some spray coating applications (e.g., stains), while another embodiment may include a larger liquid outlet for other spray coating applications (e.g., epoxies), each of which may use different fluid seats. Accordingly, the disclosed embodiments provide interchangeable inserts configured for use with the air cap disclosed herein, which facilitates the use of different coating fluids.
With reference now to
The insert 226 may be a generally annular structure configured to be disposed within the tip housing 224, and may extend through the tip housing 224 to a certain offset, or may be flush with the tip housing 224. The insert 226, proximate the center of its annular structure, includes the liquid outlet 222. The liquid outlet 222 is generally an opening of the insert 226 having a geometry (e.g., shape and size) tailored to a particular application. For example, as discussed above, the liquid outlet 222 may have a diameter that at least partially depends on the fluid that will be utilized for a particular spray coating application (e.g., stains, paints, epoxies). The insert 226 also includes an inner surface 228 that begins at an inner extent of the insert 226 and tapers into the liquid outlet 222. The tapered inner surface 228 is configured to interface with the liquid needle valve 74, which provides adjustability of liquid flow through the fluid tip and seat assembly 220. Moreover, the tapered inner surface 228 enables the insert 226 to be used in conjunction with a variety of liquid needle valves. Additionally, the tapered liquid needle valve 74 may be used in conjunction with similar inserts having a variety of sizes of the liquid outlet 222. The fluid tip and seat assembly 220 also includes an annular member 230 disposed in abutment with the insert 226. The annular member 230 may facilitate the interface of the fluid tip and seat assembly 220 with the nozzle portion 156 described above with respect to
The insert 226 may be constructed from stainless steel, ultra high molecular weight (UHMW) or delrin plastic, tungsten carbide, or any combination thereof. The particular material or materials utilized for its construction may depend at least partially upon the particular coating application. For example, certain materials may be utilized for epoxies while others are used for paints or stains, and so on. The insert 226 includes a forward surface 248, which is a curved surface in the illustrated embodiment. The forward surface 248 extends from a first annular portion 250 of the insert 226, and has the liquid outlet 222 as a central opening. As noted above, the liquid outlet 222 may be varied by interchanging the insert 226 with another insert having a central opening of a different diameter. The forward surface 248 and the first annular portion 250 have a diameter 252 that allows the insert 226 to extend through the central opening 236 of the tip housing 224. When the insert 226 is placed into the tip housing 224, an abutment surface 254 of a second annular portion 256 of the insert 226 is placed against an inner surface 258 of the tip housing 224, while the first annular portion 250 of the insert 226 extends through the central opening 236 of the tip housing 224. As noted above, the insert 226 and the tip housing 224, in some embodiments, may be a single piece.
The annular member 230, as illustrated, includes a first abutment surface 260 that abuts a rear surface 262 of the second annular portion 256 of the insert 226. A central orifice 264 of the annular member 230 allows a liquid needle valve, such as the needle valve 74 described above with respect to
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/435,737 entitled “HIGH SWIRL AIR CAP,” filed on Jan. 24, 2011, which is herein incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
478295 | Squire | Jul 1892 | A |
2139133 | Paasche | Dec 1938 | A |
6311899 | Hidaka et al. | Nov 2001 | B1 |
6793155 | Huang | Sep 2004 | B2 |
6808122 | Micheli | Oct 2004 | B2 |
7028916 | Micheli | Apr 2006 | B2 |
7311271 | Micheli | Dec 2007 | B2 |
7568635 | Micheli | Aug 2009 | B2 |
7762476 | Micheli | Jul 2010 | B2 |
7789327 | Micheli et al. | Sep 2010 | B2 |
7926733 | Micheli | Apr 2011 | B2 |
7992808 | Micheli | Aug 2011 | B2 |
20040031860 | Micheli | Feb 2004 | A1 |
20060214027 | Micheli | Sep 2006 | A1 |
20070221762 | Micheli et al. | Sep 2007 | A1 |
20080017734 | Micheli et al. | Jan 2008 | A1 |
20080048055 | Micheli | Feb 2008 | A1 |
20080296409 | Micheli | Dec 2008 | A1 |
20090148612 | Micheli | Jun 2009 | A1 |
20090230218 | Drozd | Sep 2009 | A1 |
20090277976 | Micheli et al. | Nov 2009 | A1 |
20090302133 | Micheli et al. | Dec 2009 | A1 |
20100108784 | Drozd et al. | May 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120187220 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61435737 | Jan 2011 | US |