The disclosed embodiments of the present invention relates generally to apparatus and methods for operating a linear ion trap.
Linear ion traps are finding many applications in many areas of mass spectrometry. These applications typically demand facilitation of tandem mass spectrometry (MS/MS) techniques, measurement of high mass-to-charge (m/z) ratios, large dynamic range, precision, high quality data and throughput. This is particularly the case for biological or biochemical applications. In the proteomic field for example, where analytical instruments are required to identify both small and large molecules and to determine molecular structure, and required to do so quickly whilst providing high quality results. These instruments are required to identify thousands of peptides covering a large dynamic range from a single sample. Peptide identifications based on tandem mass spectrometry or MS/MS fragmentation of the peptides are also required. In addition, this particular field of technology typically dictates a high level of automation to accommodate a vast amount of data in minimal time. For these reasons new apparatus and methods which allow linear ion traps to respond to such demands are therefore sought.
In accordance with the present invention, an apparatus and a method are disclosed for providing increased versatility in functions compared to a conventional three-sectioned linear ion trap. A linear ion trap is provided which is spatially partitionable into at least two segments, including a first and a second segment. Each segment is effectively independent has the benefit of manipulating ions stored in these segments independently, the ions having been generated by an ion source under the same conditions. The ions can then be expelled from the ion trap.
Manipulation of the ions can be carried out simultaneously in two or more segments. Manipulation can take the form of fragmentation, isolation, or any other process that influences the behavior of ions.
The linear ion trap can have a plurality of electrodes, each electrode being divided into sections. Each section can comprise a three-section electrode assembly.
This arrangement is advantageous as it allows for tandem (MS/MS) mass spectrometry experimentation to be performed rapidly with only one fill from the ion source being required. Moreover, dividing the precursor ions into increasingly narrow ranges of m/z values allow the ion capacity of the trapping regions to be optimized within their space charge limits.
In one aspect of the invention, the initial ion population can be spatially partitioned, for example my mass to charge ratio, before entering the linear ion trap. In this instance, the linear ion trap operates to maintain the spatial partitioning of the initial population within the linear ion trap by partitioning the initial population.
For a better understanding of the nature and objects of the invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which:
a, 4b and 4c are schematic illustrations showing how a linear ion trap can be configured to provide segments according to the invention.
a to 6d illustrates how one way in which the partitioning process can provide for segmentation of the ion population.
Like reference numerals refer to corresponding parts throughout the several views of the drawings.
Quadrupole ion traps use substantially quadrupole fields to trap the ions. In pure quadrupole fields, the motion of the ions is described mathematically by the solutions to a second order differential equation called the Mathieu equation. Solutions can be developed for a general case that applies to all radio frequency (RF) and direct current (DC) quadrupole devices including both two-dimensional and three-dimensional quadrupole ion traps. A two dimensional quadrupole trap is described in U.S. Pat. No. 5,420,425, which is incorporated in its entirety by reference.
The ions are radially contained by the RF quadrupole trapping potentials applied to the X and Y electrode/rod sets under the control of a controller 290. A Radio Frequency (RF) voltage is applied to the rods with one phase applied to the X set, while the opposite phase is applied to the Y set. This establishes a RF quadrupole containment field in the x and y directions and will cause ions to be trapped in these directions.
To constrain ions axially (in the z direction), the controller 290 can be configured to apply or vary a DC voltage to the electrodes in the center segment 230 that is different from that in the front and back segments 235, 240. Thus a DC “potential well” is formed in the z direction in addition to the radial containment of the quadrupole field resulting in containment of ions in all three dimensions.
An aperture 245 is defined in at least one of the center sections 230 of one of the rods 205, 210, 215, 220. Through the aperture 245, the controller 290 can further facilitate trapped ions can be selectively expelled based on their mass-to-charge ratios in a direction orthogonal to the central axis by causing an additional AC dipolar electric field to be applied or varied in this direction. In this example, the apertures and the applied dipole electric field are on the X rod set. Other appropriate methods may be used to cause the ions to be expelled, for example, the ions may be ejected between the rods.
One method for obtaining a mass spectrum of the contained ions is to change the trapping parameters so that trapped ions of increasing values of mass-to-charge ratio become unstable. Effectively, the kinetic energies of the ions are excited in a manner that causes them to become unstable. These unstable ions develop trajectories that exceed the boundaries of the trapping structure and leave the quadrupolar field through an aperture or series of apertures in the electrode structure.
The sequentially expelled ions typically strike a dynode 195 and secondary particles emanating therefrom are emitted to the subsequent elements of the detector arrangement. The placement and type of detector arrangement may vary, the detector arrangement for example extending along the length of the ion trap. Throughout this description, the dynode is considered to be part of the detector arrangement, the other elements being elements such as electromultipliers, pre-amplifiers, and other such devices.
It should be recognized that different arrangements for the mass analyzing system may be used, as is well known by the art. For example, analyzing device may be configured such that ions are expelled axially from the ion trap rather than radially. The available axial direction could be used to couple the linear ion trap to another mass analyzer such as a Fourier Transform RF Quadrupole Analyzer, Time of Flight Analyzer, three-dimensional ion trap, Orbitrap™ or other type of mass analyzer in a hybrid configuration.
In operation, the linear ion trap configuration of
The use of a multi-segmented quadrupolar ion trap allows for increased versatility in functionality compared to that of a conventional three-sectioned linear ion trap as illustrated in
One application where improvement in quality of mass spectrum data may be achieved is optimization of scanning out an extended mass range. Another application where improvement in quality of mass spectrum data may be achieved is when trying to reduce the scan time for a given scan rate. A few of these applications will be described in more detail later.
Two implementations of a linear ion trap according to the invention are illustrated by
The multiple segments of the linear ion trap can be provided by creating potential barriers which spatially divide the linear ion trap 380. In one aspect of the invention, the segments can be generated or activated by the activation of a corresponding multipole rod assembly 430, such as a quadrupole rod assembly including four rod electrodes. Each of the multiple rod assemblies defining at least partially (that is, defining at least one end of) a segment or trapping volume about an axis of the multi-segmented linear ion trap. These multipole rod assemblies may comprise single section or continuous rods, or include multi-sectioned rods. In this trapping volume, ions can be radially and axially confined in one or more of the sections by application of a combination of RF and DC electric potentials to the multipole rod assemblies.
In one aspect of the invention, as illustrated in
In another aspect of the invention, as illustrated in
The individual multipole rod assemblies are each supplied with their own RF, DC and supplemental excitation voltages. Generally, end sections will be configured to minimize fringing field effects on ions entering or leaving the ion trap. Once the ions have been trapped in the trap, the application of RF, DC and/or supplemental voltage components can be used to influence the trapped ions to distribute themselves along the length of the ion trap in a predetermined manner. Modification of the RF, DC and/or supplemental voltage components can then be further employed to influence ions to move from one segment to another within the ion trap, to vacate a segment of ions, or minimize coupling of ions between adjacent segments.
In general, a control unit applies a corresponding set of RF voltages to segments of the multi-segmented ion trap to generate an RF multipole potential to confine ions radially in the trapping volume about the axis of the linear ion trap. The control unit also applies various DC offsets to the segments of the ion trap to trap ions in any of or combination of the segments axially along the trapping volume of the ion trap.
One or more rods of the multipole rod assemblies may be provided with slots or apertures to enable ions to pass to the multiple detector arrangements if so desired.
Expulsion of ions from the ion trap may be achieved by applying a supplementary AC voltage across the relevant segment of a pair of the rods causing ions in that particular segment to resonate and leave the ion trap. Application of such an AC voltage may affect ions in other segments, so compensation for this may be required. This is due to the fact that the applied AC voltage will have an affect not only on the ions within that particular segment, but its fringing effects will couple to the ions in the adjacent segment also.
A method for operating a linear ion trap according to one aspect of the current invention is illustrated in
Optionally, as indicated by step 525, the ions in any of the segments or combination of segments of the multi-segmented linear ion trap may be manipulated if so desired, before they are extracted and passed to the detector arrangement. Ions corresponding to the first ion population may be manipulated independently from those corresponding to the second ion population, and simultaneously if so desired. Manipulation may take the form of fragmentation, isolation, or any other such operation or influence that ions typically respond to.
One manner in which the ion population can be spatially partitioned is according to mass to charge ratio (m/z) or m/z range. For example, the third segment 620 of the multi-segmented linear ion trap 380 can be configured to trap ion in the mass range Mrange1, this range including masses below mass m1. The second segment 615 of the multi-segmented linear ion trap 380 can be configured to trap ion in the mass range Mrange2, which is for masses between masses m1 and m2. The first segment 610 can be configured to trap ions in the mass range Mrange3 between masses m2 and m3, where m3>m2>m1.
There are several ways in which this may be achieved, one of which is by applying an axial excitation AC voltage that varies axially. This essentially enables ions to travel along the trap until they reach a segment where no excitation is applied that affects the range of m/z accommodated by the segment, there they lose energy in collisions and stay in this segment.
For example, the initial ion population 605 comprises Mrange1+Mrange2+Mrange3. These ions enter the multi-segmented ion trap at the left hand side of the figure as viewed by the reader. The first segment 610 captures incoming ions (preferably, a continuous stream) and, at the same time excites ions within the second mass range Mrange2 and the third mass range Mrange1 for example the m/z range (150-200 Th) and m/z (200-2000) to overcome the potential barrier separating the first and the second segments 610, 615. The potential barrier can be formed by a combination of DC, and optionally, RF fields. The excitation can be provided by an AC field added to the potential barrier so that resonant axial oscillations of ions above a particular mass to charge ratio are excited. Ions corresponding to the first population of ions in the first segment 610 will acquire energy in the axial direction until sufficient energy has been acquired to overcome the potential barrier separating segments 610 and 615 and reach the second segment 615 (Mrange3). To avoid losing ions through the entrance aperture of the first segment 610 additional DC potential may be applied to the aperture reflecting ions back into the segment 610.
As mentioned earlier,
Similarly, the excitation voltage applied to the second set of three sections (the second multi-sectioned quadrupole rod assembly 615) is applied such that ions in the mass range Mrange1 propagate away from the source in the direction 625 and to the other end of the multi-segmented ion trap 380. Ions corresponding to the second ion population, ions within the mass range Mrange2, are trapped and do not propagate further than the third section 655 of the second multi-sectioned quadrupole rod assembly 615. These ions are out of resonance with the AC field that exists therein, and the ions get stored in this segment 615 due to further loss of their energy in collisions with gas. The voltage V10 that is applied is not sufficient to enable the ions in the range of Mrange2 to traverse the potential barrier and enter the subsequent segment 620 of the multi-segmented linear ion trap 380. Once again, the excitation voltage applied to the second multi-sectioned quadrupole rod assembly 615 is applied with the polarity between adjacent sections 645, 650, 655 alternating as +V10, −V10, +V10. Hence, ions in the mass range Mrange2 are effectively trapped in the middle of these three sections, the 5th section from the left 650. In this manner, ions corresponding to the second population of ion, the ions in the mass range Mrange2 are less influenced by the ions in the adjacent 4th and 6th sections 645,655.
Similar explanations can be made for the third multi-sectioned quadrupole rod assembly 620 of the multi-segmented linear ion trap 380 configuration illustrated. With ions corresponding to the third ion population, ions within the mass range Mrange1 being trapped in the 8th section in a similar manner to that described above.
Alternatively, ions can be expelled or extracted from a particular segment by applying resonant dipolar or quadrupolar field between rods in the interface between segments. Coupling between radial and axial motion stimulates ions to move axially, but only those which are in resonance with the applied AC voltage. The same idea with positive DC gradient can also be applied to promote collection of ions in the segment where partitioning based on m/z ratio is initiated.
Utilizing the described configuration, once the ion populations have been spatially positioned and segmented in this manner, not only can the expulsion be carried out such that a different mass range is scanned out from the first segment than the mass range scanned out from the second segment, but the scans can be performed substantially simultaneously requiring either one or two separate detectors arrangements. This would require separate AC signals to be applied differentially to the first and second segments of the multi-segmented linear ion trap respectively.
One of the applications where improvement in quality of mass spectrometry data may be achieved is during the scanning out of an extended mass range, for example up to 6000 Th. Consider an experiment in which one desires to scan out a mass range of 150-4000 Th. If the same RF generator is used for this extended mass range, up to 4000 Th, as for a normal mass range (150-2000 Th), as currently dictated by the prior art, the ejection q parameter must be reduced approximately by factor of 2. If the same scan-out rate (the rate at which ions are expelled from the ion trap, the speed of analysis) is used, the quality of data is normally lower compared to a normal mass range of 150-2000 Th. This data will have worse mass resolution, mass accuracy and sensitivity unless the speed of analysis is significantly reduced. This is particularly the case for the high mass range ions that are typically scanned in the region of at least three times slower than ions having an m/z below 2000 Th.
According to an aspect of the current invention, ions having an m/z at some low value of interest are placed at the predetermined q value. Then the RF amplitude is scanned linearly up to some maximum voltage which ejects ions up to some maximum m/z by moving their q value to the ejection q. In this manner, the ions corresponding to the first population of ions can be expelled by shifting the ions from a region of stable ion motion to a region of unstable ion motion in an (a,q) stability diagram for ion motion with a first q parameter, and ions corresponding to the second population of ions can be expelled by shifting the ions from a region of stable ion motion to a region of unstable ion motion in an (a,q) stability diagram with a second q parameter, the first and second q parameters being different from one another.
By applying a second resonance ejection signal to a the segment of the multi-segmented linear ion trap in which the higher mass range ions reside, a fairly low q parameter value can be utilized to ejected at this q value simultaneously with lower mass range ions that can be ejected at a higher q value when the RF amplitude is ramped. For example the second segment could scan m/z 150-2000 Th while the first segment could scan m/z 2000-4000 Th. The forgoing uses four detectors. In addition, there is a reduction in scan out time, in that the ions in the range 200-2000 Th are scanned out at the normal rate at 0.88, but the ions in the higher mass range of 2000-4000 Th are scanned out at q=0.44, but since the range is over ions being scanned at this low q is smaller than the entire range of 200-4000 Th, the scanning at this low q value can be achieved in less time, and there can be an overall reduction in scan-out time. Alternatively, with the same scan-out time improved mass resolution and mass accuracy can be achieved.
Thus, the ions are dispersed throughout the multi-segmented linear ion trap according to their m/z ratio and subsequently trapped in appropriate sections of the three-sectioned multipolar electrode assemblies. The use of a multi-segmented RF ion trap in this scenario can improve the quality of mass spectral data that can be achieved by optimizing the data throughout the extended range. By exciting ions in a manner that is appropriate and tuned to the particular discrete mass ranges in question, one is able to optimize use of time without necessarily sacrificing sensitivity, scanning speed or resolving power of the linear ion trap.
With the conventional approach, a three-sectioned linear ion trap would have been filled for 0.01-0.1 ms for compounds in the range of 100 fmol/uL (sub ms time for 10 fmol/uL) to reach the allowed space charge limit about 2000 and the linear ion trap would have been scanned for 1.5 s (scan rate 0.4 ms/Th) to cover the required mass range of 150-4000 Th. The current invention enables the same data to be acquired for about 50% of time because injection time is unessential compared to scan-out time in this example.
In another aspect of this invention, the ions may be dispersed according to their m/z ratio prior to entering the multi-segmented ion trap, and once in the multi-segmented ion trap, the dispersion can be maintained by actuating the segments within the multi-segmented linear ion trap. In this particular scenario, if the previously dispersed ions travel through a field free region at a relatively low pressure or separate in pressurized sections of ion transfer optics based on ion specific ion mobilities, the different m/z ratios will traverse the region and arrive at the multi-segmented linear ion trap at different times. The lower m/z values will therefore arrive at the ion trap before the higher m/z values, hence enabling the dispersion to be maintained.
A variety of other mechanisms can be employed to produce discrete potential barriers along the axial dimension of the linear ion trap. These include, for example, as illustrated in
In this instance, an initial ion population is trapped in the multi-segmented linear ion trap. The initial ion population is then spatially partitioned to create several ion populations by m/z range (m1Σ, m2Σ, m3Σ, m4Σ, m5Σ, m6Σ) by known methods and/or methods described above. Voltages necessary for the creation of the DC and AC fields to implement this partitioning have to be tuned appropriately compared to the example with uniform r0 above. If the same RF field is applied to each segment of the multi-segmented linear ion trap during scan-out event, ions across the entire mass range (m1Σ, m2Σ, m3Σ, m4Σ, m5Σ, m6Σ) will be expelled from adjacent segments (of differing r0 values, r1, r2, r3, r4, r5, and r6) with the same or close q parameter. This is due to the relationship between the q parameter, mass, RF potential, frequency and r0. In this manner optimization of the time required for complete expulsion of the ion populations can be achieved, however a compromise will have been made in terms of mass resolution, mass accuracy and sensitivity.
Each segment with a specific ri can be sub-divided into at least three sections and the same approach with combination of axial AC and DC fields created to partition ions between segments as before with uniform r0. Voltages for DC and AC fields to implement this partitioning also have to be tuned correspondingly in view of changing ri.
There are other methods by which ions can be ejected from the ion trap, for example by applying a DC excitation voltage between a set of rods, or merely pulsing the ions out to the detector arrangement. Details of these procedures are not described herein, but are known to those skilled in the art.
In yet another aspect of this invention, as illustrated in
This method is particularly useful when carrying out tandem mass spectrometry (MS/MS) experiments in which ions need to be fragmented. After running a full MS scan which allows for identification of peaks of interest, only these ions are stored in the trap during next injection event. Alternatively, only a fraction of the ions from the first injection event are used for the full MS scan. The rest of them can be stored in other segments using appropriate AC and DC potentials. The last approach is particularly beneficial when the injection time is long. In addition, one may spatially partition an initial ion population into a first ion population, second ion population and optionally more populations, all ion populations having emanated from the same source under the same conditions. One may then manipulate each population of ions independent of one another, for example by isolating a different m/z in each population, and then subjecting the two mlzs to fragmentation. Once fragmented, the content of each segment can be forwarded to a discrete detector arrangement, essentially providing for two fragmentation experiments to be facilitated simultaneously utilizing one linear ion trap. All or some of these events can occur substantially simultaneously. This saves on time, an expensive commodity in the proteomics industry.
The methods of the invention can be implemented in digital electronic circuitry, or in hardware, firmware, software, or in combinations of them. Method steps on the invention can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output.
The various features explained on the basis of the various aspects can be combined to form further aspects of the invention.
Unless otherwise defined, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention belongs. The disclosed materials, methods, and examples are illustrative only and not intended to be limiting. Skilled artisans will appreciate that methods and materials similar to equivalent to those described herein can be used to practice the invention.
This application is a continuation of and claims the priority benefit under 35 U.S.C. § 120 of U.S. patent application Ser. No. 11/485,055 entitled “High Throughput Quadrupolar Ion Trap” and filed Jul. 11, 2006, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11485055 | Jul 2006 | US |
Child | 12273497 | US |