This application relates to high voltage step down voltage regulators, such as could be used in the operation of re-programmable non-volatile memory systems, and to techniques for protecting such regulator circuits from breakdown.
Solid-state memory capable of nonvolatile storage of charge, particularly in the form of EEPROM and flash EEPROM packaged as a small form factor card, has recently become the storage of choice in a variety of mobile and handheld devices, notably information appliances and consumer electronics products. Unlike RAM (random access memory) that is also solid-state memory, flash memory is non-volatile, and retains its stored data even after power is turned off. Also, unlike ROM (read only memory), flash memory is rewritable similar to a disk storage device. In spite of the higher cost, flash memory is increasingly being used in mass storage applications.
Flash EEPROM is similar to EEPROM (electrically erasable and programmable read-only memory) in that it is a non-volatile memory that can be erased and have new data written or “programmed” into their memory cells. Both utilize a floating (unconnected) conductive gate, in a field effect transistor structure, positioned over a channel region in a semiconductor substrate, between source and drain regions. A control gate is then provided over the floating gate. The threshold voltage characteristic of the transistor is controlled by the amount of charge that is retained on the floating gate. That is, for a given level of charge on the floating gate, there is a corresponding voltage (threshold) that must be applied to the control gate before the transistor is turned “on” to permit conduction between its source and drain regions. Flash memory such as Flash EEPROM allows entire blocks of memory cells to be erased at the same time.
The floating gate can hold a range of charges and therefore can be programmed to any threshold voltage level within a threshold voltage window. The size of the threshold voltage window is delimited by the minimum and maximum threshold levels of the device, which in turn correspond to the range of the charges that can be programmed onto the floating gate. The threshold window generally depends on the memory device's characteristics, operating conditions and history. Each distinct, resolvable threshold voltage level range within the window may, in principle, be used to designate a definite memory state of the cell.
In order to improve read and program performance, multiple charge storage elements or memory transistors in an array are read or programmed in parallel. Thus, a “page” of memory elements are read or programmed together. In existing memory architectures, a row typically contains several interleaved pages or it may constitute one page. All memory elements of a page are read or programmed together.
Nonvolatile memory devices are also manufactured from memory cells with a dielectric layer for storing charge. Instead of the conductive floating gate elements described earlier, a dielectric layer is used. Such memory devices utilizing dielectric storage element have been described by Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545. An ONO dielectric layer extends across the channel between source and drain diffusions. The charge for one data bit is localized in the dielectric layer adjacent to the drain, and the charge for the other data bit is localized in the dielectric layer adjacent to the source. For example, U.S. Pat. Nos. 5,768,192 and 6,011,725 disclose a nonvolatile memory cell having a trapping dielectric sandwiched between two silicon dioxide layers. Multi-state data storage is implemented by separately reading the binary states of the spatially separated charge storage regions within the dielectric.
A first set of aspects concern a high voltage step-down regulator circuit to provide a regulated low voltage level from a high voltage supply level. A high voltage output transistor is connected between the high voltage supply level and an output node. The high voltage output transistor is connected to the high voltage supply level through a depletion device, wherein the control gate of the depletion device is connected to the output node, thereby reducing the voltage drop across the high voltage output transistor. Supply control circuitry is connected to receive feedback from the output node and set the voltage level on the control gate of the high voltage output transistor to provide the regulated low voltage level on the output node based upon the feedback.
Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
Memory System
With respect to the memory section 102, semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array. NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate).
As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration, e.g., in an x-z plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device levels. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
One of skill in the art will recognize that this invention is not limited to the two dimensional and three dimensional exemplary structures described but cover all relevant memory structures within the spirit and scope of the invention as described herein and as understood by one of skill in the art.
Physical Memory Structure
There are many commercially successful non-volatile solid-state memory devices being used today. These memory devices may employ different types of memory cells, each type having one or more charge storage element.
Typical non-volatile memory cells include EEPROM and flash EEPROM. Examples of EEPROM cells and methods of manufacturing them are given in U.S. Pat. No. 5,595,924. Examples of flash EEPROM cells, their uses in memory systems and methods of manufacturing them are given in U.S. Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In particular, examples of memory devices with NAND cell structures are described in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of memory devices utilizing dielectric storage elements have been described by Eitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in U.S. Pat. Nos. 5,768,192 and 6,011,725.
In practice, the memory state of a cell is usually read by sensing the conduction current across the source and drain electrodes of the cell when a reference voltage is applied to the control gate. Thus, for each given charge on the floating gate of a cell, a corresponding conduction current with respect to a fixed reference control gate voltage may be detected. Similarly, the range of charge programmable onto the floating gate defines a corresponding threshold voltage window or a corresponding conduction current window.
Alternatively, instead of detecting the conduction current among a partitioned current window, it is possible to set the threshold voltage for a given memory state under test at the control gate and detect if the conduction current is lower or higher than a threshold current (cell-read reference current). In one implementation the detection of the conduction current relative to a threshold current is accomplished by examining the rate the conduction current is discharging through the capacitance of the bit line.
As can be seen from the description above, the more states a memory cell is made to store, the more finely divided is its threshold window. For example, a memory device may have memory cells having a threshold window that ranges from −1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store 16 states, each state may occupy from 200 mV to 300 mV in the threshold window. This will require higher precision in programming and reading operations in order to be able to achieve the required resolution.
NAND Structure
When an addressed memory transistor 10 within a NAND string is read or is verified during programming, its control gate 30 is supplied with an appropriate voltage. At the same time, the rest of the non-addressed memory transistors in the NAND string 50 are fully turned on by application of sufficient voltage on their control gates. In this way, a conductive path is effectively created from the source of the individual memory transistor to the source terminal 54 of the NAND string and likewise for the drain of the individual memory transistor to the drain terminal 56 of the cell. Memory devices with such NAND string structures are described in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935.
Physical Organization of the Memory
One important difference between flash memory and other of types of memory is that a cell must be programmed from the erased state. That is the floating gate must first be emptied of charge. Programming then adds a desired amount of charge back to the floating gate. It does not support removing a portion of the charge from the floating gate to go from a more programmed state to a lesser one. This means that updated data cannot overwrite existing data and must be written to a previous unwritten location.
Furthermore erasing is to empty all the charges from the floating gate and generally takes appreciable time. For that reason, it will be cumbersome and very slow to erase cell by cell or even page by page. In practice, the array of memory cells is divided into a large number of blocks of memory cells. As is common for flash EEPROM systems, the block is the unit of erase. That is, each block contains the minimum number of memory cells that are erased together. While aggregating a large number of cells in a block to be erased in parallel will improve erase performance, a large size block also entails dealing with a larger number of update and obsolete data.
Each block is typically divided into a number of physical pages. A logical page is a unit of programming or reading that contains a number of bits equal to the number of cells in a physical page. In a memory that stores one bit per cell, one physical page stores one logical page of data. In memories that store two bits per cell, a physical page stores two logical pages. The number of logical pages stored in a physical page thus reflects the number of bits stored per cell. In one embodiment, the individual pages may be divided into segments and the segments may contain the fewest number of cells that are written at one time as a basic programming operation. One or more logical pages of data are typically stored in one row of memory cells. A page can store one or more sectors. A sector includes user data and overhead data.
All-Bit, Full-Sequence MLC Programming
A 2-bit code having a lower bit and an upper bit can be used to represent each of the four memory states. For example, the “0”, “1”, “2” and “3” states are respectively represented by “11”, “01”, “00” and ‘10”. The 2-bit data may be read from the memory by sensing in “full-sequence” mode where the two bits are sensed together by sensing relative to the read demarcation threshold values rV1, rV2 and rV3 in three sub-passes respectively.
3-D NAND Structures
An alternative arrangement to a conventional two-dimensional (2-D) NAND array is a three-dimensional (3-D) array. In contrast to 2-D NAND arrays, which are formed along a planar surface of a semiconductor wafer, 3-D arrays extend up from the wafer surface and generally include stacks, or columns, of memory cells extending upwards. Various 3-D arrangements are possible. In one arrangement a NAND string is formed vertically with one end (e.g. source) at the wafer surface and the other end (e.g. drain) on top. In another arrangement a NAND string is formed in a U-shape so that both ends of the NAND string are accessible on top, thus facilitating connections between such strings. Examples of such NAND strings and their formation are described in U.S. Patent Publication Number 2012/0220088 and in U.S. Patent Publication Number 2013/0107628, which are hereby incorporated by reference in their entirety.
As with planar NAND strings, select gates 705, 707, are located at either end of the string to allow the NAND string to be selectively connected to, or isolated from, external elements 709, 711. Such external elements are generally conductive lines such as common source lines or bit lines that serve large numbers of NAND strings. Vertical NAND strings may be operated in a similar manner to planar NAND strings and both SLC and MLC operation is possible. While
A 3D NAND array can, loosely speaking, be formed tilting up the respective structures 50 and 210 of
To the right of
High Voltage Step Down Regulators
Memory circuits, such as those describe above, typically use a number of different regulated voltages levels in their operation. For example, in the NAND type circuits described above, in addition to the voltages applied to selected word lines during sensing operations, various voltages are applied to non-selected word lines and select gates during sensing and programming operations. In addition, bit lines, sense amps, well structures and other various bias levels, as well as the high voltages used in programming and erase operations. These levels are typically generated on the memory device from an external supply levels. In many applications of non-volatile memory, such the memory cards or embedded memory used on portable devices, the external supply level will often a low voltage (e.g., ˜3V), with the higher voltage levels being generated through use of charge pump circuits. In more recent application of such memory circuits, such as solid state drives (SSDs) or enterprise level memory systems, it is more common to have a high voltage supply level (e.g. ˜12V) available.
For NAND and other memory technologies, power saving and usage play an important role. In the absent of high supply level VPP pin on the memory chip, charge pumps are needed to generate high supply voltages for peripheral circuits as well as biasing memory cells for different operations. Consequently, the inclusion on the memory chip of a high supply level pin (such as a VPP 12V supply pin) can be used for the purpose of power saving as these higher levels no longer need to generated on-chip. To simplify design and reduce ripples, high voltage step down regulator can then be used to generate lower supply levels such as for various word line voltages. A typical way to provide such a step down regulator is to use a high voltage PFET device as a driver, but, given the lower voltage levels needed in applications such as NAND memories, this can run into limitations imposed by design rules for such devices.
VMON is used as an input to the op-amp 319 that has a reference level VREF as is other input. The output NDRV of op-amp 319 is connected the control gate of the transistor 315, where the transistor 315 is connected in series with the high voltage HPFET2311 between the supply level VPP and ground. HPFET2311 is connected in current mirror arrangement with HPFET1301, their gates being commonly connected to the node below HPFET2311. Due to the voltage difference between HPFET2311 and transistor 315, a high voltage NMOS 313 is placed in between to protect the device 315, where the gate is set at an internal analog supply level VDDA. As HPFET1301 is used to drive the load, while HPFET2311 is only used in setting the levels, HPFET 2 can be sized smaller, here by a ratio of 1:N. Transistor 315 is connected to ground though a transistor 317 that acts as an adjustable current sink by trimming the value of the gate voltage IREFN.
In a design such a
One way lessen the voltage drop across HPFET1301 would be to place another PMOS device below each of HPFET1301 and HPFET2311, so that the drop from VPP to VOUT be split between HPFET1301 and this additional device. For example, the gates of these two devices could be commonly set at 4V for a VPP of 12V, so that the drop across HPFET1301 could be kept under 8V and provide the need high voltage protection for the HPFET driving the load. However, this would slow down ramp up (recovery) at the output. This could be improved taking the gate voltage on these intermediary device low during ramp up, and then toggling them high, but the timing of the toggling can be tricky as if gate voltage toggles L→H too early, the ramp up (recovery) could be slow; and if it toggles L→H too late, EDR could be an issue same as before.
To improve upon this situation, a primary aspect of this section introduces an HPFET current mirror based on a high voltage depletion type NFET to protect the output HPFET and to drive the output.
The supply control elements of the circuit (411, 413, 415, 417, 419) shown on the left of
To the example of VPP=12V for the supply and a desired regulated low voltage level of VOUT ˜3V, this will put the gate of the depletion device 401 at ˜3V. HPFET1403 and the depletion type NFET 401 both negative threshold devices, having respective threshold voltages of Vtp=−1V and Vtd=−2V, for example. As VSUP=VOUT+|Vtd|, this puts the internal supply node VSUP below the depletion type NFET 401 at VSUP ˜5V, so that there is only a two volt drop across HPFET1403. This arrangement allows for the output level to cover a wide range of voltages from VREF to the supply level without design rule (EDR) concerns.
Although described here in the context of its use on a non-volatile memory circuit, the techniques of this section are more generally applicable to step down regulators that could use protection from breakdown due to the voltage differences involved. The inclusion of a depletion device as illustrated in
Conclusion
The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4161633 | Treiber | Jul 1979 | A |
4580067 | Proebsting | Apr 1986 | A |
4954731 | Dhong et al. | Sep 1990 | A |
5070032 | Yuan et al. | Dec 1991 | A |
5095344 | Harari | Mar 1992 | A |
5313421 | Guterman et al. | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5343063 | Yuan et al. | Aug 1994 | A |
5436587 | Cernea | Jul 1995 | A |
5512845 | Yuh | Apr 1996 | A |
5570315 | Tanaka et al. | Oct 1996 | A |
5595924 | Yuan et al. | Jan 1997 | A |
5661053 | Yuan | Aug 1997 | A |
5723985 | Van Tran et al. | Mar 1998 | A |
5768192 | Eitan | Jun 1998 | A |
5790453 | Chevallier | Aug 1998 | A |
5903495 | Takeuchi et al. | May 1999 | A |
5912838 | Chevallier | Jun 1999 | A |
5940333 | Chung | Aug 1999 | A |
5966331 | Shiau et al. | Oct 1999 | A |
6011725 | Eitan | Jan 2000 | A |
6020778 | Shigehara et al. | Feb 2000 | A |
6044012 | Rao et al. | Mar 2000 | A |
6046935 | Takeuchi et al. | Apr 2000 | A |
6078518 | Chevallier | Jun 2000 | A |
6154085 | Ramakrishnan | Nov 2000 | A |
6166982 | Murray et al. | Dec 2000 | A |
6169432 | Sharpe-Geisler | Jan 2001 | B1 |
6222762 | Guterman et al. | Apr 2001 | B1 |
6242962 | Nakamura | Jun 2001 | B1 |
6351158 | Shearon et al. | Feb 2002 | B1 |
6359496 | Steinhagen | Mar 2002 | B1 |
6370075 | Haeberli et al. | Apr 2002 | B1 |
6483366 | Ho | Nov 2002 | B2 |
6492860 | Ramakrishnan | Dec 2002 | B1 |
6556465 | Haeberli et al. | Apr 2003 | B2 |
6696880 | Pan et al. | Feb 2004 | B2 |
6717851 | Mangan et al. | Apr 2004 | B2 |
6760262 | Haeberli et al. | Jul 2004 | B2 |
6922096 | Cernea | Jul 2005 | B2 |
7030683 | Pan et al. | Apr 2006 | B2 |
7053689 | Kim | May 2006 | B2 |
7135910 | Cernea | Nov 2006 | B2 |
7272046 | Tanzawa | Sep 2007 | B2 |
7368979 | Govindu et al. | May 2008 | B2 |
7400171 | Montazer | Jul 2008 | B1 |
7492206 | Park et al. | Feb 2009 | B2 |
7515503 | Lee et al. | Apr 2009 | B2 |
7554311 | Pan | Jun 2009 | B2 |
7592858 | Jung | Sep 2009 | B1 |
7609554 | Tanzawa | Oct 2009 | B2 |
7795952 | Lui et al. | Sep 2010 | B2 |
7796437 | Cazzaniga | Sep 2010 | B2 |
7816969 | Yoo | Oct 2010 | B2 |
8004340 | Guo et al. | Aug 2011 | B2 |
8098088 | Sutandi et al. | Jan 2012 | B1 |
8106701 | Huynh et al. | Jan 2012 | B1 |
8294509 | Pan et al. | Oct 2012 | B2 |
8305807 | Shah et al. | Nov 2012 | B2 |
8339185 | Cazzaniga et al. | Dec 2012 | B2 |
20060114737 | Terasawa et al. | Jun 2006 | A1 |
20060133149 | Chae | Jun 2006 | A1 |
20070109862 | Kim | May 2007 | A1 |
20070126494 | Pan | Jun 2007 | A1 |
20070133300 | Tanzawa | Jun 2007 | A1 |
20070139077 | Park et al. | Jun 2007 | A1 |
20070139099 | Pan | Jun 2007 | A1 |
20070268748 | Lee et al. | Nov 2007 | A1 |
20070268774 | Lee et al. | Nov 2007 | A1 |
20080198667 | Hosomura et al. | Aug 2008 | A1 |
20090058506 | Nandi et al. | Mar 2009 | A1 |
20090058507 | Nandi et al. | Mar 2009 | A1 |
20090058508 | Lin | Mar 2009 | A1 |
20090097312 | Binboga | Apr 2009 | A1 |
20090153230 | Pan et al. | Jun 2009 | A1 |
20090153232 | Fort et al. | Jun 2009 | A1 |
20090302930 | Pan et al. | Dec 2009 | A1 |
20090315616 | Nguyen et al. | Dec 2009 | A1 |
20090322413 | Huynh et al. | Dec 2009 | A1 |
20100019832 | Pan | Jan 2010 | A1 |
20100067300 | Nakamura | Mar 2010 | A1 |
20100080063 | Nakagawa | Apr 2010 | A1 |
20100289465 | Elran | Nov 2010 | A1 |
20100309720 | Liu et al. | Dec 2010 | A1 |
20110018615 | Pan | Jan 2011 | A1 |
20140169095 | Avila et al. | Jun 2014 | A1 |
20140211553 | Lai | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
0 475 407 | Mar 1992 | EP |
02 034022 | Feb 1990 | JP |
3-41694 | Feb 1991 | JP |
9-139079 | Mar 1997 | JP |
11-126478 | May 1999 | JP |
Entry |
---|
Feng Pan., “Charge Pump Circuit Design,” McGraw-Hill, 2006, 26 pages. |
Pylarinos et al., “Charge Pumps: An Overview,” Department of Electrical and Computer Engineering , University of Toronto, www.eecg.toronto,edu/˜kphang/ece1371/chargepumps.pdf. |
U.S. Appl. No. 13/927,659, entitled “System for Maintaining Back Gate Threshold Voltage in Three Dimensional NAND Memory,” filed Jun. 26, 2013, 41 pages. |
U.S. Appl. No. 13/925,662, entitled “High Capacity Select Switches for Three-Dimensional Structures,” filed Jun. 24, 2013, 36 pages. |
Number | Date | Country | |
---|---|---|---|
20160049206 A1 | Feb 2016 | US |