The invention relates to magnetic random access memory (MRAM) cell array architecture and more specifically to arrays having segmented word lines where the word line programming current goes through only a segment of cells along the word line.
MTJs (Magnetic Tunnel Junctions) may be programmed at the intersections of Word Line and Bit Line currents in MRAM cells. The possibility of cells along the same word and bit lines being disturbed is, however, a major concern. A Segmented Word Line approach, as described in “Select Line Architecture for Magnetic Random Access Memories” (US Patent Application Publication: US 2002/0176272 A 1), eliminated disturb conditions for cells on the same word line outside the selected segment. When the operating point is chosen deep along the hard axis, the required bidirectional bit line currents to program the selected cells are significantly reduced. The possibility of a disturb along the bit line is also reduced. This is an ideal MRAM operating condition but the silicon area overhead due to the large size of the segmented word line select transistor makes widespread application impractical.
In
In
This mode of word line current biasing requires every bit within the selected word line segment to be programmed in one direction or the other. Otherwise, they will end up in random states. The Word Line bias current required in this condition is high, therefore the size of a Segmented Word Line Select Transistor will be a big overhead compared with the number of cells (or bit lines) within an selected segment.
In a conventional approach, as seen in
Since the sensing currents of all MTJs within a word line segment will flow through a single isolation transistor, the voltage on the Common Bottom Electrode node will vary depending on the resistance states (i.e. Data Pattern). The size of the Common Isolation Transistor needs to be large to reduce this effect. Another undesirable effect of using a single isolation transistor is the fairly big voltage difference, depending on bit line resistance and bit line programming current values, between bit lines in a big array during Write due to the bidirectional nature of Bit Line programming currents. This big potential difference between adjacent bit lines within a word line segment can damage MTJs and reduce programming current.
A routine search of the prior art was performed with the following references of interest being found:
U.S. Pat. No. 6,335,890 (Roehr et al) discloses global and local word lines where the global word lines are isolated from the memory cells, write lines and bit lines orthogonal, and a switch for each word line segment. U.S. Pat. No. 6,490,217 and U.S. Patent Application 2002/0176272 (DeBrosse et al) show 1 transistor for each MRAM element.
U.S. Pat. No. 6,816,405 and U.S. Patent Applications 2004/0240265 (Lu et al) shows a local word line associated with each segment where the local word line is connected to a switch at one end and the a global word line at the other end. Local and global bit lines do not seem to be disclosed. U.S. Pat. No. 6,778,429 (Lu et al) also includes current sinks couplable to global word lines. U.S. Pat. No. 6,711,053 (Tang) discloses a switching device (transistor) for each MTJ.
U.S. Patent Application 2004/0190360 (Scheuerlein) shows word line segments connected vertically without segment switching devices. U.S. Patent Application 2004/0165424 (Tsang) teaches segmented word lines and segmented bit lines.
It has been an object of at least one embodiment of the present invention to provide a method for reducing the space overhead in a segmented MRAM array associated with the large size of the segmented word line select transistor
Another object of at least one embodiment of the present invention has been to provide a circuit wherein said method has been implemented.
A further object of at least one embodiment of the present invention has been to show how said circuit may be constructed.
Still another object of at least one embodiment of the present invention has been to reduce the overall MRAM cell array down to a level comparable to a simple Cross Point MRAM array, while still retaining the benefits of a segmented array.
These objects have been achieved by showing how to reduce silicon area overhead by using one common isolation transistor for all the bits within a segment, instead of one isolation transistor per bit. The resulting freed silicon area can be used for the segmented word line select transistor thus significantly reducing silicon area in the word line direction.
The invention further teaches how to minimize the MRAM cell array in the bit line direction, such that the resulting MRAM array is comparable to the smallest Cross Point MRAM cell array while maintaining the high performance and ease of implementation characteristics of a one MTJ, one isolation transistor, MRAM cell array.
The prior art problem of the silicon area overhead due to the large size of the segmented word line select transistor has been solved by introducing separate Programming Bit Lines, which do not themselves contact the MTJs. Since the bottom sides of all MTJs within a word line segment are connected, leakage currents between Bit Lines can be significant in a large array that is in Read Mode. Connecting only a segment of the Local Bit Lines to the Global Bit Lines minimizes this leakage current. Segmented Word Line arrays often require separate Read Word Line and Write Word Line Busses to avoid damaging the MTJ during Write. By isolating the topside of the MTJ from the Write Bit Line, the Read Word Line and Write Word Line signals of a conventional segmented word architecture can be combined into a single Read Word Line/Write Word Line.
These ideas and concepts are embodied
Bidirectional Bit Line currents through one set of Global Bit lines 33 will program the bits at this intersection. All Bit Line Segment Select Transistors 34 are OFF, isolating Local Bit Lines 35 from Global Bit Lines 33.
During the Read Cycle, only one of the Read Word Line/Write Word Lines 31 is selected. All Global Word Line Sources 32 are turned off (at GND level). One set of Bit Line Segment Selects 36, in which the selected RWL/WWL is located, is selected. The Global Bit Lines 33 within the selected word line segment are connected to (or further decoded and then connected to) sense amplifiers (not shown).
This array can be implemented in two ways. A plan view (excluding the underlying semiconductor components and interconnects) is shown in
In
In another embodiment (
The pitch along the bit line direction can therefore be reduced to the MTJ pitch, limited as a Cross Point MTJ MRAM cell, assuming that the underlying silicon level (MOSFETs and metal 1), and the required interconnects buses for this MRAM, can be constructed within this pitch.
Based on the same generation lithography rules for MTJs and production CMOS, two embodiments for the silicon level layout are shown in
There is another pitch that could be the limiting factor of this MRAM array. That is the VIA that is needed to connect the Bottom Electrode of the MTJs and Local Word Lines to the drains of MOSFETs and the metal buses needed to shunt RWL/WWL. In
The MTJs, silicon level, and VIA/interconnect layers can be optimized individually and separately making it possible to design a high performance MRAM array, having the same order of areal efficiency as a Cross Point cell array and its associated benefits, of segmented word line MRAM cells with isolation transistors 41.