The present application relates generally to home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associated devices, systems and methods. In particular, several embodiments are directed to devices that a user may easily recharge or regenerate using a conventional commercial, clinical, institutional or domestic freezer.
Excess body fat, or adipose tissue, may be present in various locations of the body, including, for example, the thighs, buttocks, abdomen, knees, back, face, arms, chin, and other areas. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat protrudes into the dermis and creates dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose tissue are often considered to be unappealing. Moreover, significant health risks may be associated with higher amounts of excess body fat.
A variety of methods have been used to treat individuals having excess body fat and, in many instances, non-invasive removal of excess subcutaneous adipose tissue can eliminate unnecessary recovery time and discomfort associated with invasive procedures such as liposuction. Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting or a combination of these treatments. One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Similarly, weight-loss drugs or topical agents are not an option when they cause an allergic or other negative reaction. Furthermore, fat loss in selective areas of a person's body often cannot be achieved using general or systemic weight-loss methods.
Other methods designed to reduce subcutaneous adipose tissue include laser-assisted liposuction and mesotherapy. Newer non-invasive methods include applying radiant energy to subcutaneous lipid-rich cells via, e.g., radio frequency and/or light energy, such as is described in U.S. Patent Publication No. 2006/0036300 and U.S. Pat. No. 5,143,063, or via, e.g., high intensity focused ultrasound (HIFU) radiation such as is described in U.S. Pat. Nos. 7,258,674 and 7,347,855. In contrast, methods and devices for non-invasively reducing subcutaneous adipose tissue by cooling are disclosed in U.S. Pat. No. 7,367,341 entitled “METHODS AND DEVICES FOR SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al. and U.S. Patent Publication No. 2005/0251120 entitled “METHODS AND DEVICES FOR DETECTION AND CONTROL OF SELECTIVE DISRUPTION OF FATTY TISSUE BY CONTROLLED COOLING” to Anderson et al., the entire disclosures of which are incorporated herein by reference.
Many features of the present technology are illustrated in simplified, schematic and/or partially schematic formats in the following Figures to avoid obscuring significant technology features. Many features are not drawn to scale so as to more clearly illustrate these features.
Several examples of devices, systems and methods for cooling subcutaneous adipose tissue in accordance with the presently disclosed technology are described below. Although the following description provides many specific details of the following examples in a manner sufficient to enable a person skilled in the relevant art to practice, make and use them, several of the details and advantages described below may not be necessary to practice certain examples and methods of the technology. Additionally, the technology may include other examples and methods that are within the scope of the claims but are not described here in detail.
References throughout this specification to “one example,” “an example,” “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, steps or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the claimed technology.
Certain embodiments of the technology described below may take the form of computer-executable instructions, including routines executed by a programmable computer or controller. Those skilled in the relevant art will appreciate that the technology can be practiced on computer or controller systems other than those shown and described below. The technology can be embodied in a special-purpose computer, controller, or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described below. Accordingly, the terms “computer” and “controller” as generally used herein refer to any data processor and can include internet appliances, hand-held devices, multi-processor systems, programmable consumer electronics, network computers, mini computers, and the like. The technology can also be practiced in distributed environments where tasks or modules are performed by remote processing devices that are linked through a communications network. Aspects of the technology described below may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer discs as well was media distributed electronically over networks. In particular embodiments, data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of the present technology. The present technology encompasses both methods of programming computer-readable media to perform particular steps, as well as executing the steps.
One embodiment of a cooling device for cooling subcutaneous lipid-rich cells in a human includes an applicator that is releasably positionable in thermal communication with human skin. The device further includes a coolant vessel having a coolant and a heat transfer conduit having a heat transfer fluid that is isolated from fluid contact with the coolant. A heat exchanger is operatively coupled between the coolant vessel and heat transfer conduit to transfer heat between the heat transfer fluid and the coolant, and a fluid driver is operatively coupled to the heat transfer conduit to direct the heat transfer fluid between the applicator and the heat exchanger.
In a further particular embodiment, the coolant has a liquid/solid phase transition temperature greater than the liquid/solid phase transition temperature of the heat transfer fluid. The heat exchanger is positioned within the coolant vessel and includes a heat exchanger conduit that, together with the heat transfer conduit and the applicator, form a sealed, closed-loop path for the heat transfer fluid. Accordingly, the entire device can be placed in a freezer (e.g., a domestic freezer) to freeze the coolant in preparation for treating lipid-rich cells in a human. In other embodiments, only selected components of the device are removable to freeze or otherwise cool the coolant.
A method for cooling human tissue in accordance with a particular embodiment of the disclosure includes releasably attaching an applicator to a human, and removing heat from subcutaneous lipid-rich tissue of the human via the applicator to selectively reduce lipid-rich cells of the tissue (e.g., via the body's reaction to cooling). The heat is removed by directing a chilled heat transfer fluid to applicator and transferring absorbed heat from the heat transfer fluid to a coolant. In particular embodiments, the coolant can remain solid, remain liquid or change phase from a solid to a liquid as it receives heat from the heat transfer fluid. The method still further includes re-cooling the coolant. Selected methods in accordance with another embodiment of the disclosure include removing the heat by directing a chilled heat transfer fluid into a flexible envelope and through a porous internal support structure within the envelope, while the porous internal structure at least restricts fluid pressure in the envelope from (a) bulging the envelope outwardly, or (b) collapsing the internal structure, or (c) both (a) and (b). Still another method includes directing the chilled heat transfer fluid into an applicator, between two flexible portions of the applicator, each having a different elasticity.
Without being bound by theory, the selective effect of cooling on lipid-rich cells is believed to result in, for example, membrane disruption, cell shrinkage, disabling, damaging, destroying, removing, killing or other methods of lipid-rich cell alteration. Such alteration is believed to stem from one or more mechanisms acting alone or in combination. It is thought that such mechanism(s) trigger an apoptotic cascade, which is believed to be the dominant form of lipid-rich cell death by non-invasive cooling. In any of these embodiments, the effect of tissue cooling is to selectively reduce lipid-rich cells.
Apoptosis, also referred to as “programmed cell death”, is a genetically-induced death mechanism by which cells self-destruct without incurring damage to surrounding tissues. An ordered series of biochemical events induce cells to morphologically change. These changes include cellular blebbing, loss of cell membrane asymmetry and attachment, cell shrinkage, chromatin condensation and chromosomal DNA fragmentation. Injury via an external stimulus, such as cold exposure, is one mechanism that can induce cellular apoptosis in cells. Nagle, W. A., Soloff, B. L., Moss, A. J. Jr., Henle, K. J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990).
One aspect of apoptosis, in contrast to cellular necrosis (a traumatic form of cell death causing local inflammation), is that apoptotic cells express and display phagocytic markers on the surface of the cell membrane, thus marking the cells for phagocytosis by macrophages. As a result, phagocytes can engulf and remove the dying cells (e.g., the lipid-rich cells) without eliciting an immune response. Temperatures that elicit these apoptotic events in lipid-rich cells may contribute to long-lasting and/or permanent reduction and reshaping of subcutaneous adipose tissue.
One mechanism of apoptotic lipid-rich cell death by cooling is believed to involve localized crystallization of lipids within the adipocytes at temperatures that do not induce crystallization in non-lipid-rich cells. The crystallized lipids selectively may injure these cells, inducing apoptosis (and may also induce necrotic death if the crystallized lipids damage or rupture the bi-lipid membrane of the adipocyte). Another mechanism of injury involves the lipid phase transition of those lipids within the cell's bi-lipid membrane, which results in membrane disruption or disfunction, thereby inducing apoptosis. This mechanism is well-documented for many cell types and may be active when adipocytes, or lipid-rich cells, are cooled. Mazur, P., “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970); Quinn, P. J., “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147 (1985); Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003). Another mechanism of injury may involve a disfunction of ion transfer pumps across the cellular membrane to maintain desired concentrations of ions such as potassium (K+) or sodium (Na+). An ion imbalance across the cell membrane may result from lipid phase transition of lipids within the cell's bi-lipid membrane or by another mechanism, thereby inducing apoptosis. Other yet-to-be-understood apoptotic mechanisms may exist, based on the relative sensitivity to cooling of lipid-rich cells compared to non-lipid rich cells.
In addition to the apoptotic mechanisms involved in lipid-rich cell death, local cold exposure is also believed to induce lipolysis (i.e., fat metabolism) of lipid-rich cells and has been shown to enhance existing lipolysis which serves to further increase the reduction in subcutaneous lipid-rich cells. Vallerand, A. L., Zamecnik. J., Jones, P. J. H., Jacobs, I. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans” Aviation, Space and Environmental Medicine 70, 42-50 (1999).
One expected advantage of the foregoing techniques is that the subcutaneous lipid-rich cells can be reduced generally without collateral damage to non-lipid-rich cells in the same region. In general, lipid-rich cells can be affected at low temperatures that do not affect non-lipid-rich cells. As a result, lipid-rich cells, such as those associated with cellulite, can be affected while other cells in the same region are generally not damaged even though the non-lipid-rich cells at the surface may be subjected to even lower temperatures than those to which the lipid-rich cells are exposed.
The heat transfer conduit 150 is connected to a heat exchanger 160 having a heat exchanger conduit (e.g., tubing) 161 that is positioned within or at least partially within the coolant vessel 140. The coolant vessel 140 contains a coolant 141 that is in close thermal contact with the heat exchanger 160, but is isolated from direct fluid contact with the heat transfer fluid 155 contained within the heat exchanger tubing 161. Accordingly, the heat exchanger 160 facilitates heat transfer between the heat transfer fluid 155 and the coolant 141, while preventing these fluids from mixing. As a result, the coolant 141 can be selected to have a composition different than that of the heat transfer fluid 155. In particular embodiments, the coolant 141 can be selected to have a phase transition temperature (from liquid/gel to solid) that is less than normal body temperature (about 37° C.) and in particular embodiments, in the range of from about 37° C. to about −20° C., or about 25° C. to about −20° C., or about 0° C. to about −12° C., or about −3° C. to about −6° C., to present a constant temperature environment to the heat transfer fluid 155 as the coolant 141 transitions from a solid to a liquid/gel. The heat transfer fluid 155 in such embodiments has a phase transition temperature that is less than that of the coolant 141. Accordingly, the heat transfer fluid 155 remains in a fluid state even when the coolant 141 or a portion of the coolant 141 is in a solid state. As a result, the heat transfer fluid 155 can flow within the heat transfer conduit 150 to convey heat away from the human tissue 110 even when the coolant 141 is frozen or at least partially frozen.
In operation, the device 100 can be prepared for use by placing the major components (e.g., the applicator 120, the heat transfer conduit 150, the heat exchanger 160 and the coolant vessel 140), as a unit, in a suitably cold environment. In a particular embodiment, the cold environment includes a freezer (e.g., a domestic freezer), in which the temperature typically ranges from about −10° C. to about −20° C., sufficient to freeze the coolant 141. After the coolant 141 is frozen, the device 100 can be removed from the freezer or other cold environment, as a unit, and the applicator 120 can be attached to the human tissue 110 using a cuff or other suitable attachment device (e.g., having a Velcro® closure, a buckle, or other releasable feature). Optionally, the user can apply a lotion between the applicator 120 and the skin to facilitate heat transfer and/or provide a moisturizing or other cosmetic effect. Whether or not the user applies a lotion or another intermediate constituent, the applicator 120 is positioned in thermal communication with the user's skin, so as to effectively remove heat from the lipid-rich tissue 112. The fluid driver 170 is then activated to drive the heat transfer fluid 155 through the heat transfer conduit 150, thus transferring heat from the subcutaneous lipid-rich tissue 112 to the frozen coolant 141 via the heat exchanger 160. As the coolant 141 melts, the temperature within the coolant vessel 140 remains approximately constant so as to provide a constant or nearly constant heat transfer fluid temperature to the human tissue 110. After the human tissue 110 has been cooled for an appropriate period of time, causing some or all of the coolant 141 to melt, the device 100 can be removed as a unit from the human tissue 110, as indicated by arrow A, and the coolant 141 can be re-frozen by placing the device 100 in the freezer. Accordingly, the cooling capacity of the coolant vessel 140 can be readily recharged or regenerated prior to a subsequent treatment process. The appropriate tissue-cooling period of time can be controlled by properly selecting the cooling capacity of the coolant 141, or via a controller and/or sensor, as described in further detail later with reference to
In particular embodiments described above with reference to
One characteristic of the device 100 shown in both
The device 100 can include a controller 180 to control the heater 152, the shunt valves 154, and/or other features of the device 100. For example, in a particular embodiment, the controller 180 includes a microprocessor 183 having a timer component 184. When the device 100 is initially powered (e.g., by activating the fluid driver 170), the microprocessor 183 can automatically open the shunt channel 153 via the shunt valves 154, and activate the heater 152. The heater 152 and the shunt channel 153 can remain in this configuration for a predetermined time, after which the microprocessor 153 automatically issues control signals deactivating the heater 152 and closing the shunt channel 153. Accordingly, the timer component 184 operates as a sensor by sensing the passage of time during which the heater 152 is actively heating the heat transfer fluid 155. In other embodiments described further below, one or more sensors can detect other characteristics associated with the device 100.
In a particular embodiment, the microprocessor 183 can direct the control signals 182 based on inputs 181 received from one or more temperature sensors 186. For example, the device 100 can include a first temperature sensor 186a positioned at the applicator 120. The microprocessor 183 can automatically activate the heater 152 and the shunt channel 153 until the first temperature sensor 186a indicates a temperature suitable for placing the applicator 120 against the human tissue 110. The device 100 can include a second temperature sensor 186b located at the coolant vessel 140 (e.g., the center of the coolant 141). The microprocessor 183 can accordingly direct control signals 182 that activate the fluid driver 170 for as long as the second temperature sensor 186b indicates a constant and/or suitably low temperature. When the second temperature sensor 186b identifies a temperature rise (indicating that the coolant 141 has completely melted), the microprocessor 183 can automatically deactivate the fluid driver 170. If the coolant 141 is not selected to change phase during heating and cooling, the micro-processor 183 can deactivate the fluid driver 170 when the temperature of the coolant 141 exceeds a threshold temperature. The controller 180 can include an output device 185 that indicates the operational modes or states of the device 100. For example, the output device 185 can display visual signals (e.g., via different colored LEDs) and/or aural signals (e.g., via an audio speaker) to signify when the applicator 120 is ready to be applied to the human tissue 110, when the treatment program is over, and/or when temperatures or other characteristics of any of the device components are outside pre-selected bounds.
In yet another embodiment, the controller 180 can direct a simplified process for handling the initial temperature of the heat transfer fluid 155. In particular, the controller 180 can monitor the temperature signal provided by the first temperature sensor 186a, without activating the fluid driver 170, and without the need for the heater 152 or the shunt channel 153. Instead, the controller 180 can generate an output (presented by the output device 185) when the ambient conditions cause the heat transfer fluid 155 to rise to an acceptable temperature, as detected by the first temperature sensor 186a. The user can optionally accelerate this process by applying heat to the applicator 120 and/or the heat transfer conduit 150 via an external heat source. An advantage of this approach is that it can be simpler than the integrated heater 152 described above. Conversely, the heater 152 (under the direction of the controller 180) can be more reliable and quicker, at least in part because the heater 152 is positioned within the insulation provided around the heat transfer conduit 150 and other device components.
The device 100 can include a variety of features configured to enhance uniform heat distribution and heat transfer. For example, the heat exchanger 160 can include fins 165 on the heat exchanger tubing 161 to increase the surface area available to transfer heat between the heat transfer fluid 155 and the coolant 141. The coolant vessel 140 can also include a first agitator 101a that distributes the melting coolant 141 within the coolant vessel 140 to provide for a more uniform temperature and heat transfer rate within the vessel 140. In one embodiment, the first agitator 101a can include a magnetically driven device, and can be magnetically coupled to a first actuator motor 102a positioned outside the coolant vessel 140. Accordingly, the agitator 101a can operate without the need for a sealed drive shaft penetrating into the coolant vessel 140. A similar arrangement can be used at the applicator 120. In particular, the applicator 120 can include a second agitator 101b driven by a second actuator motor 102b to distribute the heat transfer fluid 155 uniformly within the applicator 120. Suitably positioned internal fluid channels can be used in addition to or in lieu of the second agitator 101b to uniformly distribute the heat transfer fluid 155 in the applicator 120. A representative device that includes such features is a Model No. 10240 pad, available from Breg Polar Care (bregpolarcare.com). The actuator motors 102a, 102b can be operatively coupled to a power cord 173, which also provides power to the fluid driver 170 and the heater 152. In other embodiments, the device 100 can include other elements that agitate and/or distribute the fluid in the applicator 120 and/or the coolant vessel 140. Such elements can include liquid jets, shaft-driven stirrers, pistons and/or other devices that move the solid and/or liquid portion of the coolant 141 within the coolant vessel 140, and/or actuators that vibrate, shake, tip or otherwise move the coolant vessel 140 itself or heat exchanger 160 within the coolant vessel.
As noted above, the applicator 120, the heat transfer conduit 150, the heat exchanger 160, and the coolant vessel 140 can be moved as a unit between the target tissue 110 and a freezer or other cold environment prior to and after treatment. In a particular embodiment, the remaining components or elements of the device 100 shown in
Certain features described above in the context of a processor-based automatic control system can, in other embodiments, operate without a processor, or can operate manually. For example, the shunt valves 154 can include thermostatic radiator values, or similar valves that have an integrated temperature sensor (e.g., a mechanical thermostat) that autonomously drives the valve without the need for a processor. In other embodiments, the coolant 141 can change color as it undergoes its phase change, which can eliminate the need for the second temperature sensor 186b. In one aspect of this embodiment, the coolant vessel 140 is transparent, allowing the user to readily see both when the coolant 141 is frozen and when the coolant 141 has melted. In the event the device 100 loses coolant 141 over the course of time, the coolant vessel 140 can include a fill/drain port 142. In a particular aspect of this embodiment, the fill/drain port 142 can have a removable plug 148 that is transparent, in addition to or in lieu of the coolant vessel 140 being transparent. Similarly, the heat transfer fluid 155 can include constituents that change color when the heat transfer fluid attains a temperature that is no longer suitable for properly chilling the tissue 110. The applicator 120 and/or the heat transfer conduit 150 (or portions thereof) can be made transparent to allow the user to easily determine when this temperature threshold has been exceeded.
Both the coolant 141 and the heat transfer fluid 155 are selected to be highly thermally conductive. Suitable constituents for the coolant 141 include water in combination with propylene glycol, ethylene glycol, glycerin, ethanol, isopropyl alcohol, hydroxyethyl cellulose, salt, and/or other constituents. In at least some embodiments, the same constituents can be used for the heat transfer fluid 155, but the ratios of the constituents (and therefore the overall composition of the heat transfer fluid) are selected to produce a lower liquid/solid phase transition temperature. Both the heat transfer fluid 155 and the coolant 141 can be selected to have high heat conductivity and low toxicity in case of a leak. Both can include an anti-microbial agent to restrict or prevent algae formulation and/or propagation of other undesirable life forms. The coolant 141 can be selected to have a high heat capacity to better absorb heat from the heat transfer fluid 155. The heat transfer fluid 155 can have a relatively low heat capacity so that it readily heats up when the heater 152 is activated. The heat transfer fluid 155 can also be selected to have a low viscosity at operating temperatures to facilitate flow through the heat transfer conduit 150, the heat exchanger 160 and the applicator 120. In any of these embodiments the coolant vessel 140 in which the coolant 141 is disposed can be flexible and elastic, and/or can include a vent or other feature to accommodate volume changes as the coolant 141 changes phase.
In one aspect of an embodiment shown in
In another aspect of this embodiment, the pump motor 172 itself can be removed from the coolant vessel housing 143, along with the power cord 173, generally in the manner described above with reference to
One feature of particular embodiments of the device 100 described above with reference to the
Another feature of particular embodiments of the device 100 described above is that the volume of heat transfer fluid 155 contained in the system can be made relatively low by using short lengths and/or small diameters for the heat transfer conduit 150 and the heat exchanger tubing 161, and a low (e.g., thin) profile for the applicator 120. Accordingly, the coolant 141 can more quickly cool the heat transfer fluid 155 and the entirety of the effective heat transfer surface of the applicator 120. Having a low thermal mass for the heat transfer fluid 155 will also reduce the amount of time and/or energy required to elevate the temperature of the applicator 120 to a comfortable level after the device 100 has been removed from the freezer.
Still another feature of particular embodiments of the device 100 described above is that the unitary arrangement of the device is expected to produce a compact size and therefore low mass. These features in turn can make it easier to position the device in a freezer (e.g., a domestic freezer), and can make the device more comfortable and convenient to wear during use.
Yet another feature of at least some of the foregoing embodiments is that the simplicity of the device can reduce manufacturing costs and therefore the costs to the user. In at least some instances, the device need not include the serviceable component features described above because the device may be cheaper to replace than repair. The device can include an automated lock-out or shut-down feature that activates after a predetermined number of uses to prevent use beyond an expected period of threshold efficacy or useful life.
One feature of an embodiment shown in
When the coolant 141 is selected to undergo a phase change during operation, it can include a solid component 141a generally positioned away from the vessel wall 746 once the coolant 141 begins to melt, and a liquid component 141b generally in contact with the inner surface of the vessel wall 746 and conductive portion o the vessel wall 747b. As described above, the coolant vessel 740 can include an agitator or other device to enhance the uniform distribution of heat transfer within the coolant vessel 740 by circulating the liquid component 141b, moving the solid component 141a, and/or vibrating or otherwise moving the coolant vessel 740.
In particular embodiments, the second portion 926 can include polyethylene, polypropylene, nylon, vinyl, and/or another suitable plastic film. The first portion 925 can include latex rubber, nitrile, polyisoprene and/or urethane, and/or another suitable elastomeric material. An optional elastic mesh 929 can be positioned adjacent to the first portion 925 (or the entire envelope 924), and can include an elastic nylon, rubber and/or other suitable elastic material. The mesh 929 can prevent the first portion 925 from undergoing excessive wear and/or bulging during handling. It can accordingly be strong, but thin enough to avoid significantly interfering with the heat transfer process between the applicator 920 and the tissue 110.
In a particular embodiment, the applicator 920 can also include a flexible support structure 921 that provides additional support for the envelope 924, without inhibiting the ability of the envelope 924 to conform to the tissue 110. The support structure 921 can also function as the releasable coupling (e.g., a cuff) securing the applicator 920 to the tissue 110. In any of these embodiments, the support structure 921 can have a pre-formed shape (e.g., a downwardly-facing concave shape) and can be resiliently biased toward the pre-formed shape. Accordingly, the applicator 920 can more readily conform to a convex tissue surface. In particular embodiments, a family of applicators having different shapes can be coupled to a similar type of overall cooling device to provide for system commonality and interchangeability.
The internal support structure 1021b can resist buckling, in addition to or in lieu of resisting bulging or ballooning. For example, the internal support structure 1021b can have a high enough buckling strength so that when the applicator 1020 is coupled to a downstream fluid driver 1070b, the envelope 1024 will not collapse upon itself due to external, ambient pressure (e.g., to the point that it inhibits the flow of heat transfer fluid 155) when the heat transfer fluid 155 is withdrawn through the exit port 1028b. In particular embodiments, the heat transfer fluid 155 may be withdrawn via a pressure that is up to about 2 psi below the pressure outside the envelope 1024. In other embodiments, the foregoing pressure differential can be up to about 5 psi or 10 psi without the envelope 1024 collapsing on itself. This will help keep the envelope from ballooning due to positive internal pressure. Another advantage of the downstream fluid driver 1070b is that if the envelope 1024 is inadvertently punctured, the downstream fluid driver 1070b will suck air through the puncture, while the upstream fluid driver 1070a will continue to pump heat transfer fluid 155 through such a puncture.
In a particular embodiment, the internal support structure 1021b can include a TN Blue non-abrasive non-woven polyester pad available from Glit/Microtron. This material can be made in multiple layers (e.g., two layers, each 0.35 of an inch thick) encased in a polyether-polyurethane film envelope 1024 having a thickness of 0.006-0.012 inches. The internal support structure 1021b, which is already porous due to the fibrous make-up of the material, can be even further perforated with a hole pattern, producing small diameter holes spaced uniformly spaced apart, and oriented generally perpendicular to the major surfaces of the envelope 1024. These holes can facilitate bending the internal support structure 1021b to conform to convex and/or concave shapes. It is expected that the relatively thin overall dimensions of the resulting applicator 1020 (e.g., from about 0.25 inch to about 0.50 inch) will allow the applicator 1020 to readily conform to the human anatomy. The low flow impedance of the internal support structure 1021b is expected to allow flow rates of approximately 0.1 to 5 liters per minute, suitable for adequately cooling the adjacent tissue. In addition, the three-dimensional nature of the fibrous, porous structure can facilitate a uniform distribution of the heat transfer fluid 155 within the applicator 1020, producing a more uniform treatment of the adjacent tissue 110.
The porosity of the internal support structure 1021b can vary from one portion of the applicator 1020 to another, and/or can vary depending upon the local flow direction desired for the heat transfer fluid 155. For example, the porosity of the internal support structure 1021b can be selected to enhance heat transfer from the tissue in the peripheral areas of the applicator 1020, e.g., to account for the expected increase in heat transfer losses to the ambient environment in these areas. The porosity can be altered by adjusting the number and/or size of the pores within the internal support structure 1021b, as well as the spatial orientation of the pores.
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications can be made without deviating from the technology. For example, the devices described above can include components that provide mechanical energy to create a vibratory, massage and/or pulsatile effect in addition to cooling the subcutaneous tissue. Representative components are described in U.S. Pat. No. 7,367,341 and in commonly assigned U.S. Patent Publication No. 2008/0287839, both of which are incorporated herein by reference. While certain features of the devices described above make them particularly suitable for home use, such features do not preclude the devices from being used in hospital or clinical office settings. In such embodiments, the devices or portions of the devices can be cooled in commercial, clinical or institutional freezers and/or coolers. The shapes, sizes and compositions of many of the components described above can be different than those disclosed above so long as they provide the same or generally similar functionalities. For example, the conduits and tubing described above can have other shapes or arrangements that nevertheless effectively convey fluid. The fluid driver can be operatively coupled to the heat transfer conduit without being directly connected to the heat transfer conduit, e.g., by being connected to the heat exchanger that conveys the heat transfer fluid, or by being connected to the applicator. The controller can implement control schemes other than those specifically described above, and/or can be coupled to sensors other than those specifically described above (e.g., pressure sensors) in addition to or in lieu of temperature and time sensors, to detect changes associated with the cooling device. The controller can in some cases accept user inputs, though in most cases, the controller can operate autonomously to simplify the use of the device. As discussed above, the coolant in some embodiments can go through a phase change during heating and cooling, so that the cooling process freezes or solidifies the coolant. In other embodiments for which no phase change occurs, the cooling process does not freeze or solidify the coolant.
Certain aspects of the technology described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the applicators described above in the content of
The present application claims priority to the following U.S. Provisional Patent Applications, each of which is incorporated herein by reference: 61/298,175, filed Jan. 25, 2010 and 61/354,615, filed Jun. 14, 2010. To the extent that the materials in the foregoing references and/or any other references incorporated herein by reference conflict with the present disclosure, the present disclosure controls.
Number | Name | Date | Kind |
---|---|---|---|
681806 | Mignault | Sep 1901 | A |
889810 | Robinson | Jun 1908 | A |
2516491 | Swastek | Jul 1950 | A |
2726658 | Chessey | Dec 1955 | A |
2766619 | Tribus et al. | Oct 1956 | A |
2851602 | Cramwinckel et al. | Sep 1958 | A |
3093135 | Hirschhorn | Jun 1963 | A |
3132688 | Nowak | May 1964 | A |
3282267 | Wiliam | Nov 1966 | A |
3502080 | Hirschhorn | Mar 1970 | A |
3587577 | Smirnov et al. | Jun 1971 | A |
3591645 | Selwitz | Jul 1971 | A |
3703897 | Mack et al. | Nov 1972 | A |
3710784 | Taylor | Jan 1973 | A |
3786814 | Armao | Jan 1974 | A |
3827436 | Stumpf et al. | Aug 1974 | A |
3942519 | Shock | Mar 1976 | A |
3948269 | Zimmer | Apr 1976 | A |
3986385 | Johnston et al. | Oct 1976 | A |
3993053 | Grossan | Nov 1976 | A |
4002221 | Buchalter | Jan 1977 | A |
4026299 | Sauder | May 1977 | A |
4140130 | Storm, III | Feb 1979 | A |
4149529 | Copeland et al. | Apr 1979 | A |
4178429 | Scheffer | Dec 1979 | A |
4202336 | van Gerven et al. | May 1980 | A |
4266043 | Fujii et al. | May 1981 | A |
4269068 | Molina | May 1981 | A |
4381009 | Del Bon et al. | Apr 1983 | A |
4396011 | Mack et al. | Aug 1983 | A |
4459854 | Richardson et al. | Jul 1984 | A |
4483341 | Witteles | Nov 1984 | A |
4528979 | Marchenko et al. | Jul 1985 | A |
4531524 | Mioduski | Jul 1985 | A |
4548212 | Leung | Oct 1985 | A |
4555313 | Duchane et al. | Nov 1985 | A |
4585002 | Kissin | Apr 1986 | A |
4603076 | Bowditch et al. | Jul 1986 | A |
4614191 | Perler | Sep 1986 | A |
4644955 | Mioduski | Feb 1987 | A |
4664110 | Schanzlin | May 1987 | A |
4700701 | Montaldi | Oct 1987 | A |
4718429 | Smidt et al. | Jan 1988 | A |
4741338 | Miyamae et al. | May 1988 | A |
4764463 | Mason et al. | Aug 1988 | A |
4802475 | Weshahy et al. | Feb 1989 | A |
4832022 | Tjulkov et al. | May 1989 | A |
4846176 | Golden | Jul 1989 | A |
4850340 | Onishi | Jul 1989 | A |
4869250 | Bitterly | Sep 1989 | A |
4880564 | Abel et al. | Nov 1989 | A |
4905697 | Heggs et al. | Mar 1990 | A |
4906463 | Cleary et al. | Mar 1990 | A |
4930317 | Klein | Jun 1990 | A |
4935345 | Guilbeau et al. | Jun 1990 | A |
4961422 | Marchosky et al. | Oct 1990 | A |
4962761 | Golden | Oct 1990 | A |
4990144 | Blott | Feb 1991 | A |
5007433 | Hermsdorffer et al. | Apr 1991 | A |
5018521 | Campbell | May 1991 | A |
5024650 | Hagiwara et al. | Jun 1991 | A |
5065752 | Sessions et al. | Nov 1991 | A |
5069208 | Noppel et al. | Dec 1991 | A |
5084671 | Miyata et al. | Jan 1992 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5119674 | Nielsen et al. | Jun 1992 | A |
5139496 | Hed et al. | Aug 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5148804 | Hill et al. | Sep 1992 | A |
5158070 | Dory | Oct 1992 | A |
5169384 | Bosniak et al. | Dec 1992 | A |
5197466 | Marchosky et al. | Mar 1993 | A |
5207674 | Hamilton | May 1993 | A |
5221726 | Dabi et al. | Jun 1993 | A |
5264234 | Windhab et al. | Nov 1993 | A |
5277030 | Miller | Jan 1994 | A |
5314423 | Seney | May 1994 | A |
5327886 | Chiu | Jul 1994 | A |
5330745 | McDow | Jul 1994 | A |
5333460 | Lewis et al. | Aug 1994 | A |
5334131 | Omandam et al. | Aug 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5339541 | Owens | Aug 1994 | A |
5342617 | Gold | Aug 1994 | A |
5351677 | Kami et al. | Oct 1994 | A |
5358467 | Milstein et al. | Oct 1994 | A |
5362966 | Rosenthal et al. | Nov 1994 | A |
5363347 | Nguyen | Nov 1994 | A |
5372608 | Johnson | Dec 1994 | A |
5386837 | Sterzer | Feb 1995 | A |
5411541 | Bell et al. | May 1995 | A |
5427772 | Hagan | Jun 1995 | A |
5433717 | Rubinsky et al. | Jul 1995 | A |
5456703 | Beeuwkes, III | Oct 1995 | A |
5472416 | Blugerman et al. | Dec 1995 | A |
5486207 | Mahawili | Jan 1996 | A |
5497596 | Zatkulak | Mar 1996 | A |
5501655 | Rolt et al. | Mar 1996 | A |
5505726 | Meserol | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507790 | Weiss et al. | Apr 1996 | A |
5514105 | Goodman, Jr. et al. | May 1996 | A |
5514170 | Mauch | May 1996 | A |
5531742 | Barken | Jul 1996 | A |
5562604 | Yablon et al. | Oct 1996 | A |
5571801 | Segall et al. | Nov 1996 | A |
5575812 | Owens et al. | Nov 1996 | A |
5603221 | Maytal et al. | Feb 1997 | A |
5628769 | Saringer et al. | May 1997 | A |
5634890 | Morris | Jun 1997 | A |
5634940 | Panyard | Jun 1997 | A |
5647051 | Neer | Jul 1997 | A |
5647868 | Chinn | Jul 1997 | A |
5650450 | Lovette et al. | Jul 1997 | A |
5651773 | Perry et al. | Jul 1997 | A |
5654279 | Rubinsky et al. | Aug 1997 | A |
5654546 | Lindsay | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5665053 | Jacobs | Sep 1997 | A |
5672172 | Zupkas | Sep 1997 | A |
5700284 | Owens et al. | Dec 1997 | A |
5725483 | Podolsky | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5746736 | Tankovich | May 1998 | A |
5755663 | Larsen et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5755755 | Panyard | May 1998 | A |
5759182 | Varney et al. | Jun 1998 | A |
5759764 | Polovina | Jun 1998 | A |
5769879 | Richards et al. | Jun 1998 | A |
5785955 | Fischer | Jul 1998 | A |
5792080 | Ookawa et al. | Aug 1998 | A |
5800490 | Patz et al. | Sep 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5817050 | Klein | Oct 1998 | A |
5817149 | Owens et al. | Oct 1998 | A |
5817150 | Owens et al. | Oct 1998 | A |
5830208 | Muller | Nov 1998 | A |
5833685 | Tortal et al. | Nov 1998 | A |
5844013 | Kenndoff et al. | Dec 1998 | A |
5865841 | Kolen et al. | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5871526 | Gibbs et al. | Feb 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5891617 | Watson et al. | Apr 1999 | A |
5895418 | Saringer et al. | Apr 1999 | A |
5901707 | Gon.cedilla.alves et al. | May 1999 | A |
5902256 | Benaron | May 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5944748 | Mager et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5954680 | Augustine et al. | Sep 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5964749 | Eckhouse et al. | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5980561 | Kolen et al. | Nov 1999 | A |
5986167 | Arteman et al. | Nov 1999 | A |
5989286 | Owens et al. | Nov 1999 | A |
5997530 | Nelson et al. | Dec 1999 | A |
6017337 | Pira | Jan 2000 | A |
6023932 | Johnston | Feb 2000 | A |
6032675 | Rubinsky | Mar 2000 | A |
6039694 | Larson et al. | Mar 2000 | A |
6041787 | Rubinsky | Mar 2000 | A |
6047215 | McClure et al. | Apr 2000 | A |
6049927 | Thomas et al. | Apr 2000 | A |
6051159 | Hao | Apr 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6074415 | Der Ovanesian | Jun 2000 | A |
6093230 | Johnson, III et al. | Jul 2000 | A |
6102885 | Bass | Aug 2000 | A |
6104952 | Tu et al. | Aug 2000 | A |
6104959 | Spertell et al. | Aug 2000 | A |
6106517 | Zupkas | Aug 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6113626 | Clifton et al. | Sep 2000 | A |
6120519 | Weber et al. | Sep 2000 | A |
6139544 | Mikus et al. | Oct 2000 | A |
6150148 | Nanda et al. | Nov 2000 | A |
6152952 | Owens et al. | Nov 2000 | A |
6171301 | Nelson et al. | Jan 2001 | B1 |
6180867 | Hedengren et al. | Jan 2001 | B1 |
6226996 | Weber et al. | May 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6264649 | Whitcroft et al. | Jul 2001 | B1 |
6273884 | Altshuler et al. | Aug 2001 | B1 |
6290988 | Van Vilsteren et al. | Sep 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6311497 | Chung | Nov 2001 | B1 |
6312453 | Stefanile et al. | Nov 2001 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6354297 | Eiseman | Mar 2002 | B1 |
6357907 | Cleveland et al. | Mar 2002 | B1 |
6375673 | Clifton et al. | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6401722 | Krag | Jun 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6426445 | Young et al. | Jul 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6430956 | Haas et al. | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6438954 | Goetz et al. | Aug 2002 | B1 |
6438964 | Giblin | Aug 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6458888 | Hood et al. | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6471693 | Carroll et al. | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6478811 | Dobak, III et al. | Nov 2002 | B1 |
6494844 | Van Bladel et al. | Dec 2002 | B1 |
6497721 | Ginsburg et al. | Dec 2002 | B2 |
6508831 | Kushnir | Jan 2003 | B1 |
6514244 | Pope et al. | Feb 2003 | B2 |
6519964 | Bieberich | Feb 2003 | B2 |
6523354 | Tolbert | Feb 2003 | B1 |
6527765 | Kelman et al. | Mar 2003 | B2 |
6527798 | Ginsburg et al. | Mar 2003 | B2 |
6544248 | Bass | Apr 2003 | B1 |
6547811 | Becker et al. | Apr 2003 | B1 |
6548297 | Kuri-Harcuch et al. | Apr 2003 | B1 |
6551255 | Van Bladel et al. | Apr 2003 | B2 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551348 | Blalock et al. | Apr 2003 | B1 |
6551349 | Lasheras et al. | Apr 2003 | B2 |
6569189 | Augustine et al. | May 2003 | B1 |
6585652 | Lang et al. | Jul 2003 | B2 |
6592577 | Abboud et al. | Jul 2003 | B2 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6620187 | Carson et al. | Sep 2003 | B2 |
6620188 | Ginsburg et al. | Sep 2003 | B1 |
6620189 | Machold et al. | Sep 2003 | B1 |
6623430 | Slayton et al. | Sep 2003 | B1 |
6626854 | Friedman et al. | Sep 2003 | B2 |
6632219 | Baranov et al. | Oct 2003 | B1 |
6635053 | Lalonde et al. | Oct 2003 | B1 |
6643535 | Damasco et al. | Nov 2003 | B2 |
6645162 | Friedman et al. | Nov 2003 | B2 |
6645229 | Matsumura et al. | Nov 2003 | B2 |
6645232 | Carson | Nov 2003 | B2 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
6656208 | Grahn et al. | Dec 2003 | B2 |
6660027 | Gruszecki et al. | Dec 2003 | B2 |
6662054 | Kreindel et al. | Dec 2003 | B2 |
6682550 | Clifton et al. | Jan 2004 | B2 |
6685731 | Kushnir et al. | Feb 2004 | B2 |
6694170 | Mikus et al. | Feb 2004 | B1 |
6695874 | Machold et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6699237 | Weber et al. | Mar 2004 | B2 |
6699266 | Lachenbruch et al. | Mar 2004 | B2 |
6699267 | Voorhees et al. | Mar 2004 | B2 |
6718785 | Bieberich | Apr 2004 | B2 |
6741895 | Gafni et al. | May 2004 | B1 |
6743222 | Durkin et al. | Jun 2004 | B2 |
6746474 | Saadat | Jun 2004 | B2 |
6749624 | Knowlton | Jun 2004 | B2 |
6764493 | Weber et al. | Jul 2004 | B1 |
6764502 | Bieberich | Jul 2004 | B2 |
6789545 | Littrup et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6820961 | Johnson | Nov 2004 | B2 |
6821274 | McHale et al. | Nov 2004 | B2 |
6840955 | Ein | Jan 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6878144 | Altshuler et al. | Apr 2005 | B2 |
6889090 | Kreindel | May 2005 | B2 |
6892099 | Jaafar et al. | May 2005 | B2 |
6904956 | Noel | Jun 2005 | B2 |
6918903 | Bass | Jul 2005 | B2 |
6927316 | Faries, Jr. et al. | Aug 2005 | B1 |
6942022 | Blangetti et al. | Sep 2005 | B2 |
6945942 | Van Bladel et al. | Sep 2005 | B2 |
6948903 | Ablabutyan et al. | Sep 2005 | B2 |
6969399 | Schock et al. | Nov 2005 | B2 |
7005558 | Johansson et al. | Feb 2006 | B1 |
7006874 | Knowlton et al. | Feb 2006 | B2 |
7022121 | Stern et al. | Apr 2006 | B2 |
7037326 | Lee et al. | May 2006 | B2 |
7054685 | Dimmer et al. | May 2006 | B2 |
7060061 | Altshuler et al. | Jun 2006 | B2 |
7077858 | Fletcher et al. | Jul 2006 | B2 |
7081111 | Svaasand et al. | Jul 2006 | B2 |
7083612 | Littrup et al. | Aug 2006 | B2 |
7096204 | Chen et al. | Aug 2006 | B1 |
7112712 | Ancell | Sep 2006 | B1 |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7141049 | Stern et al. | Nov 2006 | B2 |
7183360 | Daniel et al. | Feb 2007 | B2 |
7189252 | Krueger | Mar 2007 | B2 |
7192426 | Baust et al. | Mar 2007 | B2 |
7204832 | Altshuler et al. | Apr 2007 | B2 |
7220778 | Anderson et al. | May 2007 | B2 |
7229436 | Stern et al. | Jun 2007 | B2 |
7258674 | Cribbs et al. | Aug 2007 | B2 |
7267675 | Stern et al. | Sep 2007 | B2 |
7276058 | Altshuler et al. | Oct 2007 | B2 |
7318821 | Lalonde et al. | Jan 2008 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7347855 | Eshel et al. | Mar 2008 | B2 |
7367341 | Anderson et al. | May 2008 | B2 |
7532201 | Quistgaard et al. | May 2009 | B2 |
7572268 | Babaev | Aug 2009 | B2 |
7604632 | Howlett et al. | Oct 2009 | B2 |
7613523 | Eggers et al. | Nov 2009 | B2 |
7615016 | Barthe et al. | Nov 2009 | B2 |
7713266 | Elkins et al. | May 2010 | B2 |
7780656 | Tankovich | Aug 2010 | B2 |
7799018 | Goulko | Sep 2010 | B2 |
7824437 | Saunders | Nov 2010 | B1 |
7828831 | Tanhehco et al. | Nov 2010 | B1 |
7850683 | Elkins et al. | Dec 2010 | B2 |
7854754 | Ting et al. | Dec 2010 | B2 |
7862558 | Elkins et al. | Jan 2011 | B2 |
RE42277 | Jaafar et al. | Apr 2011 | E |
7938824 | Chornenky et al. | May 2011 | B2 |
7963959 | Da Silva et al. | Jun 2011 | B2 |
7967763 | Deem et al. | Jun 2011 | B2 |
7993330 | Goulko | Aug 2011 | B2 |
7998137 | Elkins et al. | Aug 2011 | B2 |
RE42835 | Chornenky et al. | Oct 2011 | E |
RE43009 | Chornenky et al. | Dec 2011 | E |
8133180 | Slayton et al. | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8192474 | Levinson | Jun 2012 | B2 |
8246611 | Paithankar et al. | Aug 2012 | B2 |
8275442 | Allison | Sep 2012 | B2 |
8285390 | Levinson et al. | Oct 2012 | B2 |
8333700 | Barthe et al. | Dec 2012 | B1 |
8337539 | Ting et al. | Dec 2012 | B2 |
8366622 | Slayton et al. | Feb 2013 | B2 |
8414631 | Quisenberry et al. | Apr 2013 | B2 |
8433400 | Prushinskaya et al. | Apr 2013 | B2 |
8506486 | Slayton et al. | Aug 2013 | B2 |
8523775 | Barthe et al. | Sep 2013 | B2 |
8523791 | Castel | Sep 2013 | B2 |
8523927 | Levinson et al. | Sep 2013 | B2 |
8535228 | Slayton et al. | Sep 2013 | B2 |
8603073 | Allison | Dec 2013 | B2 |
8636665 | Slayton et al. | Jan 2014 | B2 |
8641622 | Barthe et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8672848 | Slayton et al. | Mar 2014 | B2 |
8676332 | Fahey | Mar 2014 | B2 |
8690778 | Slayton et al. | Apr 2014 | B2 |
8690779 | Slayton et al. | Apr 2014 | B2 |
8690780 | Slayton et al. | Apr 2014 | B2 |
8834547 | Anderson et al. | Sep 2014 | B2 |
20010005791 | Ginsburg et al. | Jun 2001 | A1 |
20010007952 | Shimizu | Jul 2001 | A1 |
20010023364 | Ahn | Sep 2001 | A1 |
20010031459 | Fahy et al. | Oct 2001 | A1 |
20010039439 | Elkins et al. | Nov 2001 | A1 |
20010045104 | Bailey et al. | Nov 2001 | A1 |
20010047196 | Ginsburg et al. | Nov 2001 | A1 |
20020026226 | Ein | Feb 2002 | A1 |
20020032473 | Kushnir et al. | Mar 2002 | A1 |
20020049483 | Knowlton | Apr 2002 | A1 |
20020058975 | Bieberich | May 2002 | A1 |
20020062142 | Knowlton | May 2002 | A1 |
20020068338 | Nanda et al. | Jun 2002 | A1 |
20020082668 | Ingman | Jun 2002 | A1 |
20020103520 | Latham | Aug 2002 | A1 |
20020107558 | Clifton et al. | Aug 2002 | A1 |
20020117293 | Campbell | Aug 2002 | A1 |
20020120315 | Furuno et al. | Aug 2002 | A1 |
20020128648 | Weber et al. | Sep 2002 | A1 |
20020151830 | Kahn | Oct 2002 | A1 |
20020151887 | Stern et al. | Oct 2002 | A1 |
20020156509 | Cheung | Oct 2002 | A1 |
20020188286 | Quijano et al. | Dec 2002 | A1 |
20020198518 | Mikus et al. | Dec 2002 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030044764 | Soane et al. | Mar 2003 | A1 |
20030055414 | Altshuler et al. | Mar 2003 | A1 |
20030069618 | Smith et al. | Apr 2003 | A1 |
20030077326 | Newton et al. | Apr 2003 | A1 |
20030077329 | Kipp et al. | Apr 2003 | A1 |
20030079488 | Bieberich | May 2003 | A1 |
20030100936 | Altshuler et al. | May 2003 | A1 |
20030109908 | Lachenbruch et al. | Jun 2003 | A1 |
20030109910 | Lachenbruch et al. | Jun 2003 | A1 |
20030109911 | Lachenbruch et al. | Jun 2003 | A1 |
20030114885 | Nova et al. | Jun 2003 | A1 |
20030120268 | Bertolero et al. | Jun 2003 | A1 |
20030125649 | McIntosh et al. | Jul 2003 | A1 |
20030187488 | Kreindel et al. | Oct 2003 | A1 |
20030199226 | Sommer et al. | Oct 2003 | A1 |
20030199859 | Altshuler et al. | Oct 2003 | A1 |
20030220594 | Halvorson et al. | Nov 2003 | A1 |
20030220635 | Knowlton et al. | Nov 2003 | A1 |
20030220674 | Anderson et al. | Nov 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040002705 | Knowlton et al. | Jan 2004 | A1 |
20040006328 | Anderson | Jan 2004 | A1 |
20040009936 | Tang et al. | Jan 2004 | A1 |
20040024437 | Machold et al. | Feb 2004 | A1 |
20040030332 | Knowlton et al. | Feb 2004 | A1 |
20040034341 | Altshuler et al. | Feb 2004 | A1 |
20040039312 | Hillstead et al. | Feb 2004 | A1 |
20040044384 | Leber et al. | Mar 2004 | A1 |
20040049178 | Abboud et al. | Mar 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040074629 | Noel | Apr 2004 | A1 |
20040077977 | Ella et al. | Apr 2004 | A1 |
20040082886 | Timpson | Apr 2004 | A1 |
20040093042 | Altshuler et al. | May 2004 | A1 |
20040104012 | Zhou et al. | Jun 2004 | A1 |
20040106867 | Eshel et al. | Jun 2004 | A1 |
20040162596 | Altshuler et al. | Aug 2004 | A1 |
20040176667 | Mihai et al. | Sep 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040199226 | Shadduck | Oct 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040210287 | Greene | Oct 2004 | A1 |
20040215294 | Littrup et al. | Oct 2004 | A1 |
20040259855 | Anderson et al. | Dec 2004 | A1 |
20040260209 | Ella et al. | Dec 2004 | A1 |
20040260210 | Ella et al. | Dec 2004 | A1 |
20040260211 | Maalouf | Dec 2004 | A1 |
20050033957 | Enokida | Feb 2005 | A1 |
20050049526 | Baer | Mar 2005 | A1 |
20050049543 | Anderson et al. | Mar 2005 | A1 |
20050049661 | Koffroth | Mar 2005 | A1 |
20050113725 | Masuda | May 2005 | A1 |
20050143781 | Carbunaru et al. | Jun 2005 | A1 |
20050145372 | Noel | Jul 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050154431 | Quistgaard et al. | Jul 2005 | A1 |
20050159986 | Breeland et al. | Jul 2005 | A1 |
20050182462 | Chornenky et al. | Aug 2005 | A1 |
20050187495 | Quistgaard et al. | Aug 2005 | A1 |
20050187597 | Vanderschuit | Aug 2005 | A1 |
20050203446 | Takashima | Sep 2005 | A1 |
20050215987 | Slatkine | Sep 2005 | A1 |
20050222565 | Manstein | Oct 2005 | A1 |
20050251117 | Anderson et al. | Nov 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050261753 | Littrup et al. | Nov 2005 | A1 |
20050283144 | Shiono et al. | Dec 2005 | A1 |
20060030778 | Mendlein et al. | Feb 2006 | A1 |
20060035380 | Saint-Leger | Feb 2006 | A1 |
20060036300 | Kreindel | Feb 2006 | A1 |
20060041704 | Choi | Feb 2006 | A1 |
20060074313 | Slayton et al. | Apr 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060094988 | Tosaya et al. | May 2006 | A1 |
20060106836 | Masugi et al. | May 2006 | A1 |
20060122509 | Desilets | Jun 2006 | A1 |
20060189964 | Anderson et al. | Aug 2006 | A1 |
20060200063 | Munro et al. | Sep 2006 | A1 |
20060206110 | Knowlton et al. | Sep 2006 | A1 |
20060234899 | Nekmard et al. | Oct 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060265032 | Hennings et al. | Nov 2006 | A1 |
20060270745 | Hunt et al. | Nov 2006 | A1 |
20060293734 | Scott et al. | Dec 2006 | A1 |
20070010811 | Stern et al. | Jan 2007 | A1 |
20070010861 | Anderson et al. | Jan 2007 | A1 |
20070032561 | Lin et al. | Feb 2007 | A1 |
20070038156 | Rosenberg | Feb 2007 | A1 |
20070055156 | Desilets et al. | Mar 2007 | A1 |
20070055173 | DeLonzor et al. | Mar 2007 | A1 |
20070055179 | Deem et al. | Mar 2007 | A1 |
20070055180 | Deem et al. | Mar 2007 | A1 |
20070055181 | Deem et al. | Mar 2007 | A1 |
20070078502 | Weber et al. | Apr 2007 | A1 |
20070100398 | Sloan | May 2007 | A1 |
20070106342 | Schumann | May 2007 | A1 |
20070129714 | Elkins et al. | Jun 2007 | A1 |
20070135876 | Weber | Jun 2007 | A1 |
20070141265 | Thomson | Jun 2007 | A1 |
20070179482 | Anderson | Aug 2007 | A1 |
20070198071 | Ting et al. | Aug 2007 | A1 |
20070219540 | Masotti et al. | Sep 2007 | A1 |
20070239075 | Rosenberg et al. | Oct 2007 | A1 |
20070239150 | Zvuloni et al. | Oct 2007 | A1 |
20070249519 | Guha et al. | Oct 2007 | A1 |
20070255187 | Branch | Nov 2007 | A1 |
20070255274 | Stern et al. | Nov 2007 | A1 |
20070255362 | Levinson et al. | Nov 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265614 | Stern et al. | Nov 2007 | A1 |
20070270925 | Levinson | Nov 2007 | A1 |
20070282249 | Quisenberry et al. | Dec 2007 | A1 |
20070282318 | Spooner et al. | Dec 2007 | A1 |
20080014627 | Merchant et al. | Jan 2008 | A1 |
20080046047 | Jacobs | Feb 2008 | A1 |
20080077201 | Levinson et al. | Mar 2008 | A1 |
20080077202 | Levinson | Mar 2008 | A1 |
20080077211 | Levinson et al. | Mar 2008 | A1 |
20080139901 | Altshuler et al. | Jun 2008 | A1 |
20080140061 | Toubia et al. | Jun 2008 | A1 |
20080140371 | Warner | Jun 2008 | A1 |
20080183164 | Elkins et al. | Jul 2008 | A1 |
20080188915 | Mills et al. | Aug 2008 | A1 |
20080248554 | Merchant et al. | Oct 2008 | A1 |
20080269851 | Deem et al. | Oct 2008 | A1 |
20080287839 | Rosen et al. | Nov 2008 | A1 |
20080312651 | Pope et al. | Dec 2008 | A1 |
20090012434 | Anderson | Jan 2009 | A1 |
20090018623 | Levinson et al. | Jan 2009 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090018625 | Levinson et al. | Jan 2009 | A1 |
20090018626 | Levinson et al. | Jan 2009 | A1 |
20090018627 | Levinson et al. | Jan 2009 | A1 |
20090024023 | Welches et al. | Jan 2009 | A1 |
20090076488 | Welches et al. | Mar 2009 | A1 |
20090112134 | Avni | Apr 2009 | A1 |
20090118722 | Ebbers et al. | May 2009 | A1 |
20090149929 | Levinson et al. | Jun 2009 | A1 |
20090149930 | Schenck | Jun 2009 | A1 |
20090171253 | Davenport | Jul 2009 | A1 |
20090171334 | Elkins et al. | Jul 2009 | A1 |
20090221938 | Rosenberg et al. | Sep 2009 | A1 |
20090276018 | Brader | Nov 2009 | A1 |
20090281464 | Cioanta et al. | Nov 2009 | A1 |
20090306749 | Mulindwa | Dec 2009 | A1 |
20090312676 | Rousso et al. | Dec 2009 | A1 |
20090312693 | Thapliyal et al. | Dec 2009 | A1 |
20090326621 | El-Galley | Dec 2009 | A1 |
20100015190 | Hassler | Jan 2010 | A1 |
20100028969 | Mueller et al. | Feb 2010 | A1 |
20100030306 | Edelman et al. | Feb 2010 | A1 |
20100036295 | Altshuler et al. | Feb 2010 | A1 |
20100049178 | Deem et al. | Feb 2010 | A1 |
20100081971 | Allison | Apr 2010 | A1 |
20100087806 | Da Silva et al. | Apr 2010 | A1 |
20100152824 | Allison | Jun 2010 | A1 |
20100168726 | Brookman | Jul 2010 | A1 |
20100198064 | Perl et al. | Aug 2010 | A1 |
20100268220 | Johnson et al. | Oct 2010 | A1 |
20100280582 | Baker et al. | Nov 2010 | A1 |
20110009860 | Chornenky et al. | Jan 2011 | A1 |
20110040235 | Castel | Feb 2011 | A1 |
20110040299 | Kim et al. | Feb 2011 | A1 |
20110046523 | Altshuler et al. | Feb 2011 | A1 |
20110060323 | Baust et al. | Mar 2011 | A1 |
20110066083 | Tosaya et al. | Mar 2011 | A1 |
20110066216 | Ting et al. | Mar 2011 | A1 |
20110077557 | Wing et al. | Mar 2011 | A1 |
20110077723 | Parish et al. | Mar 2011 | A1 |
20110112405 | Barthe et al. | May 2011 | A1 |
20110112520 | Kreindel | May 2011 | A1 |
20110144631 | Elkins et al. | Jun 2011 | A1 |
20110152849 | Baust et al. | Jun 2011 | A1 |
20110172651 | Altshuler et al. | Jul 2011 | A1 |
20110189129 | Qiu et al. | Aug 2011 | A1 |
20110196395 | Maschke | Aug 2011 | A1 |
20110196438 | Mnozil et al. | Aug 2011 | A1 |
20110238050 | Allison et al. | Sep 2011 | A1 |
20110238051 | Levinson et al. | Sep 2011 | A1 |
20110257642 | Griggs, III | Oct 2011 | A1 |
20110300079 | Martens et al. | Dec 2011 | A1 |
20110301585 | Goulko | Dec 2011 | A1 |
20110313411 | Anderson et al. | Dec 2011 | A1 |
20110313412 | Kim et al. | Dec 2011 | A1 |
20120010609 | Deem et al. | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120022518 | Levinson | Jan 2012 | A1 |
20120022622 | Johnson et al. | Jan 2012 | A1 |
20120035475 | Barthe et al. | Feb 2012 | A1 |
20120035476 | Barthe et al. | Feb 2012 | A1 |
20120046547 | Barthe et al. | Feb 2012 | A1 |
20120053458 | Barthe et al. | Mar 2012 | A1 |
20120065629 | Elkins et al. | Mar 2012 | A1 |
20120083862 | Altshuler et al. | Apr 2012 | A1 |
20120101549 | Schumann | Apr 2012 | A1 |
20120109041 | Munz | May 2012 | A1 |
20120158100 | Schomacker | Jun 2012 | A1 |
20120209363 | Williams, III et al. | Aug 2012 | A1 |
20120239123 | Weber et al. | Sep 2012 | A1 |
20120253416 | Erez et al. | Oct 2012 | A1 |
20120259322 | Fourkas et al. | Oct 2012 | A1 |
20120277674 | Clark, III et al. | Nov 2012 | A1 |
20120310232 | Erez | Dec 2012 | A1 |
20130018236 | Altshuler et al. | Jan 2013 | A1 |
20130019374 | Schwartz | Jan 2013 | A1 |
20130066309 | Levinson | Mar 2013 | A1 |
20130073017 | Liu et al. | Mar 2013 | A1 |
20130079684 | Rosen et al. | Mar 2013 | A1 |
20130116758 | Levinson et al. | May 2013 | A1 |
20130116759 | Levinson et al. | May 2013 | A1 |
20130150844 | Deem et al. | Jun 2013 | A1 |
20130158636 | Ting et al. | Jun 2013 | A1 |
20130166003 | Johnson et al. | Jun 2013 | A1 |
20130185440 | Blau et al. | Jul 2013 | A1 |
20130238062 | Ron Edoute et al. | Sep 2013 | A1 |
20130245507 | Khorassani Zadeh | Sep 2013 | A1 |
20130253384 | Anderson et al. | Sep 2013 | A1 |
20130253493 | Anderson et al. | Sep 2013 | A1 |
20130253494 | Anderson et al. | Sep 2013 | A1 |
20130253495 | Anderson et al. | Sep 2013 | A1 |
20130253496 | Anderson et al. | Sep 2013 | A1 |
20130303904 | Barthe et al. | Nov 2013 | A1 |
20130303905 | Barthe et al. | Nov 2013 | A1 |
20130331914 | Lee et al. | Dec 2013 | A1 |
20140005759 | Fahey et al. | Jan 2014 | A1 |
20140005760 | Levinson et al. | Jan 2014 | A1 |
20140142469 | Britva et al. | May 2014 | A1 |
20140200488 | Seo et al. | Jul 2014 | A1 |
20140277302 | Weber et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2011253768 | Jun 2012 | AU |
2441489 | Mar 2005 | CA |
2585214 | Oct 2007 | CA |
333982 | Nov 1958 | CH |
86200604 | Oct 1987 | CN |
2514795 | Oct 2002 | CN |
2514811 | Oct 2002 | CN |
1511503 | Jul 2004 | CN |
1741777 | Mar 2006 | CN |
1817990 | Aug 2006 | CN |
2843367 | Dec 2006 | CN |
2850584 | Dec 2006 | CN |
2850585 | Dec 2006 | CN |
200970265 | Nov 2007 | CN |
101259329 | Sep 2008 | CN |
101309657 | Nov 2008 | CN |
532976 | Sep 1931 | DE |
2851602 | Jun 1980 | DE |
2851602 | Jun 1980 | DE |
4213584 | Nov 1992 | DE |
4224595 | Jan 1994 | DE |
4238291 | May 1994 | DE |
4445627 | Jun 1996 | DE |
19800416 | Jul 1999 | DE |
0263069 | Apr 1988 | EP |
0397043 | Nov 1990 | EP |
0406244 | Jan 1991 | EP |
0598824 | Jun 1994 | EP |
1201266 | May 2002 | EP |
1568395 | Aug 2005 | EP |
2527005 | Nov 2012 | EP |
854937 | Apr 1940 | FR |
2744358 | Aug 1997 | FR |
2745935 | Sep 1997 | FR |
2767476 | Feb 1999 | FR |
2776920 | Oct 1999 | FR |
2789893 | Aug 2000 | FR |
2805989 | Sep 2001 | FR |
387960 | Feb 1933 | GB |
2120944 | Dec 1983 | GB |
2248183 | Apr 1992 | GB |
2263872 | Aug 1993 | GB |
2286660 | Aug 1995 | GB |
2323659 | Sep 1998 | GB |
58187454 | Nov 1983 | JP |
63076895 | Apr 1988 | JP |
S6382936 | Apr 1988 | JP |
01223961 | Sep 1989 | JP |
03051964 | Mar 1991 | JP |
3259975 | Nov 1991 | JP |
4093597 | Mar 1992 | JP |
H06261933 | Sep 1994 | JP |
6282977 | Oct 1994 | JP |
7194666 | Aug 1995 | JP |
7268274 | Oct 1995 | JP |
09164163 | Jun 1997 | JP |
10216169 | Aug 1998 | JP |
10223961 | Aug 1998 | JP |
2000503154 | Mar 2000 | JP |
3065657 | Jul 2000 | JP |
2001046416 | Feb 2001 | JP |
2002125993 | May 2002 | JP |
2002224051 | Aug 2002 | JP |
2002282295 | Oct 2002 | JP |
2002290397 | Oct 2002 | JP |
2002543668 | Dec 2002 | JP |
2003190201 | Jul 2003 | JP |
2004013600 | Jan 2004 | JP |
2004073812 | Mar 2004 | JP |
2004073812 | Mar 2004 | JP |
2005039790 | Feb 2005 | JP |
3655820 | Mar 2005 | JP |
200565984 | Mar 2005 | JP |
2005110755 | Apr 2005 | JP |
2005509977 | Apr 2005 | JP |
2005520608 | Jul 2005 | JP |
2005237908 | Sep 2005 | JP |
2005323716 | Nov 2005 | JP |
2008323716 | Nov 2005 | JP |
2006026001 | Feb 2006 | JP |
2006130055 | May 2006 | JP |
2006520949 | Sep 2006 | JP |
2007270459 | Oct 2007 | JP |
2008532591 | Aug 2008 | JP |
2009515232 | Apr 2009 | JP |
2009189757 | Aug 2009 | JP |
200173222 | Dec 1999 | KR |
102004009450 | Nov 2004 | KR |
20090000258 | Jan 2009 | KR |
1020130043299 | Apr 2013 | KR |
1020140038165 | Mar 2014 | KR |
2036667 | Jun 1995 | RU |
532976 | Nov 1978 | SU |
0476644 | Feb 2002 | TW |
WO-8503216 | Aug 1985 | WO |
9114417 | Oct 1991 | WO |
9404116 WO | Mar 1994 | WO |
WO-9404116 | Mar 1994 | WO |
9626693 | Sep 1996 | WO |
WO-9636293 | Nov 1996 | WO |
WO-9637158 | Nov 1996 | WO |
9704832 | Feb 1997 | WO |
WO-9705828 | Feb 1997 | WO |
WO-9722262 | Jun 1997 | WO |
9724088 | Jul 1997 | WO |
WO-9725798 | Jul 1997 | WO |
9748440 | Dec 1997 | WO |
9829134 | Jul 1998 | WO |
9831321 | Jul 1998 | WO |
WO-9841157 | Sep 1998 | WO |
WO-9841156 | Sep 1998 | WO |
9909928 | Mar 1999 | WO |
9916502 | Apr 1999 | WO |
WO-9938469 | Aug 1999 | WO |
0044349 | Aug 2000 | WO |
WO-0044346 | Aug 2000 | WO |
WO-0065770 | Nov 2000 | WO |
WO-0067685 | Nov 2000 | WO |
0100269 | Jan 2001 | WO |
0113989 | Mar 2001 | WO |
WO-0114012 | Mar 2001 | WO |
WO-0205736 | Jan 2002 | WO |
WO-02102921 | Dec 2002 | WO |
0307859 | Jan 2003 | WO |
WO-03078596 | Sep 2003 | WO |
03079916 | Oct 2003 | WO |
WO-2004000098 | Dec 2003 | WO |
WO-2004080279 | Sep 2004 | WO |
2004090939 | Oct 2004 | WO |
WO-2005033957 | Apr 2005 | WO |
WO-2005046540 | May 2005 | WO |
2005060354 | Jul 2005 | WO |
2005096979 | Oct 2005 | WO |
2005112815 | Dec 2005 | WO |
WO-2006066226 | Jun 2006 | WO |
WO-2006094348 | Sep 2006 | WO |
WO-2006106836 | Oct 2006 | WO |
2006116603 | Nov 2006 | WO |
WO-2006127467 | Nov 2006 | WO |
WO-2007012083 | Jan 2007 | WO |
2007028975 | Mar 2007 | WO |
WO-2007041642 | Apr 2007 | WO |
2007101039 | Sep 2007 | WO |
WO-2007127924 | Nov 2007 | WO |
2007145421 | Dec 2007 | WO |
2007145422 | Dec 2007 | WO |
2008006018 | Jan 2008 | WO |
2008039556 | Apr 2008 | WO |
WO-2008039557 | Apr 2008 | WO |
2008055243 | May 2008 | WO |
WO-2008143678 | Nov 2008 | WO |
WO-2009011708 | Jan 2009 | WO |
WO-2009026471 | Feb 2009 | WO |
WO-2010077841 | Jul 2010 | WO |
WO-2010127315 | Nov 2010 | WO |
WO-2012012296 | Jan 2012 | WO |
WO-2012103242 | Aug 2012 | WO |
2013013059 | Jan 2013 | WO |
2013075006 | May 2013 | WO |
2013075016 | May 2013 | WO |
2013190337 | Dec 2013 | WO |
Entry |
---|
Ardevol, “Cooling rates of tissue samples during freezing with liquid nitrogen,” J. of Biochem and Biophysical Methods, 27, 77-86 (1993). |
Bohm et al., “Saline-enhanced radiofrequency ablation of breast tissue: an in vitro feasibility study,” Invest Radiol, 2000, pp. 149-157, vol. 35—issue (3). |
Bondei, E. et al., “Disorders of Subcutaneous Tissue (Cold Panniculitis),” Dermatology in General Medicine, Chapter 108, Section 16: 1333-1334, 1993. |
Burge, S.M. et al., “Hair Follicle Destruction and Regeneration in Guinea Pig Skin after Cutaneous Freeze Injury,” Cryobiology, 27(2): 153-163, 1990. |
Coban, “Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating early Histologic and Biochemical Alterations in Rats,” Mediators of Inflammation, 2005, 5, 304-308. |
Donski et al., “The Effects of Cooling no Experimental Free Flap Survival,” Brit J Plas Surg, 1980, pp. 353-360, vol. 33. |
Duncan, W.C. et al., “Cold Panniculitis,” Arch. Derm., 94:722-24, 1966. |
Epstein, E.H. et al., “Popsicle Panniculitis,” The New England Journal of Medicine, 282(17):996-67, 1970. |
European Search Report, European Application No. EP07758558.6; Applicant: Zeltiq Aesthetics, Inc.; dated Jul. 20, 2007, 4 pages. |
European Search Report, European Patent Application No. 10167756.5, Applicant: The General Hospital Corporation, dated Aug. 31, 2010, 6 pages. |
European Search Report, Eurpean Patent Application No. EP07761461; Applicant: Zeltiq Aesthetics, Inc., dated Apr. 25, 2012, 9 pages. |
European Search Report, Supplement, European Patent Application No. EP08798416.7, Applicant: Zeltiq Aesthetics, Inc., dated Jan. 12, 2012, 7 pages. |
European Search Report, Supplement, European Patent Application No. EP09836823, Applicant: Zeltiq Aesthetics, Inc., dated May 15, 2012, 5 pages. |
Final Office Action; U.S. Appl. No. 10/391,221; dated Aug. 24, 2006, 4 pages. |
Final Office Action; U.S. Appl. No. 11/016,196; dated Mar. 23, 2010, 12 pages. |
Final Office Action; U.S. Appl. No. 11/435,502; dated Mar. 29, 2010, 11 pages. |
Final Office Action; U.S. Appl. No. 11/528,225; dated Dec. 29, 2010, 9 pages. |
Final Office Action; U.S. Appl. No. 11/558,046; dated Mar. 30, 2011, 17 pages. |
Final Office Action; U.S. Appl. No. 11/741,271; dated Jul. 19, 2012, 8 pages. |
Final Office Action; U.S. Appl. No. 11/750,953; dated Jul. 5, 2012, 11 pages. |
Gage, “Current Progress in Cryosurgery,” Cryobiology 25, 483-486 (1988). |
Hale et al., “Influence of chronic heat exposure and prolonged food deprivation on execretion of magnesium, phosphorus, calcium, hydrogen ion & ketones,” Aerosp Med, 1968, pp. 919-926, vol. 39—issue (9). |
Heller-Page et al., “Temperature-dependent skin disorders,” Journal of the American Academy of Dermatology, May 1988, vol. 18, No. 5, Pt 1, pp. 1003-1019. |
Hemmingsson, “Attenuation in Human muscle and Fat Tissue in Vivo and in Vitro,” Acta Radiologica Diagnosis 23, 149-151 (1982). |
Henry et al.,“Les Dermatoses Hivernales,” Rev Med Liege, 1999, 54:11, 864-866. [Abstract Attached]. |
Holman, “Variation in cryolesion penetration due to probe size and tissue thermal conductivity,” Ann. Thorac. Surg. 53, 123-126 (1992). |
Hong, “Patterns of Ice Formulation in Normal and Malignant Breast Tissue,” Cryobiology 31, 109-120 (1994). |
International Search Report and Written Opinion for PCT/US2005/045988; Applicant: The General Hospital Corporation; dated Apr. 25, 2006, 14 pages. |
International Search Report and Written Opinion for PCT/US2007/023492; Applicant: Zeltiq Aesthetics, Inc.; dated May 15, 2008, 7 pages. |
International Search Report and Written Opinion for PCT/US2007/062508; Applicant: Juniper Medical, Inc.; dated Jul. 20, 2007, 13 pages. |
International Search Report and Written Opinion for PCT/US2007/064016; Applicant: Juniper Medical, Inc.; dated Jul. 20, 2007, 13 pages. |
International Search Report and Written Opinion for PCT/US2007/064017; Applicant: Juniper Medical, Inc.; dated Oct. 26, 2007, 16 pages. |
International Search Report and Written Opinion for PCT/US2007/064018; Applicant: Juniper Medical, Inc.; dated Jul. 26, 2007, 13 pages. |
International Search Report and Written Opinion for PCT/US2007/067638; Applicant: Juniper Medical, Inc.; dated Jan. 10, 2008, 11 pages. |
International Search Report and Written Opinion for PCT/US2007/069694; Applicant: Juniper Medical, Inc.; dated Nov. 23, 2007, 12 pages. |
International Search Report and Written Opinion for PCT/US2007/075935; Applicant: Zeltiq Aesthetics, Inc.; dated Apr. 10, 2008, 12 pages. |
International Search Report and Written Opinion for PCT/US2007/083255; Applicant: Zeltiq Aesthetics, Inc.; dated Aug. 11, 2008, 8 pages. |
International Search Report and Written Opinion for PCT/US2008/073930; Applicant: Zeltiq Aesthetics, Inc.; dated Nov. 7, 2008, 10 pages. |
International Search Report and Written Opinion for PCT/US2009/058088; Applicant: Zeltiq Aesthetics, Inc.; dated Nov. 20, 2009, 14 pages. |
International Search Report and Written Opinion for PCT/US2009/067973; Applicant: Zeltiq Aesthetics, Inc.; dated Feb. 18, 2010, 10 pages. |
International Search Report and Written Opinion for PCT/US2010/033290; Applicant: Zeltiq Aesthetics, Inc.; dated Feb. 25, 2011, 12 pages. |
International Search Report and Written Opinion for PCT/US2011/022112; Applicant: Zeltiq Aesthetics, Inc.; dated Mar. 18, 2011, 11 pages. |
International Search Report and Written Opinion for PCT/US2011/022444; Applicant: Zeltiq Aesthetics, Inc., dated Mar. 29, 2011, 14 pages. |
International Search Report and Written Opinion for PCT/US2012/022585; dated May 18, 2012, 14 pages. |
Kellum, R.E. et al., “Sclerema Neonatorum: Report of Case and Analysis of Subcutaneous and Epidermal-Dermal Lipids by Chromatographic Methods,” Arch. Derm., 97:372-80, 1968. |
Koska, J. et al., “Endocrine Regulation of Subcutaneous Fat Metabolism During Cold Exposure in Humans,” Ann N.Y. Acad, Sci., 967:500-05, 2002. |
Kundu et al., “Breath acetone analyzer: diagnostic tool to monitor dietary fat loss,” Clin Chem, 1993, pp. 87-92, vol. 39, issue (1). |
Kundu et al., “Novel solid-phase assay of ketone bodies in urine,” Clin Chem, 1991, pp. 1565-1569, vol. 37—issue (9). |
Kuroda et al., “Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth,” Med Biol Eng Comput, 1999, pp. 285-290, vol. 37—issue (3). |
Laugier, et al., “In Vivo Results with a New Device for Ultrasonic Monitoring of Pig Skin Cryosurgery: The Echographic Cryoprobe,” The society for Investigative Dermatology, Inc., vol. 111(2), Aug. 1998. |
Levchenko, et al., “Effect of dehydration on lipid metabolism,” WMJ, 1978, pp. 95-97, vol. 50—issue (1). |
Lidagoster, MD et al., “Comparison of Autologous Fat Transfer in Fresh, Refrigerated, and Frozen Specimens: An Animal Model Presented,” at the 16th Annual Meeting of the Northeastern Society of Plastic Surgeons: Burlington, VT, 1999, pp. 512-515. |
Liu, A.Y.C. et al., “Transient Cold Shock Induces the Heat Shock Response upon Recovery at 37 C in Human Cells,” J. Biol. Chem., May 20, 1994, 269(20), 14768-14775. |
Lvova, “Lipid levels and lipid peroxidation in frog tissues during hypothermia and hibernation,” WMJ, 1990, pp. 65-70, vol. 62—issue (1). |
Maize, J.C., “Panniculitis,” Cutaneous Pathology, Chapter 13:327-344, 1998. |
Malcolm, G. et al., “Fatty Acid Composition of Adipose Tissue in Humans: Differences between Subcutaneous Sites,” Am J Clin. Nutr., 50(2):288-91, 1989. |
Merrill, Tom, “A Chill to the Heart: A System to Deliver Local Hypothermia Could One Day Improve the Lives of Heart-Attack Patients,” Mechanical Engineering Magazine, Oct. 2010 (10 pages). |
Moschella, S.L. et al., “Diseases of the Subcutaneous Tissue,” Derm., Section 2:1169-1181, 1985. |
Murphy, J.V. et al., “Frostbite: Pathogenesis and Treatment,” The Journal of Trauma: Injury, Infection, and Critical Care, 48(1):171-178, 2000. |
Nagao et al., “ Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men a double-blind controlled trial,” J Nutr, 2000, pp. 792-797, vol. 130—issue (4). |
Nagore et al., “Lipoatrophia semicircularis-a traumatic panniculitis: Report of seven cases and review of the literature,” Journal of the American Academy of Dermatology, Nov. 1998, 39:879-81. |
Nielsen, “Thermoregulation in Rest and Exercise,” Acta Phys Scan Supp, 1969, pp. 6-74, vol. 323. |
Nishikawa, “Ultrastructural Changes and Lipid Peroxidation in Rat Adipomusculocutaneous Flap Isotransplants after Normothermic Storage and Reperfusion,” Transplantation, 1992, 54, 795-801. |
Non-Final Office Action; U.S. Appl. No. 10/391,221; dated Jan. 25, 2006, 6 pages. |
Non-Final Office Action; U.S. Appl. No. 10/391,221; dated May 30, 2007, 8 pages. |
Non-Final Office Action; U.S. Appl. No. 10/391,221; dated Jul. 22, 2005, 6 pages. |
Non-Final Office Action; U.S. Appl. No. 11/016,196; dated Apr. 22, 2008, 11 pages. |
Non-Final Office Action; U.S. Appl. No. 11/016,196; dated Sep. 25, 2009, 8 pages. |
Non-Final Office Action; U.S. Appl. No. 11/359,092; dated Nov. 19, 2009, 13 pages. |
Non-Final Office Action; U.S. Appl. No. 11/435,502; dated Jul. 17, 2009, 10 pages. |
Non-Final Office Action; U.S. Appl. No. 11/528,189; dated Apr. 6, 2012, 9 pages. |
Non-Final Office Action; U.S. Appl. No. 11/528,225; dated Apr. 12, 2010, 11 pages. |
Non-Final Office Action; U.S. Appl. No. 11/528,225; dated Aug. 3, 2011, 11 pages. |
Non-Final Office Action; U.S. Appl. No. 11/558,046; dated Jul 12, 2010, 14 pages. |
Non-Final Office Action; U.S. Appl. No. 11/741,271; dated Jul. 12, 2010, 9 pages. |
Non-Final Office Action; U.S. Appl. No. 11/777,992; dated Jun. 22, 2012, 5 pages. |
Non-Final Office Action; U.S. Appl. No. 12/337,544; dated Mar. 30, 2012, 13 pgs. |
Non-Final Office Action; U.S. Appl. No. 12/565,613; dated Sep. 23, 2011, 32 pages. |
Non-Final Office Action; U.S. Appl. No. 12/942,852; dated Mar. 7, 2011, 6 pages. |
Non-Final Office Action; U.S. Appl. No. 12/942,852; dated Jun. 30, 2011, 10 pages. |
Pease, “An Integrated Probe for Magnetic Resonance Imaging Monitored Skin Cryosurgery,” Journal of Biomedical Engineering 117, 59-63, (1995). |
Pech, “Attenuation values, volume changes and artifacts in tissue due to freezing,” Acta Radiologica 6, 779-782 (1987). |
Peterson et al., “Bilateral Fat Necrosis of the Scrotum, Urology Service, Department of Surgery, Dermatology Service, Department of Medicine and Department of Pediatrics,” Letterman Army Medical Center, Journal of Urology, 1976, pp. 825-826, vol. 116, The Williams & Wilkins Co. |
Phinney, S.D. et al., “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” Am J. Clin. Nutr., 60:725-29, 1994. |
Pre-Interview Office Action; U.S. Appl. No. 11/434,478; dated May 6, 2010, 4 pages. |
Rabi, “Metabolic adaptations in brown adipose tissue of the hamster in extreme ambient temperatures,” American Journal of Physiology 231, 153-160 (1976). |
Renold, A.E., “Adipose Tissue,” Handbook of Physiology. Chapter 15:170-76, 1965. |
Rubinsky, “Cryosurgery: advances in the application of low temperatures to medicine,” Int. J. Refrig. 190-199 (1991). |
Schoning, et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology, 1990, pp. 189-193, 27. |
Shephard, “Adaptation to Exercise in the Cold,” Sports Medicine, 1985, 2:59-71. |
Wang et al., “Cryopreservation of cell/hydrogel constructs based on a new cell-assembling technique”, Sep. 5, 2009, 40 pages. |
Wharton et al., “Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi,” Mar. 7, 2000, 2 pages. |
Winkler et al., “Gene Transfer in Laboratory Fish: Model Organisms for the Analysis of Gene Function,” Transgenic Animals, 1997, pp. 387-395. |
Young, H.E. et al., “Isolation of Embryonic Chick Myosatellite and Pluripotent Stem Cells, ” J. Tiss. Cult. Meth., 14:85-92, 1992. |
U.S. Appl. No. 11/435,502, filed May 17, 2006, Levinson. |
U.S. Appl. No. 11/528,189, filed Sep. 26, 2006, Levinson et al. |
U.S. Appl. No. 11/528,225, filed Sep. 26, 2006, Levinson et al. |
U.S. Appl. No. 11/741,271, filed Apr. 27, 2007, Levinson et al. |
U.S. Appl. No. 11/750,953, filed May 18, 2007, Rosen et al. |
U.S. Appl. No. 11/777,992, filed Jul. 13, 2007, Levinson et al. |
U.S. Appl. No. 11/444,995, filed Jul. 13, 2007, Levinson et al. |
U.S. Appl. No. 11/777,999, filed Jul. 13, 2007, Levinson et al. |
U.S. Appl. No. 11/778,001, filed Jul. 13, 2007, Levinson et al. |
U.S. Appl. No. 11/778,003, filed Jul. 13, 2007, Levinson et al. |
U.S. Appl. No. 12/196,246, filed Jun. 11, 2009, Levinson. |
U.S. Appl. No. 12/275,002, filed Nov. 20, 2008, Martens. |
U.S. Appl. No. 12/275,014, filed Nov. 20, 2008, Martens. |
U.S. Appl. No. 12/337,544, filed Jun. 17, 2010, Alison. |
“Effect of Controlled Volumetric Tissue Heating with Radiorequency on Cellulite and the Subcutaneous Tissue of the Bottocks and Thighs” Del Pino, 2006, 9 pgs. |
“So-Called Cellulite: An Invetnted Disease”, Nurnberger, Journal Title: Journal of dermatologic surgery and oncology, Mar. 1978, 14 pgs. |
“ThermaCool Monopolar Capacitive Radiofrequency”,The one choice for nonabliative tissue tightening and contouring, Tech Brochure, Nov. 30, 2005, 8 pgs. |
Aguilar et al., “Modeling Cryogenic Spray Temperature and Evaporation Rate Based on Single-Droplet Analysis”, Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, Jul. 2000, 7 pages. |
Al-Sakere, “Tumor Ablation with Irreversible Electroporation”, Nov. 2007, Issue 11, 8 pgs. |
Alster et el. “Cellulite treatment using a novel combination radiofrequency, infrared light, and mechanical tissue manipulation device,” J. of Cosmetic and Laser Therapy, vol. 7, 2005, p. 81-85. |
Becker, “Local Tempertature Rises Influence in Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model”, Oct. 2007, 10 pgs. |
BioMedical Engineering OnLine, “High-Frequency Irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction”, Nov. 21, 2011, 21 pgs. |
Duck, Francis A., Physical Properties of Tissue, Academic Press Ltd., 1990, chapters 4 & 5, pp. 73-165. |
European Search Report; Application No. EP10770461; Dated Aug. 31, 2012; Applicant: Zeltiq Aesthetics, Inc. 5 pgs. |
European Search Report; Application No. EP14156801.4; Dated Aug. 22, 2014; Applicant: Zeltiq Aesthetics, Inc. 5 pgs. |
Final Office Action, U.S. Appl. No. 13/013,579, dated Jun. 20, 2014, 15 pages. |
Final Office Action; U.S. Appl. No. 13/013,603; dated Jul. 17, 2014, 17 pages. |
Fournier et al. “Lattice model for the kinetics of rupture of fluid bilayer membranes,” Physical Review, vol. 67, 2003, 051908-1-051908-11. |
Gabriel et al., “The dielectric properties of biological tissue: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Medical Biology, vol. 41, 1996, p. 2251-2269. |
International Search Report and Written Opinion for PCT/US2011/044270; Applicant: Zeltiq Aesthetics, Inc.; dated Nov. 21, 2011. 9 pages. |
International Search Report and Written Opinion for PCT/US2014/026556; dated Nov. 10, 2014, 16 pages. |
International Search Report and Written Opinion for PCT/US2014/026558; dated Oct. 24, 2014, 16 pages. |
Isambert “Understanding the Electroporation of Cells and Artificial Bilayer Membranes,” Phys. Review Letters, vol. 80, 1998, pp. 3404-3707. |
Journal of Investigative Dermatology,“Comparative Proteomic Profiling of Murine Skin”, Chun-Ming Huang. Department of Dermatology, VH-501. |
Manstein et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis” LasersSurg.Med 40:S20 p. 104 (2008). |
Manstein et al.“Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal”, LasersSurg.Med. 40:595-604 (2008). |
Mayoral, “Skin Tightening with a Combinded Unipolar and Bipolar Radiofrequency Device” , 2007 Journal of Drugs in Dermatology, 4 pgs. |
Mazur, P. “Cryobiology: the Freezing of Biological Systems” Science, 68: 939-949 (1970). |
Miklavcic, “Electroporation-Based Technologies and Treatments”, 2010 236:1-2, 2 pgs. |
Nagle W.A., Soloff, B.L., Moss, A.J. Jr., Henle K.J. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures” Cryobiology 27, 439-451 (1990). |
Nanda, “Studies on electroporation of thermally and chemically treated human erythocytes”, May 28, 1993 in revised form Mar. 7, 1994, 6 pgs. |
Narins,“Non-Surgical Radiofrequency Facelift”, 2003, 495-500, 6 pgs. |
Non-Final Office Action, U.S. Appl. No. 13/616,497, dated Jun. 28, 2013, 38 pages. |
Non-Final Office Action; U.S. Appl. No. 12/840,235; dated Apr. 11, 2013; 9 pages. |
Nurnberger, Editorial Comment to the Papers on “Cellulite”, 220-229, 9 pgs. |
Pierard et al. “Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks,” Am. J. Dermatol. 22:1, 34-37, 2000. |
Pope, “Selective Firbous Septae Heating”, Thermage Article, Feb. 2005, 7pgs. |
PubMed, “Cold shock induces the synthesis of stress proteins in human kerantinocytes”, Holland DB. Aug. 1993; 101(2): 196-9. |
PubMed, “Effects of thermal shocks on interleukin-1 levels and heat shock protein 72 (HSP72) expression in normal human keratinocytes”, Arch Dermatol Res. 1992; 284(7): 414-7. |
Quinn, “A Lipid Phase Separation Model of Low Temperature Damage to Biological Membranes” Cryobiology, 22: 128-147, 1985. |
Rossi, “Cellulite: a Review” 2000, 251-262, 12 pgs. |
Rubinsky, B., “Principles of Low Temperature Preservation” Heart Failure Reviews, 8, 277-284 (2003). |
Saleh et el. “Two-dimensional ultrasound phased array design for tissue ablation for treatment of benign hyperplasia,” Int. J. Hyperthermia, vol. 20, No. 1, Feb. 2004, p. 7-31. |
Sigma-Aldrich “Polyethylene glycol and Polyethylene oxide,” http://www.sigmaaldrich.com/materials-science/materialscience-; products.htmi?TablePage=20204110 0, accessed Oct. 19, 2012. |
Smalls, “Quantitative Model of Cellulite: Three Dimensional Skin Surgace Topography, Biophsical Characterization and Relationship to Human Perception”, 17 pgs. |
Thermage, News Release, “Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage ThermoCool System”, Jun. 20, 2005, 2 pages. |
Vallerand, A.L., Zamecnik. J., Jones, P.J.H. Jacobs, I. “Cold Stress Increases Lipolysis, FFA RA and TG/FFA Cycling in Humans” Aviation, Space, and Environmental Medicine 70, 4250 (1999). |
Zouboulis et al., “Current Developments and Users of Cryosurgery in the Treatment of Keloids and Herpertrophic Scars”, Wound Repair and Regeneration, vol. 10, No. 2, pp. 98-102, 2002. |
Number | Date | Country | |
---|---|---|---|
20110238051 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61298175 | Jan 2010 | US | |
61354615 | Jun 2010 | US |