The present specification generally relates to honeycomb filters and, more specifically, to native plugging end faces for honeycomb filters and an apparatus for native plugging end faces of honeycomb filters.
Conventionally, plugging an end face of a honeycomb filter comprises placing a mask having a checkerboard pattern on the end face of a honeycomb filter and injecting plugging material to channels of the honeycomb filter that are not covered by the mask. The honeycomb filter and the plugging material are then fired and sintered. In this conventional process, alignment of the mask must be precise so that the plugging material is accurately placed into the channels of the honeycomb filter, which can be difficult due to deformations in the honeycomb filter during extrusion, drying, and sintering. Thus, the conventional plugging of a honeycomb filter can be costly and time consuming.
According to one embodiment, a method for forming a plugged honeycomb article comprises feeding a ceramic precursor material through an extrusion die, the extrusion die comprising a plurality of pins, a plurality of cavities bounded by adjacent pins, and alternating end-faces of the plurality of pins comprise extensions extending from an outlet of the extrusion die in an extrusion direction, wherein the ceramic precursor material is extruded through the cavities. The method further comprises extruding the ceramic precursor material through the extrusion die to form a web structure comprising a plurality of cell walls and channels bounded by adjacent cell walls, supporting the web structure that has been extruded through the extrusion die, and providing movement between the extrusion die and the web structure in at least one direction substantially orthogonal to the extrusion direction while the extensions are positioned in at least a portion of the channels. The movement in the substantially orthogonal direction laterally deforms the cell walls so that alternating channels are plugged.
In another embodiment, an apparatus for forming a plugged honeycomb article comprises an extrusion die, the extrusion die comprising a plurality of pins and a plurality of cavities between the plurality of pins, and alternating pins of the plurality of pins comprise extensions extending from an outlet of the extrusion die in an extrusion direction. The apparatus further comprises a supporting structure that supports an extrusion of ceramic precursor material exiting an outlet of the extrusion die, and at least one of the extrusion die and the supporting structure are mechanically coupled to an eccentric system providing movement between the extrusion die and the web structure in at least one direction substantially orthogonal to the extrusion direction of the extrusion die.
In yet another embodiment, a honeycomb filter is disclosed. The honeycomb filter comprising: a first end face; a second end face; and a plurality of porous walls extending from the first end face to the second end face. The porous cell walls forming channels and a grid pattern at the first end face and the second end face. Alternating channels are plugged at the first end face, and the alternating channels that are plugged at the first end face are plugged by a composition identical to a composition of the porous walls.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Reference will now be made in detail to embodiments of native plugging a honeycomb filter, embodiments of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. In one embodiment a method for forming a plugged honeycomb article comprises feeding a ceramic precursor material through an extrusion die, the extrusion die comprising a plurality of pins, a plurality of cavities bounded by adjacent pins, and alternating end-faces of the plurality of pins comprise extensions extending from an outlet of the extrusion die in an extrusion direction, wherein the ceramic precursor material is extruded through the cavities. The method further comprises extruding the ceramic precursor material through the extrusion die to form a web structure comprising a plurality of cell walls and channels bounded by adjacent cell walls, supporting the web structure that has been extruded through the extrusion die, and providing movement between the extrusion die and the web structure in at least one direction substantially orthogonal to the extrusion direction while the extensions are positioned in at least a portion of the channels. The movement in the substantially orthogonal direction laterally deforms the cell walls so that alternating channels are plugged.
With reference to
The extrusion die 10 further includes a discharge region 26b terminating at the discharge end 22b. The discharge region 26b includes the plurality of pins 11. Each pin 11 includes an end face 13 positioned along a discharge end 22b of the extrusion die 10. The plurality of pins 11 include a first set of pins 11a and a second set of pins 11b. The first set of pins 11a have a planar end face 13 and the second set of pins 11b have extensions extending from the outlet of the extrusion die in an extrusion direction 24. Although
The length of the first set of pins 11a in the extrusion direction is not particularly limited and can be any length for extruding ceramic precursor material through the extrusion die 10. However, in embodiments, the extensions of the second set of pins 11b extend beyond the end face 13 of the first set of pins 11a. Thus, according to embodiments, alternating end faces 13 of the pins comprising extensions 11b extend beyond the end faces 13 of the pins that do not comprise extensions from greater than or equal to about 2 mm to less than or equal to about 10 mm, such as from greater than or equal to about 2.5 mm to less than about 8 mm. In other embodiments, the alternating end faces 13 of the pins comprising extensions 11b extend beyond the end faces 13 of the pins that do not comprise extensions from greater than or equal to about 3 mm to less than or equal to about 6 mm. Thus, in embodiments, ceramic precursor material is extruded through the cavities 12 between the first set pins 11a and the second set of pins 11b to the end face 13 of the first set of pins 11a. When the ceramic precursor material reaches end face 13 of the first set of pins 11a, the precursor material is only bounded by an extension of the second set of pins 11b, and is not bounded by the first set of pins 11a.
During production of the honeycomb filter, ceramic precursor materials, such as inorganic materials, a liquid vehicle and a binder, are mixed into a batch. For instance the batch can comprise various mixtures including a paste and/or slurry, such as particles and/or powders mixed with polymer binders and/or low molecular weight liquids and combinations of these and other materials, such as for forming a paste. Descriptions of example materials that may be used for the precursor material can be found in numerous patents and patent applications. Example precursor material compositions, including cordierite, are disclosed in U.S. Pat. No. 3,885,977; RE 38,888; U.S. Pat. Nos. 6,368,992; 6,319,870; 6,210,626; 5,183,608; 5,258,150; 6,432,856; 6,773,657; 6,864,198; and U.S. Patent Application Publication Nos. 2004/0029707, 2004/0261384, and 2005/0046063, which are incorporated herein by reference in their entirety. Examples ceramic batch material compositions for forming aluminum titanate are those disclosed in U.S. Pat. Nos. 4,483,944; 4,855,265; 5,290,739; 6,620,751; 6,942,713; 6,849,181; U.S. Patent Application Publication Nos.: 2004/0020846; 2004/0092381; and in PCT Application Publication Nos. WO 2006/015240; WO 2005/046840; and WO 2004/011386, which are incorporated herein by reference in their entirety.
In embodiments, ceramic precursor can then be extruded in the extrusion direction 24 by way of the extrusion die 10. The extrudate has a web structure that comprises a plurality of cell walls and channels bounded by adjacent cell walls. The dimensions of the channels and thicknesses of the cell walls are not particularly limited and may vary depending on the end use of the honeycomb filter. However, it should be understood that increasing the area of a frontal surface, such as the surface depicted in
In embodiments, a honeycomb filter having the open frontal area and cell wall thickness provided above will have a pressure drop from greater than or equal to about 25 KPa to less than or equal to about 40 KPa, such as from greater than or equal to about 28 KPa to less than or equal to about 38 KPa. In other embodiments, a honeycomb filter having the open frontal area and cell wall thickness provided above will have a pressure drop from greater than or equal to about 30 KPa to less than or equal to about 35 KPa.
The ceramic precursor material is fed to the extrusion die by a screw extruder or by ram extruder. In embodiments, the feed rate of the ceramic precursor material through the extrusion die 10 is from greater than or equal to about 5 mm/s to less than or equal to about 255 mm/s, such as from greater than or equal to about 12.7 mm/s to less than or equal to about 255 mm/s. In other embodiments, the feed rate of the ceramic precursor material through the extrusion die 10 is from greater than or equal to about 30 mm/s to less than or equal to about 200 mm/s, such as from greater than or equal to about 80 mm/s to less than or equal to about 150 mm/s.
With reference now to
In embodiments disclosed herein the extrusion die and the supporting structure provide movement relative to one another in a direction substantially orthogonal to the extrusion direction while the extensions are positioned in at least a portion of the channels. With reference to
In embodiments described above, the supporting structure 31 moves relative to the extrusion die 10 (e.g., the extrusion die 10 is held stationary and the supporting structure 31 moves in a direction substantially orthogonal to the extrusion direction 24 about the extrusion die 10). However, in other embodiments, the supporting structure 31 is held stationary and the extrusion die 10 moves relative to the supporting structure 31 (e.g., the supporting structure 31 is held stationary and the extrusion die 10 moves in a direction substantially orthogonal to the extrusion direction 24 about the supporting structure 31). In other embodiments, the supporting structure 31 and the extrusion die 10 may simultaneously move in a direction substantially orthogonal to the extrusion direction 24 so long as the movement of the supporting structure 31 and the extrusion die 10 is not synchronized. By way of example, if the movement of the supporting structure 31 and the extrusion die 10 is synchronized, the pins 11 and the supporting structure 31 will be aligned. Thus, no deformation in the web structure will occur.
In embodiments, the movement between the extrusion die and the web structure may be periodic movement. For example, in some embodiments ceramic precursor material is extruded through the extrusion die 10 to form a web structure 30. When the web structure reaches a desirable length the movement between the extrusion die 10 and the web structure commences, creating the deformations described above and plugging alternating channels of the web structure in a checkerboard pattern. The movement between the extrusion die 10 and the web structure 30 continues for a period of time to provide a desired length of deformation. When the desired length of deformation is achieved, the movement between the extrusion die 10 and the web structure 30 is stopped and the pins 11 of the extrusion die 10 are aligned with the supporting structure 31 to provide a web structure without deformations. This periodic movement may be repeated a number of times to create a log of web structure that comprises lengths without deformation of the channels and regions with deformations of the channels. The parameters of the plugging will be described herein below.
Using the above-described movement to plug alternating channels of the web structure in a checkerboard pattern allows the plugging to be completed without using additional plugging material, which reduces production costs. Further, plugging the web structure using the above-described movement also allows the plugging to be conducted while the web structure is being extruded, which reduces production time compared to conventional methods that require a separate plugging once the honeycomb filter has been dried.
The above-disclosed movement between the extrusion die 10 and the web structure 30 (via movement of the supporting structure 31) may be controlled by any structure. In embodiments, the movement between the extrusion die 10 and the web structure 30 is controlled by a system of electric motors that, for example, move the extrusion die in the x-direction and the y-direction. These electric motors may be actuated by a computer that may be programmed to provide movement in nearly many differing geometrical patterns and at controlled velocities. In some embodiments, the electric motors are servo motors, electromagnetic exitator, transducers, or vibrators. In embodiments, the electric motors move the extrusion die 10 and/or the support structure 31 by a screw drive, a chain drive, gears, or combination of both, physically coupling the extrusion die 10 and/or the support structure 31 and the electric motor, whereby movement of the electric motor causes the screw drive or chain drive to move the extrusion die 10 and/or the support structure 31 in a given direction.
In addition to electric motors directly coupled to the extrusion die 10 and/or the supporting structure, the extrusion die 10 and/or the support structure 31 may be moved by a mechanical system. In embodiments, and with reference to
The motor 41 may be any electric motor that can provide multiple velocities and has sufficient power to drive the mechanical system 40. For example, in some embodiments, the motor may be a DC brushless electrical motor. The motor 41 and the first gear 42 may coupled by any mechanism. In embodiments, the first gear 42 may be directly and physically connected to the output shaft of the motor 41. In other embodiments, the output shaft of the motor 41 may be coupled to the first gear 42 by a belt, a chain, or the like.
The first gear 42 and the second gear 43 may be meshed by conventional apparatuses. Although
The second gear 43 is coupled to the outer eccentric ring 44. In embodiments, the second gear 43 is annular and is coupled to the outer eccentric ring by physically connecting the outer eccentric ring 44 and the second gear 43. In embodiments the strength of the coupling is strong so that the outer eccentric ring 44 rotates with the second gear 43. In embodiments, the second gear 43 and the outer eccentric ring 44 are coupled by mechanical fastening, such as with screws, bolts, or rivets, or the second gear 43 and the outer eccentric ring 44 may be welded together.
The interrelationship between the outer eccentric ring 44, the inner eccentric ring 45, and the holder 46 will be described with reference to
It should be understood that as used herein the terms “ring” and “annular” do not strictly refer to a circle-shaped structure. Rather, as used herein, “ring” and “annular” can be used to refer to oblong, irregular shapes. In embodiments, the inner eccentric ring 45 and the outer eccentric ring 44 comprise an inconsistent difference between an inner radius and an outer radius. In other words, the thickness of the inner eccentric ring 45 and the outer eccentric ring 44 varies over the perimeter of the inner eccentric ring 45 and the outer eccentric ring 44. As shown in
In embodiments, the inner eccentric ring 45, which is coupled to the holder 46, is movable relative the outer eccentric ring 44. Thereby, the holder 46 may be adjusted from a concentric position with the outer perimeter of the outer eccentric ring 44, as shown in
In embodiments not shown in
When the holder 46 is in an eccentric position relative to the outer perimeter of the outer eccentric ring 44, and the mechanical system 40 is actuated, the holder 46 will rotate with second gear 43 providing an offset circular motion of the holder 46 relative the web structure. This offset circular motion is caused by the eccentric position of the holder 46. In embodiments, the offset circular motion may move at a speed from greater than 30 rpm to less than or equal to about 1000 rpm, such as from greater than or equal to about 50 rpm to less than or equal to about 800 rpm. In other embodiments, the offset circular motion may move at a speed from greater than or equal to about 100 rpm to less than or equal to about 600 rpm, such as from greater than or equal to about 200 rpm to less than or equal to about 400 rpm. This offset circular motion of the holder 46 will cause the deformations of the channels described above by moving the extensions present in at least a portion of the channels substantially orthogonal to the extrusion direction.
Although the mechanical system 40 depicted in
In embodiments, the extruded web structure may be made into honeycomb filters. Ceramic precursor material is extruded through the extrusion die, such as described hereinabove. Periodic movement of the extrusion die and/or the supporting structure creates deformations in the channels of the web structure, which plug alternating channels of the web structure creating a checkerboard pattern of plugged and unplugged channels. The duration of the periodic movement will vary depending on the feed rate of the ceramic precursor material through the extrusion die. However, in embodiments, the duration of the periodic movement is sufficient to provide a plugging region that can be cut to form honeycomb filters.
With reference to
Plugged regions 62 formed by deforming the channels of the web structure, such as by the methods described hereinabove, are positioned at various regions of the log 60. The plugged regions 62 are formed by the periodic movement between the extrusion die and the web structure. In embodiments, the duration of the periodic movement is such that the lengths of the plugged regions 62 are from greater than or equal to about 2 mm to less than or equal to about 30 mm, such as from greater than or equal to about 4 mm to less than or equal to about 20 mm. In other embodiments, the duration of the periodic movement is such that the lengths of the plugged regions 62 are from greater than or equal to about 6 mm to less than or equal to about 18 mm, such as from greater than or equal to about 8 mm to less than or equal to about 16 mm. In some embodiments, the length of the plugged regions are from greater than or equal to about 2 times the diameter of a cell to less than or equal to about 6 times the diameter of a cell, such as from greater than or equal to about 3 times the diameter of a cell to less than or equal to about 5 times the diameter of a cell.
In embodiments, the plugged regions 62 may have a length from greater than or equal to about 2 mm to less than or equal to about 30 mm, such as from greater than or equal to about 5 mm to less than or equal to about 25 mm. In other embodiments, the plugged regions 62 may have a length from greater than or equal to about 10 mm to less than or equal to about 25 mm, such as from greater than or equal to about 15 mm to less than or equal to about 20 mm.
Once the web structure is formed into a log 60 having plugged regions 62, the log is cut at an axial location where the channels have been plugged 63 (i.e., in a plugged region) and at an axial location where the channels have not been plugged 64. The cut at the axial location where the channel has been plugged 63 may, in embodiments, be in the middle of the plugged region 62. By way of example, if a plugged region 62 has a length of 30 mm, the axial location where the channels have been plugged will be cut at about 15 mm into the plugged region 62. In embodiments, the cut at an axial location where the channels have not been plugged 64 may be at a position coinciding with the length of the filter part 61. This location is measured from the middle of the plugged region 62. By way of example, if a filter part is to be 150 mm long, the cut will be made 150 mm from the middle of the plugged region 62. By making such a cut, a honeycomb filter having a plugged end face and an unplugged end face will be formed. Producing honeycomb filters by this method allows several plugged regions 62 to be formed in a single web structure log 60 thereby reducing cost and time that would be required by conventional methods to separately plug the end face of a honeycomb filter. In embodiments, the web structure log is cut when it is still wet, thus a lubricated ribbon may be used to cut the web structure log.
In embodiments, the honeycomb filters cut from the web structure log 60 may be dried and sintered, and used as partially plugged honeycomb filters. However, in some embodiments it is desirable to plug the end face of the honeycomb filter that was not plugged by deformation of the channels during extrusion. With reference to
With reference to
In addition to plugging channels that were not plugged by deformation during extrusion, this process of drawing a plugging material 72 into the channels may be used to plug channels that were not completely plugged during extrusion. For example, in
In embodiments, after the end face 72 has been plugged with plugging material, the honeycomb filter may be dried and sintered to form a ceramic honeycomb filter.
The green body can then be heated to be dried and further heated and processed into a fired honeycomb body. The fired honeycomb body can comprise various refractory materials depending on the particular application. For example, the fired honeycomb bodies may comprise a ceramic material such as cordierite, mullite, silicon carbide, aluminum titanate or other materials or combinations thereof.
In embodiments, and with reference to
Honeycomb filters manufactured according to embodiments described hereinabove may comprise a first end face 75 where alternating channels 74 of the honeycomb filter 70 are plugged by deforming the channels of the web structure, such as by converging cell walls of the web structure. However, alternating channels 73 of a second end face 71 of the honeycomb filter 70 is plugged with a plugging material 72, such as by the methods described hereinabove. Accordingly, in embodiments, the honeycomb filter 70 will comprise a first end face 75 having alternating channels 74 that are plugged by a composition identical to the composition of the channels, and the honeycomb filter 70 will have a second end face 71 where alternating channels 73 are plugged with a plugging material 72 having a composition that may be different from the composition of the channels. Honeycomb filters 70 of embodiments will comprise a first end face 75 where the plugs of alternating channels 74 are formed from the walls of the channels. These plugs may be formed by converging alternating cell walls through the deformation described hereinabove. Accordingly, there is no compositional transition between the plugs and the channels or cell walls in the first end face 75 of the honeycomb filter 70. The second end face 71 of honeycomb filter 70 according to embodiments will be plugged with a plugging material 72 that may, in embodiments, have a composition that is different from the composition of the channels or cell walls and is inserted into alternating channels 73. The plugs in the alternating channels 73 of the second end face 71 comprise a compositional transition between the plugging material 72 and the cell walls. As used herein a “compositional transition” describes an interface within the honeycomb filter between materials having differing compositions. In embodiments, the compositional transition may be well defined, having little to no intermingling of the differing compositions so that on one side of the compositional transition the honeycomb filter substantially has a first composition and on the other side of the compositional transition the composition substantially has a second composition. In other embodiments, the compositional transition may be more gradual and may comprise a portion of the honeycomb filter that comprises an intermingling of a first composition and a second composition. In such an embodiment, the concentration of the first composition may gradually decrease and the concentration of the second composition may gradually increase across the compositional transition in a first direction and the concentration of the second composition may gradually decrease and the concentration of the first composition may gradually increase across the compositional transition in a second direction, which is opposite to the first direction. It should be understood that in embodiments, the intermingling of the first composition and the second composition may be chemical intermingling on a molecular level, or the intermingling of the first composition and the second composition may be physical intermingling where the second composition fills cracks or pores in a structure comprised of the first composition.
With reference now to
In embodiments, the plugs 81 extend into the honeycomb filter at a depth of from greater than or equal to about 1 mm to less than or equal to about 15 mm from a corresponding end face of the honeycomb filter, such as from greater than or equal to about 2 mm to less than or equal to about 10 mm from a corresponding end face of the honeycomb filter. In other embodiments, the plugs 81 extend into the honeycomb filter at a depth of from greater than or equal to about 3 mm to less than or equal to about 9 mm from a corresponding end face of the honeycomb filter, such as from greater than or equal to about 4 mm to less than or equal to about 8 mm from a corresponding end face of the honeycomb filter.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
This application is a national stage application under 35 U.S.C. § 371 of International Patent Application Serial No. PCT/US2016/033982 filed on May 25, 2016, which claims the benefit of U.S. Provisional Application Ser. No. 62/168,215, filed on May 29, 2015, the contents of both are relied upon and incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/033982 | 5/25/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/196094 | 12/8/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3885977 | Lachman et al. | May 1975 | A |
4413395 | Garnier | Nov 1983 | A |
4483944 | Day et al. | Nov 1984 | A |
4855265 | Day et al. | Aug 1989 | A |
5183608 | Guile | Feb 1993 | A |
5258150 | Merkel et al. | Nov 1993 | A |
5290739 | Hickman | Mar 1994 | A |
5525291 | St. Julien | Jun 1996 | A |
6210626 | Cornelius et al. | Apr 2001 | B1 |
6319870 | Beall et al. | Nov 2001 | B1 |
6368992 | Beall et al. | Apr 2002 | B1 |
6432856 | Beall et al. | Aug 2002 | B1 |
6620751 | Ogunwumi | Sep 2003 | B1 |
6673414 | Ketcham et al. | Jan 2004 | B2 |
6773657 | Beall et al. | Aug 2004 | B2 |
6849181 | Ogunwumi et al. | Feb 2005 | B2 |
6864198 | Merkel | Mar 2005 | B2 |
6942713 | Ogunwumi et al. | Sep 2005 | B2 |
RE388888 | Beall et al. | Nov 2005 | |
6972045 | Itoh | Dec 2005 | B2 |
7070728 | Dannoux et al. | Jul 2006 | B2 |
7141089 | Beall et al. | Nov 2006 | B2 |
7169341 | Bruck | Jan 2007 | B2 |
7300487 | Fujita | Nov 2007 | B2 |
8673206 | Avery | Mar 2014 | B2 |
20040018123 | Okawara et al. | Jan 2004 | A1 |
20040020846 | Ogunwumi et al. | Feb 2004 | A1 |
20040029707 | Beall et al. | Feb 2004 | A1 |
20040092381 | Beall et al. | May 2004 | A1 |
20040206062 | Ichikawa | Oct 2004 | A1 |
20040261384 | Merkel et al. | Dec 2004 | A1 |
20050046063 | Toda et al. | Mar 2005 | A1 |
20050101118 | Kimura et al. | May 2005 | A1 |
20060197252 | Ishikawa et al. | Sep 2006 | A1 |
20060280905 | Ichikawa | Dec 2006 | A1 |
20070039298 | Tokumaru | Feb 2007 | A1 |
20090243139 | Tsuji et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
86809 | Oct 1920 | CH |
456671 | Feb 1928 | DE |
554359 | Jul 1932 | DE |
562484 | Oct 1932 | DE |
586788 | Oct 1933 | DE |
1403477 | Mar 2004 | EP |
415660 | Oct 1910 | FR |
490218 | Apr 1919 | FR |
503948 | Jun 1920 | FR |
191009776 | Nov 1910 | GB |
191122359 | Jun 1912 | GB |
191126403 | Aug 1912 | GB |
166403 | Jul 1921 | GB |
2006015240 | Feb 2006 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority; PCT/US2016/033982; dated Oct. 17, 2016; 12 Pages; Korean Intellectual Property Office. |
Japanese Patent Application No. 2017561827; Machine Translation of the Office Action dated Jan. 15, 2020; Japan Patent Office; 4 Pgs. |
Machine Translation of JP2017561827 Dated Apr. 3, 2019; 3 Pages; Japanese Patent Office. |
EP16804013.7 Supplementary Search Report dated Nov. 28, 2018, European Patent Office, 6 Pgs. |
English Translation of CN201680031154.4 Office Action dated Mar. 21, 2019; 10 Pages; Chinese Patent Office. |
Number | Date | Country | |
---|---|---|---|
20180147521 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62168215 | May 2015 | US |