The present disclosure is generally directed toward optical proximity sensors and housings for the same.
Many types of optical proximity sensors are currently available. The design of such sensors will often depend upon the application in which the sensor is employed. Typical fields of application for optical proximity sensors include, without limitation, motion detection, controllers for computing devices (e.g., optical mouse, optical finger navigation, rollerball navigation, etc.), industrial applications, medical applications, transportation applications, computing applications, communications applications, aerospace applications, and so on.
As can be seen in
In particular, the housing 108 may be designed to include a first module 112 and a second module 116. The first module 112 may include a top surface and four sidewalls which completely encapsulate or enclose the light source 120. Similarly, the second module 116 may include a top surface and four sidewalls which completely encapsulate or enclose the light detector 124. The sidewall of the first module 112 which is adjacent to the sidewall of the second module 116 may be referred to as the inner sidewall of each module 112, 116. In the embodiment depicted in
Although not depicted in
As can be seen in
Tilting of the housing 108 relative to the substrate 104 can have negative side effects including causing damage to the optical components 120, 124 of the optical proximity sensor 100 as well as leading to an unwanted shape and size of the optical proximity sensor 100. If the optical proximity sensor 100 is improperly sized or has an improper shape, the optical proximity sensor 100 may not be suitable for its intended application and may, therefore, be labeled as defective.
Other types of optical proximity sensors which are known in the art include, without limitation, those designed and manufactured by AVAGO TECHNOLOGIES™ such as HSDL-9100 surface-mount proximity sensors, APDS-9101 integrated reflective sensors, APDS-9120 integrated optical proximity sensors, APDS-9700, APDS-9800, etc.
The present disclosure is described in conjunction with the appended figures:
The ensuing description provides embodiments only, and is not intended to limit the scope, applicability, or configuration of the claims. Rather, the ensuing description will provide those skilled in the art with an enabling description for implementing the described embodiments. It being understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the appended claims.
With reference now to
In some embodiments, the folding methods used to construct the housing 208 may be similar to those described in U.S. Patent Publication No. 20100282951 to Costello et al., the entire contents of which are hereby incorporated herein by reference. Specifically, the housing 208 may be constructed from a single sheet of material (metal or non-metal) that comprises a plurality of tabs which are sequentially folded until the desired form of the housing 208 is achieved.
In embodiments where a tab-based folding approach is used to manufacture the housing 208, a number of tabs may be provided which ultimately become a specific feature of the housing 208. As can be seen in
The four sidewalls of the first module 112 may include an outer sidewall 132, two lateral sidewalls 140 extending orthogonally from the outer sidewall 132, and an inner sidewall that is included as part of a u-bend feature 128. In some embodiments, the four sidewalls are configured in a rectangular or square shape, thereby creating a box or cube-shaped first module 112. As can be appreciated, however, the first module 112 may be configured in other shapes without departing from the scope of the present disclosure. In particular, the first module 112 may be configured as a cylinder, an elongated cylinder (e.g., having an elliptical cross-section), a sphere, or a polygonal structure having more than four sidewalls. Accordingly, although the first module 112 is depicted as having four sidewalls, the first module 112 may have a greater or lesser number of sidewalls without departing from the scope of the present disclosure.
In some embodiments, the sidewalls of the first module 112 may each correspond to a separate tab feature that has been folded. In some embodiments, the inner sidewall of the first module 112 may comprise a plurality of tabs that form some or all of the u-bend feature 128. Furthermore, although the feature 128 is referred to herein as a u-bend feature 128, one of ordinary skill in the art will appreciate that the feature 128 may be provided in any other shape (i.e., other than a “u” shape). The term “u-bend feature” is used herein primarily for ease of discussion.
The lateral sidewalls 140 and outer sidewall 132 may correspond to tabs which were originally formed in a “T shape” with the top surface of the first module 112. Each of the lateral sidewalls 140 and outer sidewall 132 may have been folded downwardly from the top surface of the first module 112 to form the cavity of the first module 112. Similarly, the tabs used to form the inner sidewall may correspond to a first tab also extending from the top surface of the first module 112 as well as one or more additional tabs that were either extensions of the lateral sidewalls 140 or the first tab of the inner sidewall extending from the top surface. In other words, tabs extending from the lateral sidewalls 140 may be used to also form the inner sidewall and, therefore, the u-bend feature 128.
Similar to the first module 112, the second module 116 may comprise a top surface and four sidewalls, although a greater or lesser number of sidewalls may be used to construct the second module 116. The top surface of the second module 116 may comprise a second aperture 152 which is designed to allow light to enter and/or exit the cavity of the second module 116 (depending upon whether the second module 116 contains a light source or light detector) in a predetermined fashion.
The four sidewalls of the second module 116 may include an outer sidewall 136, two lateral sidewalls 144 extending orthogonally from the outer sidewall 136, and an inner sidewall that is included as part of the u-bend feature 128. The inner sidewalls of the first and second modules 112, 116 may be adjacent to one another and may also be parallel to one another. Similarly, the lateral sidewalls 140 of the first module 112 may be parallel with or in the same plane as the lateral sidewalls 144 of the second module 116. The outer sidewall 132 of the first module 112 may be parallel to the outer sidewall 136 of the second module 116. Thus, the housing 208 may have a generally rectangular shape, although other housing shapes may be employed.
Similar to the first module 112, the sidewalls of the second module 116 may each correspond to a separate tab feature that has been folded. In some embodiments, the inner sidewall of the second module 116 may comprise a plurality of tabs that form some or all of the u-bend feature 128. In some embodiments, the u-bend feature 128 is constructed of an equal number of tabs from the first module 112 and the second module 116. In other words, the number of tabs in the u-bend feature 128 that are attributable to the first module 112 equal the number of tabs in the u-bend feature 128 that are attributable to the second module 116. Thus, the construction of the inner sidewalls of the first and second modules 112, 116 may be symmetrical. Alternatively, more tabs in the u-bend feature 128 are attributable to either the first module 112 or second module 116. Also similar to the first module 112, the lateral sidewalls 144 may correspond to tabs that have been folded downwardly from the top surface of the second module 116 to form the cavity of the second module 116.
One difference between the first module 112 and second module 116 is that the second module 116 may be provided with a multi-part outer sidewall 136. More specifically, the outer sidewall 136 of the second module 116 may comprise a plurality of tabs which can be folded to form the cavity of the second module 116 as well as create a second support member for the housing 208 to interface with a substrate 104. In some embodiments, the outer sidewall 136 of the second module 116 may comprise first and second bottom tab portions 156a, 156b which extend and fold from the lateral sidewalls 144. The first and second bottom tab portions 156a, 156b may also have support extensions 158a, 158b. The first and second support extensions 158a, 158b may be designed to fold into the cavity of the second module 116 to form a support member for the housing 208 rather than forming a wall of the second module 116. In some embodiments, the outer sidewall 136 of the second module 116 may further comprise a top tab portion 160 which extends from the top surface of the second module 116. The top tab portion 160 may have a length that is less than the length of any lateral sidewalls 140, 144. The top tab portion 160 in combination with the first and second bottom tab portions 156a, 156b may form the portion of the outer sidewall 136 which defines the boundaries of the cavity of the second module 116.
As can be seen in
As can be appreciated by those of ordinary skill in the art, the outer sidewall 136 of the second module 116 may have a greater or lesser number of tabs. Specifically, as one example, the outer sidewall 136 may comprise only a single bottom tab portion 156 which has one or more support extensions 158. As another example, support extensions may be provided as part of the top tab portion 160 rather than the bottom tab portions 156a, 156b. Thus, the top tab portion 160 may fold downwardly from the top surface of the second module 116 and then be folded a second time into the cavity of the second module 116.
In the embodiment depicted where the support extensions 158a, 158b are provided on the bottom tab portions 156a, 156b, the order of folding operations for creating the outer sidewall 136 are as follows. The following order of operations may occur before or after the u-bend feature 128 has been created and/or before, during, or after the first module 112 has been created. First, the lateral sidewalls 144 are folded downwardly from the top surface of the second module 116. Second, the bottom tab portions 156a, 156b are folded inwardly until they are substantially parallel with the edge of the top surface that meets the top tab portion 160. Third, the support extensions 158a, 158b are folded inwardly toward the cavity of the second module 116. In some embodiments, the support extensions 158a, 158b are folded until they are parallel with the top surface of the second module 116. Finally, the top tab portion 160 is folded downwardly from the top surface of the second module 116 until it is parallel with or in the same plane as the first and second bottom tab portions 156a, 156b.
The cross-sectional view of the completed housing 208 in
Referring now to
The substrate 104 may correspond to a Printed Circuit Board (PCB) that receives the light source 120 and light detector 124 as well as electronics for controlling operations of the optical proximity sensor 200.
The light source 120 may comprise any type of device capable of generating and transmitting light at one or more wavelengths. Suitable examples of a light source 120 include, without limitation, a Light Emitting Diode (LED), an infrared LED, a laser diode, or any other light-emitting device, array of light-emitting devices, or the like. One specific example of the light source 120 is a P/N mesa-type AlGaAs/GaAs infrared chip, manufactured by TYNTEK, having model number TK 114IRA.
The light detector 124 may comprise any type of device, such as a photodetector, that is capable of receiving light energy and converting it into an electrical signal. Suitable examples of a light detector 124 include, without limitation, a PIN diode, a photo-diode, and a phototransistor. One specific example of the light detector 124 is a photodiode chip manufactured by TYNTEK having model number TK-043PD.
The housing 208 effectively minimizes or eliminates cross-talk between the light source 120 and light detector 124. Thus, the light detected by the light detector 124 should substantially correspond to light transmitted by the light source 120 that has exited the first aperture 148, reflected off of an object of interest, and entered the second aperture 152.
The housing 208 also provides a structural component of the optical proximity sensor 200 that protects the light source 120, light detector 124, and any other electrical or sensitive componentry mounted on the substrate 104. More specifically, the u-bend feature 128 and support extensions 158a, 158b provide multiple points of contact between the housing 208 and the substrate 104. The support extensions 158a, 158b help to minimize unwanted tilting of the housing 208 with respect to the substrate 104. Moreover, the support extensions 158a, 158b in combination with the u-bend feature 128 help to distribute forces imparted on the optical proximity sensor 200 during manufacture or use. In particular, vertical forces may be applied to the first and/or second modules 112, 116 of the housing 208 during manufacture of the optical proximity sensor 200. Stress testing of the housing 208 has indicated that the maximum displacement of the top surface of both modules 112, 116 occur around the apertures 148, 152. During the above-noted testing, a 5N vertical load was applied to the top surface of the second module 116 and the outer edge of the second module 116 was only displaced by 0.004 mm. Under a 20N similarly situated vertical load, the outer edge of the second module 116 was only displaced by 0.015 mm, which is still an acceptable amount of displacement and tilt for most applications. Because the support extensions 158a, 158b rest on the top surface of the substrate 104, the housing 208 does not have to be precisely manufactured to have a snug fit with the substrate.
Once the housing 208 has been formed, the light source 120 and light emitter driving circuitry may be mounted in the first module 112. Similarly, the light detector 124 and light sensing circuitry may be mounted in the second module 116. The substrate 104 may then be disposed beneath the housing 208 and operably connected to the light emitter driving circuit and light sensing circuit to yield an operative proximity sensor 200. The completed optical proximity sensor 200 may be incorporated into any number of devices, such as a cellular phone, a Personal Digital Assistant (PDA), a laptop computer, a notebook computer, a desktop computer, a netbook, a tablet device, an electronic book reader, or the like.
Specific details were given in the description to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, circuits may be shown in block diagrams in order not to obscure the embodiments in unnecessary detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments.
While illustrative embodiments of the disclosure have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed, and that the appended claims are intended to be construed to include such variations, except as limited by the prior art.
Number | Name | Date | Kind |
---|---|---|---|
5155777 | Angelopoulos et al. | Oct 1992 | A |
5367393 | Ohara et al. | Nov 1994 | A |
5567953 | Horinouchi et al. | Oct 1996 | A |
5675143 | Heimlicher | Oct 1997 | A |
5760390 | Vezzalini et al. | Jun 1998 | A |
5811797 | Kobachi et al. | Sep 1998 | A |
6064062 | Bohn | May 2000 | A |
6135816 | Mashiyama et al. | Oct 2000 | A |
6180881 | Isaak | Jan 2001 | B1 |
6364706 | Ando et al. | Apr 2002 | B1 |
6572410 | Volstorf et al. | Jun 2003 | B1 |
6635955 | Scheidle | Oct 2003 | B2 |
6674653 | Valentine | Jan 2004 | B1 |
6677934 | Blanchard | Jan 2004 | B1 |
6740862 | Paritsky et al. | May 2004 | B2 |
6771671 | Fields et al. | Aug 2004 | B1 |
6855933 | Stone et al. | Feb 2005 | B2 |
6885300 | Johnston et al. | Apr 2005 | B1 |
7026710 | Coyle et al. | Apr 2006 | B2 |
7109465 | Kok et al. | Sep 2006 | B2 |
7172126 | Schmidt et al. | Feb 2007 | B2 |
7229295 | Ice et al. | Jun 2007 | B2 |
7256483 | Eppler et al. | Aug 2007 | B2 |
7258264 | Ice et al. | Aug 2007 | B2 |
7277012 | Johnston et al. | Oct 2007 | B2 |
7289142 | Silverbrook | Oct 2007 | B2 |
7348536 | Bockel et al. | Mar 2008 | B2 |
7387033 | Qing et al. | Jun 2008 | B2 |
7387907 | Hsu et al. | Jun 2008 | B2 |
7427806 | Arndt et al. | Sep 2008 | B2 |
7485818 | Chou | Feb 2009 | B2 |
7510888 | Guenther et al. | Mar 2009 | B2 |
7514666 | Yee et al. | Apr 2009 | B2 |
7675132 | Waitl et al. | Mar 2010 | B2 |
7755029 | Tang et al. | Jul 2010 | B2 |
7767485 | Ogawa et al. | Aug 2010 | B2 |
8026472 | Arnold | Sep 2011 | B2 |
8031174 | Hamblin et al. | Oct 2011 | B2 |
8097852 | Yao | Jan 2012 | B2 |
8143608 | Yao et al. | Mar 2012 | B2 |
8207517 | Wang et al. | Jun 2012 | B2 |
8275922 | Barrett et al. | Sep 2012 | B2 |
8420999 | Costello et al. | Apr 2013 | B2 |
8575537 | Yao et al. | Nov 2013 | B2 |
20020172472 | Nelson et al. | Nov 2002 | A1 |
20040065894 | Hashimoto et al. | Apr 2004 | A1 |
20050110157 | Sherrer et al. | May 2005 | A1 |
20050199786 | Yoshida et al. | Sep 2005 | A1 |
20060016994 | Basoor et al. | Jan 2006 | A1 |
20060017069 | Bergmann | Jan 2006 | A1 |
20060022212 | Waitl et al. | Feb 2006 | A1 |
20060022215 | Arndt et al. | Feb 2006 | A1 |
20060045530 | Lim et al. | Mar 2006 | A1 |
20060049533 | Kamoshita | Mar 2006 | A1 |
20060118807 | Ives et al. | Jun 2006 | A1 |
20070045524 | Rains et al. | Mar 2007 | A1 |
20070072321 | Sherrer et al. | Mar 2007 | A1 |
20070246646 | Lum et al. | Oct 2007 | A1 |
20080006762 | Fadell et al. | Jan 2008 | A1 |
20080011939 | Yee et al. | Jan 2008 | A1 |
20080011940 | Zhang et al. | Jan 2008 | A1 |
20080012033 | Arndt | Jan 2008 | A1 |
20080030878 | Saxena et al. | Feb 2008 | A1 |
20080049210 | Takaoka | Feb 2008 | A1 |
20080116379 | Teder | May 2008 | A1 |
20080118241 | TeKolste et al. | May 2008 | A1 |
20080173790 | Cheng et al. | Jul 2008 | A1 |
20080173963 | Hsu et al. | Jul 2008 | A1 |
20080179503 | Camargo et al. | Jul 2008 | A1 |
20080197376 | Bert et al. | Aug 2008 | A1 |
20080265266 | Bogner et al. | Oct 2008 | A1 |
20080296478 | Hemoult | Dec 2008 | A1 |
20080308738 | Li et al. | Dec 2008 | A1 |
20080308917 | Pressel et al. | Dec 2008 | A1 |
20090027652 | Chang et al. | Jan 2009 | A1 |
20090057799 | Chan et al. | Mar 2009 | A1 |
20090101804 | Phan Le | Apr 2009 | A1 |
20090129783 | Ori et al. | May 2009 | A1 |
20090159900 | Basoor | Jun 2009 | A1 |
20100030039 | Lamego et al. | Feb 2010 | A1 |
20100246771 | Hawver et al. | Sep 2010 | A1 |
20100282951 | Costello et al. | Nov 2010 | A1 |
20100327164 | Costello et al. | Dec 2010 | A1 |
20110024627 | Yao | Feb 2011 | A1 |
20110057102 | Yao | Mar 2011 | A1 |
20110057104 | Yao et al. | Mar 2011 | A1 |
20110057129 | Yao et al. | Mar 2011 | A1 |
20110121181 | Costello et al. | May 2011 | A1 |
20110133941 | Yao et al. | Jun 2011 | A1 |
20110204233 | Costello et al. | Aug 2011 | A1 |
20110297831 | Yao et al. | Dec 2011 | A1 |
20120070145 | Wong et al. | Mar 2012 | A1 |
20120160994 | Costello et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1832217 | Sep 2006 | CN |
1743886 | Mar 2008 | CN |
1455564 | Sep 2004 | EP |
11242926 | Sep 1999 | JP |
2006-114737 | Apr 2006 | JP |
2006-261380 | Sep 2006 | JP |
2009032571 | Feb 2009 | JP |
WO-2006045531 | May 2006 | WO |
WO-2009072786 | Jun 2009 | WO |
WO-2012068213 | May 2012 | WO |
Entry |
---|
Costello et al., U.S. Appl. No. 12/495,739, Entitled “Optical Proximity Sensor Package With Molded Infrared Light Rejection Barrier and Infrared Light Pass Components”, filed Jun. 30, 2009, 33 pages. |
Tan et al., U.S. Appl. No. 12/623,767, Entitled “Infrared Proximity Sensor Package With Improved Crosstalk Isolation”, filed Nov. 23, 2009, 30 pages. |
“A4 Masking Sheet—A4 Masking Sheet”, Downloaded from website: <http://www.stix2.com.au/a4-masking-sheet-13/a4-masking-sheet.html> 2012, Product Description 2012. |
“Altera 40/100 Gigabit Ethernet”, Altera Corporation Product Sheet Copyright 1995-2012, 3 pages 2012. |
“Altera's 10-Gbps Ethernet (XAUI) Solution”, Altera Corporation Product Sheet, Copyright 1995-2012, 2 pages 2012. |
“Nordson Ink-Dot I.D. System”, Nordson Corporation Product Sheet 2012, 2 pages 2012. |
“SerialLite II Protocol”, Altera Reference Manual Oct. 2005, 84 pages 2005. |
Morgavi, Paul , “Panasonic Print Head Technology and Market Applications”, IMI Europe, Digital Printing Conferences 2007, Presentation, Nov. 7 to 9, 2007, 24 pages 2007. |
“Agilent HSDL-9100 Miniature Surface-Mount Proximity Sensor Data Sheet”, in current form on Dec. 21, 2007. |
Avago Technologies, “APDS-9005 Miniature Surface-Mount Ambient Light Photo Sensor”, Jan. 2007. |
Avago Technologies, “APDS-9101—Integrated Reflective Sensor”, Data Sheet 2007. |
Avago Technologies, “APDS-9700 Signal Conditioning IC for Optical Proximity Sensors”, Jan. 4, 2008. |
Avago Technologies, “HSDL-9100—Surface-Mount Proximity Sensor”, Data Sheet 2006. |
Avago Technologies, “Integrated Ambient Light and Proximity Sensor Prelim Datasheet”, APDS-9800 Mar. 2, 2009. |
Avago Technologies, “Integrated Optical Proximity Sensors Prelim Datasheet”, APDS-9120 Feb. 25, 2009. |
AZ Optics, “Device Debuts as the World's Best-Performing Integrated Light/Proximity Sensor”, Nov. 11, 2008. |
Ides—The Plastic Web, “Si Photo Diode Chip”, Dec. 19, 2007. |
Ishihara, et al., “A Dual Face Package Using a Post with Wire Components: Novel Structure for PoP Wafer Level CSP and Compact Image Sensor Package”, Electronic Components and Technology Conference 2008, 1093-1098. |
Khamal, Ibrahim , “Infra-Red Proximity Sensor (II)”, Apr. 4, 2008. |
Losee, et al., “A 1/3 Format Image Sensor with Refractory Metal Light Shield for Color Video Applications”, Solid State Circuits Conference, Digest of Technical Papers, 36th ISSCC, IEEE International Volume. Feb. 1989 , 90-91. |
Nitto Denko Corporation, “Technical Data Sheet”, NT-8506 2001. |
Nitto Denko Corporation, “Technical Data Sheet”, NT-MB-IRL3801 2008. |
Penchem Technologies Data Sheet, “PEMCHEM OP 580”, IR Filter Optoelectronic Epoxy Apr. 2009. |
Penchem Technologies Data Sheet, “PENCHEM OP 579”, IR Pass Optoelectronic Epoxy Apr. 2009. |
Tyntek, “Data Sheet for AIGaAs/GaAs Infrared Chip”, TK116IRA Nov. 2006. |
Tyntek, “Data Sheet for AIGaAs/GaAs Infrared Chip”, TK 114IRA Mar. 2004. |
Tyntek, “Data Sheet for Si Photo-diode Chip”, TK 043PD Jun. 2004. |
Tyntek, “Si Photo-Diode Chip—TK043PD Data Sheet”, Dec. 19, 2007. |
Xydar, “G-930—Solvay Advanced Polymers—Liquid Crystal Polymer Data Sheet”, reproduced from website at www.ides.com/grades/ds/E22219.htm on Dec. 17, 2007. |
Number | Date | Country | |
---|---|---|---|
20120160994 A1 | Jun 2012 | US |