This invention relates to high performance liquid chromatography (HPLC), and more specifically to a flow circuit arrangement employed for improved operation of HPLC analysis of complex matrix samples and for improved control of sample carryover.
HPLC technology is widely used to detect and identify different components contained in a test sample. Typical HPLC instruments use a high pressure pump for forcing a suitable mobile phase, via capillary lines, at a constant flow rate serially through an autosampler, a separation column and a UV or other type detector. The column contains an absorbent selected for the components anticipated to be in the test samples. For instigating a run, a small quantity of the test sample is introduced into the mobile phase by an injector to travel through the separation column. The different sub phase sample components pass through the column at different rates, each thereby becoming substantially isolated before passing the detector for individual identification.
When test samples include undesirable matrices, the sample needs to be cleaned. The usual way of cleaning involves filtration, centrifugation, precipitation, or absorption of matrices prior to the introduction of the sample into the HPLC system. Alternatively, the direct way to achieve cleaning is to include in the HPLC flow schematic a guard column located upstream of the separation column, operable to trap out matrices from flowing into and blocking the separation column, which would dramatically shorten its useful separation life. The guard column is inexpensive compared to the separation column, and is expected to be replaced frequently. However, replacement of the guard column is not without significance, as it must include both the cost of the new guard column and the down time of the HPLC system while installing it.
A basic object of this invention is to provide in an HPLC flow arrangement having the same basic components as common HPLC systems, but further allowing for regularly back flushing of the guard column with mobile phase, to clean it and extend its useful life of preventing any flow system matrix from reaching the more costly downstream separation column.
A more specific object of this invention is to provide means for automatically and frequently backflushing the HPLC system guard column with the mobile phase, for regenerating or improving the guard column for yielding its reliable protection of the separation column, even over repeated operational cycles.
Another object of this invention is to provide an HPLC system having a washing means for cleaning the injector needle, the sample loop, and connecting lines after each sample injection, for minimizing sample carryover in the system.
Still another object of this invention is to eliminate the need for a purge valve and its operation for manually purging air trapped in the high pressure pump head, as the improved flow circuit and high pressure syringe used in the flow schematic can be operated to provide the same purging action.
These and other objects, features or advantages of the invention will be more fully understood and appreciated after considering the following disclosure of the invention, which includes the accompanying drawings, wherein:
The disclosed HPLC schematic has a mobile phase vessel 1, a high pressure pump 2, a two position six-port valve 3, a separation column 4, a guard column 5, a syringe 6 for drawing the sample, an injector 7 having a needle 18 to draw the liquid sample from the container 10, a detector 8, a waste outlet 9 for the used mobile phase, and a sample accumulation loop 11.
More specifically, the six-port valve 3 has permanent line connections as follows: port P1 to the outlet of pump 2; port P2 to the inlet of separation column 4; port P3 to one end of guard column 5; port P4 to the outlet of detector 8; port P5 through ports of the injector 7 to waste line 9; and port P6 is via accumulation loop 11 to the syringe 6 and the other end of the guard column 5.
The valve 3 shifts between two operative positions:
In
The
After this back flow cycle of
It is during the cycles of
The
The injector 7 includes a housing 16 having a bore 23 with an annular top seal 17 that surrounds needle 18. The needle 18 is adapted to be shifted axially in the housing 16 between lowered and raised positions. In its lowered position (
With the needle 18 in the passage 23 and the ball closing the passage outlet, mobile phase conveyed into the bore cavity 23 (see
The needle 18 can also be shifted downwardly, to shift the ball 22 out of the way and then be inserted into the liquid sample (see
Another useful and unexpected aspect of the disclosed system is that it can remove air trapped in the pump 2. Thus, the pump typically has a very small volume cycle displacement, and possibly an air bubble therein can preclude initial startup. To remove the air bubble before pump startup, the syringe 6 can be operated to draws the contents from the pump 2, whereupon the valve 3 can then be shifted and the syringe reversed to discharge syringe content to the waste. This cycle can be repeated one or more times to achieve reliable initial pump operation.
While the invention has been illustrated and disclosed specifically, minor changes could be made without departing from the inventive concepts. Accordingly, the invention is to be limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4577492 | Holba et al. | Mar 1986 | A |
5011608 | Damjanovic | Apr 1991 | A |
5071547 | Cazer et al. | Dec 1991 | A |
5547497 | Klemp et al. | Aug 1996 | A |
5652398 | Johnson | Jul 1997 | A |
5922754 | Burchett et al. | Jul 1999 | A |
5933357 | Tipler | Aug 1999 | A |
5983703 | Wylie et al. | Nov 1999 | A |
6952946 | Mueller | Oct 2005 | B2 |
20030124680 | Reeves et al. | Jul 2003 | A1 |
20040087003 | Hu et al. | May 2004 | A1 |
20040099046 | Mueller | May 2004 | A1 |
20090208365 | McSherry et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100258487 A1 | Oct 2010 | US |