HUMAN IMMUNODEFICIENCY VIRUS (HIV-1) HIGHLY CONSERVED AND LOW VARIANT SEQUENCES AS TARGETS FOR VACCINE AND DIAGNOSTIC APPLICATIONS

Abstract
We identified regions of the HIV-1 proteome with high conservation, and low variant incidence. Such highly conserved sequences have direct relevance to the development of new-generation vaccines and diagnostic applications. The immune relevance of these sequences was assessed by their correlation to previously reported human T-cell epitopes and to recently identified human HIV-1 T-cell epitopes (identified using HLA transgenic mice). We identified (a) sequences specific to HIV-1 with no shared identity to other viruses and organisms, and (b) sequences that are specific to primate lentivirus group, with multiclade HIV-1 conservation.
Description
TECHNICAL FIELD OF THE INVENTION

This invention is related to the area of vaccines and immunity. In particular, it relates to vaccines for inducing immunity to Human Immunodeficiency Virus.


BACKGROUND OF THE INVENTION

The rapid evolution of HIV-1 and resulting diversity in the viral proteomes is widely acknowledged as playing a major role in the failure of most infected individuals to control either acute or chronic HIV-1 infection (Abram et al., 2010; Goulder and Watkins, 2004; McMichael et al., 2010; Pereyra et al., 2010; Troyer et al., 2009). The sequence diversity of HIV-1 proteins is a combination of the frequency of mutations, about 1.4×10−5 per base pair (Abram et al., 2010), two to three recombination events per cycle of virus replication (Jetzt et al., 2000), and a high replication rate of about 1010 to 1012 virions per day (Perelson et al., 1996). This leads to the rapid evolution of genetically distinct mutant viruses, which accumulate within the host as a complex mixture of viral quasispecies (Eigen, 1993). Survival of the individual variant viruses is determined by the relative host fitness and a complex association of mutations and immune escape through a multiplicity of mechanisms (Brumme et al., 2009; Brumme and Walker, 2009; Liang et al., 2008; Wang et al., 2009). This process is initiated within a few days after infection by rapid selection of mutants resistant to host immune response, resulting in the development of reservoirs of progeny virus within one to two weeks after infection (Allen et al., 2005; Allen et al., 2004; Jones et al., 2009; Rychert et al., 2007; Salazar-Gonzalez et al., 2009). Changes in the proteins of the escape mutants, even of single amino acids, can result in loss of T-cell epitopes by modification of sequences required at any of several stages in the immune response mechanisms; for example, antigen protein processing of T-cell epitope sequences, epitope recognition by human leukocyte antigen (HLA), or epitope ligation and activation of T-cell receptors (Allen et al., 2004; Draenert et al., 2004; Kelleher et al., 2001; Leslie et al., 2004; Sloan-Lancaster and Allen, 1996; Yokomaku et al., 2004). Escape from the immune response is, however, limited in some individuals (HIV-controllers) and a recent report provides extensive genetic data implicating HLA-viral peptide interaction as the major factor in the control of HIV infection by these individuals (Pereyra et al., 2010). The ability of HIV-1 to escape the host immune system via mutation may also be restricted at sites of the genome (Korber et al., 2009; Yang, 2009) important for viral functions. Vaccines that target certain conserved epitopes of virus structural and regulatory proteins have been shown to elicit cellular immune responses that provide immune protection against HIV infection in BALB/c and transgenic mice (Gotch, 1998; Korber et al., 2009; Letourneau et al., 2007; Okazaki et al., 2003; Wilson et al., 2003).


There is a continuing need in the art for effective diagnosis, vaccines and treatments for HIV.


SUMMARY OF THE INVENTION

According to one aspect of the invention a polypeptide comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database. Two of these polypeptides are specific to HIV-1, with no matching sequence of nine amino acids in the sequences of other viruses or organisms reported in nature (as of December 2010), while many are specific to primate lentivirus group, including HIV-1 with multiclade conservation of the following possible combinations: clades A, B, C and D or clades B, A, and C or clades B, A and D or clades B, C and D or clades B and A or clades B and C or clades B and D or clade B only. The multiclade sequences may be used to specifically identify HIV-1 virus of the different clades.


Another aspect of the invention is a polynucleotide encoding the polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins. The segments comprise from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


Yet another aspect of the invention is a polypeptide made from an encoding polynucleotide, that further comprises: (a) a LAMP-1 luminal sequence comprising SEQ ID NO: 1278; and (b) a LAMP transmembrane and cytoplasmic tail comprising SEQ ID NO: 1279, wherein the luminal sequence is amino-terminal to the one or more discontinuous segments of the HIV-1 proteins which are amino-terminal to the LAMP transmembrane and cytoplasmic tail.


Additionally, a nucleic acid vector is provided that comprises the polynucleotide that encodes a polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


Further, a host cell is provided that comprises a nucleic acid vector that comprises the polynucleotide that encodes a polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


Another aspect of the invention is a method of producing a polypeptide. A host cell is cultured under conditions in which the host cell expresses the polypeptide. The host cell comprises a nucleic acid vector that comprises the polynucleotide that encodes a polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


A method is provided for producing a cellular vaccine. Antigen presenting cells are transfected with a nucleic acid vector, whereby the antigen presenting cells express the polypeptide. The nucleic acid vector comprises the polynucleotide that encodes a polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


A method of making a vaccine is another aspect of the invention. The method comprises mixing together a polypeptide and an immune adjuvant. The polypeptide comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


A method of immunizing a human or other animal subject is another aspect of the invention. The method comprises administering to the human or other animal subject a polypeptide or a nucleic acid vector or a host cell, in an amount effective to elicit HIV-specific T-cell activation. The polypeptide comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database. The nucleic acid vector comprises the polynucleotide that encodes a polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database. The host cell comprises a nucleic acid vector that comprises the polynucleotide that encodes a polypeptide that comprises one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.


Additional aspects of the invention permit the identification of lentivirus group, species, or clade. Oligonucleotide probes hybridize to genomic nucleic acid or its complement and identify group, species, or clade.


Another aspect of the invention involves protein-based diagnosis. A polypeptide which represents a conserved sequence according to the invention or an antibody which specifically binds such a conserved sequence is used to interrogate by binding a body sample of a patient. An antibody is used to identify viral protein in virus infected cells. A polypeptide is used to identify a patient's own antibodies to a lentivirus. Specific binding can be used to identify the presence in the patient of the primate lentivirus group species, including the HIV-1 species, of a specific clade, biclade, triclade or pan-clade.


These and other embodiments, which will be apparent to those of skill in the art upon reading the specification provide the art with methods and tools for reducing risk, severity, symptoms, and/or duration of acquired immunodeficiency disease. Thus the vaccines may be either prophylactic or therapeutic.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows Shannon's nonamer entropy of the HIV-1 clade B proteins.



FIG. 2 shows density plots of the incidence of total variants of the primary nonamer and the entropy of the nonamer sequences of clade B proteins.



FIG. 3 shows density plots of the incidence (%) of all variants to the primary nonamer and the primary variant at each nonamer position of the HIV-1 clade B proteins. The regions boxed in red and the adjacent values indicate the fraction and number of total nonamer positions analyzed that are highly conserved and contain fewer than 20% variants of the primary sequence and fewer than 10% incidence of the primary variant. nonamer sequences of each protein.





DETAILED DESCRIPTION OF THE INVENTION

The inventors have identified and selected polypeptides that represent epitopes in humans, which are conserved in at least 80% of all recorded HIV clade B viruses as of August 2008, and wherein individual variants have an incidence of less than 10%. Selection criteria may be increased in stringency to, for example at least 85% or 90% or 95% incidence of primary conserved sequence and decreased individual variant stringency to an incidence of less than 5% or 1%. These epitopes are useful for vaccines as well as for diagnostic assays.


Discontinuous segments of the HIV-1 may be strung together to form a concatamer, if desired. They may be separated by spacer residues. Discontinuous segments are those that are not adjacent in the naturally occurring virus isolates. Segments are typically at least 9 amino acid residues and up to about 15, 16, 17, 18, 19, 20, 25, 30, 35, or 40 residues of contiguous amino acid residues from the virus proteome. Single segments may also be used. Because the segments are less than the whole, naturally occurring proteins, and/or because the segments are adjacent to other segments to which they are not adjacent in the proteome, the polypeptides and nucleic acids described here are non-naturally occurring.


Linkers or spacers with natural or non-naturally occurring amino acid residues may be used optionally. Particular properties may be imparted by the linkers. They may provide a particular structure or property, for example a particular kink or a particular cleavable site. Design is within the skill of the art.


Polynucleotides which encode the polypeptides may be designed and made by techniques well known in the art. The natural nucleotide sequences used by HIV-1 may be used. Alternatively non-natural nucleotide sequences may be used, including in one embodiment, human codon-optimized sequences. Design of human codon-optimized sequences is well within the skill of the ordinary artisan. Data regarding the most frequently used codons in the human genome are readily available. Optimization may be applied partially or completely.


The polynucleotides which encode the polypeptides can be replicated and/or expressed in vectors, such as DNA virus vectors, RNA virus vectors, and plasmid vectors. Preferably these will contain promoters for expressing the polypeptides in human or other mammalian or other animal cells. An example of a suitable promoter is the cytomegalovirus (CMV) promoter. Promoters may be inducible or repressible. They may be active in a tissue specific manner. They may be constitutive. They may express at high or low levels, as desired in a particular application. The vectors may be propagated in host cells for expression and collection of chimeric protein. Suitable vectors will depend on the host cells selected. In one embodiment host cells are grown in culture and the polypeptide is harvested from the cells or from the culture medium. Suitable purification techniques can be applied to the chimeric protein as are known in the art. In another embodiment one transfects antigen-presenting cells for ultimate delivery of the transfected cells to a vaccinee of a cellular vaccine which expresses and presents antigen to the vaccinee. Suitable antigen presenting cells include dendritic cells, B cells, macrophages, and epithelial cells.


Polynucleotides of the invention include diagnostic DNA or RNA oligonucleotides, i.e., short sequences of proven specificity to viral species; these are sufficient to uniquely identify the viral species or to a group or clade (SEQ ID NOs: 637-1140). Polynucleotides include oligonucleotides such as primers and probes, which may be labeled or not. These may contain all or portions of the coding sequences for an identified conserved polypeptide. Polynucleotides of the invention and/or their complements, may optionally be attached to solid supports as probes to be used diagnostically, for example, through hybridization to viral genomic sequences. Similarly, epitopic polypeptides can be attached to solid supports to be used diagnostically. These can be used to screen for activated T cells or even antibodies. Suitable solid supports include without limitation microarrays, microspheres, and microtiter wells. Antibodies may be used that are directed against the peptides as disclosed. The antibodies may be used to specifically diagnose species of the primate lentivirus group, including HIV-1 virus with multiclade conservation of the following possible combinations: clades A, B, C and D or clades B, A, and C or clades B, A and D or clades B, C and D or clades B and A or clades B and C or clades B and D or clade B only. The multiclade sequences may be used to specifically identify HIV-1 virus of the different clades. Polynucleotides may also be used as primers, for example, of length 18-30, 25-50, or 15-75 nucleotides, to amplify the genetic material of viruses of the primate lentivirus group, including HIV-1 virus(es) of the possible clade combinations listed above. Polynucleotide primers and probes may be labeled with a fluorescent or radioactive label, if desired. These polynucleotides can be used to amplify and/or hybridize to a test sample to determine the presence or species identity of a primate lentivirus, including HIV-1 virus(es) of the possible clade combinations listed above. Such polynucleotides will typically be at least 15, 18, 20, 25, or 30 bases to 50, 70, 90, 120, 150, or 500 bases in length. Any technique, including but not limited to amplification, hybridization, single nucleotide extension, and sequencing, can be used to identify the presence or species identity of the primate lentivirus, including HIV-1 virus(es) of the possible clade combinations listed.


Immune adjuvants may be administered with the vaccines of the present invention, whether the vaccines are polypeptides, polynucleotides, nucleic acid vectors, or cellular vaccines. The adjuvants may be mixed with the specific vaccine substance prior to administration or may be delivered separately to the recipient, either before, during, or after the vaccine substance is delivered. Some immune adjuvants which may be used include CpG oligodeoxynucleotides, GM-CSF, QS-21, MF-59, alum, lecithin, squalene, and Toll-like receptors (TLRs) adaptor molecules. These include the Toll-interleukin-1 receptor domain-containing adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88). Vaccines may be produced in any suitable manner, including in cultured cells, in eggs, and synthetically. In addition to adjuvants, booster doses may be provided. Boosters may be the same or a complementary type of vaccine. Boosters may include a conventional live or attenuated HIV-1 vaccine. Typically a high titer of antibody and/or T cell activation is desired with a minimum of adverse side effects.


Any of the conventional or esoteric modes of administration may be used, including oral, mucosal, or nasal. Additionally intramuscular, intravenous, intradermal, or subcutaneous delivery may be used. The administration efficiency may be enhanced by using electroporation. Optimization of the mode of administration for the particular vaccine composition may be desirable. The vaccines can be administered to patients who are infected already or to patients who do not yet have an infection. The vaccines can thus serve as prophylactic or therapeutic agents. One must, however, bear in mind that no specific level of efficacy is mandated by the words prophylactic or therapeutic. Thus the agents need not be 100% effective to be vaccines. Vaccines in general are used to reduce the incidence in a population, or to reduce the risk in an individual. They are also used to stimulate an immune response to lessen the symptoms and or severity of the disease.


The above disclosure generally describes the present invention. All references disclosed herein are expressly incorporated by reference. A more complete understanding can be obtained by reference to the following specific examples, which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.


EXAMPLES

We conducted a large-scale, systematic analysis of the recorded HIV-1 clade B protein sequences, focused on the variability and conservation of T-cell epitope relevant sequences. Detailed analyses were performed with clade B as it has the largest number of recorded sequences and can be used as a model for similar studies of the other clades. Modified Shannon's entropy and bioinformatics approaches were used to measure nonamer conservation and variability. Nonamers were chosen as they are the typical length of HLA class I epitopes, and the cores of HLA class II epitopes (Rammensee, 1995). Variants of the conserved nonamer sequences were analysed for the identification of regions of the proteome that were not only conserved, but also had a low incidence of individual variants. The immune relevance of selected sequences was assessed by their correlation with previously reported human T-cell epitopes and our recent study in the identification of human HIV-1 T-cell epitopes by use of HLA transgenic mice (Simon et al., 2010). The studies also included the identification of a) sequences specific to HIV-1 with no shared identity to other viruses and organisms, and b) specific sequences that are multiclade conserved as vaccine targets. These sequences have direct relevance to the development of new-generation vaccines and diagnostic applications.


Example 1
Materials and Methods
Data Preparation, Selection and Alignment of HIV-1 Clade B Protein Sequences

HIV-1 protein sequence records were retrieved from the NCBI Entrez Protein Database in August 2008 by searching the NCBI taxonomy browser for HIV-1 (Taxonomy ID 11676). HIV-1 clade B specific entries were retrieved from the data collected via BLAST (version 2.2.18) searches (Altschul et al., 1990), using default parameters, with sample HIV-1 clade B protein sequences of the nine HIV-1 proteins from the HIV database (see website of Los Alamos National Laboratory (LANL) for HIV) as queries. Cutoff for the classification of each clade B protein was determined by manual inspection of the individual BLAST outputs. Duplicate sequences of each protein were removed and the remaining unique sequences, both partial and full length, were used for protein multiple sequence alignment. Alignment was difficult for some of the proteins because of the large number of diverse sequences, and thus different approaches were explored, as described below.


Sequence alignments of Vif, Vpr and Vpu were performed with PROMALS3D (Pei et al., 2008). The Gag, Pol, Tat, Rev, Env and Nef protein sequence with large datasets were first split into smaller and more manageable sections (about 200-500 sequences per subset). These smaller subsets were aligned using PROMALS3D or CLUSTAL W (Pei et al., 2008; Thompson et al., 1994) and refined with RASCAL (Thompson et al., 2003) before merging into a full protein multiple sequence alignment, by use of conserved sites that helped anchor the alignment subsets. All multiple sequence alignments were manually inspected and corrected for misalignments. Alignment positions with high fraction of gaps, 95% or more were removed. In total 29,211 Env protein sequences were retrieved but only 9,661 sequences were aligned and analysed due to the complexity in aligning large diverse protein sequences.


Protein alignment positions of clade B were cross-referenced to the HXB2 prototype protein sequences. It should be noted that the protein alignment positions differ from the HXB2 positions due to insertions and deletions in the alignment, especially in regions of high diversity.


Nonamer Diversity and Conservation of HIV-1 Clade B Proteins

Shannon's entropy (Miotto et al., 2008; Shannon, 1948) was used as a measure for HIV-1 diversity. The entropy of all overlapping nonamer positions across the protein alignment of HIV-1 clade B was measured and plotted by use of the ggplot2 suite (Wickham, 2009) of the R programming language and environment (R_Development_Core_Team, 2008). Entropy analysis was carried out by use of the Antigenic Variability Analyser tool (AVANA; see sourceforge website) and following the method as described in Khan et al. (2008). Briefly, the computation of entropy involves the number and incidence of unique nonamer peptides at a given position in an alignment. Nonamer entropy H(x) for a given position x in the alignment was calculated using the formula:







H


(
x
)


=

-




i
=
1


n


(
x
)






p

i
,
x





log
2



(

p

i
,
x


)









where pi,x is the probability of the occurrence (or incidence) of nonamer i with its center position at x (also referred to as the “nonamer position”), and n(x) is the total number of unique peptides observed at position x. Since the entropy values were calculated for each nonamer window based on its center position, values were not assigned to the four amino acids at the beginning and end of the alignments. A position that has a large number of unique peptides with majority displaying high incidence would evaluate to a high entropy value, which would imply that this position is highly diverse, where the maximum nonamer entropy value possible is 39 (log2209). Conversely, if the position has a single peptide that is completely conserved across all the sequences at that position in the alignment, the entropy will be zero, the lowest value possible. Entropy calculations are affected by the size of an alignment, and hence the entropies within the protein alignments of HIV-1 clade B were corrected for size bias via a statistical sub-sampling method (Khan et al., 2008).


Distribution of Nonamer Variants Across HIV-1 Clade B Proteome

All sequences at each of the nonamer positions in the protein alignments were extracted and studied for the incidence of the primary (most common) nonamer and its variants. Variants at a given position in the alignment were defined as peptides with at least one amino acid difference from the primary nonamer. Variant nonamers that contained gaps (−) or any one of the unresolved characters, including B (asparagine or aspartic acid), J (leucine or Isoleucine), X (unspecified or unknown amino acid) and Z (glutamine or glutamic acid) were excluded from the analysis. The ggplot2 suite was used to depict the incidence of total nonamer variants and the primary variant at each nonamer position across the proteome.


Identification of Highly Conserved Sequences in HIV-1 Clade B Proteins

Highly conserved HIV-1 clade B sequences were identified as nonamers positions with (i) a primary nonamer incidence of 80% or more of the analysed viral sequences at that position and (ii) incidence of the primary variant of less than 10% of the primary nonamer sequence at the position. Identified nonamers that were contiguous (overlapped by eight amino acids) were joined. Positions with less than 100 sequences in the alignment were excluded from the selection of conserved sequences.


Correspondence of Highly Conserved HIV-1 Clade B Sequences with Reported T-Cell Epitopes


All published human T-cell epitopes from the HIV Molecular Immunology Database (November 2010) (see website of Los Alamos National Laboratory (LANL) for immunology) and our transgenic mice study (Simon et al., 2010) with a match of at least 9 consecutive amino acids with the highly conserved HIV-1 clade B sequences were identified.


Identification of HIV-1 Pan-Clade and Biclade Highly Conserved Sequences

The 2008 Web alignment of the complete protein sequences of the HIV-1 clade A, C and D were obtained from HIV sequence database (see website of Los Alamos National Laboratory (LANL) for HIV). All protein alignments were manually inspected and corrected where necessary. The clade B highly conserved sequences were analysed for their incidence in the corresponding protein alignments of clade A, C and D to identify HIV-1 pan-clade highly conserved sequences. Highly conserved HIV-1 sequences common to clade B and C were also identified as there was limited data for most of the proteins of clade A and D. The criteria for identification of pan-clade and biclade highly conserved sequences was similar to that used for clade B. Identified pan-clade and biclade nonamers that were contiguous were joined to form longer sequences.


Identification of Highly Conserved HIV-1 Clade B Sequences Common to Other Viruses and Organisms

Highly conserved HIV-1 clade B sequences that overlapped at least 9 consecutive amino acids sequences of other viruses and organisms were identified by performing an exhaustive string search of the nonamers of the conserved sequences against all protein sequences reported at the NCBI Entrez protein database (as of November 2010), excluding HIV-1 records, synthetic constructs and artificial sequences.


Example 2
HIV-1 Clade B Protein Datasets and Protein Alignment

A total of 58,052 sequences of the HIV-1 clade B proteome, over 1000 of each protein, were extracted from the NCBI Entrez Protein Database and aligned for the analysis of the evolutionary conservation and diversity (Table 1). Approximately 90% or the sequences were of the Gag, Pol, Env, and Nef proteins. The other 5 proteins almost equally shared the remaining 6513 sequences. Sequences of other clades were obtained from the HIV Sequence Database Web alignment. The clade C alignment contained almost 4000 sequences, between 300 and 600 of each protein. Clades A and D had few sequences. Duplicate sequences, either partial or full-length, were removed to eliminate the possible bias of redundant sequences derived from identical HIV-1 isolates sequenced by surveillance programs or large sequencing projects at specific sites.









TABLE 1







HIV-1 sequences analysed.










Amino
Number of sequences












Protein
Acidsa
Clade Ab
Clade Bc
Clade Cb
Clade Db















Gag
500
150
6,403
591
77


Pol
1,003
64
30,604
384
47


Vif
192
91
1,147
375
49


Vpr
78
61
1,041
425
45


Tat
86
66
1,569
304
44


Rev
116
64
1,533
336
46


Vpu
81
197
1,223
418
73


Env
856
102
9,661
510
85


Nef
206
150
4,871
558
98











Total
945
58,052
3,901
564






aApproximate size with respect to HXB2 sequences.




bRetrieved from HIV Sequence Database Web alignment. Sequences are used for the identification of HIV-1 pan-clade sequences. Refer to materials and methods for more information.




cRetrieved from NCBI Entrez Protein Database







Example 3
Nonamer Peptide Conservation and Diversity

Shannon's entropy methodology, commonly applied to measure differences in single amino acid residues in the alignment of protein sequences, was modified to analyze each of the 3,133 nonamer positions, overlapping by eight amino acids, that represent all putative MHC binding cores of the of the HIV-1 clade B proteome. The average number of each of the nonamer sequences at a given protein position depended on the alignment of the sequences taken from the NCBI Entrez Protein Database, ranging from an average of 965 aligned sequences for Vpr and Vpu, to 5,558 for Pol (Table 2). Entropy of a nonamer sequence results from change of one or more of the 20 amino acids at a single site or at multiple sites of the 9 amino acid nonamer unit, with a maximum entropy of 39 if there were all possible changes of each amino acid (log2209). Because these units are overlapping, an amino acid at the 9th position will eventually move to the 1st as the nonamer units shift from the N- to the C-terminus. Thus, a single variant amino acid is commonly seen in 9 overlapping nonamer sequences and the diversity of a series of nonamer units with one or more variant amino acids is typically clustered.


The extraordinary evolutionary diversity of HIV-1 proteins was evident from the range in the entropy of the overlapping nonamer units (FIG. 1). Each of the proteins had discrete regions of highly conserved nonamer sequences with entropy less than 1.0, and regions of extreme diversity, some with entropy approaching 10.0, the highest we have documented, relative to influenza (Heiny et al., 2007), dengue (Khan et al., 2008) and West Nile virus (Koo et al., 2009). Highly conserved nonamers were present chiefly in Pol, distributed throughout the protein with an average nonamer entropy of 1.8, and in Gag, localized in the middle of the protein between amino acid positions 170 to 370 with an average entropy of 2.4 (Table 2). The only completely conserved nonamer sequences, entropy 0.0, of the entire clade B proteome were three in Pol (710-718, 956-964, and 957-965). While Env, with an average nonamer entropy of 4.2, is commonly considered the most diverse HIV-1 protein, each of the nonstructural proteins Tat, Rev, Vpu, and Nef also had multiple sequences with high nonamer entropies, with an average range of 4.3 to 4.6.


The data of each nonamer sequence of the protein alignments quantitatively document the incidence (prevalence) of the primary nonamer, total variants of the primary nonamer, primary variant and number of unique variants (Table 2).


All nonamer positions (3133) of the aligned clade B database sequences were compared with the clade B consensus HXB2 sequence. Many of the HXB2 sequences as expected were identical to the aligned database sequences. However, the HXB2 sequences represent selected variant strain and differ markedly at many positions from the primary nonamers of the aligned database sequences, especially in regions of high diversity.


An example of highly conserved and highly variable nonamer sites are the 25 overlapping nonamer positions of Env114-122:140-148 (Table 3). The five sites of the Env114-122:118-126 were highly conserved, with entropies of 0.8 to 1.1, containing primary nonamer sequences identical to those of HXB2 and with an incidence of 86 to 89% of the ˜1000 to 1600 aligned nonamer sequences at each of these sites. The remaining ˜11% to 15% of the aligned nonamers of these conserved Env sites were variants of the primary nonamer, comprising 21 to 29 unique sequences, with a 4 to 6% incidence of the primary (most common) variant of all nonamers analysed per site. Beginning at position Env119-127 the sequence diversity increased with amino acids that differed at some sites from almost every amino acid of HXB2, nonamer entropy increased to as high at 9.8, and primary nonamer sequences represented as few as 49 (˜2%) of the over 3000 nonamers at each of these aligned positions. Practically all of the nonamer sequences at these highly diverse sites of Env were variants of the primary sequence, with over 1000 unique sequences and fewer than 100 of the primary variant sequence at any one position.









TABLE 2







Summary, nonamer conservation and diversity analysis of the HIV-1 clade B proteome.











Average

Variants of the primary nonamerf
















nonamer




Average



Total
sequences




primary



nonamer
analysed per
Average
Primary nonamerd
Average total
Average
variant



positionsa
positionb
Nonamer
Average incidencee
incidenceg
uniqueh
incidencei


Protein
[No.]
[No.]
Entropyc
[No. (%)]
[No. (%)]
[No.]
[No. (%)]

















Gag
504
1628
2.4
967 (~59)
669 (~41)
72
243 (~15)


Pol
995
5558
1.8
3902 (~70) 
1649 (~30) 
90
604 (~11)


Vif
184
1132
3.5
511 (~45)
620 (~55)
97
149 (~13)


Vpr
88
965
3.1
497 (~51)
471 (~49)
81
136 (~14)


Tat
94
1078
4.3
451 (~42)
627 (~58)
138
105 (~10)


Rev
108
1220
4.4
444 (~37)
769 (~63)
142
142 (~12)


Vpu
77
965
4.6
368 (~38)
596 (~62)
130
114 (~12)


Env
877
2100
4.2
764 (~36)
1335 (~64) 
196
224 (~11)


Nef
206
3972
4.3
1529 (~39) 
2431 (~61) 
247
564 (~14)






aNote that the total number of nonamer positions analysed is different from the number of amino acids from the HXB2 sequences due to insertions and deletions in the protein alignments.




bAverage number of sequences analysed at each nonamer position (1-9, 2-10, 3-11, etc) of the protein alignments. The number of sequences varies due to the inclusion of both partial and full-length sequences.




cAverage Shannon's nonamer entropy across all nonamer positions in the protein alignment. For example, the average Gag Shannon's entropy is the mean entropy across all 504 nonamer positions in the Gag protein alignment.




dThe primary nonamer is the peptide with the highest incidence at a given nonamer position in the protein alignment.




eAverage incidence of the primary (most frequent) nonamer across all the positions in the protein alignment.




fVariants of the primary nonamers are all sequences that differ by one or more amino acids from the primary nonamer at a given nonamer position in the protein alignment.




gAverage incidence of the variants of the primary nonamer in the protein alignments.




hAverage number of different variant sequences to the primary nonamer.




iAverage incidence of the primary variant nonamer, the most highly represented variant sequence of all the nonamers analysed per nonamer position in the protein alignments.














TABLE 3







Example of nonamer conservation and diversity with a selected highly conserved and


highly diverse region of HIV-1 clade B Env protein*#. SEQ ID NOs: 1-27 for HXB2


in the order as shown and 28-54 for the primary nonamer of HIV-1 clade B Env


sequences in the order as shown.















Variants of the primary






nonamers e



















Primary








variant



Nonamers analysed
HXB2
Primary nonamer d
Total

inci-
















Pro-


Nonamer
Nonamer

Incidence
incidence
Unique f
dence g


tein
Position
No. a
entropy b
Sequence c
Sequence d
[No. (%)]
[No. (%)]
[No.]
[No. (%)]





Env
114-122
1032
1.0
SLKPCVKLT
.........
 884 (~86)
 148 (~14)
  21
 61 (~6)




















115-123
1034
1.0
LKPCVKLTP
.........
 887 (~86)
 147 (~14)
  21
 61 (~6)






116-124
1066
1.1
KPCVKLTPL
.........
 904 (~85)
 162 (~15)
  29
 60 (~6)






117-125
1517
0.8
PCVKLTPLC
.........
1357 (~89)
 160 (~11)
  29
 59 (~4)






118-126
1568
0.8
CVKLTPLCV
.........
1397 (~89)
 171 (~11)
  29
 83 (~5)






119-127
1594
1.1
VKLTPLCVS
........T
1374 (~86)
 220 (~14)
  33
 83 (~5)






120-128
2665
1.0
KLTPLCVSL
.......T.
2341 (~88)
 324 (~12)
  50
101 (~4)




















121-129
2670
1.7
LTPLCVSLK
......T.N
2037 (~76)
 633 (~24)
  63
142 (~5)






122-130
3112
1.9
TPLCVSLKC
.....T.N.
2313 (~74)
 799 (~26)
  73
151 (~5)






123-131
3326
2.7
PLCVSLKCT
....T.N..
2195 (~66)
1131 (~34)
 120
146 (~4)






124-132
3368
4.1
LCVSLKCTD
...T.N...
1488 (~44)
1880 (~56)
 200
425 (~13)






125-133
3673
6.3
CVSLKCTDL
..T.N...N
 455 (~12)
3218 (~88)
 388
353 (~10)






126-134
3675
7.6
VSLKCTDLK
.T.N...NW
 353 (~10)
3322 (~90)
 555
116 (~3)






127-135
3677
8.2
SLKCTDLKN
T.N...NW.
 348 (~9)
3329 (~91)
 697
108 (~3)






128-136
3719
8.7
LKCTDLKND
.N...NW.N
 227 (~6)
3492 (~94)
 813
 78 (~2)






129-137
3725
8.9
KCTDLKNDT
N...NW.N.
 227 (~6)
3498 (~94)
 900
 78 (~2)






130-138
3912
9.1
CTDLKNDTN
...NW.N.G
 216 (~6)
3696 (~94)
 981
 79 (~2)






131-139
3917
9.2
TDLKNDTNT
..NW.N.GN
 210 (~5)
3707 (~95)
1051
 79 (~2)






132-140
3911
9.4
DLKNDTNTN
.NW.N.GNV
 199 (~5)
3712 (~95)
1098
 78 (~2)






133-141
3863
9.5
LKNDTNTNS
NW.N.GNV.
 196 (~5)
3667 (~95)
1133
 78 (~2)






134-142
3838
9.5
KNDTNTNSS
W.N.GNV.D
 175 (~5)
3663 (~95)
1156
 78 (~2)






135-143
3807
9.5
NDTNTNSSS
.N.GNV.D.
 173 (~5)
3634 (~95)
1166
 85 (~2)






136-144
3747
9.6
DTNTNSSSG
N.GNV.D.S
 169 (~5)
3578 (~95)
1194
 87 (~2)






137-145
3701
9.7
TNTNSSSGR
.GNV.D.SW
 179 (~5)
3522 (~95)
1191
 89 (~2)






138-146
3473
9.7
NTNSSSGRM
GNV.D.SWK
 144 (~4)
3329 (~96)
1166
 42 (~1)






139-147
3090
9.7
TNSSSGRMI
.SVN.NSSG
  49 (~2)
3041 (~98)
1070
 42 (~1)






140-148
2699
9.8
NSSSGRMIM
SVN.NSSGG
  49 (~2)
2650 (~98)
 968
 39 (~1)






a The total number of HIV-1 clade B protein sequences obtained at the respective nonamer positions of the protein sequence alignment. The number of sequences for each nonamer position varies due to the inclusion of both partial and full-length sequences.




b Shannon's nonamer entropy.




c The nonamer sequence corresponding to the HXB2 reference sequence. Insertions to the alignment with respect to the HXB2 sequence are shown as gaps “-”.




d The primary nonamer is the peptide with the highest incidence at a given nonamer position in the protein alignment. Residues that are identical to the HXB2 sequence is denoted as “.” whereas residues that are different have their amino acids displayed. For example, at position 1-9 of Gag, the HXB2 sequence have identical sequence to that of the primary nonamer thus the primary nonamer have the sequence “.........” displayed. However at position, 22-30 in Gag, the last residue in the nonamer differs from that of HXB2, having R instead of K, and thus the nonamer sequence is shown as “........R”.




e Variants of the primary nonamers are all sequences that differ by one or more amino acids from the primary nonamer at the corresponding position in the protein alignment.




f The number of unique variants at the indicated nonamer position.




g The primary variant is the most common (highest incidence) variant nonamer at the indicated nonamer position of the protein alignment.




f The primary variant is the most common variant nonamer at the indicated nonamer position of the protein alignment.



*An example interpretation of the table: The primary nonamer SLKPCVKLT was present in 884 sequences (~86%) of all 1032 sequences analyzed at nonamer position 114-122 in the Env protein alignment. The remaining 148 sequences (~14%) at that position were variants of the primary nonamer and comprised 21 unique peptides, one of which is the primary variant and is present in about 6% (61) of all the 1032 analysed sequences. The remaining 20 variants at that position were represented by 87 additional variant sequences.



#This example shows a region of low entropy, positions 114-128 with entropy below 1.1, which is connected to positions 127-148, a region of high diversity (entropy above 8.0), by a transitional region of intermediate entropy.







Example 4
Limited Nonamer Positions Across the HIV-1 Proteome with Low Total Variants Incidence

A possible criterion for effective HIV-1 vaccine design is the consideration of the incidence of total variants to the primary nonamer. The total variants at each nonamer position represent the population of possible altered ligands that the immune system maybe exposed to upon immunization with the most common or primary nonamer at the position. We thus analysed the distribution of total variants of the primary nonamer in the context of diversity across the entire HIV-1 proteome (FIG. 2) as measured by use of entropy. All the proteins, even Pol, Gag and Vpr with high average primary nonamer incidence (Table 2), included numerous positions with total variants incidence as high as >80%. This was particularly so for the Env where more than 228 of the 877 (26%) nonamer positions analysed exhibited a total variants incidence of >80%, with a maximum of 98%. Even though there was a general pattern of entropy increasing as total variants increased, exceptions exist as positions with high total variants (more than 27% and up to 59%) incidence were also observed for all proteins when the entropy was low <2.0. Although entropy is a good measure for diversity, it is alone not sufficient for selection of conserved positions with low total variants for identification of vaccine targets. Only a small fraction of the nonamer positions of all the HIV-1 proteins (493 of 3133, ˜16%) exhibited total variants of <20%. This highlights the importance of detailed analysis of HIV-1 diversity for careful rational selection of the limited desired sites for vaccine design. This also suggests that existing HIV-1 vaccine approaches that do not consider the variant populations for selection of targets may exhibit limited efficacy.


Example 5
Influence of Primary Variants at Positions with Low Total Variants Incidence

Highly conserved positions with low total variants (<20%) are attractive sites for selection of vaccine targets, however, such sites with a large proportion of the total variants dominated by a single primary variant should be avoided. Analysis of the incidence of primary variants for all nonamer positions across the HIV-1 proteome (FIG. 3) revealed that as total variant incidence increases there is a wide range in the fraction of the primary variant, from about <1% to a maximum incidence up to 45%, with more than 40% incidence in Gag (3 positions, <1% of all positions), Pol (19 positions, ˜2%), and Env (5 positions, <1%). The shape of the plot depicts the increasing incidence of the primary variant to a maximum limited by the incidence of the total variants (zone A in the plot), after which (>50% total variant incidence) the incidence of the primary variant is further limited by the decreasing incidence of the primary nonamer (zone B), because the primary variant, the second most common peptide at a nonamer position, cannot exceed the incidence of the most common primary nonamer. Highly conserved sites with less than 20% total variants had individual primary variants with an incidence of more than 10% in Gag (15%), Pol (14%), Env (12%) and Nef (12%). The primary nonamer of low total variant sites (<20%) with major variant of <10% are attractive targets for HIV-1 vaccine design, and were identified and joined where possible (termed as highly conserved HIV-1 Clade B sequences). This comprised for Gag, 22% or 111 of 504 total primary nonamers; Pol, 33%, 318 of 995; Vif, 14%, 25 of 184; and Env 9%, 80 of 887 (red enclosed region in FIG. 3). The remainder of the HIV-1 proteins had fewer than 11% of the total primary nonamers of the proteins that conformed to these criteria.


Example 6
Clade B HIV-1 Protein Sequences of Nine or More Amino Acids that are Highly Conserved (Incidence of 80% or More) with Less than 10% Primary Variant Incidence

A total of 78 highly conserved HIV-1 Clade B sequences (504 total nonamers) were identified across the whole proteome (Table 4 and Table 5). The length of these peptides ranged from 9 to 40 amino acids, covering a total length of 1101 amino acids (˜35%) of the complete HIV-1 proteome (˜3133 aa). The structural (Env and Gag) and enzymatic (Pol) proteins contained the greatest number of conserved sequences. Pol, the most conserved HIV-1 clade B protein with the lowest average nonamer entropy of 1.8 and lowest average total variants incidence of about 30% (Table 2), had 31 conserved sequences covering ˜48% of the protein length. The relatively more conserved Gag and the highly variable Env had 18 (˜51% of the protein length) and 14 (˜22%) conserved sequences, respectively. For the rest of the regulatory and auxillary proteins, a total of 15 conserved sequences, spanning from 12 to 38% of the individual protein length.









TABLE 4







Summary table for the number of highly conserved HIV-1


clade B sequences, their protein length in amino acids and


percentage coverage of total protein length.














Conserved




Protein length

Sequence(s) length
% of protein


Protein
(aa)a
Numberb
(aa)c
length














Gag
500
18
255
51


Pol
1,003
31
478
48


Vif
192
6
73
38


Vpr
78
2
24
31


Tat
86
2
26
30


Rev
116
1
15
13


Vpu
81
1
10
12


Env
856
14
190
22


Nef
206
3
30
15






aApproximate size with respect to HXB2 sequences.




bTotal number of conserved sequences of 9 or more amino acids identified for each protein.




cTotal non-overlapping conserved sequence length.














TABLE 5







Highly conserved HIV-1 clade B sequences.


SEQ ID NOs: 55-132, in the order as shown.









Protein
Position a
Sequences b





Gag
 1-11
MGARASVLSGG






16-25
WEKIRLRPGG






35-45
VWASRELERFA






135-143
SQNYPIVQN



(129-137)







154-164
SPRTLNAWVKV



(148-158)







166-178
EEKAFSPEVIPMF



(160-172)







180-208
ALSEGATPQDLNTMLNTVGGHQAAMQMLK



(174-202)







210-220
TINEEAAEWDR



(204-214)







231-253
PGQMREPRGSDIAGTTSTLQEQI



(225-247)







259-269
NPPIPVGEIYK



(253-263)







275-285
GLNKIVRMYSP



(269-279)







293-315
QGPKEPFRDYVDRFYKTLRAEQA



(287-309)







319-345
VKNWMTETLLVQNANPDCKTILKALGP



(313-339)







347-362
ATLEEMMTACQGVGGP



(341-356)







364-374
HKARVLAEAMS



(358-368)







398-407
KCFNCGKEGH



(391-400)







439-447
NFLGKIWPS



(432-440)







449-457
KGRPGNFLQ



(442-450)






Pol
57-65
PQITLWQRP






76-90
KEALLDTGADDTVLE






100-109
PKMIGGIGGF






103-112
IGGIGGFIKV






150-174
GCTLNFPISPIETVPVKLKPGMDGP






176-189
VKQWPLTEEKIKAL






200-214
GKISKIGPENPYNTP






226-237
WRKLVDFRELNK






239-257
TQDFWEVQLGIPHPAGLKK






259-272
KSVTVLDVGDAYFS






279-289
FRKYTAFTIPS






291-316
NNETPGIRYQYNVLPQGWKGSPAIFQ






318-327
SMTKILEPFR






340-350
DDLYVGSDLEI






375-399
KHQKEPPFLWMGYELHPDKWTVQPI






401-426
LPEKDSWTVNDIQKLVGKLNWASQIY






453-471
EAELELAENREILKEPVHG






716-724
FLDGIDKAQ






750-758
EIVASCDKC






755-764
CDKCQLKGEA






766-786
HGQVDCSPGIWQLDCTHLEGK






788-815
ILVAVHVASGYIEAEVIPAETGQETAYF






817-826
LKLAGRWPVK






841-850
VKAACWWAGI






844-870
ACWWAGIKQEFGIPYNPQSQGVVESMN






872-881
ELKKIIGQVR






876-915
IIGQVRDQAEHLKTAVQMAVFIHNFKRKGGIGGYSAGERI






934-944
KIQNFRVYYRD






938-946
FRVYYRDSR






948-970
PLWKGPAKLLWKGEGAVVIQDNS






981-997
KIIRDYGKQMAGDDCVA





Vif
 1-18
MENRWQVMIVWQVDRMRI






52-60
SSEVHIPLG






68-77
TYWGLHTGER






79-90
WHLGQGVSIEWR






138-150
GHNKVGSLQYLAL






168-178
KLTEDRWNKPQ





Vpr
 1-14
MEQAPEDQGPQREP






18-27
WTLELLEELK





Tat
 8-18
LEPWKHPGSQP






43-57
LGISYGRKKRRQRRR





Rev
32-46
EGTRQARRNRRRRWR





Vpu
48-57
ERAEDSGNES





Env
33-58
LWVTVYYGVPVWKEATTTLFCASDAK



(34-59)







65-76
HNVWATHACVPT



(66-77)







114-128
SLKPCVKLTPLCVTL



(115-129)







263-273
NVSTVQCTHGI



(241-251)







275-289
PVVSTQLLLNGSLAE



(253-267)







453-462
VGKAMYAPPI



(430-439)







505-517
DNWRSELYKYKVV



(477-489)







529-537
AKRRVVQRE



(501-509)







548-563
FLGFLGAAGSTMGAAS



(519-534)







573-581
LLSGIVQQQ



(544-552)







595-611
LQLTVWGIKQLQARVLA



(566-582)







618-635
DQQLLGIWGCSGKLICTT



(589-606)







707-715
WLWYIKIFI



(678-686)







848-857
AIAVAEGTDR



(819-828)






Nef
80-88
PQVPLRPMT



(72-80)







129-140
FPDWQNYTPGPG



(121-132)







147-155
FGWCFKLVP



(139-147)






a Start and end alignment positions. Such positions corresponding to the HXB2 reference sequences are indicated in the brackets, only if they differ from the alignment positions. These differences are due to insertions and deletions in the protein alignment.




b Sequences of 9 or more amino acids formed by one or by joining more than two contiguous nonamers that have primary nonamer incidence(s) of more than 80% and less than 10% representation of the primary variant. Sequences with less than 100 nonamers at that given nonamer position were ignored.














TABLE 6







Individual nonamers of the highly conserved HIV-1 clade B sequences and the HXB2


counterpart, those that are biclade and/or triclade conserved, those that are


HIV-1 specific and/or primate lentivirus group specific, and the incidences of


the highly conserved primary nonamers and their primary variants in the clade B


sequences +. SEQ ID NOs: 133-636 for HXB2 nonamer in the order as shown and


637-1140 for the highly conserved primary nonamers of HIV-1 clade B in the order


as shown . . . SEQ ID NOs. of HIV-1 specific nonamers are 995 & 1029, while those


primate lentivirus group specific are: 637, 639-657, 661-743, 746-747, 756-759,


854-861, 863-866, 868-874, 876, 878-934, 940-994, 996-1028, 1030-1036, 1038-1052,


1054-1109, and 1113-1134. SEQ ID NOs. of biclade B and C highly conserved nonamers


are: 643-648, 651-677, 682-687, 696-704, 721-727, 735-737, 739-748, 750-782,


787-831, 834-853, 859-883, 885-902, 912-918, 920-923, 932-944, 952-963, 973-980,


983-995, 1015, 1022-1026, 1034-1035, 1041-1042, 1045-1046, 1055-1060, 1074-1095,


1098-1102, 1106-1116, 1129-1131, 1135-1139. SEQ ID NOs. of triclade A, B and C


highly conserved nonamers are: 645-648, 653, 671-677, 682-686, 696-704, 733-745,


1055-1060, 1073-1078, 1086, 1089-1094, 1098-1102, 1106-1112, 1116-1121, 1129-1131,


1135-1139.















Variants of the primary






nonamers f



















Primary



Nonamers analysed
HXB2

Total

variant


















Nonamer
Nonamer
Primary nonamer e
Incidence
U-
inci-
















Pro-


en-
Se-
Se-
Incidence
[No.
nique
dence h


tein
Position a
No. b
tropy c
quence d
quence e
[No. (%)]
(%)] g
[No.]
[No. (%)]





Gag
   1-9 {circumflex over ( )}
 1156
1.2
MGARASVLS
.........
  945 (~82)
 211 (~18)
 37
 110 (~10)






   2-10
 1160
1.3
GARASVLSG
.........
  940 (~81)
 220 (~19)
 40
 110 (~9)






   3-11 {circumflex over ( )}
 1164
1.3
ARASVLSGG
.........
  942 (~81)
 222 (~19)
 42
 108 (~9)






  16-24 {circumflex over ( )}
 1551
1.1
WEKIRLRPG
.........
 1311 (~85)
 240 (~15)
 44
 125 (~8)






  17-25 {circumflex over ( )}
 1603
1.3
EKIRLRPGG
.........
 1320 (~82)
 283 (~18)
 55
 124 (~8)






  35-43 {circumflex over ( )}
 3196
0.9
VWASRELER
.........
 2890 (~90)
 306 (~10)
 62
  78 (~2)






  36-44 {circumflex over ( )}#
 3269
0.8
WASRELERF
.........
 2981 (~91)
 288 (~9)
 57
  80 (~2)






  37-45 {circumflex over ( )}#
 3316
1.0
ASRELERFA
.........
 2989 (~90)
 327 (~10)
 76
  82 (~2)






 135-143
 3026
1.0
SQNYPIVQN
.........
 2684 (~89)
 342 (~11)
 64
  79 (~3)



(129-137) {circumflex over ( )}#$














 154-162
 2049
0.5
SPRTLNAWV
.........
 1954 (~95)
  95 (~5)
 34
  24 (~1)



(148-156) {circumflex over ( )}#$














 155-163
 2045
0.4
PRTLNAWVK
.........
 1977 (~97)
  68 (~3)
 31
  10 (<1)



(149-157) {circumflex over ( )}#$














 156-164
 1976
0.4
RTLNAWVKV
.........
 1908 (~97)
  68 (~3)
 32
   9 (<1)



(150-158) {circumflex over ( )}#$














 166-174
 1872
0.6
EEKAFSPEV
.........
 1768 (~94)
 104 (~6)
 47
  10 (~1)



(160-168) {circumflex over ( )}














 167-175
 1863
0.6
EKAFSPEVI
.........
 1760 (~94)
 103 (~6)
 50
  10 (~1)



(161-169) {circumflex over ( )}














 168-176
 1861
0.6
KAFSPEVIP
.........
 1760 (~95)
 101 (~5)
 46
  11 (~1)



(162-170) {circumflex over ( )}#














 169-177
 1854
0.6
AFSPEVIPM
.........
 1767 (~95)
  87 (~5)
 45
  11 (~1)



(163-171) {circumflex over ( )}#














 170-178
 1854
0.4
FSPEVIPMF
.........
 1782 (~96)
  72 (~4)
 35
  12 (~1)



(164-172) {circumflex over ( )}#$














 180-188
 1922
0.9
ALSEGATPQ
.........
 1747 (~91)
 175 (~9)
 47
  50 (~3)



(174-182) {circumflex over ( )}#














 181-189
 1923
0.9
LSEGATPQD
.........
 1750 (~91)
 173 (~9)
 46
  50 (~3)



(175-183) {circumflex over ( )}#














 182-190
 1920
0.8
SEGATPQDL
.........
 1750 (~91)
 170 (~9)
 42
  50 (~3)



(176-184) {circumflex over ( )}#














 183-191
 1920
0.7
EGATPQDLN
.........
 1798 (~94)
 122 (~6)
 44
  20 (~1)



(177-185) {circumflex over ( )}#














 184-192
 1919
0.8
GATPQDLNT
.........
 1774 (~92)
 145 (~8)
 54
  17 (~1)



(178-186) #














 185-193
 1920
0.8
ATPQDLNTM
.........
 1775 (~92)
 145 (~8)
 57
  17 (~1)



(179-187) #














 186-194
 1922
0.8
TPQDLNTML
.........
 1777 (~92)
 145 (~8)
 58
  17 (~1)



(180-188) #














 187-195
 1920
0.8
PQDLNTMLN
.........
 1776 (~93)
 144 (~8)
 57
  17 (~1)



(181-189) {circumflex over ( )}#














 188-196
 1921
0.9
QDLNTMLNT
.........
 1761 (~92)
 160 (~8)
 67
  17 (~1)



(182-190) {circumflex over ( )}#














 189-197
 1922
0.7
DLNTMLNTV
.........
 1794 (~93)
 128 (~7)
 51
  18 (~1)



(183-191) {circumflex over ( )}#














 190-198
 1921
0.7
LNTMLNTVG
.........
 1793 (~93)
 128 (~7)
 49
  19 (~1)



(184-192) {circumflex over ( )}#














 191-199
 1918
0.7
NTMLNTVGG
.........
 1781 (~93)
 137 (~7)
 48
  20 (~1)



(185-193) {circumflex over ( )}#














 192-200
 1922
0.8
TMLNTVGGH
.........
 1782 (~93)
 140 (~7)
 47
  20 (~1)



(186-194) {circumflex over ( )}#














 193-201
 1913
0.6
MLNTVGGHQ
.........
 1797 (~94)
 116 (~6)
 36
  24 (~1)



(187-195) {circumflex over ( )}#














 194-202
 1894
0.6
LNTVGGHQA
.........
 1786 (~94)
 108 (~6)
 33
  24 (~1)



(188-196) {circumflex over ( )}#














 195-203
 1870
0.6
NTVGGHQAA
.........
 1763 (~94)
 107 (~6)
 33
  26 (~1)



(189-197) {circumflex over ( )}#














 196-204
 1834
0.5
TVGGHQAAM
.........
 1732 (~94)
 102 (~6)
 30
  26 (~1)



(190 198) {circumflex over ( )}#














 197-205
 1824
0.3
VGGHQAAMQ
.........
 1778 (~97)
  46 (~3)
 31
   4 (<1)



(191-199) {circumflex over ( )}#$














 198-206
 1807
0.4
GGHQAAMQM
.........
 1733 (~96)
  74 (~4)
 29
  34 (~2)



(192-200) {circumflex over ( )}#$














 199-207
 1798
0.4
GHQAAMQML
.........
 1727 (~96)
  71 (~4)
 26
  34 (~2)



(193-201) {circumflex over ( )}#$














 200-208
 1795
0.4
HQAAMQMLK
.........
 1723 (~96)
  72 (~4)
 28
  34 (~2)



(194-202) {circumflex over ( )}#$














 210-218
 1639
0.8
TINEEAAEW
.........
 1503 (~92)
 136 (~8)
 41
  36 (~2)



(204-212) {circumflex over ( )}#$














 211-219
 1637
0.7
INEEAAEWD
.........
 1516 (~93)
 121 (~7)
 36
  38 (~2)



(205-213) {circumflex over ( )}#$














 212-220
 1638
0.7
NEEAAEWDR
.........
 1518 (~93)
 120 (~7)
 39
  37 (~2)



(206-214) {circumflex over ( )}#$














 231-239
 1566
1.1
PGQMREPRG
.........
 1344 (~86)
 222 (~14)
 40
  83 (~5)



(225-233) {circumflex over ( )}














 232-240
 1541
1.1
GQMREPRGS
.........
 1312 (~85)
 229 (~15)
 44
  83 (~5)



(226-234) {circumflex over ( )}














 233-241
 1541
1.2
QMREPRGSD
.........
 1311 (~85)
 230 (~15)
 42
  84 (~5)



(227-235) {circumflex over ( )}














 234-242
 1529
1.2
MREPRGSDI
.........
 1295 (~85)
 234 (~15)
 44
  82 (~5)



(228-236) {circumflex over ( )}














 235-243
 1532
0.7
REPRGSDIA
.........
 1421 (~93)
 111 (~7)
 35
  46 (~3)



(229-237) {circumflex over ( )}#$














 236-244
 1531
0.6
EPRGSDIAG
.........
 1430 (~93)
 101 (~7)
 29
  46 (~3)



(230-238) {circumflex over ( )}#$














 237-245
 1526
0.6
PRGSDIAGT
.........
 1446 (~95)
  80 (~5)
 32
  15 (~1)



(231-239) {circumflex over ( )}#$














 238-246
 1525
0.6
RGSDIAGTT
.........
 1442 (~95)
  83 (~5)
 36
  15 (~1)



(232-240) {circumflex over ( )}#$














 239-247
 1517
0.6
GSDIAGTTS
.........
 1438 (~95)
  79 (~5)
 33
  15 (~1)



(233-241) {circumflex over ( )}#$














 240-248
 1515
1.1
SDIAGTTST
.........
 1278 (~84)
 237 (~16)
 34
 143 (~9)



(234-242) {circumflex over ( )}#














 241-249
 1516
1.1
DIAGTTSTL
.........
 1281 (~84)
 235 (~16)
 33
 143 (~9)



(235-243) {circumflex over ( )}














 242-250
 1517
1.1
IAGTTSTLQ
.........
 1271 (~84)
 246 (~16)
 40
 141 (~9)



(236-244) {circumflex over ( )}














 243-251
 1514
1.2
AGTTSTLQE
.........
 1261 (~83)
 253 (~17)
 41
 141 (~9)



(237-245) {circumflex over ( )}














 244-252
 1511
1.2
GTTSTLQEQ
.........
 1261 (~83)
 250 (~17)
 41
 141 (~9)



(238-246) {circumflex over ( )}














 245-253
 1510
1.3
TTSTLQEQI
.........
 1235 (~82)
 275 (~18)
 44
 140 (~9)



(239-247) {circumflex over ( )}














 259-267
 1607
1.5
NPPIPVGEI
.........
 1297 (~81)
 310 (~19)
 52
  86 (~5)



(253-261) {circumflex over ( )}














 260-268
 1609
1.4
PPIPVGEIY
.........
 1303 (~81)
 306 (~19)
 52
  87 (~5)



(254-262) {circumflex over ( )}














 261-269
 1606
1.4
PIPVGEIYK
.........
 1302 (~81)
 304 (~19)
 49
  87 (~5)



(255-263) {circumflex over ( )}














 275-283
 1495
0.5
GLNKIVRMY
.........
 1425 (~95)
  70 (~5)
 26
  19 (~1)



(269-277) {circumflex over ( )}#$














 276-284
 1453
0.6
LNKIVRMYS
.........
 1376 (~95)
  77 (~5)
 32
  20 (~1)



(270-278) {circumflex over ( )}#$














 277-285
 1458
0.5
NKIVRMYSP
.........
 1384 (~95)
  74 (~5)
 31
  20 (~1)



(271-279) {circumflex over ( )}#$














 293-301
 1462
0.5
QGPKEPFRD
.........
 1386 (~95)
  76 (~5)
 29
  27 (~2)



(287-295) {circumflex over ( )}#$














 294-302
 1462
0.5
GPKEPFRDY
.........
 1388 (~95)
  74 (~5)
 28
  27 (~2)



(288-296) {circumflex over ( )}#$














 295-303
 1461
0.5
PKEPFRDYV
.........
 1388 (~95)
  73 (~5)
 28
  27 (~2)



(289-297) {circumflex over ( )}#$














 296-304
 1434
0.5
KEPFRDYVD
.........
 1363 (~95)
  71 (~5)
 28
  26 (~2)



(290-298) {circumflex over ( )}#$














 297-305
 1433
0.5
EPFRDYVDR
.........
 1365 (~95)
  68 (~5)
 28
  26 (~2)



(291-299) {circumflex over ( )}#$














 298-306
 1429
0.5
PFRDYVDRF
.........
 1355 (~95)
  74 (~5)
 27
  27 (~2)



(292-300) {circumflex over ( )}#$














 299-307
 1428
0.8
FRDYVDRFY
.........
 1256 (~88)
 172 (~12)
 29
 124 (~9)



(293-301) {circumflex over ( )}














 300-308
 1374
0.9
RDYVDRFYK
.........
 1191 (~87)
 183 (~13)
 30
 120 (~9)



(294-302) {circumflex over ( )}














 301-309
 1372
1.1
DYVDRFYKT
.........
 1167 (~85)
 205 (~15)
 36
 100 (~7)



(295-303) {circumflex over ( )}














 302-310
 1372
1.1
YVDRFYKTL
.........
 1170 (~85)
 202 (~15)
 35
 101 (~7)



(296-304) {circumflex over ( )}














 303-311
 1313
1.0
VDRFYKTLR
.........
 1151 (~88)
 162 (~12)
 32
  65 (~5)



(297-305) {circumflex over ( )}














 304-312
 1309
1.0
DRFYKTLRA
.........
 1147 (~88)
 162 (~12)
 32
  65 (~5)



(298-306) {circumflex over ( )}














 305-313
 1303
1.0
RFYKTLRAE
.........
 1143 (~88)
 160 (~12)
 31
  65 (~5)



(299-307) {circumflex over ( )}














 306-314
 1289
1.0
FYKTLRAEQ
.........
 1128 (~88)
 161 (~12)
 30
  65 (~5)



(300-308) {circumflex over ( )}














 307-315
 1283
1.2
YKTLRAEQA
.........
 1084 (~84)
 199 (~16)
 36
  57 (~4)



(301-309) {circumflex over ( )}














 319-327
 1129
1.1
VKNWMTETL
.........
  992 (~88)
 137 (~12)
 36
  41 (~4)



(313-321) {circumflex over ( )}














 320-328
 1129
1.1
KNWMTETLL
.........
  987 (~87)
 142 (~13)
 37
  41 (~4)



(314-322) {circumflex over ( )}














 321-329
 1126
1.3
NWMTETLLV
.........
  969 (~86)
 157 (~14)
 44
  40 (~4)



(315-323) {circumflex over ( )}














 322-330
 1101
1.0
WMTETLLVQ
.........
  971 (~88)
 130 (~12)
 33
  52 (~5)



(316-324) {circumflex over ( )}














 323-331
 1101
1.0
MTETLLVQN
.........
  971 (~88)
 130 (~12)
 34
  52 (~5)



(317-325) {circumflex over ( )}














 324-332
 1101
1.3
TETLLVQNA
.........
  904 (~82)
 197 (~18)
 36
  71 (~6)



(318-326) {circumflex over ( )}














 325-333
 1101
1.4
ETLLVQNAN
.........
  898 (~82)
 203 (~18)
 38
  70 (~6)



(319-327) {circumflex over ( )}














 326-334
 1101
1.0
TLLVQNANP
.........
  963 (~87)
 138 (~13)
 34
  70 (~6)



(320-328) {circumflex over ( )}#














 327-335
 1102
0.9
LLVQNANPD
.........
  970 (~88)
 132 (~12)
 31
  71 (~6)



(321-329) {circumflex over ( )}#














 328-336
 1103
0.9
LVQNANPDC
.........
  970 (~88)
 133 (~12)
 32
  71 (~6)



(322-330) {circumflex over ( )}#














 329-337
 1104
1.2
VQNANPDCK
.........
  910 (~82)
 194 (~18)
 32
  70 (~6)



(323-331) {circumflex over ( )}#














 330-338
 1105
1.3
QNANPDCKT
.........
  904 (~82)
 201 (~18)
 33
  71 (~6)



(324-332) {circumflex over ( )}#














 331-339
 1105
1.2
NANPDCKTI
.........
  909 (~82)
 196 (~18)
 36
  70 (~6)



(325-333) {circumflex over ( )}#














 332-340
 1103
1.2
ANPDCKTIL
.........
  907 (~82)
 196 (~18)
 35
  70 (~6)



(326-334) {circumflex over ( )}#














 333-341
 1103
1.0
NPDCKTILK
.........
  956 (~87)
 147 (~13)
 33
  69 (~6)



(327-335) {circumflex over ( )}














 334-342
 1103
0.9
PDCKTILKA
.........
  964 (~87)
 139 (~13)
 28
  69 (~6)



(328-336) {circumflex over ( )}














 335-343
 1106
1.0
DCKTILKAL
.........
  963 (~87)
 143 (~13)
 28
  69 (~6)



(329-337) {circumflex over ( )}














 336-344
 1107
1.0
CKTILKALG
.........
  963 (~87)
 144 (~13)
 29
  69 (~6)



(330-338) {circumflex over ( )}














 337-345
 1107
1.0
KTILKALGP
.........
  958 (~87)
 149 (~13)
 34
  69 (~6)



(331-339) {circumflex over ( )}   














 347-355
  881
1.0
ATLEEMMTA
.........
  774 (~88)
 107 (~12)
 36
  21 (~2)



(341-349) {circumflex over ( )}$














 348-356
  765
0.9
TLEEMMTAC
.........
  682 (~89)
  83 (~11)
 25
  22 (~3)



(342-350) {circumflex over ( )}$














 349-357
  722
0.7
LEEMMTACQ
.........
  659 (~91)
  63 (~9)
 20
  22 (~3)



(343-351) {circumflex over ( )}#$














 350-358
  706
0.6
EEMMTACQG
.........
  654 (~93)
  52 (~7)
 18
  22 (~3)



(344-352) {circumflex over ( )}#$














 351-359
  698
0.7
EMMTACQGV
.........
  643 (~92)
  55 (~8)
 20
  23 (~3)



(345-353) {circumflex over ( )}#$














 352-360
  709
0.7
MMTACQGVG
.........
  647 (~91)
  62 (~9)
 22
  23 (~3)



(346-354) {circumflex over ( )}$














 353-361
  808
0.7
MTACQGVGG
.........
  742 (~92)
  66 (~8)
 23
  22 (~3)



(347-355) {circumflex over ( )}#$














 354-362
  808
0.6
TACQGVGGP
.........
  744 (~92)
  64 (~8)
 20
  35 (~4)



(348-356) {circumflex over ( )}#$














 364-372
  562
0.9
HKARVLAEA
.........
  478 (~85)
  84 (~15)
 16
  46 (~8)



(358-366) {circumflex over ( )}#$














 365-373
  572
1.0
KARVLAEAM
.........
  485 (~85)
  87 (~15)
 17
  48 (~8)



(359-367) {circumflex over ( )}#$














 366-374
  584
1.2
ARVLAEAMS
.........
  481 (~82)
 103 (~18)
 21
  49 (~8)



(360-368) {circumflex over ( )}#$














 398-406
  794
1.1
KCFNCGKEG
.........
  686 (~86)
 108 (~14)
 33
  28 (~4)



(391-399) #$














 399-407
  792
1.1
CFNCGKEGH
.........
  686 (~87)
 106 (~13)
 34
  28 (~4)



(392-400) #$














 439-447
  875 
0.7
NFLGKIWPS
.........
  810 (~93)
  65 (~7)
 20
  20 (~2)



(432-440) {circumflex over ( )}#














 449-457
  885
0.9
KGRPGNFLQ
.........
  789 (~89)
  96 (~11)
 29
  23 (~3)



(442-450) {circumflex over ( )}#













Pol
  57-65 #
 7010
0.4
PQVTLWQRP
..I......
 6749 (~96)
 261 (~4)
 76
  68 (~1)






  76-84
11671
1.0
KEALLDTGA
.........
10359 (~89)
1312
105
 299 (~3)









(~11)








  77-85 #
11853
0.5
EALLDTGAD
.........
11237 (~95)
 616 (~5)
 76
 310 (~3)






  78-86 #
12120
0.6
ALLDTGADD
.........
11249 (~93)
 871 (~7)
 76
 314 (~3)






  79-87 #
12133
0.6
LLDTGADDT
.........
11293 (~93)
 840 (~7)
 75
 319 (~3)






  80-88 #
12149
0.7
LDTGADDTV
.........
11149 (~92)
1000 (~8)
 74
 317 (~3)






  81-89 #
12074
0.9
DTGADDTVL
.........
10726 (~89)
1348
 82
 313 (~3)









(~11)








  82-90 #
12069
1.0
TGADDTVLE
.........
10656 (~88)
1413
 96
 253 (~2)









(~12)








 100-108 {circumflex over ( )}#
11997
1.3
PKMIGGIGG
.........
 9670 (~81)
2327
111
1080 (~9)









(~19)








 101-109 {circumflex over ( )}#
11925
1.4
KMIGGIGGF
.........
 9617 (~81)
2308
137
 987 (~8)









(~19)








 103-111 {circumflex over ( )}#
12013
1.2
IGGIGGFIK
.........
10298 (~86)
 715
165
 657 (~5)









(~14)








 104-112 {circumflex over ( )}#
12062
1.2
GGIGGFIKV
.........
10366 (~86)
1696
141
 674 (~6)









(~14)








 150-158 #
 2737
0.8
GCTLNFPIS
.........
 2644 (~97)
  93 (~3)
 43
   8 (<1)






 151-159 #
 2737
0.8
CTLNFPISP
.........
 2625 (~96)
 112 (~4)
 42
  16 (~1)






 152-160 #
 2748
0.9
TLNFPISPI
.........
 2627 (~96)
 121 (~4)
 44
  17 (~1)






 153-161 #
 2761
1.2
LNFPISPIE
.........
 2533 (~92)
 228 (~8)
 54
  60 (~2)






 154-162 #
 2787
1.3
NFPISPIET
.........
 2530 (~91)
 257 (~9)
 62
  60 (~2)






 155-163 #
 2797
1.3
FPISPIETV
.........
 2536 (~91)
 261 (~9)
 62
  55 (~2)






 156-164 #
 7252
1.1
PISPIETVP
.........
 6523 (~90)
 729 (~10)
 97
 216 (~3)






 157-165 #
 7351
1.1
ISPIETVPV
.........
 6623 (~90)
 728 (~10)
 88
 220 (~3)






 158-166 #
 7220
1.1
SPIETVPVK
.........
 6458 (~89)
 762 (~11)
 96
 243 (~3)






 159-167 #
 7289
1.1
PIETVPVKL
.........
 6542 (~90)
 747 (~10)
 88
 246 (~3)






 160-168 #
 7091
1.1
IETVPVKLK
.........
 6392 (~90)
 699 (~10)
 86
 251 (~4)






 161-169 #
 7153
1.0
ETVPVKLKP
.........
 6470 (~90)
 683 (~10)
 85
 261 (~4)






 162-170 #
 7226
0.7
TVPVKLKPG
.........
 6886 (~95)
 340 (~5)
 65
  63 (~1)






 163-171 #
 7228
0.7
VPVKLKPGM
.........
 6887 (~95)
 341 (~5)
 73
  64 (~1)






 164-172 #
 7283
0.7
PVKLKPGMD
.........
 6956 (~96)
 327 (~4)
 68
  67 (~1)






 165-173 #
 7422
0.7
VKLKPGMDG
.........
 7098 (~96)
 324 (~4)
 74
  68 (~1)






 166-174 #
 7480
0.6
KLKPGMDGP
.........
 7169 (~96)
 311 (~4)
 66
  72 (~1)






 176-184 #
 8815
0.7
VKQWPLTEE
.........
 8340 (~95)
 475 (~5)
 70
 123 (~1)






 177-185 #
 8894
0.6
KQWPLTEEK
.........
 8530 (~96)
 364 (~4)
 64
  62 (~1)






 178-186 #
 8967
0.6
QWPLTEEKI
.........
 8608 (~96)
 359 (~4)
 60
  60 (~1)






 179-187 #
 9435
0.8
WPLTEEKIK
.........
 8842 (~94)
 593 (~6)
 78
  95 (~1)






 180-188 #
 9651
0.8
PLTEEKIKA
.........
 8987 (~93)
 664 (~7)
 83
 141 (~1)






 181-189 #
 9839
0.8
LTEEKIKAL
.........
 9155 (~93)
 684 (~7)
 86
 139 (~1)






 200-208
19898
1.1
GKISKIGPE
.........
17048 (~86)
2850
182
1064 (~5)









(~14)








 201-209
19919
1.1
KISKIGPEN
.........
17080 (~86)
2839
173
1063 (~5)









(~14)








 202-210
20000
1.1
ISKIGPENP
.........
17207 (~86)
2793
159
1066 (~5)









(~14)








 203-211
19977
1.1
SKIGPENPY
.........
17194 (~86)
2783
140
1070 (~5)









(~14)








 204-212 #
19970
0.8
KIGPENPYN
.........
18038 (~90)
1932
125
1128 (~6)









(~10)








 205-213 #
20230
0.4
IGPENPYNT
.........
19407 (~96)
 823 (~4)
106
 233 (~1)






 206-214 #
20304
0.3
GPENPYNTP
.........
19752 (~97)
 552 (~3)
 92
 191 (~1)






 226-234 #
20066
1.0
WRKLVDFRE
.........
17754 (~88)
2312
112
 857 (~4)









(~12)








 227-235 #
20053
1.0
RKLVDFREL
.........
17744 (~88)
2309
111
 855 (~4)









(~12)








 228-236 #
20088
0.9
KLVDFRELN
.........
17791 (~89)
2297
112
 860 (~4)









(~11)








 229-237 #
20043
1.0
LVDFRELNK
.........
17667 (~88)
2376
116
 850 (~4)









(~12)








 239-247 #
20402
0.5
TQDFWEVQL
.........
19299 (~95)
1103 (~5)
 96
 494 (~2)






 240-248 #
20415
0.5
QDFWEVQLG
.........
19307 (~95)
1108 (~5)
 93
 494 (~2)






 241-249 #
20408
0.5
DFWEVQLGI
.........
19276 (~94)
1132 (~6)
 91
 493 (~2)






 242-250 #
20454
0.4
FWEVQLGIP
.........
19466 (~95)
 988 (~5)
 78
 503 (~2)






 243-251 #
20430
0.5
WEVQLGIPH
.........
19433 (~95)
 997 (~5)
 83
 504 (~2)






 244-252 #
20484
0.3
EVQLGIPHP
.........
19720 (~96)
 764 (~4)
 70
 515 (~3)






 245-253 #
20263
0.8
VQLGIPHPA
.........
17909 (~88)
2354
 94
1143 (~6)









(~12)








 246-254 #
20407
0.7
QLGIPHPAG
.........
18477 (~91)
1930 (~9)
 91
1214 (~6)






 247-255 #
20312
0.8
LGIPHPAGL
.........
18035 (~89)
2277
 96
1191 (~6)









(~11)








 248-256 #
20018
1.2
GIPHPAGLK
.........
16875 (~84)
3143
124
1046 (~5)









(~16)








 249-257 #
19699
1.6
IPHPAGLKK
.........
15826 (~80)
3873
175
 926 (~5)









(~20)








 259-267 #
19978
0.9
KSVTVLDVG
.........
17949 (~90)
2029
145
 446 (~2)









(~10)








 260-268 #
20006
0.8
SVTVLDVGD
.........
18341 (~92)
1665 (~8)
139
 452 (~2)






 261-269 #
19996
0.8
VTVLDVGDA
.........
18371 (~92)
1625 (~8)
134
 454 (~2)






 262-270 #
20126
0.6
TVLDVGDAY
.........
18869 (~94)
1257 (~6)
116
 454 (~2)






 263-271 #
20159
0.7
VLDVGDAYF
.........
18778 (~93)
1381 (~7)
126
 448 (~2)






 264-272 #
20336
0.5
LDVGDAYFS
.........
19352 (~95)
 984 (~5)
121
 174 (~1)






 279-287 #
20343
0.2
FRKYTAFTI
.........
20038 (~99)
 305 (~1)
 81
  31 (<1)






 280-288 #
20352
0.2
RKYTAFTIP
.........
20074 (~99)
 278 (~1)
 81
  31 (<1)






 281-289 #
20183
0.2
KYTAFTIPS
.........
19840 (~98)
 343 (~2)
 85
  61 (<1)






 291-299 #
19417
1.2
NNETPGIRY
.........
16532 (~85)
2885
148
1286 (~7)









(~15)








 292-300 #
19373
1.2
NETPGIRYQ
.........
16479 (~85)
2894
154
1285 (~7)









(~15)








 293-301 #
19423
1.2
ETPGIRYQY
.........
16566 (~85)
2857
153
1297 (~7)









(~15)








 294-302 #
19546
1.0
TPGIRYQYN
.........
17030 (~87)
2516
122
1359 (~7)









(~13)








 295-303 #
19640
0.8
PGIRYQYNV
.........
17372 (~88)
2268
100
1388 (~7)









(~12)








 296-304 #
19630
0.8
GIRYQYNVL
.........
17352 (~88)
2278
108
1386 (~7)









(~12)








 297-305 #
19642
0.8
IRYQYNVLP
.........
17362 (~88)
2280
119
1386 (~7)









(~12)








 298-306 #
20066
0.4
RYQYNVLPQ
.........
19355 (~96)
 711 (~4)
 97
 395 (~2)






 299-307 #
20112
0.4
YQYNVLPQG
.........
19425 (~97)
 687 (~3)
 97
 396 (~2)






 300-308 #
20116
0.3
QYNVLPQGW
.........
19444 (~97)
 672 (~3)
 94
 394 (~2)






 301-309 #
20187
0.3
YNVLPQGWK
.........
19540 (~97)
 647 (~3)
 85
 395 (~2)






 302-310 #
20220
0.3
NVLPQGWKG
.........
19583 (~97)
 637 (~3)
 81
 396 (~2)






 303-311 #
20275
0.3
VLPQGWKGS
.........
19650 (~97)
 625 (~3)
 75
 399 (~2)






 304-312 #
20299
0.3
LPQGWKGSP
.........
19654 (~97)
 645 (~3)
 72
 400 (~2)






 305-313 #
20222
0.5
PQGWKGSPA
.........
19130 (~95)
1092 (~5)
 74
 449 (~2)






 306-314 #
20254
0.5
QGWKGSPAI
.........
19131 (~94)
1123 (~6)
 73
 447 (~2)






 307-315 #
20287
0.3
GWKGSPAIF
.........
19549 (~96)
 738 (~4)
 68
 460 (~2)






 308-316 #
20314
0.4
WKGSPAIFQ
.........
19554 (~96)
 760 (~4)
 75
 460 (~2)






 318-326
19881
1.2
SMTKILEPF
.........
16450 (~83)
3431
129
1279 (~6)









(~17)








 319-327
19823
1.3
MTKILEPFR
.........
16309 (~82)
3514
124
1266 (~6)









(~18)








 340-348 #
20029
0.8
DDLYVGSDL
.........
17989 (~90)
2040
124
 875 (~4)









(~10)








 341-349 #
19982
0.9
DLYVGSDLE
.........
17813 (~89)
2169
136
 855 (~4)









(~11)








 342-350 #
19955
1.0
LYVGSDLEI
.........
17610 (~88)
2345
150
 840 (~4)









(~12)








 375-383 #
16175
1.2
KHQKEPPFL
.........
13951 (~86)
2224
180
 701 (~4)









(~14)








 376-384 #
15871
1.2
HQKEPPFLW
.........
13650 (~86)
2221
169
 696 (~4)









(~14)








 377-385 #
15330
1.1
QKEPPFLWM
.........
13368 (~87)
1962
161
 707 (~5)









(~13)








 378-386 #
14910
1.1
KEPPFLWMG
.........
12992 (~87)
1918
163
 699 (~5)









(~13)








 379-387 #
14938
1.0
EPPFLWMGY
.........
13116 (~88)
1822
138
 810 (~5)









(~12)








 380-388 #
13335
0.9
PPFLWMGYE
.........
11782 (~88)
1553
118
 766 (~6)









(~12)








 381-389 #
13201
0.9
PFLWMGYEL
.........
11710 (~89)
1491
108
 769 (~6)









(~11)








 382-390 #
12954
0.9
FLWMGYELH
.........
11481 (~89)
1473
108
 766 (~6)









(~11)








 383-391 #
12885
0.9
LWMGYELHP
.........
11449 (~89)
1436
104
 789 (~6)









(~11)








 384-392 #
12536
0.3
WMGYELHPD
.........
12222 (~97)
 314 (~3)
 91
  70 (~1)






 385-393 #
12412
0.5
MGYELHPDK
.........
11937 (~96)
 475 (~4)
 91
 100 (~1)






 386-394 #
12290
0.5
GYELHPDKW
.........
11836 (~96)
 454 (~4)
 84
  99 (~1)






 387-395 #
12105
0.5
YELHPDKWT
.........
11630 (~96)
 475 (~4)
 84
  99 (~1)






 388-396 #
11518
0.5
ELHPDKWTV
.........
11047 (~96)
 471 (~4)
 92
  98 (~1)






 389-397 #
11426
0.6
LHPDKWTVQ
.........
10829 (~95)
 597 (~5)
109
  95 (~1)






 390-398 #
11226
0.7
HPDKWTVQP
.........
10464 (~93)
 762 (~7)
116
  95 (~1)






 391-399 #
10726
0.8
PDKWTVQPI
.........
 9916 (~92)
 810 (~8)
113
  89 (~1)






 401-409 {circumflex over ( )}
 4253
1.5
LPEKDSWTV
.........
 3466 (~81)
 787 (~19)
103
 212 (~5)






 402-410 {circumflex over ( )}
 4111
1.4
PEKDSWTVN
.........
 3351 (~82)
 760 (~18)
100
 211 (~5)






 403-411 {circumflex over ( )}
 3881
1.4
EKDSWTVND
.........
 3172 (~82)
 709 (~18)
 84
 204 (~5)






 404-412 {circumflex over ( )}
 3637
1.0
KDSWTVNDI
.........
 3162 (~87)
 475 (~13)
 53
 257 (~7)






 405-413 {circumflex over ( )}
 3614
0.9
DSWTVNDIQ
.........
 3179 (~88)
 435 (~12)
 48
 257 (~7)






 406-414 {circumflex over ( )}#
 3601
0.5
SWTVNDIQK
.........
 3437 (~95)
 164 (~5)
 39
  41 (~1)






 407-415 {circumflex over ( )}#
 3505
0.2
WTVNDIQKL
.........
 3441 (~98)
  64 (~2)
 28
  24 (~1)






 408-416 {circumflex over ( )}#
 3483
0.2
TVNDIQKLV
.........
 3417 (~98)
  66 (~2)
 24
  24 (~1)






 409-417 #
 3474
0.2
VNDIQKLVG
.........
 3409 (~98)
  65 (~2)
 23
  24 (~1)






 410-418 {circumflex over ( )}#
 3458
0.2
NDIQKLVGK
.........
 3393 (~98)
  65 (~2)
 22
  24 (~1)






 411-419 {circumflex over ( )}#
 3448
0.2
DIQKLVGKL
.........
 3380 (~98)
  68 (~2)
 23
  24 (~1)






 412-420 {circumflex over ( )}#
 3419
0.2
IQKLVGKLN
.........
 3349 (~98)
  70 (~2)
 26
  24 (~1)






 413-421 {circumflex over ( )}#
 3428
0.2
QKLVGKLNW
.........
 3385 (~99)
  43 (~1)
 24
   9 (<1)






 414-422 #
 3387
0.2
KLVGKLNWA
.........
 3342 (~99)
  45 (~1)
 26
   9 (<1)






 415-423 {circumflex over ( )}#
 3389
0.2
LVGKLNWAS
.........
 3339 (~99)
  50 (~1)
 27
  10 (<1)






 416-424 {circumflex over ( )}#
 3372
0.2
VGKLNWASQ
.........
 3327 (~99)
  45 (~1)
 25
   7 (<1)






 417-425 {circumflex over ( )}#
 3364
0.2
GKLNWASQI
.........
 3324 (~99)
  40 (~1)
 25
   6 (<1)






 418-426 {circumflex over ( )}#
 3357
0.1
KLNWASQIY
.........
 3320 (~99)
  37 (~1)
 22
   6 (<1)






 453-461 {circumflex over ( )}#
  431
0.7
EAELELAEN
.........
  391 (~91)
  40 (~9)
 13
  25 (~6)






 454-462 {circumflex over ( )}#
  411
0.7
AELELAENR
.........
  372 (~91)
  39 (~9)
 13
  25 (~6)






 455-463 {circumflex over ( )}#
  401
0.6
ELELAENRE
.........
  364 (~91)
  37 (~9)
 12
  25 (~6)






 456-464 #
  400
0.7
LELAENREI
.........
  361 (~90)
  39 (~10)
 15
  23 (~6)






 457-465 {circumflex over ( )}#
  396
0.7
ELAENREIL
.........
  357 (~90)
  39 (~10)
 14
  23 (~6)






 458-466 #
  390
1.1
LAENREILK
.........
  327 (~84)
  63 (~16)
 17
  23 (~6)






 459-467 {circumflex over ( )}#
  342
1.4
AENREILKE
.........
  277 (~81)
  65 (~19)
 22
  19 (~6)






 460-468 {circumflex over ( )}#
  337
1.2
ENREILKEP
.........
  284 (~84)
  53 (~16)
 25
  16 (~5)






 461-469 {circumflex over ( )}#
  331
1.2
NREILKEPV
.........
  279 (~84)
  52 (~16)
 26
  16 (~5)






 462-470 {circumflex over ( )}#
  312
1.3
REILKEPVH
.........
  261 (~84)
  51 (~16)
 26
  15 (~5)






 463-471 {circumflex over ( )}#
  310
1.3
EILKEPVHG
.........
  261 (~84)
  49 (~16)
 25
  15 (~5)






 716-724 {circumflex over ( )}#
  523
1.0
FLDGIDKAQ
.........
  448 (~86)
  75 (~14)
 17
  21 (~4)






 750-758 {circumflex over ( )}
  545
1.3
EIVASCDKC
.........
  436 (~80)
 109 (~20)
 16
  31 (~6)






 755-763 {circumflex over ( )}#
  553
1.4
CDKCQLKGE
.........
  448 (~81)
 105 (~19)
 21
  21 (~4)






 756-764 {circumflex over ( )}#
  553
1.4
DKCQLKGEA
.........
  449 (~81)
 104 (~19)
 22
  21 (~4)






 766-774 {circumflex over ( )}#
  559
0.6
HGQVDCSPG
.........
  518 (~93)
  41 (~7)
 13
  20 (~4)






 767-775 {circumflex over ( )}#
  558
0.6
GQVDCSPGI
.........
  517 (~93)
  41 (~7)
 15
  16 (~3)






 768-776 {circumflex over ( )}#
  559
0.6
QVDCSPGIW
.........
  517 (~92)
  42 (~8)
 15
  16 (~3)






 769-777 {circumflex over ( )}#
  557
0.6
VDCSPGIWQ
.........
  514 (~92)
  43 (~8)
 16
  16 (~3)






 770-778 {circumflex over ( )}#
  557
0.6
DCSPGIWQL
.........
  516 (~93)
  41 (~7)
 17
  10 (~2)






 771-779 {circumflex over ( )}#
  557
0.6
CSPGIWQLD
.........
  516 (~93)
  41 (~7)
 16
  10 (~2)






 772-780 {circumflex over ( )}#
  557
0.6
SPGIWQLDC
.........
  517 (~93)
  40 (~7)
 14
  10 (~2)






 773-781 {circumflex over ( )}#
  559
0.5
PGIWQLDCT
.........
  523 (~94)
  36 (~6)
 12
  10 (~2)






 774-782 {circumflex over ( )}#
  559
0.5
GIWQLDCTH
.........
  523 (~94)
  36 (~6)
 12
  10 (~2)






 775-783 {circumflex over ( )}#
  558
0.6
IWQLDCTHL
.........
  522 (~94)
  36 (~6)
 16
   8 (~1)






 776-784 {circumflex over ( )}#
  557
0.5
WQLDCTHLE
.........
  524 (~94)
  33 (~6)
 13
  14 (~3)






 777-785 {circumflex over ( )}#
  557
0.6
QLDCTHLEG
.........
  521 (~94)
  36 (~6)
 15
  14 (~3)






 778-786 {circumflex over ( )}#
  558
0.6
LDCTHLEGK
.........
  519 (~93)
  39 (~7)
 16
  14 (~3)






 788-796 {circumflex over ( )}#
  564
0.7
ILVAVHVAS
.........
  506 (~90)
  58 (~10)
 13
  38 (~7)






 789-797 {circumflex over ( )}#
  560
0.7
LVAVHVASG
.........
  502 (~90)
  58 (~10)
 15
  38 (~7)






 790-798 {circumflex over ( )}#
  560
0.6
VAVHVASGY
.........
  517 (~92)
  43 (~8)
 12
  27 (~5)






 791-799 {circumflex over ( )}
  556
0.9
AVHVASGYI
.........
  485 (~87)
  71 (~13)
 15
  27 (~5)






 792-800 {circumflex over ( )}
  556
0.9
VHVASGYIE
.........
  485 (~87)
  71 (~13)
 15
  27 (~5)






 793-801 {circumflex over ( )}
  557
0.9
HVASGYIEA
.........
  488 (~88)
  69 (~12)
 15
  27 (~5)






 794-802 {circumflex over ( )}
  557
0.9
VASGYIEAE
.........
  487 (~87)
  70 (~13)
 16
  27 (~5)






 795-803 {circumflex over ( )}
  554
0.9
ASGYIEAEV
.........
  487 (~88)
  67 (~12)
 14
  27 (~5)






 796-804 {circumflex over ( )}
  554
0.9
SGYIEAEVI
.........
  487 (~88)
  67 (~12)
 15
  27 (~5)






 797-805 {circumflex over ( )}
  554
0.9
GYIEAEVIP
.........
  482 (~87)
  72 (~13)
 17
  27 (~5)






 798-806 {circumflex over ( )}
  557
1.0
YIEAEVIPA
.........
  480 (~86)
  77 (~14)
 20
  25 (~4)






 799-807 {circumflex over ( )}
  560
0.8
IEAEVIPAE
.........
  506 (~90)
  54 (~10)
 20
  12 (~2)






 800-808 {circumflex over ( )}#
  564
0.5
EAEVIPAET
.........
  532 (~94)
  32 (~6)
 18
   6 (~1)






 801-809 {circumflex over ( )}#
  564
0.5
AEVIPAETG
.........
  531 (~94)
  33 (~6)
 18
   6 (~1)






 802-810 {circumflex over ( )}#
  564
0.6
EVIPAETGQ
.........
  531 (~94)
  33 (~6)
 19
   6 (~1)






 803-811 {circumflex over ( )}#
  563
0.5
VIPAETGQE
.........
  531 (~94)
  32 (~6)
 19
   5 (~1)






 804-812 {circumflex over ( )}#
  584
0.7
IPAETGQET
.........
  544 (~93)
  40 (~7)
 24
   5 (~1)






 805-813 {circumflex over ( )}#
  585
0.6
PAETGQETA
.........
  546 (~93)
  39 (~7)
 23
   5 (~1)






 806-814 {circumflex over ( )}#
  584
0.6
AETGQETAY
.........
  550 (~94)
  34 (~6)
 21
   5 (~1)






 807-815 {circumflex over ( )}
  584
0.5
ETGQETAYF
.........
  551 (~94)
  33 (~6)
 15
   9 (~2)






 817-825 {circumflex over ( )}#
  583
0.6
LKLAGRWPV
.........
  528 (~91)
  55 (~9)
  9
  41 (~7)






 818-826 {circumflex over ( )}#
  575
1.1
KLAGRWPVK
.........
  475 (~83)
 100 (~17)
 14
  38 (~7)






 841-849 {circumflex over ( )}#
  587
1.0
VRAACWWAG
.K.......
  512 (~87)
  75 (~13)
 22
  16 (~3)






 842-850 {circumflex over ( )}#
  588
1.1
RAACWWAGI
K........
  494 (~84)
  94 (~16)
 19
  35 (~6)






 844-852 {circumflex over ( )}
  585
1.3
ACWWAGIKQ
.........
  482 (~82)
 103 (~18)
 26
  36 (~6)






 845-853 {circumflex over ( )}
  585
1.3
CWWAGIKQE
.........
  480 (~82)
 105 (~18)
 27
  36 (~6)






 846-854 {circumflex over ( )}
  585
1.3
WWAGIKQEF
.........
  480 (~82)
 105 (~18)
 27
  36 (~6)






 847-855 {circumflex over ( )}
  584
1.3
WAGIKQEFG
.........
  478 (~82)
 106 (~18)
 28
  36 (~6)






 848-856 {circumflex over ( )}
  582
1.3
AGIKQEFGI
.........
  476 (~82)
 106 (~18)
 28
  36 (~6)






 849-857 {circumflex over ( )}
  582
1.3
GIKQEFGIP
.........
  477 (~82)
 105 (~18)
 25
  36 (~6)






 850-858 {circumflex over ( )}
  582
1.2
IKQEFGIPY
.........
  480 (~82)
 102 (~18)
 19
  36 (~6)






 851-859 {circumflex over ( )}
  580
0.8
KQEFGIPYN
.........
  516 (~89)
  64 (~11)
 16
  21 (~4)






 852-860 {circumflex over ( )}#
  583
0.5
QEFGIPYNP
.........
  547 (~94)
  36 (~6)
 10
  23 (~4)






 853-861 {circumflex over ( )}#
  582
0.2
EFGIPYNPQ
.........
  569 (~98)
  13 (~2)
  9 
   3 (~1)






 854-862 {circumflex over ( )}#
  582
0.2
FGIPYNPQS
.........
  572 (~98)
  10 (~2)
  8
   2 (<11)






 855-863 #
  582
0.2
GIPYNPQSQ
.........
  571 (~98)
  11 (~2)
 10
   2 (<11)






 856-864 #
  583
0.2
IPYNPQSQG
.........
  573 (~98)
  10 (~2)
  9
   2 (<11)






 857-865 #
  584
0.2
PYNPQSQGV
.........
  574 (~98)
  10 (~2)
  8
   3 (~1)






 858-866 #
  578
0.4
YNPQSQGVV
.........
  544 (~94)
  34 (~6)
 10
  23 (~4)






 859-867 #
  579
0.5
NPQSQGVVE
.........
  540 (~93)
  39 (~7)
 11
  23 (~4)






 860-868 {circumflex over ( )}#
  581
0.8
PQSQGVVES
.........
  517 (~89)
  64 (~11)
 12
  25 (~4)






 861-869 {circumflex over ( )}#
  579
1.2
QSQGVVESM
.........
  474 (~82)
 105 (~18)
 16
  25 (~4)






 862-870 {circumflex over ( )}#
  579
1.2
SQGVVESMN
.........
  474 (~82)
 105 (~18)
 16
  25 (~4)






 872-880 {circumflex over ( )}#
  583
1.4
ELKKIIGQV
.........
  472 (~81)
 111 (~19)
 31
  25 (~4)






 873-881 {circumflex over ( )}#
  583
1.4
LKKIIGQVR
.........
  475 (~81)
 108 (~19)
 30
  25 (~4)






 876-884 {circumflex over ( )}
  579
1.3
IIGQVRDQA
.........
  470 (~81)
 109 (~19)
 25
  26 (~4)






 877-885 {circumflex over ( )}
  578
1.3
IGQVRDQAE
.........
  471 (~81)
 107 (~19)
 23
  26 (~4)






 878-886 {circumflex over ( )}
  578
1.3
GQVRDQAEH
.........
  471 (~81)
 107 (~19)
 23
  26 (~4)






 879-887 {circumflex over ( )}
  578
0.7
QVRDQAEHL
.........
  523 (~90)
  55 (~10)
 15
  28 (~5)






 880-888 {circumflex over ( )}
  577
0.9
VRDQAEHLK
.........
  502 (~87)
  75 (~13)
 18
  27 (~5)






 881-889 {circumflex over ( )}
  577
0.6
RDQAEHLKT
.........
  530 (~92)
  47 (~8)
 16
  21 (~4)






 882-890 {circumflex over ( )}
  577
0.7
DQAEHLKTA
.........
  529 (~92)
  48 (~8)
 17
  21 (~4)






 883-891 {circumflex over ( )}#
  578
0.6
QAEHLKTAV
.........
  536 (~93)
  42 (~7)
 17
  20 (~3)






 884-892 {circumflex over ( )}#
  577
0.6
AEHLKTAVQ
.........
  537 (~93)
  40 (~7)
 16
  20 (~3)






 885-893 {circumflex over ( )}#
  579
0.6
EHLKTAVQM
.........
  539 (~93)
  40 (~7)
 15
  20 (~3)






 886-894 {circumflex over ( )}#
  580
0.6
HLKTAVQMA
.........
  540 (~93)
  40 (~7)
 15
  20 (~3)






 887-895 {circumflex over ( )}#
  582
0.5
LKTAVQMAV
.........
  547 (~94)
  35 (~6)
 13
  20 (~3)






 888-896 {circumflex over ( )}#
  582
0.7
KTAVQMAVF
.........
  527 (~91)
  55 (~9)
 13
  23 (~4)






 889-897 {circumflex over ( )}#
  582
0.7
TAVQMAVFI
.........
  525 (~90)
  57 (~10)
 12
  23 (~4)






 890-898 {circumflex over ( )}#
  585
0.7
AVQMAVFIH
.........
  526 (~90)
  59 (~10)
 13
  23 (~4)






 891-899 {circumflex over ( )}#
  566
0.7
VQMAVFIHN
.........
  512 (~90)
  54 (~10)
 11
  22 (~4)






 892-900 {circumflex over ( )}#
  565
0.6
QMAVFIHNF
.........
  513 (~91)
  52 (~9)
 10
  21 (~4)






 893-901 {circumflex over ( )}#
  566
0.6
MAVFIHNFK
.........
  514 (~91)
  52 (~9)
 10
  21 (~4)






 894-902 {circumflex over ( )}#
  566
0.7
AVFIHNFKR
.........
  509 (~90)
  57 (~10)
 13
  20 (~4)






 895-903 {circumflex over ( )}
  561
0.9
VFIHNFKRK
.........
  492 (~88)
  69 (~12)
 13
  20 (~4)






 896-904 {circumflex over ( )}
  561
0.9
FIHNFKRKG
.........
  491 (~88)
  70 (~12)
 15
  20 (~4)






 897-905 {circumflex over ( )}
  562
0.7
IHNFKRKGG
.........
  513 (~91)
  49 (~9)
 11
  20 (~4)






 898-906 {circumflex over ( )}
  559
0.4
HNFKRKGGI
.........
  531 (~95)
  28 (~5)
  9
  10 (~2)






 899-907 {circumflex over ( )}
  557
0.4
NFKRKGGIG
.........
  532 (~96)
  25 (~4)
  8
   9 (~2)






 900-908 {circumflex over ( )}
  557
0.9
FKRKGGIGG
.........
  491 (~88)
  66 (~12)
 14
  23 (~4)






 901-909 {circumflex over ( )}
  557
0.9
KRKGGIGGY
.........
  495 (~89)
  62 (~11)
 13
  23 (~4)






 902-910 {circumflex over ( )}
  557
1.2
RKGGIGGYS
.........
  460 (~83)
  97 (~17)
 18
  33 (~6)






 903-911 {circumflex over ( )}
  558
1.1
KGGIGGYSA
.........
  466 (~84)
  92 (~16)
 15
  33 (~6)






 904-912 {circumflex over ( )}#
  562
1.0
GGIGGYSAG
.........
  476 (~85)
  86 (~15)
 14
  33 (~6)






 905-913 {circumflex over ( )}#
  560
1.0
GIGGYSAGE
.........
  475 (~85)
  85 (~15)
 15
  32 (~6)






 906-914 {circumflex over ( )}#
  560
1.0
IGGYSAGER
.........
  476 (~85)
  84 (~15)
 14
  32 (~6)






 907-915 {circumflex over ( )}#
  559
1.1
GGYSAGERI
.........
  474 (~85)
  85 (~15)
 16
  24 (~4)






 934-942 {circumflex over ( )}#
  545
1.4
KIQNFRVYY
.........
  454 (~83)
  91 (~17)
 34
  13 (~2)






 935-943 {circumflex over ( )}#
  546
1.3
IQNFRVYYR
.........
  459 (~84)
  87 (~16)
 27
  19 (~3)






 936-944 {circumflex over ( )}#
  549
0.9
QNFRVYYRD
.........
  484 (~88)
  65 (~12)
 19
  19 (~3)






 938-946 {circumflex over ( )}#
  547
1.2
FRVYYRDSR
.........
  439 (~80)
 108 (~20)
 13
  48 (~9)






 948-956 {circumflex over ( )}
  543
1.1
PLWKGPAKL
.........
  449 (~83)
  94 (~17)
 11
  42 (~8)






 949-957 {circumflex over ( )}
  543
1.1
LWKGPAKLL
.........
  449 (~83)
  94 (~17)
 11
  42 (~8)






 950-958 {circumflex over ( )}#
  542
0.4
WKGPAKLLW
.........
  514 (~95)
  28 (~5)
  7
  21 (~4)






 951-959 {circumflex over ( )}#
  542
0.4
KGPAKLLWK
.........
  515 (~95)
  27 (~5)
  6
  21 (~4)






 952-960 {circumflex over ( )}#
  543
0.3
GPAKLLWKG
.........
  517 (~95)
  26 (~5)
  5
  21 (~4)






 953-961 {circumflex over ( )}#
  541
0.3
PAKLLWKGE
.........
  517 (~96)
  24 (~4)
  3
  21 (~4)






 954-962 {circumflex over ( )}#
  542
0.3
AKLLWKGEG
.........
  518 (~96)
  24 (~4)
  3
  21 (~4)






 955-963 {circumflex over ( )}#
  542
0.3
KLLWKGEGA
.........
  518 (~96)
  24 (~4)  
  3
  21 (~4)






 956-964 {circumflex over ( )}#
  541
0.0
LLWKGEGAV
.........
  541 (~100)
   0 (0)
  0
   0 (0)






 957-965 {circumflex over ( )}#
  544
0.0
LWKGEGAVV
.........
  544 (~100)
   0 (0)
  0
   0 (0)






 958-966 {circumflex over ( )}#
  539
0.1
WKGEGAVVI
.........
  531 (~99)
   8 (~1)
  2
   6 (~1)






 959-967 {circumflex over ( )}#
  538
0.2
KGEGAVVIQ
.........
  527 (~98)
  11 (~2) 
  5
   6 (~1)






 960-968 {circumflex over ( )}#
  538
0.4
GEGAVVIQD
.........
  517 (~96)
  21 (~4)
  7
   6 (~1)






 961-969 {circumflex over ( )}#
  532
0.7
EGAVVIQDN
.........
  481 (~90)
  51 (~10)
 12
  25 (~5)






 962-970 *#
  531
0.9
GAVVIQDNS
.........
  471 (~89)
  60 (~11)
 18
  23 (~4)






 981-989 {circumflex over ( )}
  516
0.5
KIIRDYGKQ
.........
  484 (~94)
  32 (~6)
 10
  10 (~2)






 982-990 {circumflex over ( )}
  515
0.6
IIRDYGKQM
.........
  480 (~93)
  35 (~7)
 10
  10 (~2)






 983-991 {circumflex over ( )}
  516
0.6
IRDYGKQMA
.........
  481 (~93)
  35 (~7)
 10
  10 (~2)






 984-992 {circumflex over ( )}
  514
0.4
RDYGKQMAG
.........
  488 (~95)
  26 (~5)
  8
  10 (~2)






 985-993 {circumflex over ( )}
  511
0.7
DYGKQMAGD
.........
  466 (~91)
  45 (~9)
 15
  15 (~3)






 986-994 {circumflex over ( )}
  506
0.8
YGKQMAGDD
.........
  457 (~90)
  49 (~10)
 14
  19 (~4)






 987-995 {circumflex over ( )}
  507
0.8
GKQMAGDDC
.........
  456 (~90)
  51 (~10)
 20
  14 (~3)






 988-996 {circumflex over ( )}
  505
0.9
KQMAGDDCV
.........
  452 (~90)
  53 (~10)
 23
  13 (~3)






 989-997 {circumflex over ( )}
  505
0.8
QMAGDDCVA
.........
  456 (~90)
  49 (~10)
 20
  13 (~3)





Vif
   1-9 {circumflex over ( )}
 1140
0.6
MENRWQVMI
.........
 1069 (~94)
  71 (~6)
 24
  19 (~2)






   2-10 {circumflex over ( )}
 1140
0.6
ENRWQVMIV
.........
 1066 (~94)
  74 (~6)
 25
  19 (~2)






   3-11 {circumflex over ( )}
 1141
0.6
NRWQVMIVW
.........
 1067 (~94)
  74 (~6)
 24
  19 (~2)






   4-12 {circumflex over ( )}
 1141
0.6
RWQVMIVWQ
.........
 1069 (~94)
  72 (~6)
 23
  19 (~2)






   5-13 {circumflex over ( )}
 1141
0.6
WQVMIVWQV
.........
 1068 (~94)
  73 (~6)
 23
  19 (~2)






   6-14 {circumflex over ( )}
 1141
0.7
QVMIVWQVD
.........
 1058 (~93)
  83 (~7)
 26
  19 (~2)






   7-15 {circumflex over ( )}
 1141
0.7
VMIVWQVDR
.........
 1057 (~93)
  84 (~7)
 28
  19 (~2)






   8-16 {circumflex over ( )}
 1142
0.7
MIVWQVDRM
.........
 1069 (~94)
  73 (~6)
 31
  13 (~1)






   9-17 {circumflex over ( )}
 1143
0.6
IVWQVDRMR
.........
 1070 (~94)
  73 (~6)
 29
  13 (~1)






  10-18 {circumflex over ( )}
 1143
0.6
VWQVDRMRI
.........
 1081 (~95)
  62 (~5)
 29
   9 (~1)






  52-60 {circumflex over ( )}#
 1141
1.5
SSEVHIPLG
.........
  947 (~83)
 194 (~17)
 46
  42 (~4)






  68-76 {circumflex over ( )}
 1138
0.9
TYWGLHTGE
.........
 1010 (~89)
 128 (~11)
 30
  41 (~4)






  69-77 {circumflex over ( )}
 1138
1.2
YWGLHTGER
.........
  962 (~85)
 176 (~15)
 32
  43 (~4)






  79-87 {circumflex over ( )}
 1140
1.1
WHLGQGVSI
.........
  993 (~87)
 147 (~13)
 29
  33 (~3)






  80-88 {circumflex over ( )}
 1140
1.1
HLGQGVSIE
.........
  988 (~87)
 152 (~13)
 32
  32 (~3)






  81-89 {circumflex over ( )}
 1141
1.1
LGQGVSIEW
.........
  989 (~87)
 152 (~13)
 31
  35 (~3)






  82-90 {circumflex over ( )}
 1142
1.2
GQGVSIEWR
.........
  973 (~85)
 169 (~15)
 33
  35 (~3)






 138-146 {circumflex over ( )}#
 1134
1.6
GHNKVGSLQ
.........
  916 (~81)
 218 (~19)
 43
  41 (~4)






 139-147 {circumflex over ( )}#
 1133
1.6
HNKVGSLQY
.........
  912 (~80)
 221 (~20)
 45
  41 (~4)






 140-148 {circumflex over ( )}#
 1132
1.6
NKVGSLQYL
.........
  913 (~81)
 219 (~19)
 43
  41 (~4)






 141-149 {circumflex over ( )}#
 1134
1.1
KVGSLQYLA
.........
  977 (~86)
 157 (~14)
 29
  46 (~4)






 142-150 {circumflex over ( )}#
 1137
0.7
VGSLQYLAL
.........
 1058 (~93)
  79 (~7)
 26
  18 (~2)






 168-176 {circumflex over ( )}
 1135
0.8
KLTEDRWNK
.........
 1019 (~90)
 116 (~10)
 25
  64 (~6)






 169-177 {circumflex over ( )}
 1135
0.9
LTEDRWNKP
.........
 1000 (~88)
 135 (~12)
 26
  63 (~6)






 170-178 *
 1129
1.4
TEDRWNKPQ
.........
  916 (~81)
 213 (~19)
 33
  70 (~6)





Vpr
   1-9 {circumflex over ( )}
  994
1.4
MEQAPEDQG
.........
  817 (~82)
 177 (~18)
 38
  47 (~5)






   2-10 {circumflex over ( )}
  992
1.5
EQAPEDQGP
.........
  806 (~81)
 186 (~19)
 45
  47 (~5)






   3-11 {circumflex over ( )}
  987
1.7
QAPEDQGPQ
.........
  776 (~79)
 211 (~21)
 52
  47 (~5)






   4-12 {circumflex over ( )}
  993
1.5
APEDQGPQR
.........
  823 (~83)
 170 (~17)
 50
  39 (~4)






   5-13 {circumflex over ( )}#
  991
1.5
PEDQGPQRE
.........
  819 (~83)
 172 (~17)
 46
  39 (~4)






   6-14 {circumflex over ( )}#
  986
1.5
EDQGPQREP
.........
  822 (~83)
 164 (~17)
 43
  39 (~4)






  18-26 {circumflex over ( )}
 1001
1.4
WTLELLEEL
.........
  809 (~81)
 192 (~19)
 39
  93 (~9)






  19-27
 1002
1.4
TLELLEELK
.........
  809 (~81)
 193 (~19)
 39
  94 (~9)





Tat
   8-16 {circumflex over ( )}
 1264
1.1
LEPWKHPGS
.........
 1090 (~86)
 174 (~14)
 30
  32 (~3)






   9-17 {circumflex over ( )}
 1264
1.2
EPWKHPGSQ
.........
 1074 (~85)
 190 (~15)
 36
  31 (~2)






  10-18 {circumflex over ( )}
 1264
1.0
PWKHPGSQP
.........
 1107 (~88)
 157 (~12)
 27
  44 (~3)






  43-51 {circumflex over ( )}#
 1252
1.1
LGISYGRKK
.........
 1092 (~87)
 160 (~13)
 36
  39 (~3)






  44-52 {circumflex over ( )}#
 1251
1.2
GISYGRKKR
.........
 1063 (~85)
 188 (~15)
 39
  32 (~3)






  45-53 {circumflex over ( )}
 1249
1.4
ISYGRKKRR
.........
 1037 (~83)
 212 (~17)
 43
  29 (~2)






  46-54 {circumflex over ( )}
 1245
1.6
SYGRKKRRQ
.........
 1013 (~81)
 232 (~19)
 52
  29 (~2)






  47-55 {circumflex over ( )}#
 1246
1.2
YGRKKRRQR
.........
 1073 (~86)
 173 (~14)
 45
  29 (~2)






  48-56 {circumflex over ( )}#
 1247
1.0
GRKKRRQRR
.........
 1104 (~89)
 143 (~11)
 44
  40 (~3)






  49-57 {circumflex over ( )}
 1245
1.5
RKKRRQRRR
.........
 1025 (~82)
 220 (~18)
 54
  40 (~3)





Rev
  32-40 {circumflex over ( )}
 1396
1.4
EGTRQARRN
.........
 1156 (~83)
 240 (~17)
 40
  69 (~5)






  33-41 {circumflex over ( )}
 1396
0.7
GTRQARRNR
.........
 1295 (~93)
 101 (~7)
 29
  24 (~2)






  34-42 {circumflex over ( )}
 1396
0.7
TRQARRNRR
.........
 1285 (~92)
 111 (~8)
 30
  24 (~2)






  35-43 {circumflex over ( )}
 1396
0.8
RQARRNRRR
.........
 1277 (~91)
 119 (~9)
 28
  24 (~2)






  36-44 {circumflex over ( )}
 1396
0.7
QARRNRRRR
.........
 1285 (~92)
 111 (~8)
 27
  24 (~2)






  37-45
 1395
0.6
ARRNRRRRW
.........
 1302 (~93)
  93 (~7)
 26
  24 (~2)






  38-46 {circumflex over ( )}
 1396
0.5
RRNRRRRWR
.........
 1323 (~95)
  73 (~5)
 23
  20 (~1)





Vpu
  48-56 {circumflex over ( )}#$
 1158
1.1
ERAEDSGNE
.........
 1000 (~86)
 158 (~14)
 35
  53 (~5)






  49-57 {circumflex over ( )}#$
 1161
0.7
RAEDSGNES
.........
 1069 (~92)
  92 (~8)
 28
  16 (~1)





Env
  33-41
  282
1.1
LWVTVYYGV
.........
  238 (~84)
  44 (~16)
 17
  23 (~8)



 (34-42) {circumflex over ( )}#$














  34-42
  284
0.5
WVTVYYGVP
.........
  267 (~94)
  17 (~6)
 11
   3 (~1)



 (35-43) {circumflex over ( )}#$














  35-43
  284
0.5
VTVYYGVPV
.........
  269 (~95)
  15 (~5)
 11
   2 (~1)



 (36-44) {circumflex over ( )}#$














  36-44
  284
0.4
TVYYGVPVW
.........
  272 (~96)
  12 (~4)
 10
   2 (~1)



 (37-45) {circumflex over ( )}#$














  37-45
  284
0.5
VYYGVPVWK
.........
  266 (~94)
  18 (~6)
 11
   6 (~2)



 (38-46) {circumflex over ( )}














  38-46
  284
0.8
YYGVPVWKE
.........
  249 (~88)
  35 (~12)
 12
  19 (~7)



 (39-47) {circumflex over ( )}














  39-47
  284
0.9
YGVPVWKEA
.........
  247 (~87)
  37 (~13)
 13
  19 (~7)



 (40-48) {circumflex over ( )}














  40-48
  284
1.0
GVPVWKEAT
.........
  244 (~86)
  40 (~14)
 16
  16 (~6)



 (41-49) {circumflex over ( )}














  41-49
  286
1.0
VPVWKEATT
.........
  246 (~86)
  40 (~14)
 17
  16 (~6)



 (42-50) {circumflex over ( )}














  42-50
  286
1.0
PVWKEATTT
.........
  247 (~86)
  39 (~14)
 17
  16 (~6)



 (43-51) {circumflex over ( )}














  43-51
  286
1.0
VWKEATTTL
.........
  246 (~86)
  40 (~14)
 18
  16 (~6)



 (44-52) {circumflex over ( )}














  44-52
  286
1.1
WKEATTTLF
.........
  244 (~85)
  42 (~15)
 19
  16 (~6)



 (45-53) {circumflex over ( )}














  45-53
  285
1.1
KEATTTLFC
.........
  243 (~85)
  42 (~15)
 18
  16 (~6)



 (46-54) {circumflex over ( )}














  46-54
  241
1.0
EATTTLFCA
.........
  205 (~85)
  36 (~15)
 13
  17 (~7)



 (47-55) {circumflex over ( )}














  47-55
  241
0.6
ATTTLFCAS
.........
  222 (~92)
  19 (~8)
 11
   6 (~2)



 (48-56) {circumflex over ( )}














  48-56
  241
0.9
TTTLFCASD
.........
  210 (~87)
  31 (~13)
 11
  14 (~6)



 (49-57) {circumflex over ( )}














  49-57
  242
0.6
TTLFCASDA
.........
  221 (~91)
  21 (~9)
  7
  14 (~6)



 (50-58) {circumflex over ( )}$














  50-58
  242
0.7
TLFCASDAK
.........
  218 (~90)
  24 (~10)
  9
  14 (~6)



 (51-59) {circumflex over ( )}#$














  65-73
  235
0.9
HNVWATHAC
.........
  209 (~89)
  26 (~11)
 14
  13 (~6)



 (66-74) {circumflex over ( )}#$














  66-74
  272
0.7
NVWATHACV
.........
  248 (~91)
  24 (~9)
 12
  13 (~5)



 (67-75) {circumflex over ( )}#$














  67-75
  272
0.6
VWATHACVP
.........
  249 (~92)
  23 (~8)
 10
  14 (~5)



 (68-76) {circumflex over ( )}#$














  68-76
  287
0.4
WATHACVPT
.........
  276 (~96)
  11 (~4)
  9
   3 (~1)



 (69-77) {circumflex over ( )}#$














 114-122
 1032
1.0
SLKPCVKLT
.........
  884 (~86)
 148 (~14)
 21
  61 (~6)



(115-123) {circumflex over ( )}#














 115-123
 1034
1.0
LKPCVKLTP
.........
  887 (~86)
 147 (~14)
 21
  61 (~6)



(116-124) {circumflex over ( )}#














 116-124
 1066
1.1
KPCVKLTPL
.........
  904 (~85)
 162 (~15)
 29
  60 (~6)



(117-125) {circumflex over ( )}#














 117-125
 1517
0.8
PCVKLTPLC
.........
 1357 (~89)
 160 (~11)
 29
  59 (~4)



(118-126) {circumflex over ( )}#














 118-126
 1568
0.8
CVKLTPLCV
.........
 1397 (~89)
 171 (~11)
 29
  83 (~5)



(119-127) {circumflex over ( )}#  














 119-127
 1594
1.1
VKLTPLCVS
........T
 1374 (~86)
 220 (~14)
 33
  83 (~5)



(120-128) {circumflex over ( )}#  














 120-128
 2665
1.0
KLTPLCVSL
.......T.
 2341 (~88)
 324 (~12)
 50
 101 (~4)



(121-129) {circumflex over ( )}#  














 263-271
 3685
1.2
NVSTVQCTH
.........
 3232 (~88)
 453 (~12)
 94
  55 (~1)



(241-249) {circumflex over ( )}#$














 264-272
 3674
0.9
VSTVQCTHG
.........
 3382 (~92)
 292 (~8)
 70
  39 (~1)



(242-250) {circumflex over ( )}#  














 265-273
 3673
0.9
STVQCTHGI
.........
 3394 (~92)
 279 (~8)
 69
  41 (~1)



(243-251) {circumflex over ( )}#  














 275-283
 3641
0.7
PVVSTQLLL
.........
 3378 (~93)
 263 (~7)
 50
  63 (~2)



(253-261) {circumflex over ( )}#$














 276-284
 3701
0.8
VVSTQLLLN
.........
 3416 (~92)
 285 (~8)
 55
  63 (~2)



(254-262) {circumflex over ( )}#$














 277-285
 3833
0.7
VSTQLLLNG
.........
 3584 (~94)
 249 (~6)
 54
  64 (~2)



(255-263) {circumflex over ( )}#$














 278-286
 3841
0.6
STQLLLNGS
.........
 3637 (~95)
 204 (~5)
 58
  31 (~1)



(256-264) {circumflex over ( )}#$














 279-287
 3844
0.6
TQLLLNGSL
.........
 3637 (~95)
 207 (~5)
 62
  31 (~1)



(257-265) {circumflex over ( )}#$














 280-288
 3857
0.8
QLLLNGSLA
.........
 3515 (~91)
 342 (~9)
 64
 132 (~3)



(258-266) {circumflex over ( )}#$














 281-289
 3882
1.0
LLLNGSLAE
.........
 3495 (~90)
 387 (~10)
 65
 136 (~4)



(259-267) {circumflex over ( )}#  














 453-461
 3311
1.1
VGKAMYAPP
.........
 2934 (~89)
 377 (~11)
 64
  60 (~2)



(430-438) {circumflex over ( )}














 454-462
 3309
1.3
GKAMYAPPI
.........
 2840 (~86)
 469 (~14)
 77
  65 (~2)



(431-439) {circumflex over ( )}














 505-513
  527
0.8
DNWRSELYK
.........
  481 (~91)
  46 (~9)
 29
   8 (~2)



(477-485) {circumflex over ( )}#$  














 506-514
  529
0.6
NWRSELYKY
.........
  495 (~94)
  34 (~6)
 25
   7 (~1)



(478-486) {circumflex over ( )}#$














 507-515
  533
0.6
WRSELYKYK
.........
  498 (~93)
  35 (~7)
 25
   7 (~1)



(479-487) {circumflex over ( )}#$














 508-516
  537
0.6
RSELYKYKV
.........
  502 (~93)
  35 (~7)
 23
   7 (~1)



(480-488) {circumflex over ( )}#$














 509-517
  541
0.7
SELYKYKVV
.........
  500 (~92)
  41 (~8)
 21
  10 (~2)



(481-489) {circumflex over ( )}#$














 529-537
  557
1.4
AKRRVVQRE
.........
  455 (~82)
 102 (~18)
 31
  40 (~7)



(501-509) {circumflex over ( )}














 548-556
 1315
1.2
FLGFLGAAG
.........
 1102 (~84)
 213 (~16)
 33
  76 (~6)



(519-527) {circumflex over ( )}














 549-557
 1321
0.9
LGFLGAAGS
.........
 1143 (~87)
 178 (~13)
 23
  89 (~7)



(520-528) {circumflex over ( )}














 550-558
 1323
0.8
GFLGAAGST
.........
 1182 (~89)
 141 (~11)
 23
  80 (~6)



(521-529) {circumflex over ( )}#$














 551-559
 1310
0.8
FLGAAGSTM
.........
 1168 (~89)
 142 (~11)
 23
  80 (~6)



(522-530) {circumflex over ( )}#$














 552-560
 1310
0.7
LGAAGSTMG
.........
 1175 (~90)
 135 (~10)
 21
  80 (~6)



(523-531) {circumflex over ( )}#$














 553-561
 1305
0.7
GAAGSTMGA
.........
 1169 (~90)
 136 (~10)
 23
  80 (~6)



(524-532) {circumflex over ( )}#$














 554-562
 1307
0.8
AAGSTMGAA
.........
 1167 (~89)
 140 (~11)
 24
  80 (~6)



(525-533) #$














 555-563
 1307
0.6
AGSTMGAAS
.........
 1207 (~92)
 100 (~8)
 26
  36 (~3)



(526-534) #$














 573-581
 1614
1.4
LLSGIVQQQ
.........
 1320 (~82)
 294 (~18)
 45
  88 (~5)



(544-552) #$














 595-603
 2014
0.6
LQLTVWGIK
.........
 1877 (~93)
 137 (~7)
 31
  36 (~2)



(566-574) {circumflex over ( )}#














 596-604
 2011
0.6
QLTVWGIKQ
.........
 1874 (~93)
 137 (~7)
 30
  36 (~2)



(567-575) {circumflex over ( )}#














 597-605
 2039
0.3
LTVWGIKQL
.........
 1974 (~97)
  65 (~3)
 24
  25 (~1)



(568-576) {circumflex over ( )}#














 598-606
 2038
0.4
TVWGIKQLQ
.........
 1961 (~96)
  77 (~4)
 26
  25 (~1)



(569-577) {circumflex over ( )}#$














 599-607
 2038
0.4
VWGIKQLQA
.........
 1951 (~96)
  87 (~4)
 23
  25 (~1)



(570-578) {circumflex over ( )}$














 600-608
 2042
0.4
WGIKQLQAR
.........
 1953 (~96)
  89 (~4)
 21
  25 (~1)



(571-579) {circumflex over ( )}$














 601-609
 2012
0.9
GIKQLQARI
........V
 1762 (~88)
 250 (~12)
 28
 126 (~6)



(572-580) {circumflex over ( )}$














 602-610
 2007
0.9
IKQLQARIL
.......V.
 1765 (~88)
 242 (~12)
 28
 126 (~6)



(573-581) {circumflex over ( )}$














 603-611
 1994
0.8
KQLQARILA
......V..
 1772 (~89)
 222 (~11)
 25
 127 (~6)



(574-582) {circumflex over ( )}$














 618-626
 1983
1.3
DQQLLGIWG
.........
 1671 (~84)
 312 (~16)
 40
  82 (~4)



(589-597) {circumflex over ( )}














 619-627
 1984
1.2
QQLLGIWGC
.........
 1676 (~84)
 308 (~16)
 38
  82 (~4)



(590-598) {circumflex over ( )}














 620-628
 1985
1.4
QLLGIWGCS
.........
 1611 (~81)
 374 (~19)
 41
  83 (~4)



(591-599) {circumflex over ( )}














 621-629
 1987
1.3
LLGIWGCSG
.........
 1633 (~82)
 354 (~18)
 35
  83 (~4)



(592-600) {circumflex over ( )}














 622-630
 1970
1.4
LGIWGCSGK
.........
 1581 (~80)
 389 (~20)
 38
  96 (~5)



(593-601) {circumflex over ( )}














 623-631
 1967
1.4
GIWGCSGKL
.........
 1608 (~82)
 359 (~18)
 51
  73 (~4)



(594-602) {circumflex over ( )}














 624-632
 1962
1.5
IWGCSGKLI
.........
 1599 (~81)
 363 (~19)
 54
  73 (~4)



(595-603) {circumflex over ( )}














 625-633
 1969
1.0
WGCSGKLIC
.........
 1697 (~86)
 272 (~14)
 35
  79 (~4)



(596-604) {circumflex over ( )}#$














 626-634
 1966
1.4
GCSGKLICT
.........
 1599 (~81)
 367 (~19)
 43
  78 (~4)



(597-605) {circumflex over ( )}#$














 627-635
 1963
1.4
CSGKLICTT
.........
 1591 (~81)
 372 (~19)
 46
  78 (~4)



(598-606) {circumflex over ( )}#$














 707-715
 1141
1.0
WLWYIKLFI
......I..
  970 (~85)
 171 (~15)
 25
  80 (~7)



(678-686) {circumflex over ( )}














 848-856
  886
1.1
AIAVAEGTD
.........
  753 (~85)
 133 (~15)
 24
  35 (~4)



(819-827) {circumflex over ( )}














 849-857
  885
1.2
IAVAEGTDR
.........
  747 (~84)
 138 (~16)
 25
  36 (~4)



(820-828) {circumflex over ( )}













Nef
  80-88
 4570
0.8
PQVPLRPMT
.........
 4244 (~93)
 326 (~7)
 55
  66 (~1)



 (72-80) #$














 129-137
 4557
1.5
FPDWQNYTP
.........
 3735 (~82)
 822 (~18)
 77
 210 (~5)



(121-129) #$














 130-138
 4557
1.5
PDWQNYTPG
.........
 3747 (~82)
 810 (~18)
 75
 209 (~5)



(122-130) #$














 131-139
 4555
1.5
DWQNYTPGP
.........
 3748 (~82)
 807 (~18)
 74
 209 (~5)



(123-131) #$














 132-140
 4544
1.5
WQNYTPGPG
.........
 3733 (~82)
 811 (~18)
 76
 209 (~5)



(124-132) #$














 147-155
 4623
1.3
FGWCYKLVP
....F....
 3939 (~85)
 684 (~15)
 67
 195 (~4)



(139-147)






a Start and end alignment positions. Such positions corresponding to the HXB2 reference sequences are indicated in the brackets, only if they differ from the alignment positions. These differences are due to insertions and deletions in the protein alignment.




b The total number of HIV-1 clade B protein sequences obtained at the respective nonamer positions of the protein sequence alignment. The number of sequences for each nonamer position varies due to the inclusion of both partial and full-length sequences.




c Shannon's nonamer entropy.




d The nonamer sequence corresponding to the HXB2 reference sequence. Insertions to the alignment with respect to the HXB2 sequence are shown as gaps “-”.




e The primary nonamer is the peptide with the highest incidence at a given nonamer position in the protein alignment. Residues that are identical to the HXB2 sequence is denoted as “.” whereas residues that are different have their amino acids displayed. For example, at position 1-9 of Gag, the HXB2 sequence have identical sequence to that of the primary nonamer thus the primary nonamer have the sequence “.........” displayed. However at position, 22-30 in Gag, the last residue in the nonamer differs from that of HXB2, having R instead of K, and thus the nonamer sequence is shown as “........R”.




f Total variants of the primary nonamers are all sequences that differ by one or more amino acids from the primary nonamer at the corresponding position in the protein alignment.




g The number of unique variants at the indicated nonamer position.




h The primary variant is the most common (highest incidence) variant nonamer at the indicated nonamer position of the protein alignment.



* Highly conserved nonamers that is HIV-1 specific, i.e. the nonamers is not matched to any other reported protein in the NCBI protein database (as of November 2010).


{circumflex over ( )} Highly conserved nonamers that is primate lentivirus group specific (taxonomy id 11652), i.e. the nonamers matched to any reported proteins of the primate lentivirus group from the NCBI protein database (as of November 2010).



# Highly conserved clade B nonamers that are also highly conserved in clade C with a primary nonamer incidence of 80% or more, the primary variant incidence of less than 10% and 100 or more nonamers analysed at that position.




$ Highly conserved clade B nonamers that are also highly conserved in clades A and C with a primary nonamer incidence of 80% or more, the primary variant incidence of less than 10% and 100 or more nonamers analysed at that position.




+ An example interpretation of the table: The primary nonamer MGARASVLS was present in 945 sequences (~82%) of all 1156 sequences analyzed at nonamer position 1-9 in the Gag protein alignment. The remaining 211 sequences (~18%) at that position were variants of the primary nonamer and comprised 33 unique peptides, one of which is the primary variant and is present in about 10% (110) of all the 1156 analysed sequences. The remaining 101 variants at that position were represented by 36 additional variant sequences.







Example 7
HIV-1 and/or Primate Lentivirus Group Specific Highly Conserved Nonamers, with Possible Multiclade Conservation

BLAST search of the 504 highly conserved nonamers of clade B against all reported sequences of nature revealed that two were specific to HIV-1 with no matching 9 consecutive amino acid identity, while 374 were primate lentivirus group specific, with several showing multiclade conservation (Table 6). For example, of the 504 HIV-1 clade B conserved nonamers, 330 were biclade conserved and 84 were triclade conserved (Table 6). When contiguous nonamers were joined, there were 64 biclade and 24 triclade highly conserved sequences (Table 7).









TABLE 7







Highly conserved HIV-1 clade B and C sequences.









Protein
Positions a
Sequences b





Gag
36-45
WASRELERFA



135-143
SQNYPIVQN



(129-137)




154-164
SPRTLNAWVKV



(148-158)




168-178
KAFSPEVIPMF



(162-172)




180-208
ALSEGATPQDLNTMLNTVGGHQAAM



(174-202)
QMLK



210-220
TINEEAAEWDR



(204-214)




235-247
REPRGSDIAGTTS



(229-241)




275-285
GLNKIVRMYSP



(269-279)




293-306
QGPKEPFRDYVDRF



(287-300)




326-340
TLLVQNANPDCKTIL



(320-324)




349-362
LEEMMTACQGVGGP



(343-356)




364-374
HKARVLAEAMS



(358-368)




398-407
KCFNCGKEGH



(391-400)




439-447
NFLGKIWPS



(432-440)




449-457
KGRPGNFLQ



(442-450)






Pol
57-65
PQITLWQRP



77-90
EALLDTGADDTVLE



100-109
PKMIGGIGGF



103-112
IGGIGGFIKV



150-174
GCTLNFPISPIETVPVKLKPGMDGP



176-189
VKQWPLTEEKIKAL



204-214
KIGPENPYNTP



226-237
WRKLVDFRELNK



239-257
TQDFWEVQLGIPHPAGLKK



259-272
KSVTVLDVGDAYFS



279-289
FRKYTAFTIPS



291-316
NNETPGIRYQYNVLPQGWKGSPAIFQ



340-350
DDLYVGSDLEI



375-399
KHQKEPPFLWMGYELHPDKWTVQPI



406-426
SWTVNDIQKLVGKLNWASQIY



453-471
EAELELAENREILKEPVHG



716-724
FLDGIDKAQ



755-764
CDKCQLKGEA



766-786
HGQVDCSPGIWQLDCTHLEGK



788-798
ILVAVHVASGY



800-814
EAEVIPAETGQETAY



817-826
LKLAGRWPVK



841-850
VKAACWWAGI



852-870
QEFGIPYNPQSQGVVESMN



872-881
ELKKIIGQVR



883-902
QAEHLKTAVQMAVFIHNFKR



904-915
GGIGGYSAGERI



934-944
KIQNFRVYYRD



938-946
FRVYYRDSR



950-970
WKGPAKLLWKGEGAVVIQDNS





Vif
52-60
SSEVHIPLG



138-150
GHNKVGSLQYLAL





Vpr
 5-14
PEDQGPQREP





Tat
43-52
LGISYGRKKR



47-56
YGRKKRRQRR





Vpu
48-57
ERAEDSGNES





Env
33-44
LWVTVYYGVPVW



(34-45)




50-58
TLFCASDAK



(51-59)




65-76
HNVWATHACVPT



(66-77)




114-128
SLKPCVKLTPLCVTL



(115-129)




263-273
NVSTVQCTHGI



(241-251)




275-289
PVVSTQLLLNGSLAE



(253-267)




505-517
DNWRSELYKYKVV



(477-489)




550-563
GFLGAAGSTMGAAS



(521-534)




573-581
LLSGIVQQQ



(544-552)




595-606
LQLTVWGIKQLQ



(566-577)




625-635
WGCSGKLICTT



(596-606)






Nef
80-88
PQVPLRPMT



(72-80)




129-140
FPDWQNYTPGPG



(121-132)






a Start and end alignment positions. Such positions corresponding to the HXB2 reference sequences are indicated in the brackets, only if they differ from the alignment positions. These differences are due to insertions and deletions in the protein alignment.




b Sequences of 9 or more amino acids formed by one or by joining more than two contiguous nonamers that have primary clade B nonamer percentage incidence(s) of more than 80% and less than 10% representation of the primary variant in the Glade B and C protein alignments, respectively. Sequences with less than 100 nonamers in at that given nonamer position will be ignored. SEQ ID NOs for each peptide are identified in Table 5 and corresponding nonamers in Table 6.







Example 8
Close Correspondence of Clade B Conserved Sequences of Reported Epitopes

A search of the HIV Molecular Immunology Database revealed that of the 78 highly conserved HIV-1 clade B sequences, 39 matched at least nine consecutive amino acids of reported human T-cell epitopes (Table 8). These epitopes were restricted by 68 HLAs of class I alleles and 34 class II, with several promiscuous to multiple HLA alleles (HLA-supertype restricted). Twenty-one of the 39 matched conserved sequences contained the full epitope sequences. Additionally, seven of the highly conserved clade B sequences shared at least nine amino acids of Elispot positive peptides HLA-DR4 transgenic mice (Table 8) (Simon et al., 2010).









TABLE 8







Correlation of reported human T-cell epitopes and HLA-DR4 transgenic


mouse epitope peptides to highly conserved HIV-1 clade B and bi-clade sequences.


SEQ ID NOs: 1141-1272, in the order as shown for the reported T-cell epitope peptides.














Reported Epitopes
Record












Protein
Position a
Highly conserved sequences b
Sequences c
HLA
number/Ref





Gag
16-25
WEKIRLRPGG

EKIRLRPGGKKKYKL(B)

DQB1*0301,
201064






DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102




35-45
VWASRELERFA
YKLKHIVWASRELER(B)
DQB1*0301,
201065






DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102






HIVWASRELERFAVN(B)
DQB1*0301,
201066






DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102






LVWASRELERF(C)
A*3002,
53056,






B*5703
53958






WASRELERF
(B)

B*3501
55, 1200






ASRELERFAVNPGLL(B)

DRB*0101,
201008,






DRB*0401,
(Simon et






DRB1*0401,
al., 2010)






DRB1*0405,







DRB1*0701,







DRB1*1302,







DRB1*1501




135-143
SQNYPIVQN

SQNYPIVQNIQ(B)

A*2402
53592



(129-137)







154-164
SPRTLNAWVKV

SPRTLNAWV
(B)

B*8101
146,148



(148-158)









ISPRTLNAWV(C)
B*5702,
56469






B*5703




166-178
EEKAFSPEVIPMF

EEKAFSPEV
(A,B,C,D)

B*4501,
53305,



(160-172)


B*4415,
200518,






DRB1*0101,
52248,






DRB1*1501,
55862






DRB1*0101






TLNAWVKVVEEKAFSPEVIP(B)
DRB1*0405,
201112






DRB1*0701,







DRB1*1302,







DRB1*1503,







DRB1*0701,







DRB1*1601







EKAFSPEVIPMFSALSEGAT(B)

DRB1*0701,
201124






DRB1*1601







EKAFSPEVIPMFSAL(B)

DRB*0401
(Simon et







al., 2010)






KAFSPEVIPMF
(B,C)

A*3402,
162, 163,






A*7401,
165, 1976,






A*0201,
52082,






B*0801,
52086,






B*5701,
52191,






B*5703,
1976,






B*5801,
52082,






Cw*0302,
52086,






Cw*0701
52191,







52622,







52760,







52844,







55001,







55092,







55766,







55670,







53635,







54625,







56751,







53921





IEEKAFSPEVI(C)
B*4501
53964






FSPEVIPMF
(B,C)

A*8001
53665



180-208
ALSEGATPQDLNTMLNTVG
SALSEGATPQDLNMMLNIVG(A)
B*8101
178



(174-202)
GHQAAMQMLK








MFSALSEGATPQDLNTMLNT(B)
DRB1*1302,
201113






DRB1*1503






IPMFSALSEGATPQD(B)
DRB*0401
(Simon et







al., 2010)






PQDLNTMLNTVGGHQ
(B)

DRB1*1302,
201114






DRB1*1503







LSEGATPQDL
(B)

A*2902,
53232






B*0801,







B*4403







ATPQDLNTMLNT
(C)

B*5802
55681






TPQDLNTML
(A,B,C,D)

A*3001,
186, 1149,






A*3303,
1156,






A*3402,
1977,






A*7401,
56243,






B*0702,
53058,






B*3910,
53300,






B*4201,
53922,






B*5301,
53923,






B*8101,
53966,






Cw*0401,
53967,






Cw*0802
54593,







54610,







54611,







54612,







54613,







54622,







55674,







56576






PQDLNTMLN
(B)

A*6801
55557






DLNTMLNIV
(B)

B*1402
196






GHQAAMQML
(B,C)

B*3901,
201,






B*1510
53334,







53968



210-220
TINEEAAEWDR
ETINEEAAEWDRVHPVHA(B)
DRB1*0101,
200511



(204-214)


DRB1*1501,







DRB1*0101






LKETINEEAAEWDRVHPVHA(B)
DRB1*1302,
201119






DRB1*1503,







DRB1*0405,







DRB1*0701






LKDTINEEAAEWDRLHPV(C)
A*6801
53969





DTINEEAAEW(B)
B*5301
2005





ETINEEAAEW(B)
A*0201,
2006,






A*2501,
54147,






A*3002,
54921






B*0702,







B*1801,







B*5101,







B*5301,







Cw*0102,







Cw*1203






ETINEEAAEWDRVHPVHAGPIA(B)
DRB1*0101,
200521






DRB1*1501,







DRB1*0101







INEEAAEWDRV(B)

DRB1*0101
201058



231-253
PGQMREPRGSDIAGTTSTL

GSDIAGTTSTQEQI(B)

DQB1*0301,
201068



(225-247)
QEQI

DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102







GSDIAGTTSTLQEQI
(B)

DRB*0401
(Simon et







al., 2010)






PRGSDIAGTTSTLQEQIGWM(B)

DRB1*1302,
201116






DRB1*1503,







DRB1*0405,







DRB1*0701,







DRB1*0301,







DRB1*0401






GPIAPGQMREPRGSDIAGTT(B)
DRB1*0301,
201121






DRB1*0401







GQMREPRGSDI
(B,C)

A*0301,
54585






A*3001,







B*1301,







B*1402,







Cw*0602,







Cw*0802






HAGPIAPGQMREPRG(B)
B*3501,
55285






A*0201




259-269
NPPIPVGEIYK
TNNPPIPVGEIYKRWIILGL(B)
DRB1*0503,
201122



(253-263)


DRB1*1302







PPIPVGEIY
(B)

B7 Supertype
52963



275-285
GLNKIVRMYSP

GLNKIVRMYSPTSIL(B)

DRB*0401
(Simon et



(269-279)



al., 2010)





WIILGLNKIVRMYSPTSI(B)
DRB1*0101,
201036






DRB1*0401,







DRB1*0405,







DRB1*0701,







DRB1*1101,







DRB1*1302,







DRB1*1501,







DRB5*0101






ILGLNKIVRMY(B)
DRB1*0401,
201043,






DRB1*1302,
52952






DRB1*1501,







B7 Supertype







GLNKIVRMYSPTSIL(B)

DQB1*0301,
201070






DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102






WIILGLNKIVRMYSP(B)
DQB1*0602,
201076






DQB1*0604,







DRB1*1302,







DRB1*1501,







DRB3*0301,







DRB5*0101,







DQB1*0301,







DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102






IYKRWIILGLNKIVRMYSPT(B)
DRB1*0503,
201123






DRB1*1302







NKIVRMYSPTSILDIRQGPK(B)

DRB1*0701,
201125






DRB1*1601






KRWIILGLNKIVRMYSPTSI(B)
DRB1*0101,
201134






DRB1*0301,







DRB1*0401,







DRB1*0405,







DRB1*0701,







DRB1*1101,







DRB1*1302







GLNKIVRMY
(B)

A*1103,
302, 53245






B*1501,







A*2402,







B*1402,







B*1501,







Cw*0802







NKIVRMYSPVSILDI(A,AG)

DPA*0201,
55892






DPB1*0101,







DPB1*1301,







DRB1*1301




293-315
QGPKEPFRDYVDRFYKTLR
SILDIKQGPKEPFRD(A,B)
A*0308,
55898,



(287-309)
AEQA

DPA*0103,
(Simon et






DRB*0401
al., 2010)





RQGPKEPFRDYVDRF(A,AG,B)
DPA*0201,
55895






DPB1*0101,







DPB1*1301,







DRB1*1301







PKEPFRDYV
(B)

DRB1*0101,
200515






DRB1*1501







EPFRDYVDRFYKTLRAEQAS(B)

DRB1*1302,
201117,






DRB1*1503,
201118






DRB1*0405,







DRB1*0701,







DRB1*1601,







DRB1*0301,







DRB1*0401







EPFRDYVDRF
(B,D)

A*0201
54148,







55882






FRDYVDRFYK
(B,D)

B*1801,
309, 310






A*0201,







A*2501,







B*1801,







B*5101,







Cw*0102,







Cw*1203







FRDYVDRFYKTLRAE
(A,D)

A*0101,
53615






A*7401,







B*5801







RDYVDRFYKTL
(B)

B*4402
315






DYVDRFYKTLR
(B)

A*3303
52723






DYVDRFYKT
(B)

A*1103,
53246






A*2402,







B*1402,







B*1501,







Cw*0802







YVDRFYKTLRAEQASQEV(B)

DRB1*0101,
201007






DRB1*0401,







DRB1*0405,







DRB1*0701,







DRB1*1101,







DRB1*1302,







DRB1*1501,







DRB5*0101







YVDRFYKTL
(B)

A*0207
52330






VDRFYKTLRAEQASQ(B)

DQB1*0602,
201077






DQB1*0604,







DRB1*1302,







DRB1*1501,







DRB3*0301,







DRB5*0101,







DQB1*0301,







DQB1*0601,







DRB1*1303,







DRB1*1502,







DRB3*0101,







DRB5*0102,







DQB1*0301,







DRB1*0401,







DRB1*1101,







DRB3*0202,







DRB4*0103,







DQB1*0202,







DQB1*0602,







DRB1*0701,







DRB1*1501,







DRB4*0103,







DRB5*0101







DRFYKTLRA
(B)

B*1402,
324, 328,






Cw*0702,
52623






Cw*0802







DRFYKTLRAEQ
(B)

A*2902,
53222






B*1402,







Cw*0802







RFYKTLRAEQAS(B)

DRB1*0101,
201042






DRB1*0401,







DRB1*0405,







DRB1*0701,







DRB1*1101,







DRB1*1501,







DRB5*0101







FYKTLRAEQASQE(B)

DRB1*0101,
201044






DRB1*0401,







DRB1*0405,







DRB1*1101,







DRB1*1501,







DRB5*0101







FYKTLRAEQASQ(B)

DRB1*0101,
201045






DRB1*0401,







DRB1*1101,







DRB5*0101







YKTLRAEQA
(B)

DRB1*0101
201046






YKTLRAEQASQ(B)

DRB1*1302
201060



319-345
VKNWMTETLLVQNANPDCK

DCKTILKAL
(B)

B*0801
353



(313-339)
TILKALGP








MTDTLLVQNANPDCKTIL(C)
B*0801
53979






VKNWMTETLLVQNAN
(B)

DRB*0401
(Simon et







al., 2010)






VKNWMTETLL
(B)

A*6801
55568






NANPDCKTILRAL(C)

B*3910
56477



398-407
KCFNCGKEGH
GNFRNQRKIVKCFNCGKEGH(B)
DRB1*0101,
200513



(391-400)


DRB1*1501,







DRB1*1501




439-447
NFLGKIWPS
RQANFLGKIWPSHKGR(B)
DR01*0401,
201011



(432-440)


DRB1*0101,







DRB1*0405,







DRB1*1101,







DRB1*1302,







DRB1*1501,







DRB5*0101






Pol
100-109
PKMIGGIGGF

KMIGGIGGFI(B)

A*0201
53441



150-174
GCTLNFPISPIETVPVKLK

FPISPIETVP
(B)

A*0206,
55524




PGMDGP

B*4801,







B*5401







FPISPIETV
(B)

B*5401
55527






PISPIETVPVKLKPGM(
C)

B*3910
53990






SPIETVPVKL©

B*8101
53931,







54623,







56487



176-189
VKQWPLTEEKIKAL
GMDGPKVKQWPLTEEKIK(C)
B*4202
53991



239-257
TQDFWEVQLGIPHPAGLKK

FWEVQLGIPHPAGLKKKK(C)

A*6801
53993



259-272
KSVTVLDVGDAYFS

TVLDVGDAY
(B)

A*0201,
53604






A*0301,







B*3501






KKKSVTVLDVGDAYFSV(C)
Cw*0401
53994



291-316
NNETPGIRYQYNVLPQGWK

NNETPGIRY
(C)

B*1801
56489




GSPAIFQ









LPQGWKGSPAI
(C)

B*3910
53999






LPQGWKGSPA
(B)

B*5401
55528



375_399
KHQKEPPFLWMGYELHPDK
DKKHQKEPPFLWMGYELH(C)
B*1510
54004




WTVQP I






401-426
LPEKDSWTVNDIQKLVGKL
TVQPIQLPEKDSWTVNDI(C)
B*5301
54005




NWASQIY









EKDSWTVNDIQKLVGKL
(C)

A*0205
54006






KLVGKLNWA
(A,B,C,D)

A2 Supertype
56508






KLNWASQIY
(B,C)

A*3002
53329,







54007



453-471
EAELELAENREILKEPVHG

ELAENREILKEPVHGVYY(C)

Cw*0202
54009



750-758
EIVASCDKC
PPIVAKEIVASCDKCQLK(C)
B*8101
54029






EIVASCDKCQL(C)

B*4201
56501



788-815
ILVAVHVASGYIEAEVIPA
GKIILVAVHVASGYI(B)
DRB1*0101,
201138




ETGQETAYF

DRB1*0401,







DRB1*0405,







DRB1*0701,







DRB1*1101,







DRB1*1302,







DRB1*1501,







DRB5*0101







PAETGQETAYFILKLAGR(C)

A*6802
54031






HVASGYIEA
(B)

B*5401
55529






AETGQETAYY(C)

B*4403
56503



817-826
LKLAGRWPVK
ILKLAGRWPVK(C)
A*0301
53941



844-870
ACWWAGIKQEFGIPYNPQS
IQQEFGIPYNPQ(C)
B*1503
56505




QGVVESMN









IPYNPQSQGVV
(A,B,C,D)

B7 Supertype
56525



876-915
IIGQVRDQAEHLKTAVQMA

QVRDQAEHL
(C)

A*0205
54034




VFIHNFKRKGGIGGYSAGE







RI









QMAVFIHNFK
(A,B,C,D)

A3 Supertype
56513






AVFIHNFKRK
(B,CRF01_AE)

A*1101
1192,







52101






FKRKGGIGGY
(B,C)

B*1503
53291,







53943,







54184,







56506,







55076






RKGGIGGYSAGERIVDII(B)

A*0101,
201257






A*0201,







B*4001,







Cw*0304,







DRB1*0801,







DRB1*1301




934-944
KIQNFRVYYRD

KIQNFRVYY
(B,C)

A*2501,
1966,






A*3001,
53284,






A*0205,
54605,






A*3002,
54927,






B*0702,
54954






B*1402,







B*1801,







B*4201,







B*4202,







B*4403,







B*4426,







B*4430,







B*5301,







Cw*0401,







Cw*0802






TKIQNFRVYY(B,C)
B*1503
55073






KIQNFRVYYR
(A,B,C,D)

A*3303, A3
52721,






Supertype
56514



948-970
PLWKGPAKLLWKGEGAVVI

LWKGEGAVVIQDNSDIKV(B)

A*0101,
201259




QDNS

A*0201,







B*4001,







Cw*0304,







DRB1*0801,







DRB1*1301






Vpr
18-27
WTLELLEELK
GPQREPYNEWTLELLEEL(C)
Cw*0704
54044





Tat
43-57
LGISYGRKKRRQRRR
KALGISYGRKKRRQR(B)
DRB1*0404,
201266






DRB1*0701,







DRB1*0101,







DRB1*1302,







DRB1*1101,







DRB1*1104,







DRB1*0301,







DRB1*1501,







DRB1*1301,







DRB1*1501,







DRB1*0701,







DRB1*0901,







DRB1*1101,







DRB1*1301,







DRB1*1301,







DRB1*1501






Vpu
48-57
ERAEDSGNES

ERAEDSGNESEGDTEELSA(C)

A*2301,
56262






A*2902,







B*4101,







B*4201,







Cw*1701






Env
33-58
LWVTVYYGVPVWKEATTTL
KLWVTVYYGV(B)
A*0201,
628, 55290



(34-59)
FCASDAK

B*3501







LWVTVYYGV
(B)

A*0201
52703






LWVTVYYGVPVWKEATTTLFCA
(B)

B*3501,
55287






A*0201







TVYYGVPVWK
(A,B,C,D)

A*0301
631, 633,







634, 1119,







1120,







52432,







55150






TVYYGVPVW
(A,B,C,D)

A*2902,
53812






A*2902,







B*1503,







B*1801,







Cw*0202,







Cw*1203,







A*3001,







A*6601,







B*5703,







B*5801,







Cw*0401,







Cw*1801







TVYYGVPVWKEAKTTLF(C)

A*4301,
54053,






A*3201,
54055,






B*5801
54056






VTVYYGVPVWK
(A,B,C,D)

A3 Supertype
56515






TTLFCASDAK
(A,B,C,D)

A3 Supertype
56519



114-128
SLKPCVKLTPLCVTL

KLTPLCVTL
(A,B,C,D)

A*0201, A2
671, 56509



(115-129)


Supertype




707-715
WLWYIKIFI

WLWYIKIFI(B)

A*0201,
854, 55295



(678-686)


B*3501






Nef
80-88
PQVPLRPMT
TPQVPLRPMTY(B)
B7 Supertype
52960



(72-80)









FPVRPQVPLRPMTYK(B)
B*1503
54442





PVRPQVPLRPMTYKA(B)
A*0201,
55317






B*3501




129-140
FPDWQNYTPGPG

FPDWQNYTP(B)

B*5401
55530



(121-132)







147-155
FGWCFKLVP
GIRYPLTFGWCFKLVP(B)
A*6801
55537



(139-147)






a Start and end positions. Cross reference to the alignments positions are made with the HXB2 reference sequences and the HXB2 positions might be different from the reference HXB2 sequences due to insertions. and deletions in the protein alignments. HXB2 sequence positions differing from the protein alignment positions are shown within brackets.




b Highly conserved clade B sequences. SEQ ID NOs for each peptide are identified in Table 5 and for the corresponding nonamers in Table 6.




c Epitope sequences matching nine or more amino acids of the highly conserved HIV-1 clade B sequence are underlined. The clades that the epitopes are restricted to are shown in the brackets.







REFERENCES

The disclosure of each reference cited is expressly incorporated herein.

  • Abram, M. E., Ferris, A. L., Shao, W., Alvord, W. G. and Hughes, S. H. (2010). Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication, J Virol, 84, 9864-78.
  • Allen, T. M., Altfeld, M., Geer, S. C., Kalife, E. T., Moore, C., O'Sullivan K, M., Desouza, I., Feeney, M. E., Eldridge, R. L., Maier, E. L., Kaufmann, D. E., Lahaie, M. P., Reyor, L., Tanzi, G., Johnston, M. N., Brander, C., Draenert, R., Rockstroh, J. K., Jessen, H., Rosenberg, E. S., Mallal, S. A. and Walker, B. D. (2005). Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution, J Virol, 79, 13239-49.
  • Allen, T. M., Altfeld, M., Yu, X. G., O'Sullivan, K. M., Lichterfeld, M., Le Gall, S., John, M., Mothe, B. R., Lee, P. K., Kalife, E. T., Cohen, D. E., Freedberg, K. A., Strick, D. A., Johnston, M. N., Sette, A., Rosenberg, E. S., Mallal, S. A., Goulder, P. J., Brander, C. and Walker, B. D. (2004). Selection, transmission, and reversion of an antigen-processing cytotoxic T-lymphocyte escape mutation in human immunodeficiency virus type 1 infection, J Virol, 78, 7069-78.
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool, J Mol Biol, 215, 403-10.
  • Brumme, Z. L., John, M., Carlson, J. M., Brumme, C. J., Chan, D., Brockman, M. A., Swenson, L. C., Tao, I., Szeto, S., Rosato, P., Sela, J., Kadie, C. M., Frahm, N., Brander, C., Haas, D. W., Riddler, S. A., Haubrich, R., Walker, B. D., Harrigan, P. R., Heckerman, D. and Mallal, S. (2009). HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins, PLoS One, 4, e6687.
  • Brumme, Z. L. and Walker, B. D. (2009). Tracking the culprit: HIV-1 evolution and immune selection revealed by single-genome amplification, J Exp Med, 206, 1215-8.
  • Draenert, R., Le Gall, S., Pfafferott, K. J., Leslie, A. J., Chetty, P., Brander, C., Holmes, E. C., Chang, S. C., Feeney, M. E., Addo, M. M., Ruiz, L., Ramduth, D., Jeena, P., Altfeld, M., Thomas, S., Tang, Y., Verrill, C. L., Dixon, C., Prado, J. G., Kiepiela, P., Martinez-Picado, J., Walker, B. D. and Goulder, P. J. (2004). Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection, J Exp Med, 199, 905-15.
  • Eigen, M. (1993). Viral quasispecies, Sci Am, 269, 42-9.
  • Gotch, F. (1998). Cross-clade T cell recognition of HIV.1, Curr Opin Immunol, 10, 388-92.
  • Goulder, P. J. and Watkins, D. I. (2004). HIV and SIV CTL escape: implications for vaccine design, Nat Rev Immunol, 4, 630-40.
  • Jetzt, A. E., Yu, H., Klarmann, G. J., Ron, Y., Preston, B. D. and Dougherty, J. P. (2000). High rate of recombination throughout the human immunodeficiency virus type 1 genome, J Virol, 74, 1234-40.
  • Jones, R. B., Yue, F. Y., Gu, X. X., Hunter, D. V., Mujib, S., Gyenes, G., Mason, R. D., Mohamed, R., MacDonald, K. S., Kovacs, C. and Ostrowski, M. A. (2009). Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations, J Virol, 83, 8722-32.
  • Kelleher, A. D., Long, C., Holmes, E. C., Allen, R. L., Wilson, J., Conlon, C., Workman, C., Shaunak, S., Olson, K., Goulder, P., Brander, C., Ogg, G., Sullivan, J. S., Dyer, W., Jones, I., McMichael, A. J., Rowland-Jones, S. and Phillips, R. E. (2001). Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses, J Exp Med, 193, 375-86.
  • Khan, A. M., Miotto, O., Nascimento, E. J., Srinivasan, K. N., Heiny, A. T., Zhang, G. L., Marques, E. T., Tan, T. W., Brusic, V., Salmon, J. and August, J. T. (2008). Conservation and variability of dengue virus proteins: implications for vaccine design, PLoS Negl Trop Dis, 2, e272.
  • Korber, B. T., Letvin, N. L. and Haynes, B. F. (2009). T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces, J Virol, 83, 8300-14.
  • Leslie, A. J., Pfafferott, K. J., Chetty, P., Draenert, R., Addo, M. M., Feeney, M., Tang, Y., Holmes, E. C., Allen, T., Prado, J. G., Altfeld, M., Brander, C., Dixon, C., Ramduth, D., Jeena, P., Thomas, S. A., St John, A., Roach, T. A., Kupfer, B., Luzzi, G., Edwards, A., Taylor, G., Lyall, H., Tudor-Williams, G., Novelli, V., Martinez-Picado, J., Kiepiela, P., Walker, B. D. and Goulder, P. J. (2004). HIV evolution: CTL escape mutation and reversion after transmission, Nat Med, 10, 282-9.
  • Letourneau, S., Im, E. J., Mashishi, T., Brereton, C., Bridgeman, A., Yang, H., Dorrell, L., Dong, T., Korber, B., McMichael, A. J. and Hanke, T. (2007). Design and pre-clinical evaluation of a universal HIV-1 vaccine, PLoS One, 2, e984.
  • Liang, B., Luo, M., Ball, T. B., Yao, X., Van Domselaar, G., Cuff, W. R., Cheang, M., Jones, S. J. and Plummer, F. A. (2008). Systematic analysis of host immunological pressure on the envelope gene of human immunodeficiency virus type 1 by an immunobioinformatics approach, Curr HIV Res, 6, 370-9.
  • McMichael, A. J., Borrow, P., Tomaras, G. D., Goonetilleke, N. and Haynes, B. F. (2010). The immune response during acute HIV-1 infection: clues for vaccine development, Nat Rev Immunol, 10, 11-23.
  • Miotto, 0., Heiny, A., Tan, T. W., August, J. T. and Brusic, V. (2008). Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis, BMC Bioinformatics, 9 Suppl 1, S18.
  • Okazaki, T., Pendleton, C. D., Lemonnier, F. and Berzofsky, J. A. (2003). Epitope-enhanced conserved HIV-1 peptide protects HLA-A2-transgenic mice against virus expressing HIV-1 antigen, J Immunol, 171, 2548-55.
  • Pei, J., Kim, B. H. and Grishin, N. V. (2008). PROMALS3D: a tool for multiple protein sequence and structure alignments, Nucleic Acids Res, 36, 2295-300.
  • Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. and Ho, D. D. (1996). HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-6.
  • Pereyra, F., Jia, X., McLaren, P. J., Telenti, A., de Bakker, P. I., Walker, B. D., Ripke, S., Brumme, C. J., Pulit, S. L., Carrington, M., Kadie, C. M., Carlson, J. M., Heckerman, D., Graham, R. R., Plenge, R. M., Deeks, S. G., Gianniny, L., Crawford, G., Sullivan, J., Gonzalez, E., Davies, L., Camargo, A., Moore, J. M., Beattie, N., Gupta, S., Crenshaw, A., Burtt, N. P., Guiducci, C., Gupta, N., Gao, X., Qi, Y., Yuki, Y., Piechocka-Trocha, A., Cutrell, E., Rosenberg, R., Moss, K. L., Lemay, P., O'Leary, J., Schaefer, T., Verma, P., Toth, I., Block, B., Baker, B., Rothchild, A., Lian, J., Proudfoot, J., Alvino, D. M., Vine, S., Addo, M. M., Allen, T. M., Altfeld, M., Henn, M. R., Le Gall, S., Streeck, H., Haas, D. W., Kuritzkes, D. R., Robbins, G. K., Shafer, R. W., Gulick, R. M., Shikuma, C. M., Haubrich, R., Riddler, S., Sax, P. E., Daar, E. S., Ribaudo, H. J., Agan, B., Agarwal, S., Ahern, R. L., Allen, B. L., Altidor, S., Altschuler, E. L., Ambardar, S., Anastos, K., Anderson, B., Anderson, V., Andrady, U., Antoniskis, D., Bangsberg, D., Barbaro, D., Barrie, W., Bartczak, J., Barton, S., Basden, P., Basgoz, N., Bazner, S., Bellos, N. C., Benson, A. M., Berger, J., Bernard, N. F., Bernard, A. M., Birch, C., Bodner, S. J., Bolan, R. K., Boudreaux, E. T., Bradley, M., Braun, J. F., Brndjar, J. E., Brown, S. J., Brown, K., Brown, S. T., Burack, J., Bush, L. M., Cafaro, V., Campbell, O., Campbell, J., Carlson, R. H., Carmichael, J. K., Casey, K. K., Cavacuiti, C., Celestin, G., Chambers, S. T., Chez, N., Chirch, L. M., Cimoch, P. J., Cohen, D., Cohn, L. E., Conway, B., Cooper, D. A., Cornelson, B., Cox, D. T., Cristofano, M. V., Cuchural, G., Jr., Czartoski, J. L., Dahman, J. M., Daly, J. S., Davis, B. T., Davis, K., Davod, S. M., DeJesus, E., Dietz, C. A., Dunham, E., Dunn, M. E., Ellerin, T. B., Eron, J. J., Fangman, J. J., Farel, C. E., Ferlazzo, H., Fidler, S., Fleenor-Ford, A., Frankel, R., Freedberg, K. A., French, N. K., Fuchs, J. D., Fuller, J. D., Gaberman, J., Gallant, J. E., Gandhi, R. T., Garcia, E., Garmon, D., Gathe, J. C., Jr., Gaultier, C. R., Gebre, W., Gilman, F. D., Gilson, I., Goepfert, P. A., Gottlieb, M. S., Goulston, C., Groger, R. K., Gurley, T. D., Haber, S., Hardwicke, R., Hardy, W. D., Harrigan, P. R., Hawkins, T. N., Heath, S., Hecht, F. M., Henry, W. K., Hladek, M., Hoffman, R. P., Horton, J. M., Hsu, R. K., Huhn, G. D., Hunt, P., Hupert, M. J., Illeman, M. L., Jaeger, H., Jellinger, R. M., John, M., Johnson, J. A., Johnson, K. L., Johnson, H., Johnson, K., Joly, J., Jordan, W. C., Kauffman, C. A., Khanlou, H., Killian, R. K., Kim, A. Y., Kim, D. D., Kinder, C. A., Kirchner, J. T., Kogelman, L., Kojic, E. M., Korthuis, P. T., Kurisu, W., Kwon, D. S., LaMar, M., Lampiris, H., Lanzafame, M., Lederman, M. M., Lee, D. M., Lee, J. M., Lee, M. J., Lee, E. T., Lemoine, J., Levy, J. A., Llibre, J. M., Liguori, M. A., Little, S. J., Liu, A. Y., Lopez, A. J., Loutfy, M. R., Loy, D., Mohammed, D. Y., Man, A., Mansour, M. K., Marconi, V. C., Markowitz, M., Marques, R., Martin, J. N., Martin, H. L., Jr., Mayer, K. H., McElrath, M. J., McGhee, T. A., McGovern, B. H., McGowan, K., McIntyre, D., McLeod, G. X., Menezes, P., Mesa, G., Metroka, C. E., Meyer-Olson, D., Miller, A. O., Montgomery, K., Mounzer, K. C., Nagami, E. H., Nagin, I., Nahass, R. G., Nelson, M. O., Nielsen, C., Norene, D. L., O'Connor, D. H., Ojikutu, B. O., Okulicz, J., Oladehin, O. O., Oldfield, E. C., 3rd, Olender, S. A., Ostrowski, M., Owen, W. F., Jr., Pae, E., Parsonnet, J., Pavlatos, A. M., Perlmutter, A. M., Pierce, M. N., Pincus, J. M., Pisani, L., Price, L. J., Proia, L., Prokesch, R. C., Pujet, H. C., Ramgopal, M., Rathod, A., Rausch, M., Ravishankar, J., Rhame, F. S., Richards, C. S., Richman, D. D., Rodes, B., Rodriguez, M., Rose, R. C., 3rd, Rosenberg, E. S., Rosenthal, D., Ross, P. E., Rubin, D. S., Rumbaugh, E., Saenz, L., Salvaggio, M. R., Sanchez, W. C., Sanjana, V. M., Santiago, S., Schmidt, W., Schuitemaker, H., Sestak, P. M., Shalit, P., Shay, W., Shirvani, V. N., Silebi, V. I., Sizemore, J. M., Jr., Skolnik, P. R., Sokol-Anderson, M., Sosman, J. M., Stabile, P., Stapleton, J. T., Starrett, S., Stein, F., Stellbrink, H. J., Sterman, F. L., Stone, V. E., Stone, D. R., Tambussi, G., Taplitz, R. A., Tedaldi, E. M., Theisen, W., Torres, R., Tosiello, L., Tremblay, C., Tribble, M. A., Trinh, P. D., Tsao, A., Ueda, P., Vaccaro, A., Valadas, E., Vanig, T. J., Vecino, I., Vega, V. M., Veikley, W., Wade, B. H., Walworth, C., Wanidworanun, C., Ward, D. J., Warner, D. A., Weber, R. D., Webster, D., Weis, S., Wheeler, D. A., White, D. J., Wilkins, E., Winston, A., Wlodaver, C. G., van't Wout, A., Wright, D. P., Yang, O. O., Yurdin, D. L., Zabukovic, B. W., Zachary, K. C., Zeeman, B. and Zhao, M. (2010). The major genetic determinants of HIV-1 control affect HLA class I peptide presentation, Science, 330, 1551-7.
  • R_Development_Core_Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Rammensee, H. G. (1995). Chemistry of peptides associated with MHC class I and class II molecules, Curr Opin Immunol, 7, 85-96.
  • Rychert, J., Saindon, S., Placek, S., Daskalakis, D. and Rosenberg, E. (2007). Sequence variation occurs in CD4 epitopes during early HIV infection, J Acquir Immune Defic Syndr, 46, 261-7.
  • Salazar-Gonzalez, J. F., Salazar, M. G., Keele, B. F., Learn, G. H., Giorgi, E. E., Li, H., Decker, J. M., Wang, S., Baalwa, J., Kraus, M. H., Parrish, N. F., Shaw, K. S., Guffey, M. B., Bar, K. J., Davis, K. L., Ochsenbauer-Jambor, C., Kappes, J. C., Saag, M. S., Cohen, M. S., Mulenga, J., Derdeyn, C. A., Allen, S., Hunter, E., Markowitz, M., Hraber, P., Perelson, A. S., Bhattacharya, T., Haynes, B. F., Korber, B. T., Hahn, B. H. and Shaw, G. M. (2009). Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection, J Exp Med, 206, 1273-89.
  • Shannon, C. E. (1948). A mathematical theory of communication, Bell System Technical Journal, 27, 379-423 and 623-656.
  • Simon, G. G., Hu, Y., Khan, A. M., Zhou, J., Salmon, J., Chikhlikar, P. R., Jung, K. O., Marques, E. T. and August, J. T. (2010). Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice, PLoS ONE, 5, e8574.
  • Sloan-Lancaster, J. and Allen, P. M. (1996). Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology, Annu Rev Immunol, 14, 1-27.
  • Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, 22, 4673-80.
  • Thompson, J. D., Thierry, J. C. and Poch, O. (2003). RASCAL: rapid scanning and correction of multiple sequence alignments, Bioinformatics, 19, 1155-61.
  • Troyer, R. M., McNevin, J., Liu, Y., Zhang, S. C., Krizan, R. W., Abraha, A., Tebit, D. M., Zhao, H., Avila, S., Lobritz, M. A., McElrath, M. J., Le Gall, S., Mullins, J. I. and Arts, E. J. (2009). Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response, PLoS Pathog, 5, e1000365.
  • Wang, Y. E., Li, B., Carlson, J. M., Streeck, H., Gladden, A. D., Goodman, R., Schneidewind, A., Power, K. A., Toth, I., Frahm, N., Alter, G., Brander, C., Carrington, M., Walker, B. D., Altfeld, M., Heckerman, D. and Allen, T. M. (2009). Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1, J Virol, 83, 1845-55.
  • Wickham, H. (2009) ggplot2: elegant graphics for data analysis. Springer New York.
  • Wilson, C. C., McKinney, D., Anders, M., MaWhinney, S., Forster, J., Crimi, C., Southwood, S., Sette, A., Chesnut, R., Newman, M. J. and Livingston, B. D. (2003). Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1, J Immunol, 171, 5611-23.
  • Yang, O. O. (2009). Candidate vaccine sequences to represent intra- and inter-clade HIV-1 variation, PLoS One, 4, e7388.
  • Yokomaku, Y., Miura, H., Tomiyama, H., Kawana-Tachikawa, A., Takiguchi, M., Kojima, A., Nagai, Y., Iwamoto, A., Matsuda, Z. and Ariyoshi, K. (2004). Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection, J Virol, 78, 1324-32.

Claims
  • 1. A polypeptide comprising: one or more discontinuous segments of HIV-1 clade B proteins, said segments comprising from 9 to 40 contiguous amino acid residues, wherein said segments comprise at least one nonamer, wherein each nonamer is represented in the NCBI Entrez protein database of HIV-1 clade B proteins as of August 2008 at a frequency of greater than 80% and for which the maximum representation of individual variants from the amino acid sequence of said segments is less than 10% in said database.
  • 2. The polypeptide of claim 1 comprising a segment of HIV-1 selected from the group consisting of: SEQ ID NO: 637-1140.
  • 3. The polypeptide of claim 1 comprising a segment of HIV-1 selected from the group consisting of SEQ ID NO: 55-132.
  • 4. The polypeptide of claim 1 which further comprises: (a) a LAMP-1 lumenal sequence comprising SEQ ID NO: 1273; and (b) a LAMP transmembrane and cytoplasmic tail comprising SEQ ID NO: 1274, wherein the lumenal sequence is amino-terminal to the one or more discontinuous segments which are amino-terminal to the LAMP transmembrane and cytoplasmic tail.
  • 5. The polypeptide of claim 1 wherein the maximum representation of individual variants from the amino acid sequence of said segments is less than 5% in said database.
  • 6. The polypeptide of claim 1 wherein the polypeptide comprises not more than one of said segments.
  • 7. The polypeptide of claim 1 wherein the polypeptide comprises a plurality of said segments.
  • 8. A polynucleotide encoding the polypeptide of claim 1 or 4.
  • 9. The polynucleotide of claim 8 wherein codons encoding the polypeptide are optimized according to most frequent human codon usage.
  • 10. The polynucleotide of claim 8 comprising SEQ ID NO: 1275 encoding the LAMP-1 lumenal sequence and SEQ ID NO: 1276 encoding the transmembrane and cytoplasmic tail of LAMP-1.
  • 11. A nucleic acid vector which comprises the polynucleotide of claim 8.
  • 12. The nucleic acid vector of claim 11 which is a DNA virus.
  • 13. The nucleic acid vector of claim 11 which is a RNA virus.
  • 14. The nucleic acid vector of claim 11 which is a plasmid.
  • 15. A host cell which comprises a nucleic acid vector of claim 11.
  • 16. The host cell of claim 15 which is an antigen presenting cell.
  • 17. The host cell of claim 15 which is a dendritic cell.
  • 18. A method of producing a polypeptide comprising, culturing a host cell according to claim 15 under conditions in which the host cell expresses the polypeptide.
  • 19. The method of claim 18 further comprising, harvesting the peptide from the culture medium or host cells.
  • 20. A method of producing a cellular vaccine comprising: transfecting antigen presenting cells with a nucleic acid vector according to claim 11, whereby the antigen presenting cells express the polypeptide.
  • 21. The method of claim 20 wherein the antigen presenting cells are dendritic cells.
  • 22. A method of making a vaccine, comprising: mixing together the polypeptide of claim 1 and an immune adjuvant.
  • 23. The method of claim 22 wherein the adjuvant is selected from the group consisting of alum, lecithin, squalene, Toll-like receptor (TLR) adaptor molecules, and combinations thereof.
  • 24. A vaccine composition comprising the polypeptide of claim 1 or 4.
  • 25. A method of immunizing a human or other animal subject, comprising: administering to the human or other animal subject a polypeptide of claim 1 or a nucleic acid vector according to claim 11 or a host cell according to claim 15, in an amount effective to elicit HIV-specific T-cell activation.
  • 26. The method of claim 25 further comprising administering to the subject a boost comprising the polypeptide of claim 1.
  • 27. The method of claim 25 further comprising administering an immune adjuvant to the subject.
  • 28. The method of claim 25 wherein the administration is oral, mucosal, nasal, intramuscular, intravenous, intradermal, intranasal, subcutaneous, or via electroporation.
  • 29. A method of identifying species of a primate lentivirus, comprising: hybridizing a polynucleotide according to claim 8 or its complement to genomic nucleic acid of the primate lentivirus or its complement, wherein hybridization of the genome or its complement to the polynucleotide or its complement identifies the lentivirus as HIV-1, as of clade B, as of biclade B and C, as of triclade A, B, and C, or as of pan-clade A, B, C and D.
  • 30. The method of claim 29 wherein the polynucleotide is from 15-120 nucleotides in length.
  • 31. A method of identifying a primate lentivirus, comprising: contacting an antibody which specifically binds to a polypeptide of claim 1 to proteins from a cell infected by the primate lentivirus, wherein specific binding of the antibody to the proteins indicates presence of the primate lentivirus.
  • 32. A method of identifying a primate lentivirus in a patient, comprising: contacting a polypeptide of claim 1 with a blood sample from the patient, wherein specific binding of the polypeptide to an antibody in the blood sample or to T cells in the blood sample indicates presence of the primate lentivirus.
Government Interests

This invention was made with funds from the U.S. government. Therefore the U.S. government retains certain rights in the invention according to the terms of grant no. R37 AI-041908.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US11/20122 1/4/2011 WO 00 10/17/2012
Provisional Applications (1)
Number Date Country
61292068 Jan 2010 US