In the appended drawings:
Generally stated, the present invention is concerned with a hybrid drive train provided with a central internal combustion engine (ICE) that conventionally supplies mechanical power to driving wheels of a vehicle. Each driving wheel is provided with a respective hub motor having a stator mounted to the vehicle and a rotor directly connected to the driving wheel. The interconnection between the ICE and the driving wheel is done via the rotor of the hub motor. For example, a cardan joint assembly is provided between the output shaft of the ICE and each rotor of the hub motors. Accordingly, when the hub motors are energized, the drive train is in a parallel hybrid mode where both the ICE and the hub motors contribute to the rotation of the wheel. The drive train may also be placed in a conventional mode where the hub motors are not energized and in a purely electric mode when the ICE is not running.
Turning now to
Turning now more specifically to
The driving wheel 16 includes a hub motor 24 provided with a stator 26 and a rotor 28. A coupling element 30 is mounted to the rotor 28 via fastening means in the form of fasteners 31 and supports a hub 32 to which a rim 34 is mounted. A tire 36 is mounted to the rim 34. Other fastening means, such as welding may also be used to secure the coupling element 31 to the rotor 28.
The hub motor 24 is of the external rotor type, i.e. the rotor 28 is concentric with the stator 26 but is externally mounted. A curved wall 46 joins the rotor 28 and the coupling element 30.
The coupling element 30 is in the form of an elongated body having a first interconnecting generally cylindrical portion 52 to snuggly complement the hub 32 and a second interconnecting portion 54 extending longitudinally from the first portion and including the spined aperture to receive the spined portion 40 of the shaft 42. The coupling element further includes a peripheral flange 56, extending from the second portion, to receive the fasteners 31. The hub motor 24 is also configured so as to include a recessed portion 58 for receiving part of the cardan joint assembly 20 so as to increase the interconnection between the cardan joint assembly 20 and the hub motor 24.
It is to be noted that the longitudinal position of the peripheral flange may vary.
The coupling element 30 may have other configuration allowing interconnecting the rotor 28 with the driving wheel 16, and for interconnecting the shaft 42 with both the rotor 28 and the driving wheel 16.
It is believed that the operation of electric motors in general and more specifically of hub motors are well known by those skilled in the art and will therefore not be further described herein.
The rotor 28 and stator 26 are covered by a casing 48 that encloses the motor 24 and also supports bearings 50.
Three operational driving mode of the parallel hybrid drive train 10 will now be described.
In a first conventional driving mode, the ICE 12 is energized, causes the rotation of the cardan joint assemblies 20 and 22 to thereby drive the driving wheels 16 and 18. While the drive train 10 is in this mode, the hub motors 24 (only one shown) are not energized and their respective rotors 28 (only one shown) are freewheeling.
In a second hybrid driving mode, the ICE 12 is energized, causes the rotation of the cardan joint assemblies 20 and 22 to thereby drive the driving wheels 16 and 18. While the drive train 10 is in this mode, the hub motors 24 (only one shown) are energized and their respective rotors 28 (only one shown) are rotated both via their direct connection to the cardan joint assembly 20 and by the electric current flowing through the stator 26. Accordingly, both the ICE 12 and the hub motors 24 are used to drive the driving wheels 16 and 18.
In a third electric driving mode, the ICE 12 is not energized. While the drive train 10 is in this mode, the hub motors 24 (only one shown) are energized and their respective rotors 28 (only one shown) are rotated via the electric current flowing through the stator 26.
It is also to be noted that even though an external rotor type hub motor has been illustrated as supplying electric power to the driving wheels, other types of motors such as, for example, more conventional internal rotor electric motor or other types of motor-wheel technologies could be used.
One skilled in the art will understand that the interconnection between the cardan joint assembly and the wheel could be different than the one illustrated without departing from the present invention. For example, the end of the cardan joint could be conventionally secured to the wheel via a fastener and the rotor of the motor could be associated with the wheel while the stator is associated with the chassis of the vehicle.
It is to be noted that even though the above description is concerned with a vehicle having two driving wheels, the present invention could be used with a vehicle having four driving wheels. The present invention can also be used without a cardan joint assembly, wherein, the coupling element directly receives the output shaft of an ICE. The present invention can also then be used in vehicle provided with a single hub motor.
The present invention is not limited to hybrid drive trains including an ICE. Any other type of engine can alternatively be provided to transfer power to the driving wheels in parallel to the hub motors.
It is finally to be noted that the coupling element 30 can be part of the hub motor 24, an extension of the cardan joint assembly, or simply an independent part of the hybrid drive train.
Although the present invention has been described hereinabove by way of preferred embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA05/01340 | 9/1/2005 | WO | 00 | 7/30/2007 |