The invention set forth in the appended claims relates generally to tissue treatment systems and more particularly, but without limitation, to a cover for use with treatment of a tissue site.
Clinical studies and practice have shown that reducing pressure in proximity to a tissue site can augment and accelerate growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but it has proven particularly advantageous for treating wounds. Regardless of the etiology of a wound, whether trauma, surgery, or another cause, proper care of the wound is important to the outcome. Treatment of wounds or other tissue with reduced pressure may be commonly referred to as “negative-pressure therapy,” but is also known by other names, including “negative-pressure wound therapy,” “reduced-pressure therapy,” “vacuum therapy,” “vacuum-assisted closure,” and “topical negative-pressure,” for example. Negative-pressure therapy may provide a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at a wound site. Together, these benefits can increase development of granulation tissue and reduce healing times.
While the clinical benefits of negative-pressure therapy are widely known, the cost and complexity of therapy can be a limiting factor in its application, and the development and operation of therapy systems, components, and processes continues to present significant benefits to healthcare providers and patients.
New and useful systems, apparatuses, and methods for providing a sealed environment for negative-pressure therapy are set forth in the appended claims. Illustrative embodiments are also provided to enable a person skilled in the art to make and use the claimed subject matter.
For example, in some embodiments, a method of manufacturing a sealing member is described. A first film layer and a second film layer each having a first side and a second side can be provided. A first adhesive can be coupled to the second side of the first film layer to form a first adhesive layer. A first side of the first adhesive layer can be coupled to the second side of the first film layer. A second adhesive can be coupled to the second side of the second film layer to form a second adhesive layer. A first side of the second adhesive layer can be coupled to the second side of the second film layer. One or more perforations can be formed through the second film layer and the second adhesive layer. The first side of the second film layer can be coupled to a second side of the first adhesive layer.
More generally, a cover for a dressing of a negative-pressure therapy system is described. A bonding adhesive can be coupled to a first side of a first elastomeric film to form a bonding adhesive layer having a first side adjacent to the first side of the first elastomeric film. A sealing adhesive can be coupled to a first side of a second elastomeric film to form a sealing adhesive layer having a first side adjacent to the first side of the second elastomeric film. One or more apertures may be formed through the second elastomeric film and the sealing adhesive layer; and a second side of the sealing adhesive layer can be coupled to a second side of the bonding adhesive layer.
Alternatively, other example embodiments may describe a sealing member having a first elastomeric film having a first side and a second side, a bonding adhesive layer coupled to the first elastomeric film, a second elastomeric film having a first side and a second side and coupled to the bonding adhesive layer, and a sealing adhesive layer coupled to the second elastomeric film. The sealing adhesive layer and the second elastomeric film may have a plurality of perforations extending through the second elastomeric film and the sealing adhesive layer. The sealing member may be formed by coupling a bonding adhesive to the second side of the first elastomeric film to form the bonding adhesive layer having a first side coupled to the second side of the first elastomeric film and a second side. A sealing adhesive may be coupled to the second side of the second elastomeric film to form the sealing adhesive layer having a first side coupled to the second side of the second elastomeric film and a second side. One or more perforations may be formed through the second elastomeric film and the sealing adhesive layer. The second side of the bonding adhesive layer may be positioned proximate to the first side of the second elastomeric film, and the first side of the second elastomeric film may be coupled to the second side of the bonding adhesive layer.
A tissue cover is also described herein. The tissue cover can include a first film layer having a first side and a second side, a first adhesive layer coupled to the first film layer, and a second adhesive layer coupled to the first adhesive, the second adhesive layer having a plurality of perforations extending through the second adhesive layer. The tissue cover can be formed by coupling a first adhesive to the second side of the first film layer to form the first adhesive layer having a first side adjacent to the second side of the first film layer. A second adhesive can be coupled to a second film layer to form the second adhesive layer having a first side adjacent to the second film layer. One or more perforations can be formed through the second film layer and the second adhesive layer; and a second side of the second adhesive layer can be coupled to a second side of the first adhesive layer.
Objectives, advantages, and a preferred mode of making and using the claimed subject matter may be understood best by reference to the accompanying drawings in conjunction with the following detailed description of illustrative embodiments.
The following description of example embodiments provides information that enables a person skilled in the art to make and use the subject matter set forth in the appended claims, but may omit certain details already well-known in the art. The following detailed description is, therefore, to be taken as illustrative and not limiting.
The example embodiments may also be described herein with reference to spatial relationships between various elements or to the spatial orientation of various elements depicted in the attached drawings. In general, such relationships or orientation assume a frame of reference consistent with or relative to a patient in a position to receive treatment. However, as should be recognized by those skilled in the art, this frame of reference is merely a descriptive expedient rather than a strict prescription.
The term “tissue site” in this context broadly refers to a wound, defect, or other treatment target located on or within tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. A wound may include chronic, acute, traumatic, subacute, and dehisced wounds, partial-thickness burns, ulcers (such as diabetic, pressure, or venous insufficiency ulcers), flaps, and grafts, for example. The term “tissue site” may also refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it may be desirable to add or promote the growth of additional tissue. For example, negative pressure may be applied to a tissue site to grow additional tissue that may be harvested and transplanted.
In some embodiments, a dressing interface may facilitate coupling the negative-pressure source 104 to the dressing 102. For example, a dressing interface may be a T.R.A.C.® Pad or Sensa T.R.A.C.® Pad available from Kinetic Concepts, Inc. of San Antonio, Tex.
The therapy system 100 may optionally include a fluid container coupled to or integral with the dressing 102 and to the negative-pressure source 104. A fluid container may include a container, canister, pouch, or other storage component, which can be used to manage exudates and other fluids withdrawn from a tissue site. In many environments, a rigid container may be preferred or required for collecting, storing, and disposing of fluids. In other environments, fluids may be properly disposed of without rigid container storage, and a re-usable container could reduce waste and costs associated with negative-pressure therapy.
Additionally, the therapy system 100 may include sensors to measure operating parameters and provide feedback signals to a controller of the negative-pressure source 104. The feedback signals can be indicative of the operating parameters, such as pressure at the tissue site, humidity at the tissue site, or temperature at the tissue site, for example. The therapy system 100 may include a pressure sensor, a humidity sensor, a temperature sensor, or the like. In some embodiments, the sensors may be electrical sensors that can communicate with the therapy system 100 through electric signals. In other embodiments, the sensors may be pneumatically or hydraulically operated. A pressure sensor may also be coupled or configured to be coupled to a distribution component and to the negative-pressure source 104.
Components may be fluidly coupled to each other to provide a path for transferring fluids (i.e., liquid and/or gas) between the components. For example, components may be fluidly coupled through a fluid conductor, such as a tube 107. A “tube,” as used herein, broadly includes a tube, pipe, hose, conduit, or other structure with one or more lumina adapted to convey a fluid between two ends. Typically, a tube is an elongated, cylindrical structure with some flexibility, but the geometry and rigidity may vary. In some embodiments, components may also be coupled by virtue of physical proximity, being integral to a single structure, or being formed from the same piece of material. Moreover, some fluid conductors may be molded into or otherwise integrally combined with other components. Coupling may also include mechanical, thermal, electrical, or chemical coupling (such as a chemical bond) in some contexts. For example, a tube may mechanically and fluidly couple the dressing 102 to a container.
In general, components of the therapy system 100 may be coupled to each other directly or indirectly. For example, the negative-pressure source 104 may be directly coupled to the dressing 102 or indirectly coupled to the dressing 102 through a container.
The fluid mechanics of using a negative-pressure source to reduce pressure in another component or location, such as within a sealed therapeutic environment, can be mathematically complex. However, the basic principles of fluid mechanics applicable to negative-pressure therapy are generally well-known to those skilled in the art, and the process of reducing pressure may be described illustratively herein as “delivering,” “distributing,” or “generating” negative pressure, for example.
In general, exudates and other fluids flow toward lower pressure along a fluid path. Thus, the term “downstream” typically implies a position in a fluid path relatively closer to a source of negative pressure or further away from a source of positive pressure. Conversely, the term “upstream” implies a position relatively further away from a source of negative pressure or closer to a source of positive pressure. Similarly, it may be convenient to describe certain features in terms of fluid “inlet” or “outlet” in such a frame of reference. This orientation is generally presumed for purposes of describing various features and components herein. However, the fluid path may also be reversed in some applications (such as by substituting a positive-pressure source for a negative-pressure source) and this descriptive convention should not be construed as a limiting convention.
“Negative pressure” generally refers to a pressure less than a local ambient pressure, such as the ambient pressure in a local environment external to a sealed therapeutic environment provided by the dressing 102. In many cases, the local ambient pressure may also be the atmospheric pressure at which a tissue site is located. Alternatively, the pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in negative pressure typically refer to a decrease in absolute pressure, while decreases in negative pressure typically refer to an increase in absolute pressure. While the amount and nature of negative pressure applied to a tissue site may vary according to therapeutic requirements, the pressure is generally a low vacuum, also commonly referred to as a rough vacuum, between −5 mmHg (−667 Pa) and −500 mmHg (−66.7 kPa). Common therapeutic ranges are between −75 mmHg (−9.9 kPa) and −300 mmHg (−39.9 kPa).
A negative-pressure supply, such as the negative-pressure source 104, may be a reservoir of air at a negative pressure, or may be a manual or electrically-powered device that can reduce the pressure in a sealed volume, such as a vacuum pump, a suction pump, a wall suction port available at many healthcare facilities, or a micro-pump, for example. A negative-pressure supply may be housed within or used in conjunction with other components, such as sensors, processing units, alarm indicators, memory, databases, software, display devices, or user interfaces that further facilitate therapy. For example, in some embodiments, the negative-pressure source 104 may be combined with a controller and other components into a therapy unit. A negative-pressure supply may also have one or more supply ports configured to facilitate coupling and de-coupling the negative-pressure supply to one or more distribution components.
The tissue interface 108 can be generally adapted to contact a tissue site. The tissue interface 108 may be partially or fully in contact with the tissue site. If the tissue site is a wound, for example, the tissue interface 108 may partially or completely fill the wound, or may be placed over the wound. The tissue interface 108 may take many forms, and may have many sizes, shapes, or thicknesses depending on a variety of factors, such as the type of treatment being implemented or the nature and size of a tissue site. For example, the size and shape of the tissue interface 108 may be adapted to the contours of deep and irregular shaped tissue sites. Moreover, any or all of the surfaces of the tissue interface 108 may have projections or an uneven, course, or jagged profile that can induce strains and stresses on a tissue site, which can promote granulation at the tissue site.
In some embodiments, the tissue interface 108 may be a manifold. A “manifold” in this context generally includes any substance or structure providing a plurality of pathways adapted to collect or distribute fluid across a tissue site under pressure. For example, a manifold may be adapted to receive negative pressure from a negative-pressure supply and distribute negative pressure through multiple apertures across a tissue site, which may have the effect of collecting fluid from across a tissue site and drawing the fluid toward a negative-pressure supply. In some embodiments, the fluid path may be reversed or a secondary fluid path may be provided to facilitate delivering fluid across a tissue site.
In some illustrative embodiments, the pathways of a manifold may be interconnected to improve distribution or collection of fluids across a tissue site. In some illustrative embodiments, a manifold may be a porous foam material having interconnected cells or pores. For example, cellular foam, open-cell foam, reticulated foam, porous tissue collections, and other porous material such as gauze or felted mat generally include pores, edges, and/or walls adapted to form interconnected fluid channels. Liquids, gels, and other foams may also include or be cured to include apertures and fluid pathways. In some embodiments, a manifold may additionally or alternatively comprise projections that form interconnected fluid pathways. For example, a manifold may be molded to provide surface projections that define interconnected fluid pathways.
The average pore size of a foam may vary according to needs of a prescribed therapy. For example, in some embodiments, the tissue interface 108 may be a foam having pore sizes in a range of about 400 to about 600 microns. The tensile strength of the tissue interface 108 may also vary according to the needs of a prescribed therapy. For example, the tensile strength of a foam may be increased for instillation of topical treatment solutions. In one non-limiting example, the tissue interface 108 may be an open-cell, reticulated polyurethane foam such as GranuFoam® dressing or VeraFlo® foam, both available from Kinetic Concepts, Inc. of San Antonio, Tex.
The tissue interface 108 may be either hydrophobic or hydrophilic. In an example in which the tissue interface 108 may be hydrophilic, the tissue interface 108 may also wick fluid away from a tissue site, while continuing to distribute negative pressure to the tissue site. The wicking properties of the tissue interface 108 may draw fluid away from a tissue site by capillary flow or other wicking mechanisms. An example of a hydrophilic foam is a polyvinyl alcohol, open-cell foam such as V.A.C. WhiteFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex. Other hydrophilic foams may include those made from polyether. Other foams that may exhibit hydrophilic characteristics include hydrophobic foams that have been treated or coated to provide hydrophilicity.
The tissue interface 108 may further promote granulation at a tissue site when pressure within a sealed therapeutic environment is reduced. For example, any or all of the surfaces of the tissue interface 108 may have an uneven, coarse, or jagged profile that can induce microstrains and stresses at a tissue site if negative pressure is applied through the tissue interface 108.
In some embodiments, the tissue interface 108 may be constructed from bioresorbable materials. Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA). The polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones. The tissue interface 108 may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with the tissue interface 108 to promote cell-growth. A scaffold is generally a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth. Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.
In some embodiments, the cover 106 may be a sealing member configured to provide a bacterial barrier and protection from physical trauma. The cover 106 may also be constructed from a material that can reduce evaporative losses and provide a fluid seal between two components or two environments, such as between a therapeutic environment and a local external environment.
The cover 106 may include an attachment device to attach the cover 106 to an attachment surface, such as undamaged epidermis, a gasket, or another cover. The attachment device may take many forms. For example, an attachment device may be a medically-acceptable, pressure-sensitive adhesive that extends about a periphery, a portion, or an entire sealing member. In some embodiments, for example, some or all of the cover 106 may be coated with an acrylic adhesive having a coating weight between about 25 and about 65 grams per square meter (g.s.m.). Thicker adhesives, or combinations of adhesives, may be applied in some embodiments to improve the seal and reduce leaks. Other example embodiments of an attachment device may include a double-sided tape, paste, hydrocolloid, hydrogel, silicone gel, or organogel.
In some embodiments, the attachment device may comprise a first adhesive layer 110 and a second adhesive layer 112. The first adhesive layer 110 may be a continuous adhesive layer and may be secured to the film layer 114. The second adhesive layer 112 may be secured to the first adhesive layer 110 and have a plurality of apertures 116 extending through the second adhesive layer 112. In some embodiments, a support layer 111 may be disposed between the second adhesive layer 112 and the first adhesive layer 110. In some embodiments, the support layer 111 may have a plurality of apertures 132.
In operation, the tissue interface 108 may be placed within, over, on, or otherwise proximate to a tissue site. The cover 106 may be placed over the tissue interface 108 and sealed to an attachment surface near the tissue site. For example, the cover 106 may be sealed to undamaged epidermis peripheral to a tissue site. Thus, the dressing 102 can provide a sealed therapeutic environment proximate to a tissue site that is substantially isolated from the external environment. The negative-pressure source 104 can reduce the pressure in the sealed therapeutic environment. Negative pressure applied across the tissue site through the tissue interface 108 in the sealed therapeutic environment can induce macrostrain and microstrain in the tissue site, as well as remove exudates and other fluids from the tissue site, which can be collected in a container.
In some embodiments, a battery or other portable power supply may supply power to the negative-pressure source 104. Use of battery power can significantly decrease the total power available to a negative-pressure supply. As a result, power drains that would be considered negligible in a device powered through an electrical outlet connection may significantly reduce the ability of the negative-pressure supply to provide therapy. A power drain refers to operation of the negative-pressure supply that requires use of electrical power, for example, operation of a pump to generate negative pressure. Power drains may be caused by small dressing leaks, for example. A small dressing leak can drain power from a battery of a negative-pressure supply by repeatedly triggering operation of the negative-pressure supply to maintain the necessary negative pressure at the tissue site. These power drains shorten the useful life of the negative-pressure supply before disposal of the negative-pressure supply, recharge of the battery, or battery replacement is required. Leak detection techniques may help to identify some leaks that may then be sealed by the user; however, small leaks will challenge the most sensitive leak detection systems and may often go undetected.
Small leaks may occur between the cover and the epidermis surrounding a tissue site if the cover fails to completely seal to the epidermis. Covers can be a balance between the strength of the attachment device required to enable the cover to seal against leaks and the pain which may result if the cover is removed. Generally, adhesives used to form the attachment device can be loosely classified as “bonding” adhesives or “sealing” adhesives.
A bonding adhesive is generally stronger than a sealing adhesive. A bonding adhesive may also provide a suitable seal, but the strength of a bonding adhesive can cause significantly more discomfort upon removal. In addition, removing a cover with a bonding adhesive may cause significant damage to patients having delicate or damaged skin.
A sealing adhesive can generally be characterized by lower strength and lower viscosity than a bonding adhesive. A cover that has a sealing adhesive can fill gaps between the cover and the epidermis to limit leaks and can be easy to remove with low discomfort to the patient. Various sealing, gap-filling adhesives, such as silicone, hydrocolloids, and hydrogels, have been tried but each has drawbacks. For example, hydrogel adhesives are usually low tack and prone to swelling, creep, and mobility when used with fluid systems. In another example, silicone adhesives can fill gaps and seal, but are not breathable and may lose the necessary mechanical bonding strength as the silicone adhesives interact with moisture during use. To counter these problems, silicone adhesives often require additional materials to secure the silicone adhesive to the patient. For example, a low-leak cover may be formed from two adhesive layers: a thick sealing adhesive, perhaps in the shape of a gasket or ring, and a thinner bonding adhesive layer used to keep the sealing adhesive in place. The thinner bonding adhesive may be applied as cover strips, or combined with the thicker sealing adhesive as an outer border. Low-leak covers constructed in this way can be more complex than a cover using a single adhesive, increasing the complexity of manipulation and operation.
A hybrid cover having a thick sealing layer that is perforated and laminated over an adhesive-coated film can overcome some of these challenges. For example, a hybrid cover may include a film layer having a bonding adhesive applied directly to the film layer, and a sealing adhesive applied directly to the bonding adhesive. The bonding adhesive and the sealing adhesive can be laminated to the film layer by applying the bonding adhesive and the sealing adhesive to the film layer in a liquid form and the curing the bonding adhesive and the sealing adhesive in place on the film layer. Curing may involve toughening or hardening of polymer material by cross-linking of polymer chains within the polymer material. Curing can include the addition of heat, chemical additives and ultraviolet radiation to cause cross-linking within the polymer material. After lamination, the sealing adhesive can be perforated to expose the bonding adhesive. If the cover is applied to a patient, the bonding adhesive can be pushed through the perforations of the sealing adhesive to secure the sealing adhesive to the patient. This laminated configuration may provide the benefits of the sealing adhesive and the bonding adhesive over the entire cover area. For example, the laminated configuration may be conformable and of sufficient strength to seal small leaks, and can be mechanically affixed to an epidermis without secondary processes. The laminated configuration can also be removable with minimal trauma to the patient.
However, construction of a laminated attachment device may require a complicated manufacturing process. For example, to form the sealing layer, a thick sealing adhesive may be applied to a scrim layer. A scrim layer may be a sheet of strong, coarse fabric or webbing. The sealing adhesive may be cast onto the scrim layer and cured around the scrim layer. Casting involves pouring a liquid material, for example an adhesive, into a mold having a hollowed cavity of the desired shape. The liquid material is allowed to solidify or cure into a solid or semi-solid body. The scrim layer may provide support for the sealing adhesive and can aid in the manipulation of the sealing adhesive during the manufacturing process. After casting the sealing adhesive onto the scrim layer, the sealing adhesive and scrim layer may be coupled to an adhesive coated film layer to form a cover.
Moreover, fabric in the scrim layer can inhibit the light transmittance of the cover by increasing the absorbance of the cover. For example, the scrim layer may be a barrier in the cover that can absorb light. The scrim layer may also reflect light transmitting through the cover, or scatter light reflecting through the cover, causing the light to be attenuated by the cover. As the light is absorbed, reflected or scattered, the light cannot reflect off of a wound covered by the cover. As a consequence, the scrim layer may cause the cover to appear opaque and prevent a clinician from seeing through the cover to view the dressing or tissue site.
The scrim layer may also add additional thickness to the sealing layer. If the scrim layer is exposed, the exposed portions may prevent the sealing layer from forming an effective seal between the cover and the epidermis. As a result, additional sealing adhesive may be needed to ensure that the scrim layer is not exposed. The coarse fabric or webbing of a scrim layer may also have large openings between threads of the fabric or webbing. If the sealing adhesive is cast onto the scrim layer, the sealing adhesive may need to fill the openings in the fabric. As a result, if a scrim layer is used, even more sealing adhesive may be needed to completely cover the scrim layer and provide a surface for adhesion of the sealing adhesive to a patient. The scrim layer, along with any additional sealing adhesive needed, may add stiffness to the cover, reducing the conformability of the cover and inhibiting the ability of the sealing adhesive to migrate and seal to tissue.
As disclosed herein, these challenges and others can be overcome with a cover having a hybrid configuration with a sealing adhesive layer and a bonding adhesive layer that can be constructed without the use of a scrim layer. Light transmittance can also be improved to provide accurate cover positioning and visualization of the tissue interface and periwound during treatment. In some embodiments, flexibility and conformability can be increased, and adhesives used more efficiently when manufacturing the cover. Increased efficiency of adhesive use may enable a thinner coating of adhesive, which can decrease the cost.
The film layer 114 may have a high moisture-vapor-transfer-rate (MVTR). A high MVTR may allow vapor to egress the sealed therapeutic environment through the film layer 114 and inhibit liquids from exiting the sealed therapeutic environment through the film layer 114. In some embodiments, the MVTR of the film layer 114 may be greater than or equal to about 300 grams per meter squared per twenty-four hours (g/m2/24 hours). In other embodiments, the MVTR of the film layer 114 may be greater than or equal to about 1000 g/m2/24 hours. The illustrative INSPIRE™ 2301 film may have an MVTR (tested using the inverted cup technique) of about 14400 g/m2/24 hours and may be about 30 microns thick. In other embodiments, a film having a low MVTR or that allows no vapor transfer might be used. The film layer 114 can also function as a barrier to microorganisms.
The film layer 114 may have a first side 118 and a second side 120. The first adhesive layer 110 may also have a first side 122 and a second side 124. The first side 122 of the first adhesive layer 110 may face the second side 120 of the film layer 114. In some embodiments, the first adhesive layer 110 may be a medically-acceptable, pressure-sensitive adhesive, glue, bonding agent, or cement. For example, the first adhesive layer 110 may be formed from or include a bonding adhesive. The bonding adhesive may be a high bond strength acrylic adhesive, patterrubber adhesive, high-tack silicone adhesive, or polyurethane, for example. In some embodiments, the bond strength of the bonding adhesive may have a peel adhesion or resistance to being peeled from a stainless steel material between about 6N/25 mm to about 10N/25 mm on stainless steel substrate at 23° C. at 50% relative humidity based on the American Society for Testing and Materials (“ASTM”) standard ASTM D3330. In some embodiments, the bonding adhesive of the first adhesive layer 110 comprises an acrylic adhesive with a coating weight of about 10 grams/m2 (gsm) to about 70 grams/m2 (gsm). The first adhesive layer 110 may have a thickness 156, and in some embodiments, the thickness 156 of the first adhesive layer 110 may be about 30 microns to about 60 microns.
The support layer 111 may have a first side 123 and a second side 125. In some embodiments, the first side 123 of the support layer 111 may face the second side 124 of the first adhesive layer 110. The support layer 111 may be an elastomeric film and may have a high moisture-vapor-transfer-rate (MVTR) similar to the film layer 114. The support layer 111 may be formed from a range of medically-approved films ranging in thickness from about 15 microns (μm) to about 50 microns (μm). The support layer 111 may comprise a suitable material or materials, such as the following: hydrophilic polyurethane (PU), cellulosics, hydrophilic polyamides, polyvinyl alcohol, polyvinyl pyrrolidone, hydrophilic acrylics, hydrophilic silicone elastomers, and copolymers of these. In some embodiments, the support layer 111 may be formed from a breathable cast matt polyurethane film sold by Expopack Advanced Coatings of Wrexham, United Kingdom under the name INSPIRE 2301 or INSPIRE 2327.
In some embodiments, the MVTR of the support layer 111 may be greater than or equal to about 300 g/m2/24 hours. In other embodiments, the MVTR of the support layer 111 may be greater than or equal to about 1000 g/m2/24 hours. The illustrative INSPIRE™ 2301 film may have an MVTR (inverted cup technique) of about 14400 g/m2/24 hours and may be about 30 microns thick. In other embodiments, a support layer having a low MVTR or that allows no vapor transfer might be used. The support layer 111 can also function as a barrier to liquids and microorganisms.
In some embodiments, the support layer 111 may have a plurality of apertures 132. Each aperture 132 of the plurality of apertures 132 may extend through the support layer 111 from the first side 123 to the second side 125. The plurality of apertures 132 may be numerous shapes, including without limitation, circles, squares, stars, ovals, polygons, slits complex curves, rectilinear shapes, or triangles. Each aperture 132 of the plurality of apertures 132 may have an effective diameter. An effective diameter of a non-circular area is the diameter of a circular area having the same area as the non-circular area. The average effective diameter is typically in the range of about 4 mm to about 50 mm. The plurality of apertures 132 may have a uniform pattern or may be randomly distributed on the support layer 111. In some embodiments, the apertures 132 may be distributed so that centers of adjacent apertures 132 may be separated by between about 5 mm and about 100 mm. In other embodiments, the apertures 132 may be distributed so that the centers of adjacent apertures 132 may be separated by about 10 mm.
Regardless of the shape of the plurality of apertures 132, the plurality of apertures 132 in the support layer 111 may leave void spaces in the support layer 111. The percentage of void space of the plurality of apertures 132 may be equal to the percentage of the volume or surface area of the void spaces created by the plurality of apertures 132 to the total volume or surface area of the support layer 111. In some embodiments, the percentage of void space may be between about 40% and about 75%. In other embodiments, the percentage of void space may be about 55%. The organization of the plurality of apertures 132 can also impact the percentage of void space. The plurality of apertures 132 may be formed by punching, cutting, melting, or drilling the support layer 111.
The second adhesive layer 112 may have a first side 126 and a second side 128. The first side 126 of the second adhesive layer 112 may face the second side 125 of the support layer 111 and have a thickness 154. The second adhesive layer 112 may be formed from or include a sealing adhesive. The sealing adhesive may be an adhesive having a low to medium tackiness, for example, a silicone polymer, polyurethane, or an additional acrylic adhesive. Generally, tackiness may be understood as a bond strength of an adhesive after a very short contact time between the adhesive and a substrate, such as less than 60 seconds. In some embodiments, the bond strength of the sealing adhesive may have a peel adhesion or resistance to being peeled from a stainless steel material between about 0.5N/25 mm to about 1.5N/25 mm on stainless steel substrate at 23° C. at 50% relative humidity based on ASTM D3330. The sealing adhesive may achieve its bond strength above after a contact time with the substrate of less than 60 seconds. In some embodiments, the sealing adhesive may have a coating weight between about 150 gsm and about 250 gsm, be about 100 microns to about 400 microns thick, and have a tackiness that may be about 30% to about 50% of the tackiness of the bonding adhesive that may be used in the first adhesive layer 110. In some embodiments a catalyst may be added to the sealing adhesive to provide additional therapeutic properties; for example, a platinum catalyst or a sulfur catalyst may be added to the sealing adhesive to aid in treatment.
In some embodiments, the second adhesive layer 112 may have a plurality of apertures 116 that extend through the second adhesive layer 112 from the first side 126 to the second side 128. The plurality of apertures 116 may be, for example, circles, squares, stars, ovals, polygons, slits, complex curves, rectilinear shapes, triangles, or other shapes. Each aperture 116 of the plurality of apertures 116 may have an effective diameter typically in the range of about 4 mm to about 50 mm. The plurality of apertures 116 may have a uniform pattern or may be randomly distributed on the second adhesive layer 112. In some embodiments, the apertures 116 may be distributed so that centers of adjacent apertures 116 may be separated by between about 5 mm and about 100 mm. In other embodiments, the apertures 116 may be distributed so that the centers of adjacent apertures 116 may be separated by about 10 mm.
Regardless of the shape of the plurality of apertures 116, the plurality of apertures 116 in the second adhesive layer 112 may leave void spaces in the second adhesive layer 112. The percentage of void space of the plurality of apertures 116 may be equal to the percentage of the volume or surface area of the void spaces created by the plurality of apertures 116 to the total volume or surface area of the second adhesive layer 112. In some embodiments, the percentage of void space may be between about 40% and about 75%. In other embodiments, the percentage of void space may be about 55%. The organization of the plurality of apertures 116 can also impact the percentage of void space. The plurality of apertures 116 may be formed by punching, cutting, melting, or drilling, for example.
Similarly, the support layer 111 may be coupled to the second adhesive layer 112. For example, the second side 125 of the support layer 111 may be in contact with and coupled to the first side 126 of the second adhesive layer 112. The support layer 111 and the second adhesive layer 112 may be coextensive. For example, the first side 126 of the second adhesive layer 112 and the second side 125 of the support layer 111 may be in contact across the entirety of their respective surface areas. The support layer 111 may be coupled to the second adhesive layer 112 by bonding, adhering, welding, or cross-linking, for example. In some embodiments, the plurality of apertures 132 may be distributed in the support layer 111 so that the plurality of apertures 132 are aligned with the plurality of apertures 116 of the second adhesive layer 112 if the support layer 111 and the second adhesive layer 112 are coupled. For example, each aperture 132 of the support layer 111 may be aligned with a corresponding aperture 116 of the second adhesive layer 112.
The average effective diameter of the plurality of apertures 116 for the second adhesive layer 112 may be varied as one control of the tackiness or adhesion strength of the cover 106. Generally, the strength of the bond of the bonding coupling 152 is proportional to the effective diameter of the plurality of apertures 116 of the second adhesive layer 112, the thickness 154 of the second adhesive layer 112, and the tackiness of the first adhesive layer 110. The more of the first adhesive layer 110 that extends through the apertures 116, the more bonding adhesive of the first adhesive layer 110 contacts the epidermis and the stronger the bond of the bonding coupling 152. In some embodiments, the thickness 154 of the second adhesive layer 112 may permit more of the first adhesive layer 110 to extend through the apertures 116 and increase the bond of the bonding coupling 152. As an example of the interplay, if a first bonding adhesive is used to form the first adhesive layer 110 and the thickness 154 of the second adhesive layer 112 is a first thickness, the average effective diameter of the plurality of apertures 116 may be a first effective diameter so that the bonding couplings 152 have a first bond strength. If the thickness 154 of the second adhesive layer 112 is increased to be larger than the first thickness, the average effective diameter may increase to be larger than the first effective diameter to achieve the first bond strength of the bonding coupling 152. In some embodiments, the thickness 154 may be about 200 microns, the first adhesive layer 110 may be about 30 microns with a bonding adhesive having a tackiness of about 2000 g/25 cm wide strip, and the average effective diameter of each aperture 116 of the plurality of apertures 116 may be about 6 mm.
The cover 106 can be manufactured in many ways including by following the operations provided below to produce the cover 106 without a scrim layer. The operations can be performed using manufacturing processes and equipment to manipulate the materials as described below.
In other embodiments, the support layer 111 may be laminated to the second adhesive layer 112. For example, the sealing adhesive of the second adhesive layer 112 may be cast and cured as described above. After the sealing adhesive has cured to form the second adhesive layer 112, the support layer 111 may be laminated to the second adhesive layer 112.
In some embodiments, a mold may be used to form the second adhesive layer 112. For example, the sealing adhesive may be cast into a mold having projections that extend into the sealing adhesive. After the sealing adhesive is cured, the mold and projections may be removed, leaving the apertures 116 formed in the second adhesive layer 112. The support layer 111 may then be laminated to the second adhesive layer 112. If the apertures 116 are formed with a mold, the apertures 132 may be separately formed in the support layer 111.
Similarly, a support layer 211 may be coupled to a second adhesive layer 212. For example, a second side 225 of the support layer 211 may be in contact with and coupled to a first side 226 of the second adhesive layer 212. The support layer 211 and the second adhesive layer 212 may be coextensive. The support layer 211 may be coupled to the second adhesive layer 212 by bonding, adhering, welding, or cross-linking, for example. In some embodiments, a plurality of apertures 232 may be distributed in the support layer 211 so that the plurality of apertures 232 are aligned with a plurality of apertures 216 of the second adhesive layer 212. The plurality of apertures 232 and the plurality of apertures 216 may be said to be coextensive so that each aperture 232 is aligned with a corresponding aperture 216.
In some embodiments, the support layer 211 may be removed prior to final assembly of the cover 206. For example, as shown in
The cover 206 can be manufactured without the use of a scrim layer. The operations can be performed using manufacturing processes and equipment to manipulate the materials as described below.
In other embodiments, the support layer 211 may be laminated to the second adhesive layer 212. For example, the sealing adhesive of the second adhesive layer 212 may be cast and cured as described above. After the sealing adhesive has cured to form the second adhesive layer 212, the support layer 211 may be laminated to the second adhesive layer 212.
In some embodiments, a mold may be used to form the second adhesive layer 212. For example, the sealing adhesive may be cast into a mold having projections that extend into the sealing adhesive. After the sealing adhesive is cured, the mold and projections may be removed, leaving the apertures 216 formed in the second adhesive layer 212. The support layer 211 may then be laminated to the second adhesive layer 212. In some embodiments, the support layer 211 may not include the plurality of apertures 232.
A sizing line 240 may be a weakened portion of the cover 206 that facilitates separation of a first portion of the cover 206 from a second portion of the cover 206. In some embodiments, each sizing line 240 may be formed by perforating the cover 206. For example, each sizing line 240 may have a plurality of perforations 242. In some embodiments, each perforation 242 may be between about 25 mm and about 60 mm from adjacent perforations 242 in the same sizing line 240. While each sizing line 240 is shown in portions of the cover 206 between apertures 216, in other embodiments, the sizing lines 240 may pass through the apertures 216.
The film layer 314 may have a first side 318 and a second side 320. The first adhesive layer 310 may also have a first side 322 and a second side 324. The first side 322 of the first adhesive layer 310 may face the second side 320 of the film layer 314. The first adhesive layer 310 may have a thickness 356, and in some embodiments, the thickness 356 of the first adhesive layer 310 may be about 30 microns to about 60 microns. In some embodiments, the first adhesive layer 310 may be coupled to the film layer 314.
The support layer 311 may have a first side 323 and a second side 325. In some embodiments, the support layer 311 may have a plurality of apertures 332. Each aperture 332 of the plurality of apertures 332 may extend through the support layer 311 from the first side 323 to the second side 325. In some embodiments, the support layer 311 may have a thickness of about 15 microns. The first side 323 of the support layer 311 may also have a substantially smooth surface.
The cover 306 may also include a third adhesive layer 313. The third adhesive layer 313 may be disposed between the support layer 311 and the second adhesive layer 312. The third adhesive layer 313 may have a first side 334 and a second side 336. The first side 334 of the third adhesive layer 313 may face the second side 325 of the support layer 311. In some embodiments, the third adhesive layer 313 may have a plurality of apertures 338 that extend through the third adhesive layer 313 from the first side 334 to the second side 336. The third adhesive layer 313 may be an acrylic adhesive having a coating weight between 25-65 grams per square meter (g.s.m.). In some embodiments, the third adhesive layer 313 may have a thickness 358. The thickness 358 of the third adhesive layer 313 may be between about 30 microns and about 60 microns. In other embodiments, the thickness 358 of the third adhesive layer 313 may be between about 15 microns and about 25 microns. Thicker adhesives, or combinations of adhesives, may be applied in some embodiments to improve the seal and reduce leaks. Other example embodiments of the third adhesive layer 313 may include a double-sided tape, paste, hydrocolloid, hydrogel, silicone gel, or organogel.
The second adhesive layer 312 may have a first side 326 and a second side 328. The first side 326 of the second adhesive layer 312 may face the second side 336 of the third adhesive layer 313 and have a thickness 354. In some embodiments, the second adhesive layer 312 may have a plurality of apertures 316 that extend through the second adhesive layer 312 from the first side 326 to the second side 328.
The plurality of apertures 332, 338, 316 may be numerous shapes, including without limitation, circles, squares, stars, ovals, polygons, slits complex curves, rectilinear shapes, or triangles. Each aperture 332, 338, 316 of the plurality of apertures 332, 338, 316 may have an effective diameter. The average effective diameter is typically in the range of about 4 mm to about 50 mm. The plurality of apertures 332, 338, 316 may have a uniform pattern or may be randomly distributed on the support layer 311, the third adhesive layer 313, and the second adhesive layer 312, respectively. In some embodiments, the apertures 332, 338, 316 may be distributed so that centers of adjacent apertures 332, 338, 316 may be separated by between about 5 mm and about 100 mm. In other embodiments, the apertures 332, 338, 316 may be distributed so that the centers of adjacent apertures 332, 338, 316 may be separated by about 10 mm.
Regardless of the shape of the plurality of apertures 332, 338, 316, the plurality of apertures 332, 338, 316 in the support layer 311, the third adhesive layer 313, and the second adhesive layer 312, respectively, may leave void spaces in the support layer 311, the third adhesive layer 313, and the second adhesive layer 312, respectively. The percentage of void space of the plurality of apertures 332, 338, 316 may be equal to the percentage of the volume or surface area of the void spaces created by the plurality of apertures 332, 338, 316 to the total volume or surface area of the support layer 311, the third adhesive layer 313, and the second adhesive layer 312, respectively. In some embodiments, the percentage of void space may be between about 40% and about 75%. In other embodiments, the percentage of void space may be about 55%. The organization of the plurality of apertures 332, 338, 316 can also impact the percentage of void space. The plurality of apertures 332, 338, 316 may be formed by punching, cutting, melting, or drilling the support layer 311, the third adhesive layer 313, and the second adhesive layer 312, respectively.
To manufacture the cover 306, the third adhesive layer 313 may be coupled to the support layer 311, and the second adhesive layer 312 may be coupled to the third adhesive layer 313 to form a first assembly. The apertures 332, 338, and 316 may be formed in the first assembly. The first adhesive layer 310 may be coupled to the film layer 314 to form a second assembly. The first assembly and the second assembly may be coupled to each other so that the support layer 311 is coupled to the first adhesive layer 310.
In some embodiments, the first adhesive layer 310 and the third adhesive layer 313 may be formed from a material having a substantially similar composition. For example, the first adhesive layer 310 and the third adhesive layer 313 may be formed from the same acrylic adhesive. If the first adhesive layer 310 and the third adhesive layer 313 are formed from the same acrylic adhesive, the first adhesive layer 310 and the third adhesive layer 313 may react similarly in response to outside stimuli, such as the passage of time and exposure to heat. In some embodiments, the first adhesive layer 310 and the third adhesive layer 313 may expand and/or contract at substantially the same rate in response to the same stimuli. By forming the first adhesive layer 310 and the third adhesive layer 313 from the same material, the cover 306 can reduce instances of acrylic adhesive exposure about a perimeter of the cover 306 compared to covers using dissimilar acrylic adhesives to form the first adhesive layer 310 and the third adhesive layer 313.
In some embodiments, the first side 323 or the second side 325 of the support layer 311 may include printing. For example, the first side 323 of the support layer 311 may be marked with a manufacturer's brand or trademark. In other examples, information regarding suggested uses for the cover 306 may be printed on the first side 323 of the support layer 311. The printing may be visible through the first adhesive layer 310 and the film layer 314 during use of the cover 306. Because the support layer 311 is covered by the first adhesive layer 310 and the film layer 314, the printing is less susceptible to washing off during use than if the printing is applied to the film layer 314. For example, if fluid, including liquid, comes into contact with the film layer 314, it will not come into contact with the support layer 311 or printing formed on the support layer 311.
The film layer 414 may have a first side 418 and a second side 420. The first adhesive layer 410 may also have a first side 422 and a second side 424. The first side 422 of the first adhesive layer 410 may face the second side 420 of the film layer 414. The first adhesive layer 410 may have a thickness 456, and in some embodiments, the thickness 456 of the first adhesive layer 410 may be between about 40 microns and about 60 microns. In some embodiments, the first adhesive layer 410 may be coupled to the film layer 414.
The support layer 411 may have a first side 423 and a second side 425. In some embodiments, the support layer 411 may have a plurality of apertures 432. Each aperture 432 of the plurality of apertures 432 may extend through the support layer 411 from the first side 423 to the second side 425. The third adhesive layer 413 may be disposed between the support layer 411 and the first adhesive layer 410. The third adhesive layer 413 may have a first side 434 and a second side 436. The first side 434 of the third adhesive layer 413 may face the second side 424 of the first adhesive layer 410. The second side 436 of the third adhesive layer 413 may face first side 423 of the support layer 411. In some embodiments, the third adhesive layer 413 may have a plurality of apertures 438 that extend through the third adhesive layer 413 from the first side 434 to the second side 436. The third adhesive layer 413 may be an acrylic adhesive having a coating weight between 25-65 grams per square meter (g.s.m.). In some embodiments, the third adhesive layer 413 may have a thickness 458. The thickness 458 of the third adhesive layer 413 may be between about 15 microns and about 25 microns. Thicker adhesives, or combinations of adhesives, may be applied in some embodiments to improve the seal and reduce leaks. Other example embodiments of the third adhesive layer 413 may include a double-sided tape, paste, hydrocolloid, hydrogel, silicone gel, or organogel.
The second adhesive layer 412 may have a first side 426 and a second side 428. The first side 426 of the second adhesive layer 412 may face the second side 425 of the support layer 411 and have a thickness 454. In some embodiments, the second adhesive layer 412 may have a plurality of apertures 416 that extend through the second adhesive layer 412 from the first side 426 to the second side 428.
The plurality of apertures 438, 432, 416 may be numerous shapes, including without limitation, circles, squares, stars, ovals, polygons, slits complex curves, rectilinear shapes, or triangles. Each aperture 438, 432, 416 of the plurality of apertures 438, 432, 416 may have an effective diameter. The average effective diameter is typically in the range of about 4 mm to about 50 mm. The plurality of apertures 438, 432, 416 may have a uniform pattern or may be randomly distributed on the support layer 411, the third adhesive layer 413, and the second adhesive layer 412, respectively. In some embodiments, the apertures 438, 432, 416 may be distributed so that centers of adjacent apertures 438, 432, 416 may be separated by between about 5 mm and about 100 mm. In other embodiments, the apertures 438, 432, 416 may be distributed so that the centers of adjacent apertures 438, 432, 416 may be separated by about 10 mm.
Regardless of the shape of the plurality of apertures 438, 432, 416, the plurality of apertures 438, 432, 416 in the third adhesive layer 413, the support layer 411, and the second adhesive layer 412, respectively, may leave void spaces in the third adhesive layer 413, the support layer 411, and the second adhesive layer 412, respectively. The percentage of void space of the plurality of apertures 438, 432, 416 may be equal to the percentage of the volume or surface area of the void spaces created by the plurality of apertures 438, 432, 416 to the total volume or surface area of the third adhesive layer 413, the support layer 411, and the second adhesive layer 412, respectively. In some embodiments, the percentage of void space may be between about 40% and about 75%. In other embodiments, the percentage of void space may be about 55%. The organization of the plurality of apertures 438, 432, 416 can also impact the percentage of void space. The plurality of apertures 438, 432, 416 may be formed by punching, cutting, melting, or drilling the third adhesive layer 413, the support layer 411, and the second adhesive layer 412, respectively.
The average effective diameter of the apertures 438, the apertures 432, and the apertures 416 may be varied as one control of the tackiness or adhesion strength of the cover 406. Generally, the strength of the bond of the bonding coupling 452 is proportional to the effective diameter of the apertures 438, the apertures 432, and the apertures 416; the thickness 454 of the second adhesive layer 412, the thickness of the support layer 411, and the thickness 458 of the third adhesive layer 413; and the tackiness of the first adhesive layer 410. The more of the first adhesive layer 410 that extends through the across the gap 439, the more bonding adhesive of the first adhesive layer 410 contacts the epidermis and the stronger the bond of the bonding coupling 452. In some embodiments, the thickness 454 of the second adhesive layer 412, the thickness of the support layer 411, and the thickness 458 of the third adhesive layer 413 may permit more of the first adhesive layer 410 to extend across the gap 439 and increase the bond of the bonding coupling 452.
As an example of the interplay, if a first bonding adhesive is used to form the first adhesive layer 410 and the thickness 454 of the second adhesive layer 412, the support layer 411, and the thickness 458 of the third adhesive layer 413 is collectively a first thickness, the average effective diameter of the apertures 438, the apertures 432, and the apertures 416 may be a first effective diameter so that the bonding couplings 452 have a first bond strength. If the thickness 454 of the second adhesive layer 412, the thickness of the support layer 411, and the thickness 458 of the third adhesive layer 413 is collectively increased to be larger than the first thickness, the average effective diameter of the apertures 438, the apertures 432, and the apertures 416 may increase to be larger than the first effective diameter to achieve the first bond strength of the bonding coupling 452. In some embodiments, the thickness 454 may be about 250 microns, the first adhesive layer 410 may be about 30 microns with a bonding adhesive having a tackiness of about 9.5N/25 mm wide strip, and the average effective diameter of each aperture 416 of the plurality of apertures 416 may be about 7 mm.
The cover 406 can be manufactured in many ways including by following the operations provided below to produce the cover 406 without a scrim layer. The operations can be performed using manufacturing processes and equipment to manipulate the materials as describe below.
In other embodiments, the support layer 411 may be laminated to the second adhesive layer 412. For example, the sealing adhesive of the second adhesive layer 412 may be cast and cured as described above. After the sealing adhesive has cured to form the second adhesive layer 412, the support layer 411 may be laminated to the second adhesive layer 412.
In some embodiments, a mold may be used to form the second adhesive layer 412. For example, the sealing adhesive may be cast into a mold having projections that extend into the sealing adhesive. After the sealing adhesive is cured, the mold and projections may be removed, leaving the apertures 416 formed in the second adhesive layer 412. The support layer 411 may then be laminated to the second adhesive layer 412. The third adhesive layer 413 may then be cast onto the first side 423 of the support layer 411. If the apertures 416 are formed with a mold, the apertures 432 and the apertures 438 may be separately formed in the support layer 411 and the third adhesive layer 413, respectively.
In some embodiments, the cover 106, the cover 206, the cover 306, and the cover 406 may be substantially transparent. For example, in some embodiments the transmittance of the cover 106, the cover 206, the cover 306, and the cover 406 for visible electro-magnetic radiation may be between about 70% and about 100%. In other embodiments, the transmittance of the cover 106, the cover 206, the cover 306, and the cover 406 for visible electro-magnetic radiation may be about 90%. Generally, transmittance may refer to the ratio of the amount of radiation passing through a surface to the amount of radiation falling on the surface. Materials and objects having a high transmittance, for example, approaching 1 or 100%, may be transparent. Factors that may impact the transmittance of the cover 106, the cover 206, the cover 306, and the cover 406 may include the amount of electro-magnetic radiation the materials of the cover 106, the cover 206, the cover 306, and the cover 406 absorb, and the amount of the electro-magnetic radiation the materials of the cover 106, the cover 206, the cover 306, and the cover 406 scatter. By manufacturing the cover 106, the cover 206, the cover 306, and the cover 406 without a scrim layer, the amount of electro-magnetic radiation the materials of the cover absorb and scatter can be decreased compared to a cover having a scrim layer. The tendency of a material to absorb, scatter, or otherwise attenuate light can be referred to as absorbance. Manufacturing the cover 106, the cover 206, the cover 306, and the cover 406 without a scrim layer can increase the ability of the cover 106, the cover 206, the cover 306, and the cover 406 to transmit electro-magnetic radiation, i.e., decrease absorbance. For example, referring to
A cover 501 having a polyurethane scrim layer formed from a silicone gel was tested for absorbance. A first side of the scrim layer was coated with a silicone adhesive, and a second side of the scrim layer was coated with an acrylic adhesive. The scrim layer, silicone adhesive, and acrylic adhesive was perforated. The perforated scrim layer, silicone adhesive, and acrylic adhesive was laminated to a polyurethane film also having an acrylic adhesive. The acrylic adhesive of the scrim layer was adhered to the acrylic adhesive of the polyurethane film. The polyurethane film had a thickness of about 40 microns, the acrylic adhesive had a thickness of about 50 microns, and the scrim layer had a thickness of about 50 microns. A coating weight of the silicone adhesive for the cover 501 was about 250 gsm. As shown in
Another cover 502 was also tested for absorbance. The cover 502 was constructed as described above with respect to the cover 501. The cover 502 included a thicker silicone adhesive coated onto the scrim layer. For the cover 502, the coating weight of the silicone adhesive was about 500 gsm. As shown in
Another cover 503 was also tested for absorbance. The cover 503 was constructed as described above with respect to the cover 406. For the cover 503, the film layer 414 had a thickness of about 25 microns, the first adhesive layer 410 had a coating weight of about 45 gsm, the third adhesive layer 413 had a coating weight of about 20 gsm, the support layer 411 had a thickness of about 15 microns, and the second adhesive layer 412 had a coating weight of about 150 gsm. As shown in
The cover 503 and the cover 504, produced as described above with respect to the cover 406, have substantially lower absorbance than covers, such as the cover 501 and the cover 502, that include a scrim layer. As a result, the cover 503 and the cover 504 are substantially transparent, permitting light to pass through the cover 503 and the cover 504 to be reflected by objects underneath the cover 503 and the cover 504. The transparency of the cover 503 and the cover 504 can permit a clinician to see color and other details of a tissue site. Color that can be perceived through an object, such as glass, is affected by the wavelengths of light that are absorbed and reflected by the object. For example, an object that appears visibly red may reflect electromagnetic radiation having wavelengths in the red spectrum while absorbing electromagnetic radiation having wavelengths of the non-red spectrum. In some embodiments, the absorbance of the cover 503 and the cover 504 is low, less than about 0.07, permitting a substantial portion of the electro-magnetic radiation in the visible spectrum to pass through the cover 503 and the cover 504. Consequently, the objects perceived through the cover 503 and the cover 504, such as a tissue site or the tissue interface 108, may have a same appearance as the object perceived independently of the cover 503 and the cover 504, i.e., as if nothing is between the clinician and the tissue site.
A first cover 601 was tested as described above to determine its leak rate. The cover 601 is similar to and includes the components of the cover 406. For the cover 601, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having a thickness of about 40 microns. The second adhesive layer 412 was formed from a silicone gel, such as a 6054 silicone gel produced by Scapa™, having a coating weight of about 150 gsm. And the third adhesive layer was formed from an acrylic adhesive having a coating weight of about 20 gsm. As shown in
A cover 602 was also tested as described above to determine its leak rate. The cover 602 is similar to and includes the components of the cover 406. For the cover 602, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having a thickness of about 25 microns. The second adhesive layer 412 comprised a silicone gel, such as a RX1423s silicone gel produced by Scapa™, having a coating weight of about 150 gsm. The third adhesive layer comprises an acrylic adhesive having a coating weight of about 20 gsm. As shown in
A cover 603 was also tested as described above to determine its leak rate. The cover 603 is similar to and includes components of the cover 406; however, the cover 603 did not include the third adhesive layer 413. In the example, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having thickness of about 25 microns. The second adhesive layer 412 was formed from a polyurethane gel, such as a 9772B polyurethane gel produced by Scapa™ having a coating weight of about 200 gsm. As shown in
Each of the cover 601, the cover 602, and the cover 603, was constructed without a scrim layer. The cover 601, the cover 602, and the cover 603 each exhibited the ability to provide a good seal over a tissue site. Consequently, the construction of the cover 601, the cover 602, and the cover 603, having a film layer, a first adhesive layer, a third adhesive layer, a support layer, and a second adhesive layer, produces a cover suitable for use with negative-pressure therapy while increasing the ability to monitor a tissue site visually without having to remove the cover.
A first cover 701 was tested as described above to determine its leak rate. The cover 701 is similar to and includes the components of the cover 406. For the cover 701, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having a thickness of about 40 microns. The second adhesive layer 412 was formed from a silicone gel, such as a 6054 silicone gel produced by Scapa™, having a coating weight of about 150 gsm. The third adhesive layer was formed from an acrylic adhesive having a coating weight of about 20 gsm. As shown in
A cover 702 was also tested as described above to determine its leak rate. The cover 702 is similar to and includes the components of the cover 406. For the cover 702, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having a thickness of about 25 microns. The second adhesive layer 412 comprised a silicone gel, such as a RX1423s silicone gel produced by Scapa™, having a coating weight of about 150 gsm. The third adhesive layer comprises an acrylic adhesive having a coating weight of about 20 gsm. As shown in
A cover 703 was also tested as described above to determine its leak rate. The cover 703 is similar to and includes components of the cover 406 as described above; however, the cover 703 did not include the third adhesive layer 413. In the example, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having thickness of about 25 microns. The second adhesive layer 412 was formed from a polyurethane gel, such as a 9772B polyurethane gel having a coating weight of about 200 gsm. As shown in
Each of the cover 701, the cover 702, and the cover 703, was constructed without a scrim layer. The cover 701, the cover 702, and the cover 703 each exhibited the ability to provide a good seal over a tissue site. Consequently, the construction of the cover 701, the cover 702, and the cover 703, having a film layer, a first adhesive layer, a third adhesive layer, a support layer, and a second adhesive layer, produces a cover suitable for use with negative-pressure therapy while increasing the ability to monitor a tissue site visually without having to remove the cover.
A first cover 801 was tested as described above to determine its maceration potential. The cover 801 is similar to and includes the components of the cover 406 as described above. For the cover 801, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having a thickness of about 40 microns. The second adhesive layer 412 was formed from a silicone gel, such as a 6054 silicone gel produced by Scapa™, having a coating weight of about 150 gsm. The third adhesive layer was formed from an acrylic adhesive having a coating weight of about 20 gsm. As shown in
A cover 802 was also tested as described above to determine its maceration potential. The cover 802 is similar to and includes the components of the cover 406 as described above. For the cover 802, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having a thickness of about 25 microns. The second adhesive layer 412 comprised a silicone gel, such as a RX1423s silicone gel produced by Scapa™, having a coating weight of about 150 gsm. The third adhesive layer comprises an acrylic adhesive having a coating weight of about 20 gsm. As shown in
A cover 803 was also tested as described above to determine its maceration potential. The cover 803 is similar to and includes components of the cover 406 as described above; however, the cover 803 did not include the third adhesive layer 413. In the example, the film layer 414 was formed from a polyurethane film having a thickness of about 30 microns, and the first adhesive layer 410 was formed from an acrylic adhesive having a coating weight of about 45 gsm. The support layer 411 was formed from a polyurethane film having thickness of about 25 microns. The second adhesive layer 412 was formed from a polyurethane gel, such as a 9772B polyurethane gel having a coating weight of about 200 gsm. As shown in
Each of the cover 801, the cover 802, and the cover 803, was constructed without a scrim layer. The cover 801, the cover 802, and the cover 803 each exhibited the ability to provide inhibit maceration of tissue adjacent a tissue site. Consequently, the construction of the cover 801, the cover 802, and the cover 803, having a film layer, a first adhesive layer, a third adhesive layer, a support layer, and a second adhesive layer, produces a cover suitable for use with negative-pressure therapy while increasing the ability to monitor a tissue site visually without having to remove the cover.
The manufacturing processes described herein can produce a cover without the use of a scrim layer. Typically, a scrim layer is needed to provide support for the cover 106, the cover 206, the cover 306, and the cover 406 during the manufacturing process. By manufacturing the cover 106, the cover 206, the cover 306, and the cover 406 without a scrim layer, the light transmittance of the final product can be increased while providing additional support to the cover 106, the cover 206, the cover 306, and the cover 406, for example, in embodiments having the support layer 111 disposed between the first adhesive layer 110 and the second adhesive layer 112. Furthermore, the cover 106, the cover 206, the cover 306, and the cover 406 may have improved clarity aiding more accurate cover positioning and visualization of the wound filler and periwound, increased flexibility and conformability, more efficient use of the adhesives, which enable a thinner coating of adhesive, and reduced manufacturing costs. Still further the cover 306 may accommodate shrinkage between the various materials forming the cover 306.
While shown in a few illustrative embodiments, a person having ordinary skill in the art will recognize that the systems, apparatuses, and methods described herein are susceptible to various changes and modifications. Moreover, descriptions of various alternatives using terms such as “or” do not require mutual exclusivity unless clearly required by the context, and the indefinite articles “a” or “an” do not limit the subject to a single instance unless clearly required by the context. Components may be also be combined or eliminated in various configurations for purposes of sale, manufacture, assembly, or use. For example, in some configurations a dressing, a container, or both may be eliminated or separated from other components for manufacture or sale.
The appended claims set forth novel and inventive aspects of the subject matter described above, but the claims may also encompass additional subject matter not specifically recited in detail. For example, certain features, elements, or aspects may be omitted from the claims if not necessary to distinguish the novel and inventive features from what is already known to a person having ordinary skill in the art. Features, elements, and aspects described herein may also be combined or replaced by alternative features serving the same, equivalent, or similar purpose without departing from the scope of the invention defined by the appended claims.
This application claims the benefit under 35 USC 119(e), of the filing of U.S. Provisional Patent Application No. 62/220,064, entitled “Hybrid Silicone and Acrylic Adhesive Cover for use with Wound Treatment,” filed Sep. 17, 2015, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
1944834 | Bennett | Jan 1934 | A |
2547758 | Keeling | Apr 1951 | A |
2552664 | Burdine | May 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2860081 | Eiken | Nov 1958 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3172808 | Baumann et al. | Mar 1965 | A |
3183116 | Schaar | May 1965 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3742952 | Magers et al. | Jul 1973 | A |
3774611 | Tussey et al. | Nov 1973 | A |
3777016 | Gilbert | Dec 1973 | A |
3779243 | Tussey et al. | Dec 1973 | A |
3826254 | Mellor | Jul 1974 | A |
3852823 | Jones | Dec 1974 | A |
3903882 | Augurt | Sep 1975 | A |
3967624 | Milnamow | Jul 1976 | A |
3983297 | Ono et al. | Sep 1976 | A |
4060081 | Yannas et al. | Nov 1977 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4141361 | Snyder | Feb 1979 | A |
4163822 | Walter | Aug 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4174664 | Arnott et al. | Nov 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4323069 | Ahr et al. | Apr 1982 | A |
4333468 | Geist | Jun 1982 | A |
4343848 | Leonard, Jr. | Aug 1982 | A |
4360015 | Mayer | Nov 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4414970 | Berry | Nov 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4529402 | Weilbacher et al. | Jul 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4600146 | Ohno | Jul 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4617021 | Leuprecht | Oct 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4715857 | Juhasz et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4753232 | Ward | Jun 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4832008 | Gilman | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4848364 | Bosman | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4871611 | LeBel | Oct 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4930997 | Bennett | Jun 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4961493 | Kaihatsu | Oct 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4981474 | Bopp et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
4995382 | Lang et al. | Feb 1991 | A |
4996128 | Aldecoa et al. | Feb 1991 | A |
5010883 | Rawlings et al. | Apr 1991 | A |
5018515 | Gilman | May 1991 | A |
5025783 | Lamb | Jun 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5086995 | Large | Feb 1992 | A |
5092323 | Riedel et al. | Mar 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5112323 | Winkler et al. | May 1992 | A |
5127601 | Schroeder | Jul 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5151314 | Brown | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5180375 | Feibus | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5244457 | Karami et al. | Sep 1993 | A |
5246775 | Loscuito | Sep 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266372 | Arakawa et al. | Nov 1993 | A |
5270358 | Asmus | Dec 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342329 | Croquevielle | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5356386 | Goldberg et al. | Oct 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5384174 | Ward et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5419769 | Devlin et al. | May 1995 | A |
5423778 | Eriksson et al. | Jun 1995 | A |
5429590 | Saito et al. | Jul 1995 | A |
5437622 | Carlon | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5447492 | Cartmell et al. | Sep 1995 | A |
5458938 | Nygard et al. | Oct 1995 | A |
5501212 | Psaros | Mar 1996 | A |
5522808 | Skalla | Jun 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5549585 | Maher et al. | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5585178 | Calhoun et al. | Dec 1996 | A |
5599292 | Yoon | Feb 1997 | A |
5607388 | Ewall | Mar 1997 | A |
5611373 | Ashcraft | Mar 1997 | A |
5634893 | Rishton | Jun 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5641506 | Talke et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5653224 | Johnson | Aug 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5710233 | Meckel et al. | Jan 1998 | A |
5714225 | Hansen et al. | Feb 1998 | A |
5736470 | Schneberger et al. | Apr 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5776119 | Bilbo et al. | Jul 1998 | A |
5807295 | Hutcheon et al. | Sep 1998 | A |
5830201 | George et al. | Nov 1998 | A |
5878971 | Minnema | Mar 1999 | A |
5902439 | Pike et al. | May 1999 | A |
5919476 | Fischer et al. | Jul 1999 | A |
5941863 | Guidotti et al. | Aug 1999 | A |
5964252 | Simmons et al. | Oct 1999 | A |
5981822 | Addison | Nov 1999 | A |
5998561 | Jada | Dec 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6083616 | Dressler | Jul 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6191335 | Robinson | Feb 2001 | B1 |
6201164 | Wulff et al. | Mar 2001 | B1 |
6228485 | Leiter | May 2001 | B1 |
6238762 | Friedland | May 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6262329 | Brunsveld et al. | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6457200 | Tanaka et al. | Oct 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6495229 | Carte et al. | Dec 2002 | B1 |
6503855 | Menzies et al. | Jan 2003 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6566575 | Stickels et al. | May 2003 | B1 |
6566577 | Addison et al. | May 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6627215 | Dale et al. | Sep 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6680113 | Lucast et al. | Jan 2004 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6693180 | Lee et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7154017 | Sigurjonsson et al. | Dec 2006 | B2 |
7402721 | Sigurjonsson et al. | Jul 2008 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8298197 | Eriksson et al. | Oct 2012 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8529532 | Pinto et al. | Sep 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8632523 | Eriksson et al. | Jan 2014 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8920830 | Mathies | Dec 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9192444 | Locke et al. | Nov 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
9877873 | Coulthard et al. | Jan 2018 | B2 |
9956120 | Locke | May 2018 | B2 |
20010030304 | Kohda et al. | Oct 2001 | A1 |
20010051178 | Blatchford et al. | Dec 2001 | A1 |
20020009568 | Bries et al. | Jan 2002 | A1 |
20020016346 | Brandt et al. | Feb 2002 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020090496 | Kim et al. | Jul 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020119292 | Venkatasanthanam et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020130064 | Adams et al. | Sep 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020150270 | Werner | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020164346 | Nicolette | Nov 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030109855 | Solem et al. | Jun 2003 | A1 |
20030158577 | Ginn et al. | Aug 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040002676 | Siegwart et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040077984 | Worthley | Apr 2004 | A1 |
20040082925 | Patel | Apr 2004 | A1 |
20040099268 | Smith et al. | May 2004 | A1 |
20040118401 | Smith et al. | Jun 2004 | A1 |
20040127836 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040133143 | Burton et al. | Jul 2004 | A1 |
20040163278 | Caspers et al. | Aug 2004 | A1 |
20040186239 | Qin et al. | Sep 2004 | A1 |
20040219337 | Langley et al. | Nov 2004 | A1 |
20040230179 | Shehada | Nov 2004 | A1 |
20050034731 | Rousseau et al. | Feb 2005 | A1 |
20050054998 | Poccia et al. | Mar 2005 | A1 |
20050059918 | Sigurjonsson et al. | Mar 2005 | A1 |
20050065484 | Watson | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050101940 | Radl et al. | May 2005 | A1 |
20050113732 | Lawry | May 2005 | A1 |
20050124925 | Scherpenborg | Jun 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050143694 | Schmidt et al. | Jun 2005 | A1 |
20050158442 | Westermann et al. | Jul 2005 | A1 |
20050159695 | Cullen et al. | Jul 2005 | A1 |
20050161042 | Fudge et al. | Jul 2005 | A1 |
20050163978 | Strobech et al. | Jul 2005 | A1 |
20050214376 | Faure et al. | Sep 2005 | A1 |
20050233072 | Stephan et al. | Oct 2005 | A1 |
20050256437 | Silcock et al. | Nov 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20050277860 | Jensen | Dec 2005 | A1 |
20060014030 | Langen et al. | Jan 2006 | A1 |
20060020235 | Siniaguine | Jan 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060083776 | Bott et al. | Apr 2006 | A1 |
20060154546 | Murphy et al. | Jul 2006 | A1 |
20060236979 | Stolarz et al. | Oct 2006 | A1 |
20060241542 | Gudnason et al. | Oct 2006 | A1 |
20060271020 | Huang et al. | Nov 2006 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070028526 | Woo et al. | Feb 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20070161937 | Aali | Jul 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070190281 | Hooft | Aug 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20070283962 | Doshi et al. | Dec 2007 | A1 |
20080009812 | Riesinger | Jan 2008 | A1 |
20080027366 | Da Silva Macedo, Jr. | Jan 2008 | A1 |
20080090085 | Kawate et al. | Apr 2008 | A1 |
20080119802 | Riesinger | May 2008 | A1 |
20080138591 | Graham et al. | Jun 2008 | A1 |
20080149104 | Eifler | Jun 2008 | A1 |
20080173389 | Mehta et al. | Jul 2008 | A1 |
20080195017 | Robinson et al. | Aug 2008 | A1 |
20080225663 | Smith et al. | Sep 2008 | A1 |
20080243044 | Hunt et al. | Oct 2008 | A1 |
20080269657 | Brenneman et al. | Oct 2008 | A1 |
20080271804 | Biggie et al. | Nov 2008 | A1 |
20090025724 | Herron, Jr. | Jan 2009 | A1 |
20090088719 | Driskell | Apr 2009 | A1 |
20090093779 | Riesinger | Apr 2009 | A1 |
20090124988 | Coulthard | May 2009 | A1 |
20090177172 | Wilkes | Jul 2009 | A1 |
20090216168 | Eckstein | Aug 2009 | A1 |
20090216170 | Robinson et al. | Aug 2009 | A1 |
20090216204 | Bhavaraju et al. | Aug 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234306 | Vitaris | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090264807 | Haggstrom et al. | Oct 2009 | A1 |
20090292264 | Hudspeth et al. | Nov 2009 | A1 |
20090312662 | Colman et al. | Dec 2009 | A1 |
20090326487 | Vitaris | Dec 2009 | A1 |
20090326488 | Budig et al. | Dec 2009 | A1 |
20100028390 | Cleary et al. | Feb 2010 | A1 |
20100030170 | Keller et al. | Feb 2010 | A1 |
20100063467 | Addison et al. | Mar 2010 | A1 |
20100106106 | Heaton et al. | Apr 2010 | A1 |
20100106118 | Heaton et al. | Apr 2010 | A1 |
20100125259 | Olson | May 2010 | A1 |
20100159192 | Cotton | Jun 2010 | A1 |
20100168633 | Bougherara et al. | Jul 2010 | A1 |
20100168635 | Freiding et al. | Jul 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100212768 | Resendes | Aug 2010 | A1 |
20100226824 | Ophir et al. | Sep 2010 | A1 |
20100262090 | Riesinger | Oct 2010 | A1 |
20100267302 | Kantner et al. | Oct 2010 | A1 |
20100268144 | Lu et al. | Oct 2010 | A1 |
20100286582 | Simpson et al. | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100305524 | Vess et al. | Dec 2010 | A1 |
20100318072 | Johnston et al. | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20110046585 | Weston | Feb 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20110137271 | Andresen et al. | Jun 2011 | A1 |
20110160686 | Ueda et al. | Jun 2011 | A1 |
20110171480 | Mori et al. | Jul 2011 | A1 |
20110172617 | Riesinger | Jul 2011 | A1 |
20110201984 | Dubrow et al. | Aug 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110229688 | Cotton | Sep 2011 | A1 |
20110244010 | Doshi | Oct 2011 | A1 |
20110257612 | Locke et al. | Oct 2011 | A1 |
20110257617 | Franklin | Oct 2011 | A1 |
20110281084 | Ashwell | Nov 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20120016322 | Coulthard et al. | Jan 2012 | A1 |
20120019031 | Bessert | Jan 2012 | A1 |
20120036733 | Dehn | Feb 2012 | A1 |
20120040131 | Speer | Feb 2012 | A1 |
20120059339 | Gundersen | Mar 2012 | A1 |
20120095380 | Gergely et al. | Apr 2012 | A1 |
20120109034 | Locke et al. | May 2012 | A1 |
20120123220 | Iyer | May 2012 | A1 |
20120123359 | Reed | May 2012 | A1 |
20120143157 | Riesinger | Jun 2012 | A1 |
20120237722 | Seyler et al. | Sep 2012 | A1 |
20120258271 | Maughan | Oct 2012 | A1 |
20120310186 | Moghe et al. | Dec 2012 | A1 |
20130030394 | Locke et al. | Jan 2013 | A1 |
20130053746 | Roland et al. | Feb 2013 | A1 |
20130066285 | Locke et al. | Mar 2013 | A1 |
20130096518 | Hall et al. | Apr 2013 | A1 |
20130098360 | Hurmez et al. | Apr 2013 | A1 |
20130116661 | Coward et al. | May 2013 | A1 |
20130150763 | Mirzaei et al. | Jun 2013 | A1 |
20130152945 | Locke et al. | Jun 2013 | A1 |
20130165887 | Mitchell et al. | Jun 2013 | A1 |
20130172843 | Kurata | Jul 2013 | A1 |
20130189339 | Vachon | Jul 2013 | A1 |
20130261585 | Lee | Oct 2013 | A1 |
20130304007 | Toth | Nov 2013 | A1 |
20130330486 | Shields | Dec 2013 | A1 |
20140039423 | Riesinger | Feb 2014 | A1 |
20140039424 | Locke | Feb 2014 | A1 |
20140058309 | Addison et al. | Feb 2014 | A1 |
20140107561 | Dorian et al. | Apr 2014 | A1 |
20140107562 | Dorian et al. | Apr 2014 | A1 |
20140141197 | Hill et al. | May 2014 | A1 |
20140155849 | Heaton et al. | Jun 2014 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20140171851 | Addison | Jun 2014 | A1 |
20140178564 | Patel | Jun 2014 | A1 |
20140309574 | Cotton | Oct 2014 | A1 |
20140336557 | Durdag et al. | Nov 2014 | A1 |
20140350494 | Hartwell et al. | Nov 2014 | A1 |
20140352073 | Goenka | Dec 2014 | A1 |
20150030848 | Goubard | Jan 2015 | A1 |
20150045752 | Grillitsch et al. | Feb 2015 | A1 |
20150057625 | Coulthard | Feb 2015 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
20150080815 | Chakravarthy et al. | Mar 2015 | A1 |
20150119830 | Luckemeyer et al. | Apr 2015 | A1 |
20150119833 | Coulthard et al. | Apr 2015 | A1 |
20150119834 | Locke et al. | Apr 2015 | A1 |
20150141941 | Allen et al. | May 2015 | A1 |
20150190286 | Allen et al. | Jul 2015 | A1 |
20150245949 | Locke | Sep 2015 | A1 |
20150290041 | Richard | Oct 2015 | A1 |
20160000610 | Riesinger | Jan 2016 | A1 |
20160067107 | Cotton | Mar 2016 | A1 |
20160144084 | Collinson et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2009200608 | Oct 2009 | AU |
2005436 | Jun 1990 | CA |
87101823 | Aug 1988 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
202004018245 | Jul 2005 | DE |
202014100383 | Feb 2015 | DE |
0097517 | Jan 1984 | EP |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0251810 | Jan 1988 | EP |
0275353 | Jul 1988 | EP |
0358302 | Mar 1990 | EP |
0538917 | Apr 1993 | EP |
0630629 | Dec 1994 | EP |
0659390 | Jun 1995 | EP |
0633758 | Oct 1996 | EP |
1002846 | May 2000 | EP |
1018967 | Jul 2000 | EP |
2578193 | Apr 2013 | EP |
692578 | Jun 1953 | GB |
1386800 | Mar 1975 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2377939 | Jan 2003 | GB |
2392836 | Mar 2004 | GB |
2393655 | Apr 2004 | GB |
2425487 | Nov 2006 | GB |
2452720 | Mar 2009 | GB |
2496310 | May 2013 | GB |
1961003393 | Feb 1961 | JP |
S62139523 | Sep 1987 | JP |
S62-275456 | Nov 1987 | JP |
2005205120 | Aug 2005 | JP |
2007254515 | Oct 2007 | JP |
2008080137 | Apr 2008 | JP |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
8707164 | Dec 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9622753 | Aug 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
9965542 | Dec 1999 | WO |
0136188 | May 2001 | WO |
0160296 | Aug 2001 | WO |
0168021 | Sep 2001 | WO |
0185248 | Nov 2001 | WO |
0190465 | Nov 2001 | WO |
0243743 | Jun 2002 | WO |
02062403 | Aug 2002 | WO |
03-018098 | Mar 2003 | WO |
03045294 | Jun 2003 | WO |
03045492 | Jun 2003 | WO |
03053484 | Jul 2003 | WO |
2004024197 | Mar 2004 | WO |
2004037334 | May 2004 | WO |
2004112852 | Dec 2004 | WO |
2005002483 | Jan 2005 | WO |
2005062896 | Jul 2005 | WO |
2005105176 | Nov 2005 | WO |
2005123170 | Dec 2005 | WO |
2007022097 | Feb 2007 | WO |
2007030601 | Mar 2007 | WO |
2007070269 | Jun 2007 | WO |
2007085396 | Aug 2007 | WO |
2007087811 | Aug 2007 | WO |
2007113597 | Oct 2007 | WO |
2007133618 | Nov 2007 | WO |
2008026117 | Mar 2008 | WO |
2008041926 | Apr 2008 | WO |
2008048527 | Apr 2008 | WO |
2008054312 | May 2008 | WO |
2008082444 | Jul 2008 | WO |
2008100440 | Aug 2008 | WO |
2008104609 | Sep 2008 | WO |
2008131895 | Nov 2008 | WO |
2009002260 | Dec 2008 | WO |
2008149107 | Dec 2008 | WO |
2009066105 | May 2009 | WO |
2009066106 | May 2009 | WO |
2009081134 | Jul 2009 | WO |
2009089016 | Jul 2009 | WO |
2009124100 | Oct 2009 | WO |
2009126103 | Oct 2009 | WO |
2010011148 | Jan 2010 | WO |
2010016791 | Feb 2010 | WO |
2010032728 | Mar 2010 | WO |
2010056977 | May 2010 | WO |
2010129299 | Nov 2010 | WO |
2011008497 | Jan 2011 | WO |
2011049562 | Apr 2011 | WO |
2011043786 | Apr 2011 | WO |
2011115908 | Sep 2011 | WO |
2011121127 | Oct 2011 | WO |
2011130570 | Oct 2011 | WO |
2011162862 | Dec 2011 | WO |
2012112204 | Aug 2012 | WO |
2012104584 | Aug 2012 | WO |
2012140378 | Oct 2012 | WO |
2012143665 | Oct 2012 | WO |
2013009239 | Jan 2013 | WO |
2013090810 | Jun 2013 | WO |
2014022400 | Feb 2014 | WO |
2014039557 | Mar 2014 | WO |
2014078518 | May 2014 | WO |
2014113253 | Jul 2014 | WO |
2014140608 | Sep 2014 | WO |
2014143488 | Sep 2014 | WO |
2015065615 | May 2015 | WO |
2015130471 | Sep 2015 | WO |
Entry |
---|
Extended European Search Report for related application 17177013.4, dated Mar. 19, 2018. |
Extended European Search Report for related application 16793298.7, dated Mar. 27, 2018. |
European Search Report for corresponding EP Application 171572787 dated Jun. 6, 2017. |
International Search Report and Written Opinion for corresponding application PCT/US2016/031397, dated Aug. 8, 2016. |
European Search Report for corresponding application 17167872.5, dated Aug. 14, 2017. |
International Search Report and Written Opinion for PCT/GB2008/003075 dated Mar. 11, 2010. |
International Search Report and Written Opinion for PCT/GB2008/004216 dated Jul. 2, 2009. |
International Search Report and Written Opinion for PCT/GB2012/000099 dated May 2, 2012. |
EP Examination Report dated May 22, 2014 for EP. |
International Search Report and Written Opinion for PCT/US2012/069893 dated Apr. 8, 2013. |
International Search Report and Written Opinion for PCT/US2013/070070 dated Jan. 29, 2014. |
International Search Report and Written Opinion for PCT/US2014/016320 dated Apr. 15, 2014. |
International Search Report and Written Opinion for PCT/US2014/056566 dated Dec. 5, 2014. |
International Search Report and Written Opinion for PCT/US2014/056508 dated Dec. 9, 2014. |
International Search Report and Written Opinion for PCT/US2014/056524 dated Dec. 11, 2014. |
International Search Report and Written Opinion for PCT/US2014/056594 dated Dec. 2, 2014. |
Partial Internationl Search Report dated Jul. 31, 2009; PCT Internationl Application No. PCT/US2009/036222. |
International Search Report and Written opinion dated Dec. 15, 2009; PCT Intemation Application No. PCT/US2009/036222. |
International Search Report and Written Opinion date dated Feb. 24, 2010; PCT/US2009/057182. |
International Search Report and Written Opinion dated Jan. 5, 2010; PCT International Application No. PCT/US2009/057130. |
Response filed Oct. 20, 2011 for U.S. Appl. No. 12/398,904. |
Interview Summary dated Oct. 27, 2011 for U.S. Appl. No. 12/398,904. |
Non-Final Office Action dated Jul. 20, 2011 for U.S. Appl. No. 12/398,904. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immagure External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medican Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatement of Open Septic Wounds,” in All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Mosco, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatement and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1998 (“Solovev Abstract”). |
NDP 1000 Negative Pressure Wound Terapy System, Kalypto Medical, pp. 1-4. |
Partial International Search Report dated Jul. 31, 2009 for PCT International Application No. PCT/US2009/036217. |
International Search Report and Written Opinion dated May 31, 2010 for PCT Application No. PCT/US2009/064364. |
Examination report for AU2009221772 dated Apr. 4, 2013. |
Response filed Oct. 21, 2011 for U.S. Appl. No. 12/398,891. |
Interview Summary dated Oct. 27, 2011 for U.S. Appl. No. 12/398,891. |
Restriction Requirement dated Jun. 13, 2011 for U.S. Appl. No. 12/398,891. |
Response filed Jun. 24, 2011 for U.S. Appl. No. 12/398,891. |
Non-Final Office Action dated Jul. 21, 2011 for U.S. Appl. No. 12/398,891. |
International Search Report and Written Opinion dated Oct. 19, 2010; PCT International Application No. PCT/US2009/036217. |
International Search Report and Written Opinion dated Feb. 24, 2010; PCT International Application No. PCT/US2009/057182. |
NPD 1000 Negative Pressure Would Therapy System, Kalypto Medical, pp. 1-4. |
Partial International Search Report dated Jul. 31, 2009; PCT Internationl Application No. PCT/US2009/036222. |
Non-Final Rejection for U.S. Appl. No. 12/398,904 dated Mar. 14, 2012. |
Response to Non-Final Rejection for U.S. Appl. No. 12/398,904, filed Jun. 4, 2012. |
International Search Report and Written Opinion for PCT/US2014/061251 dated May 8, 2015. |
International Search Report and Written Opinion for PCT/IB2013/060862 dated Jun. 26, 2014. |
International Search Report and Written Opinion for PCT/US2015/015493 dated May 4, 2015. |
European Search Report for corresponding Application No. 15194949.2. |
European Search Report for corresponding EPSN 15157408.4 published on Sep. 30, 2015. |
International Search Report and Written Opinion for PCT/US2015/034289 dated Aug. 21, 2015. |
International Search Report and Written Opinion for PCT/US2015/065135 dated Apr. 4, 2016. |
International Search Report and Written Opinion for PCT/GB2012/050822 dated Aug. 8, 2012. |
International Search Report and Written Opinion for PCT/US2015/029037 dated Sep. 4, 2015. |
International Search Report and Written Opinion dated Jun. 1, 2011 for PCT International Application No. PCT/US2011/028344. |
European Search Report for EP 11714148.1, dated May 2, 2014. |
Office Action for related U.S. Appl. No. 14/965,675, dated Aug. 9, 2018. |
Office Action for related U.S. Appl. No. 15/307,472, dated Oct. 18, 2018. |
European Search Report for corresponding Application No. 15192606.0 dated Feb. 24, 2016. |
International Search Report and Written Opinion for corresponding PCT/US2014/048081 dated Nov. 14, 2014. |
International Search Report and Written Opinion for corresponding PCT/US2014/010704 dated Mar. 25, 2014. |
European Examination Report dated Jun. 29, 2016, corresponding to EP Application No. 16173614.5. |
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 198, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp: 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Bjöm et al: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
A {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Japanese office action for corresponding application 2015-547246, dated Sep. 5, 2017. |
Office Action for related U.S. Appl. No. 13/982,650, dated Dec. 14, 2017. |
Australian Office Action for related application 2013344686, dated Nov. 28, 2017. |
Office Action for related U.S. Appl. No. 14/517,521, dated Dec. 12, 2017. |
Office Action for related U.S. Appl. No. 14/490,898, dated Jan. 4, 2018. |
International Search Report and Written Opinion for related appplication PCT/US2017/058209, dated Jan. 10, 2018. |
Office Action for related U.S. Appl. No. 14/965,675, dated Jan. 31, 2018. |
International Search Report and Written Opinion for related application PCT/US2016/047351, dated Nov. 2, 2016. |
International Search Report and Written Opinion for corresponding PCT application PCT/US2016/051768 dated Dec. 15, 2016. |
Extended European Search Report for related application 18193559.4, dated Dec. 17, 2018. |
Office Action for related U.S. Appl. No. 14/965,675, dated Dec. 12, 2018. |
Office Action for related U.S. Appl. No. 14/619,714, dated Dec. 3, 2018. |
Office Action for related U.S. Appl. No. 14/630,290, dated Jan. 11, 2019. |
Office Action for related U.S. Appl. No. 14/080,348, dated Apr. 12, 2019. |
Office Action for related U.S. Appl. No. 15/410,991, dated May 2, 2019. |
Office Action for related U.S. Appl. No. 15/600,451, dated Nov. 27, 2019. |
Office Action for related U.S. Appl. No. 15/314,426, dated Aug. 29, 2019. |
M. Waring et al., “Cell attachment to adhesive dressing: qualitative and quantitative analysis”, Wounds, UK, (2008), vol. 4, No. 3, pp. 35-47. |
R. White, “Evidence for atraumatic soft silicone wound dressing use”. Wound, UK (2005), vol. 3, pp. 104-108, Mepilex Border docs, (2001). |
European Search Report for corresponding application 17183683.6, dated Sep. 18, 2017. |
European Search Report for corresponding application 17164033.7, dated Oct. 13, 2017. |
Extended European Search Report for corresponding application 17191970.7, dated Oct. 26, 2017. |
EP Examination Report for corresponding application 12705381.7, dated May 22, 2014. |
NPD 1000 Negative Pressure Would Therapy System, Kalypto Medical, pp. 1-4, dated Sep. 2008. |
Australian Office Action for related application 2018278874, dated Feb. 12, 2020. |
Office Action for related U.S. Appl. No. 14/630,290, dated Apr. 30, 2020. |
Office Action for related U.S. Appl. No. 15/793,044, dated May 13, 2020. |
EP Informal Search Report for related application 19186600.3, dated May 11, 2020. |
Office Action for related U.S. Appl. No. 15/884198, dated May 19, 2020. |
Office Action for related U.S. Appl. No. 16/007,060, dated Aug. 18, 2020. |
Office Action for related U.S. Appl. No. 15/937,485, dated Aug. 4, 2020. |
Office Action for related U.S. Appl. No. 15/793,044, dated Sep. 24, 2020. |
Extended European Search Report for related application 20185730.7, dated Oct. 9, 2020 |
Advisory Action for U.S. Appl. No. 15/793,044, dated Dec. 9, 2020. |
Number | Date | Country | |
---|---|---|---|
20170079846 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62220064 | Sep 2015 | US |