This disclosure relates to fire hydrants. More specifically, this disclosure relates to a hydrant nozzle cap for detecting leaks in a fluid system connected to a fire hydrant.
Fire hydrants are commonly connected to fluid systems, such as municipal water infrastructure systems and water mains, through stand pipes. Because these fluid systems are typically partially or entirely located underground, it can be difficult to detect leaks within the fluid systems. Additionally, it can be difficult to access these fluid systems for monitoring. Fire hydrants can provide convenient above-ground access to the fluid systems. Leaks within the fluid systems can send vibrations through the fluid system and up the stand pipes to the fire hydrants. These vibrations propagating through the stand pipes and fire hydrants can be monitored to detect leaks within the connected fluid system. However, fire hydrants can be subjected to other sources of vibration such as wind, rain, ambient noise from loud passing vehicles, or direct contact such as pedestrians bumping into fire hydrants or bicyclists leaning their bicycles against fire hydrants. These sources of background noise can trigger false alarms or make it more difficult for a potential leak to be detected.
Leak detection systems can be provided for detecting leaks in the fluid systems and can be attached to a nozzle of the fire hydrant. Often, the sensitive electronic components of the leak detection system are housed in an enclosed cavity. Pressure changes within the cavity can create stresses on structural components of the leak detection system, which can lead to damage or failure of the structural components. Additionally, moisture and other undesirable elements can enter a cavity that is not adequately sealed, and can damage the electronic components. To protect the electronic components, they often must be potted within the cavity. Furthermore, producing such leak detection systems can be expensive and time consuming. Customers who may not desire a leak detection system often need to seek out alternative solutions for capping the nozzle because of the added cost of the leak detection system. Also, customers who may desire to replace an ordinary nozzle cap with a nozzle cap comprising a leak detection system must purchase an entirely new and expensive nozzle cap.
It is to be understood that this summary is not an extensive overview of the disclosure. This summary is exemplary and not restrictive, and it is intended to neither identify key or critical elements of the disclosure nor delineate the scope thereof. The sole purpose of this summary is to explain and exemplify certain concepts of the disclosure as an introduction to the following complete and extensive detailed description.
Disclosed is a nozzle cap for a fire hydrant comprising a cap body, the cap body comprising an inner housing and an outer housing, the outer housing defining a cavity; a vibration sensor received within the cavity and configured to detect leaks in a fluid system connected to the fire hydrant; and a metal insert contacting the vibration sensor and the inner housing.
Also disclosed is a nozzle cap for a fire hydrant comprising a cap cover comprising a metal material; a cap body comprising: an inner housing comprising a metal material; and an outer housing comprising a non-metal material, the outer housing received between the inner housing and the cap cover, the outer housing defining a cavity; and a vibration sensor received within the cavity and configured to detect leaks in a fluid system connected to the fire hydrant.
A modular nozzle cap for a fire hydrant is also disclosed, the modular nozzle cap comprising a cap cover; a cap body comprising: an inner housing configured to engage the fire hydrant; and an outer module removably received between the inner housing and the cap cover; and a fastener for removably coupling the outer module to the cap cover and the inner housing.
Disclosed is a nozzle cap for a fire hydrant comprising an outer housing defining a first end, a second end opposite the first end, and a substantially circumferential wall extending from the first end to the second end; an antenna coupled to the substantially circumferential wall of the outer housing; a cap cover coupled to the outer housing at the first end; and an inner housing coupled to the outer housing at the second end.
Also disclosed is a nozzle cap for a fire hydrant comprising a cap body defining a first end, a second end opposite the first end, a wall extending from the first end, and threading defined proximate to the second end, the threading configured to couple the cap body to the fire hydrant; and an antenna adhered to the wall of the cap body; and a cap cover coupled the cap body at the first end.
A method of detecting a leak in a fluid system is disclosed, the method comprising providing a nozzle cap comprising a substantially circumferential wall, an antenna attached to the substantially circumferential wall, and a sensor in communication with the antenna; mounting the nozzle cap to a nozzle of a fire hydrant, the fire hydrant connected to a fluid system; detecting an anomaly in the fluid system with the sensor, the anomaly resulting from a leak in the fluid system; and transmitting a signal with the antenna, the signal indicative of the leak in the fluid system.
Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims. The features and advantages of such implementations may be realized and obtained by means of the systems, methods, features particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. The drawings are not necessarily drawn to scale. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and the previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching of the present devices, systems, and/or methods in its best, currently known aspect. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the present devices, systems, and/or methods described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an element” can include two or more such elements unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
For purposes of the current disclosure, a material property or dimension measuring about X or substantially X on a particular measurement scale measures within a range between X plus an industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular aspect.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the disclosed methods.
Disclosed is a hydrant assembly and associated methods, systems, devices, and various apparatus. The hydrant assembly can comprise a fire hydrant and a vibration sensor. It would be understood by one of skill in the art that the disclosed hydrant assembly is described in but a few exemplary aspects among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.
The barrel 120 can comprise a top flange 126 disposed at the top barrel end 122 and a base flange 128 disposed at the bottom barrel end 124. The base flange 128 can be fastened to a stand pipe flange 199 of a stand pipe 198 of a fluid system (not shown), such as a water main for example and without limitation. Example aspects of the stand pipe 198 can be formed from a metal material, such as, for example, iron or steel. The base flange 128 can be fastened to the stand pipe flange 199 by a plurality of fasteners 130. A bonnet flange 182 of the bonnet 180 can be attached to the top flange 126 of the barrel 120, such as with a plurality of fasteners (not shown) similar to the fasteners 130. The bonnet 180 can comprise an operation nut 184, or “op nut”, which can be rotated to open and close a main valve (not shown) positioned at the bottom barrel end 124 or below in the stand pipe 198 in order to respectively supply or cut off pressurized water flow to the fire hydrant 110.
The barrel 120 can define one or more nozzles 140a,b. The nozzle cap 150 can be screwed onto the nozzle 140a to seal the nozzle 140a. With the nozzle cap 150 sealing the nozzle 140a, pressurized water cannot escape through the nozzle 140a when the main valve (not shown) is in an open position. The nozzle cap 150 can define a cap nut 152 which can be turned, such as with a wrench, to tighten or loosen the nozzle cap 150 on the nozzle 140a. In example aspects, the fire hydrant 110 can be formed from a metal material, such as iron, and as such, the nozzle 140 can be formed from a metal material. In some aspects, the nozzle 140a can be a Storz nozzle, as described in further detail below.
The threaded bore 216 can define internal threading 218, and the threaded bore 216 can be screwed onto the nozzle 140a (shown in
The cavity gasket 314 can be configured to form a watertight seal with the cap cover 280 to enclose and seal the cavity 310. As such, the electronic components (e.g., the sensor 380, the antenna 316, a printed circuit board 362, a battery pack 360) within the cavity 310 can be protected from undesirable external elements, such as water and dirt. Thus, the watertight seal provided by the cavity gasket 314 can eliminate the need to protect the electronic components through potting the electronic components within the cavity 310.
The inner housing 230 can comprise one or more posts 332 configured to engage a gap 522 (shown in
The nozzle cap 150 can further comprise the battery pack 360 and the printed circuit board (“PCB”) 362, each disposed within the cavity 310. The PCB 362 can be attached to a mounting bracket 364 which can be secured within the cavity 310 by one or more fasteners (not shown). The nozzle cap 150 can also comprise the vibration sensor 380, and the vibration sensor 380 can be disposed within the cavity 310. The vibration sensor 380 can define a sensor axis 301 which can be perpendicular to the cap axis 201. The vibration sensor 380 can be attached to the circumferential wall 312, and the vibration sensor 380 can extend generally inward from the circumferential wall 312 and into the cavity 310.
The battery pack 360, the PCB 362, the vibration sensor 380, and the antenna(s) 316 can be connected together in electrical communication. The vibration sensor 380 can be configured to detect leaks within the fluid system (not shown) by monitoring vibrations travelling up the stand pipe 198 (shown in
Referring to
In the present aspect, a fastener 408 of the vibration sensor 380 can extend through the base 400 and piezoelectric crystals and can define a threaded end 410, and a spacer 404 can be fit over the fastener 408 between the base 400 and the threaded end 410. Example aspects of the fastener 408 can be formed from a metal material. In the present aspect, the threaded end 410 can define a first sensor end 412 of the vibration sensor 380, and a second sensor end 414 can be defined by the calibration masses 402, opposite from the first sensor end 412. The sensor axis 301 can extend through the fastener 408 and the vibration sensor 380 as a whole from the first sensor end 412 to the second sensor end 414.
Referring to
Referring to
As illustrated in
As shown, example aspects of the housing lid 610 can also comprise lid fastener holes 614 configured to align with the corresponding fastener holes 334,344,384 (shown in
The mechanical spacer 810 can be removed from the modular nozzle cap 150 and replaced as desired. In instances where it may be desired to obtain the leak detection, processing, and communication capabilities of the outer housing 240 (shown in
Referring to the exploded view of
To further aid in reducing deformation of the outer housing 240, example aspects of the nozzle cap 150 can also comprise a compression limiter 1420 positioned between the cap cover 280 and the metal insert 420, as shown. Example aspects of the compression limiter 1420 can define a compression limiter opening 1422 through which the security screw 336 can extend. The compression limiter 1420 can be formed from a metal material, such as, for example, steel, aluminum, brass or any other suitable material known in the art, and can be configured to improve the structural integrity of the plastic joint at the corresponding fastener hole 344 in the outer housing 240. Each of the other security screws 336 can also extend through a compression limiter 1420. However, in some aspects, because the other security screws 336 do not extend through the metal insert 420, the corresponding compression limiters 1420 can extend fully between the cap cover 280 and the corresponding post 332 of the inner housing 230.
One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included in which functions may not be included or executed at all, may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.
The present application is a continuation of U.S. application Ser. No. 16/428,744, filed May 31, 2019, now patented U.S. Pat. No. 11,473,993, which is hereby specifically incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1738094 | Caldwell | Dec 1929 | A |
2171173 | Coyer | Aug 1939 | A |
3254528 | Michael | Jun 1966 | A |
3592967 | Harris | Jul 1971 | A |
3612922 | Furnival | Oct 1971 | A |
3662600 | Rosano, Jr. et al. | May 1972 | A |
3673856 | Panigati | Jul 1972 | A |
3731534 | Painley et al. | May 1973 | A |
3815129 | Sweany | Jun 1974 | A |
4000753 | Ellis | Jan 1977 | A |
4056970 | Sollish | Nov 1977 | A |
4083229 | Anway | Apr 1978 | A |
4333028 | Panton | Jun 1982 | A |
4431873 | Dunn et al. | Feb 1984 | A |
4462249 | Adams | Jul 1984 | A |
4467236 | Kolm et al. | Aug 1984 | A |
4543817 | Sugiyama | Oct 1985 | A |
4763686 | Laurel | Aug 1988 | A |
4796466 | Farmer | Jan 1989 | A |
4844396 | Norton | Jul 1989 | A |
4893679 | Martin et al. | Jan 1990 | A |
4930358 | Motegi et al. | Jun 1990 | A |
4984498 | Fishman | Jan 1991 | A |
5038614 | Bseisu et al. | Aug 1991 | A |
5052215 | Lewis | Oct 1991 | A |
5078006 | Maresca et al. | Jan 1992 | A |
5085082 | Cantor et al. | Feb 1992 | A |
5090234 | Maresca et al. | Feb 1992 | A |
5117676 | Chang | Jun 1992 | A |
5118464 | Richardson et al. | Jun 1992 | A |
5163314 | Maresca et al. | Nov 1992 | A |
5165280 | Sternberg et al. | Nov 1992 | A |
5170657 | Maresca et al. | Dec 1992 | A |
5174155 | Sugimoto | Dec 1992 | A |
5184851 | Sparling et al. | Feb 1993 | A |
5187973 | Kunze et al. | Feb 1993 | A |
5189904 | Maresca et al. | Mar 1993 | A |
5201226 | John et al. | Apr 1993 | A |
5203202 | Spencer | Apr 1993 | A |
5205173 | Allen | Apr 1993 | A |
5209125 | Kalinoski et al. | May 1993 | A |
5218859 | Stenstrom et al. | Jun 1993 | A |
5243862 | Latimer | Sep 1993 | A |
5254944 | Holmes et al. | Oct 1993 | A |
5272646 | Farmer | Dec 1993 | A |
5279160 | Koch | Jan 1994 | A |
5287884 | Cohen | Feb 1994 | A |
5298894 | Cerny et al. | Mar 1994 | A |
5301985 | Terzini | Apr 1994 | A |
5303592 | Livingston | Apr 1994 | A |
5319956 | Bogle et al. | Jun 1994 | A |
5333501 | Okada et al. | Aug 1994 | A |
5335547 | Nakajima et al. | Aug 1994 | A |
5343737 | Baumoel | Sep 1994 | A |
5349568 | Kupperman et al. | Sep 1994 | A |
5351655 | Nuspl | Oct 1994 | A |
5361636 | Farstad et al. | Nov 1994 | A |
5367911 | Jewell et al. | Nov 1994 | A |
5385049 | Hunt et al. | Jan 1995 | A |
5396800 | Drinon et al. | Mar 1995 | A |
5408883 | Clark et al. | Apr 1995 | A |
5416724 | Savic | May 1995 | A |
5461906 | Bogle et al. | Oct 1995 | A |
5519184 | Umlas | May 1996 | A |
5526691 | Latimer et al. | Jun 1996 | A |
5531099 | Russo | Jul 1996 | A |
5548530 | Baumoel | Aug 1996 | A |
5581037 | Kwun et al. | Dec 1996 | A |
5591912 | Spisak et al. | Jan 1997 | A |
5602327 | Torizuka et al. | Feb 1997 | A |
5611948 | Hawkins | Mar 1997 | A |
5619423 | Scrantz | Apr 1997 | A |
5623203 | Hosohara et al. | Apr 1997 | A |
5633467 | Paulson | May 1997 | A |
5639958 | Lange | Jun 1997 | A |
5655561 | Wendel et al. | Aug 1997 | A |
5686828 | Peterman et al. | Nov 1997 | A |
5708211 | Jepson et al. | Jan 1998 | A |
5746611 | Brown et al. | May 1998 | A |
5754101 | Tsunetomi et al. | May 1998 | A |
5760306 | Wyatt et al. | Jun 1998 | A |
5789720 | Lagally et al. | Aug 1998 | A |
5798457 | Paulson | Aug 1998 | A |
5838633 | Sinha | Nov 1998 | A |
5866820 | Camplin et al. | Feb 1999 | A |
5892163 | Johnson | Apr 1999 | A |
5898412 | Jones et al. | Apr 1999 | A |
5907100 | Cook | May 1999 | A |
5965818 | Wang | Oct 1999 | A |
5970434 | Brophy et al. | Oct 1999 | A |
5974862 | Lander et al. | Nov 1999 | A |
5987990 | Worthington et al. | Nov 1999 | A |
6000277 | Smith | Dec 1999 | A |
6000288 | Kwun et al. | Dec 1999 | A |
6003376 | Burns et al. | Dec 1999 | A |
6023986 | Smith et al. | Feb 2000 | A |
6035717 | Carodiskey | Mar 2000 | A |
6058957 | Honigsbaum | May 2000 | A |
6076407 | Levesque et al. | Jun 2000 | A |
6082193 | Paulson | Jul 2000 | A |
6089253 | Sterling et al. | Jul 2000 | A |
6102444 | Kozey | Aug 2000 | A |
6104349 | Cohen | Aug 2000 | A |
6125703 | Maclauchlan et al. | Oct 2000 | A |
6127823 | Atherton | Oct 2000 | A |
6127987 | Maruyama et al. | Oct 2000 | A |
6133885 | Luniak et al. | Oct 2000 | A |
6138512 | Roberts et al. | Oct 2000 | A |
6138514 | Iwamoto et al. | Oct 2000 | A |
6164137 | Hancock et al. | Dec 2000 | A |
6170334 | Paulson | Jan 2001 | B1 |
6175380 | Van Den Bosch | Jan 2001 | B1 |
6181294 | Porter et al. | Jan 2001 | B1 |
6192352 | Alouani et al. | Feb 2001 | B1 |
6243657 | Tuck et al. | Jun 2001 | B1 |
6267000 | Harper et al. | Jul 2001 | B1 |
6276213 | Lee et al. | Aug 2001 | B1 |
6296066 | Terry | Oct 2001 | B1 |
6343510 | Neeson et al. | Feb 2002 | B1 |
6363788 | Gorman et al. | Apr 2002 | B1 |
6389881 | Yang et al. | May 2002 | B1 |
6401525 | Jamieson | Jun 2002 | B1 |
6404343 | Andou et al. | Jun 2002 | B1 |
6442999 | Baumoel | Sep 2002 | B1 |
6450542 | McCue | Sep 2002 | B1 |
6453247 | Hunaidi | Sep 2002 | B1 |
6470749 | Han et al. | Oct 2002 | B1 |
6530263 | Chana | Mar 2003 | B1 |
6561032 | Hunaidi | May 2003 | B1 |
6567006 | Lander et al. | May 2003 | B1 |
6578422 | Lam et al. | Jun 2003 | B2 |
6595038 | Williams et al. | Jul 2003 | B2 |
6606059 | Barabash | Aug 2003 | B1 |
6624628 | Kwun et al. | Sep 2003 | B1 |
6639562 | Suganthan et al. | Oct 2003 | B2 |
6647762 | Roy | Nov 2003 | B1 |
6651503 | Bazarov et al. | Nov 2003 | B2 |
6666095 | Thomas et al. | Dec 2003 | B2 |
6667709 | Hansen et al. | Dec 2003 | B1 |
6707762 | Goodman et al. | Mar 2004 | B1 |
6710600 | Kopecki et al. | Mar 2004 | B1 |
6725705 | Huebler et al. | Apr 2004 | B1 |
6734674 | Struse | May 2004 | B1 |
6745136 | Lam et al. | Jun 2004 | B2 |
6751560 | Tingley et al. | Jun 2004 | B1 |
6763730 | Wray | Jul 2004 | B1 |
6772636 | Lam et al. | Aug 2004 | B2 |
6772637 | Bazarov et al. | Aug 2004 | B2 |
6772638 | Matney et al. | Aug 2004 | B2 |
6781369 | Paulson et al. | Aug 2004 | B2 |
6782751 | Linares et al. | Aug 2004 | B2 |
6789427 | Batzinger et al. | Sep 2004 | B2 |
6791318 | Paulson et al. | Sep 2004 | B2 |
6799455 | Neefeldt et al. | Oct 2004 | B1 |
6799466 | Chinn | Oct 2004 | B2 |
6813949 | Masaniello et al. | Nov 2004 | B2 |
6813950 | Glascock et al. | Nov 2004 | B2 |
6816072 | Zoratti | Nov 2004 | B2 |
6820016 | Brown et al. | Nov 2004 | B2 |
6822742 | Kalayeh et al. | Nov 2004 | B1 |
6843131 | Graff et al. | Jan 2005 | B2 |
6848313 | Krieg et al. | Feb 2005 | B2 |
6851319 | Ziola et al. | Feb 2005 | B2 |
6889703 | Bond | May 2005 | B2 |
6904818 | Harthorn et al. | Jun 2005 | B2 |
6912472 | Mizushina et al. | Jun 2005 | B2 |
6920792 | Flora et al. | Jul 2005 | B2 |
6931931 | Graff et al. | Aug 2005 | B2 |
6935178 | Prause | Aug 2005 | B2 |
6945113 | Siverling et al. | Sep 2005 | B2 |
6957157 | Lander | Oct 2005 | B2 |
6968727 | Kwun et al. | Nov 2005 | B2 |
6978832 | Gardner et al. | Dec 2005 | B2 |
7051577 | Komninos | May 2006 | B2 |
7080557 | Adnan | Jul 2006 | B2 |
7109929 | Ryken, Jr. | Sep 2006 | B1 |
7111516 | Bazarov et al. | Sep 2006 | B2 |
7140253 | Merki et al. | Nov 2006 | B2 |
7143659 | Stout et al. | Dec 2006 | B2 |
7171854 | Nagashima et al. | Feb 2007 | B2 |
7231331 | Davis | Jun 2007 | B2 |
7234355 | Dewangan et al. | Jun 2007 | B2 |
7240574 | Sapelnikov | Jul 2007 | B2 |
7255007 | Messer et al. | Aug 2007 | B2 |
7261002 | Gysling et al. | Aug 2007 | B1 |
7266992 | Shamout et al. | Sep 2007 | B2 |
7274996 | Lapinski | Sep 2007 | B2 |
7284433 | Ales et al. | Oct 2007 | B2 |
7293461 | Girndt | Nov 2007 | B1 |
7299697 | Siddu et al. | Nov 2007 | B2 |
7310877 | Cao et al. | Dec 2007 | B2 |
7328618 | Hunaidi et al. | Feb 2008 | B2 |
7331215 | Bond | Feb 2008 | B2 |
7356444 | Blemel | Apr 2008 | B2 |
7360462 | Nozaki et al. | Apr 2008 | B2 |
7373808 | Zanker et al. | May 2008 | B2 |
7380466 | Deeg | Jun 2008 | B2 |
7383721 | Parsons et al. | Jun 2008 | B2 |
7392709 | Eckert | Jul 2008 | B2 |
7405391 | Ogisu et al. | Jul 2008 | B2 |
7412882 | Lazar et al. | Aug 2008 | B2 |
7412890 | Johnson et al. | Aug 2008 | B1 |
7414395 | Gao et al. | Aug 2008 | B2 |
7426879 | Nozaki et al. | Sep 2008 | B2 |
7458267 | McCoy | Dec 2008 | B2 |
7475596 | Hunaidi et al. | Jan 2009 | B2 |
7493817 | Germata | Feb 2009 | B2 |
7523666 | Thompson et al. | Apr 2009 | B2 |
7526944 | Sab et al. | May 2009 | B2 |
7530270 | Nozaki et al. | May 2009 | B2 |
7543500 | Litzenberg et al. | Jun 2009 | B2 |
7554345 | Vokey | Jun 2009 | B2 |
7564540 | Paulson | Jul 2009 | B2 |
7587942 | Smith et al. | Sep 2009 | B2 |
7590496 | Blemel | Sep 2009 | B2 |
7596458 | Lander | Sep 2009 | B2 |
7607351 | Allison et al. | Oct 2009 | B2 |
7623427 | Jann et al. | Nov 2009 | B2 |
7647829 | Junker et al. | Jan 2010 | B2 |
7650790 | Wright | Jan 2010 | B2 |
7657403 | Stripf et al. | Feb 2010 | B2 |
7668670 | Lander | Feb 2010 | B2 |
7680625 | Trowbridge et al. | Mar 2010 | B2 |
7690258 | Minagi et al. | Apr 2010 | B2 |
7694564 | Brignac et al. | Apr 2010 | B2 |
7696940 | MacDonald | Apr 2010 | B1 |
7711217 | Takahashi et al. | May 2010 | B2 |
7751989 | Owens et al. | Jul 2010 | B2 |
7810378 | Hunaidi et al. | Oct 2010 | B2 |
7980317 | Preta et al. | Jul 2011 | B1 |
8319508 | Vokey | Nov 2012 | B2 |
8353309 | Embry et al. | Jan 2013 | B1 |
8614745 | Wasmeyyah | Dec 2013 | B1 |
8657021 | Preta et al. | Feb 2014 | B1 |
8668206 | Ball | Mar 2014 | B2 |
8674830 | Lanham et al. | Mar 2014 | B2 |
8843241 | Saberi et al. | Sep 2014 | B2 |
8931505 | Hyland et al. | Jan 2015 | B2 |
9053519 | Scolnicov et al. | Jun 2015 | B2 |
9291520 | Fleury, Jr. et al. | Mar 2016 | B2 |
9315973 | Varman et al. | Apr 2016 | B2 |
9496943 | Parish et al. | Nov 2016 | B2 |
9528903 | Zusman | Dec 2016 | B2 |
9562623 | Clark | Feb 2017 | B2 |
9593999 | Fleury | Mar 2017 | B2 |
9772250 | Richarz et al. | Sep 2017 | B2 |
9780433 | Schwengler et al. | Oct 2017 | B2 |
9799204 | Hyland et al. | Oct 2017 | B2 |
9849322 | Hyland et al. | Dec 2017 | B2 |
9861848 | Hyland et al. | Jan 2018 | B2 |
9970805 | Cole et al. | May 2018 | B2 |
10175135 | Dintakurt et al. | Jan 2019 | B2 |
10283857 | Ortiz et al. | May 2019 | B2 |
10305178 | Gibson et al. | May 2019 | B2 |
10317384 | Morrow et al. | Jun 2019 | B2 |
10386257 | Fleury, Jr. et al. | Aug 2019 | B2 |
10857403 | Hyland et al. | Dec 2020 | B2 |
10859462 | Gibson et al. | Dec 2020 | B2 |
10881888 | Hyland et al. | Jan 2021 | B2 |
11047761 | Frackelton et al. | Jun 2021 | B1 |
11067464 | Moreno et al. | Jul 2021 | B2 |
11336004 | Gibson et al. | May 2022 | B2 |
11342656 | Gibson et al. | May 2022 | B2 |
11422054 | Gibson et al. | Aug 2022 | B2 |
11469494 | Ortiz et al. | Oct 2022 | B2 |
11473993 | Gibson | Oct 2022 | B2 |
11527821 | Ortiz et al. | Dec 2022 | B2 |
11542690 | Gibson et al. | Jan 2023 | B2 |
20010045129 | Williams et al. | Nov 2001 | A1 |
20020043549 | Taylor et al. | Apr 2002 | A1 |
20020124633 | Yang et al. | Sep 2002 | A1 |
20020159584 | Sindalovsky et al. | Oct 2002 | A1 |
20030107485 | Zoratti | Jun 2003 | A1 |
20030150488 | Fleury, Jr. et al. | Aug 2003 | A1 |
20030193193 | Harrington et al. | Oct 2003 | A1 |
20040129312 | Cuzzo et al. | Jul 2004 | A1 |
20040173006 | McCoy et al. | Sep 2004 | A1 |
20040187922 | Fleury, Jr. et al. | Sep 2004 | A1 |
20040201215 | Steingass | Oct 2004 | A1 |
20050005680 | Anderson | Jan 2005 | A1 |
20050067022 | Istre | Mar 2005 | A1 |
20050072214 | Cooper | Apr 2005 | A1 |
20050121880 | Santangelo | Jun 2005 | A1 |
20050153586 | Girinon | Jul 2005 | A1 |
20050279169 | Lander | Dec 2005 | A1 |
20060174707 | Zhang | Aug 2006 | A1 |
20060201550 | Blyth et al. | Sep 2006 | A1 |
20060283251 | Hunaidi | Dec 2006 | A1 |
20060284784 | Smith et al. | Dec 2006 | A1 |
20070044552 | Huang | Mar 2007 | A1 |
20070051187 | McDearmon | Mar 2007 | A1 |
20070113618 | Yokoi et al. | May 2007 | A1 |
20070130317 | Lander | Jun 2007 | A1 |
20070295406 | German et al. | Dec 2007 | A1 |
20080078567 | Miller et al. | Apr 2008 | A1 |
20080079640 | Yang | Apr 2008 | A1 |
20080168840 | Seeley et al. | Jul 2008 | A1 |
20080189056 | Heidl et al. | Aug 2008 | A1 |
20080238711 | Payne et al. | Oct 2008 | A1 |
20080281534 | Hurley | Nov 2008 | A1 |
20080307623 | Furukawa | Dec 2008 | A1 |
20080314122 | Hunaidi | Dec 2008 | A1 |
20090044628 | Lotscher | Feb 2009 | A1 |
20090133887 | Garcia et al. | May 2009 | A1 |
20090139336 | Trowbridge, Jr. et al. | Jun 2009 | A1 |
20090182099 | Noro et al. | Jul 2009 | A1 |
20090214941 | Buck et al. | Aug 2009 | A1 |
20090278293 | Yoshinaka et al. | Nov 2009 | A1 |
20090301571 | Ruhs | Dec 2009 | A1 |
20100077234 | Das | Mar 2010 | A1 |
20100156632 | Hyland et al. | Jun 2010 | A1 |
20100259461 | Eisenbeis et al. | Oct 2010 | A1 |
20100290201 | Takeuchi et al. | Nov 2010 | A1 |
20100295672 | Hyland et al. | Nov 2010 | A1 |
20110063172 | Podduturi | Mar 2011 | A1 |
20110066297 | Saberi | Mar 2011 | A1 |
20110079402 | Darby et al. | Apr 2011 | A1 |
20110102281 | Su | May 2011 | A1 |
20110162463 | Allen | Jul 2011 | A1 |
20110308638 | Hyland et al. | Dec 2011 | A1 |
20120007743 | Solomon | Jan 2012 | A1 |
20120007744 | Pal et al. | Jan 2012 | A1 |
20120169560 | Lee et al. | Jul 2012 | A1 |
20120296580 | Barkay | Nov 2012 | A1 |
20120324985 | Gu et al. | Dec 2012 | A1 |
20130036796 | Fleury et al. | Feb 2013 | A1 |
20130041601 | Dintakurti et al. | Feb 2013 | A1 |
20130049968 | Fleury, Jr. | Feb 2013 | A1 |
20130145826 | Richarz et al. | Jun 2013 | A1 |
20130211797 | Scolnicov | Aug 2013 | A1 |
20130229262 | Bellows | Sep 2013 | A1 |
20130298664 | Gillette, II et al. | Nov 2013 | A1 |
20130321231 | Flores-Cuadras | Dec 2013 | A1 |
20140206210 | Ritner | Jul 2014 | A1 |
20140225787 | Ramachandran et al. | Aug 2014 | A1 |
20140373941 | Varman et al. | Dec 2014 | A1 |
20150070221 | Schwengler et al. | Mar 2015 | A1 |
20150082868 | Hyland | Mar 2015 | A1 |
20150128714 | Moss | May 2015 | A1 |
20160001114 | Hyland | Jan 2016 | A1 |
20160013565 | Ortiz | Jan 2016 | A1 |
20160018283 | Fleury et al. | Jan 2016 | A1 |
20160097696 | Zusman | Apr 2016 | A1 |
20170072238 | Silvers et al. | Mar 2017 | A1 |
20170121949 | Fleury et al. | May 2017 | A1 |
20170130431 | Pinney et al. | May 2017 | A1 |
20170237158 | Gibson | Aug 2017 | A1 |
20170237165 | Ortiz et al. | Aug 2017 | A1 |
20180080849 | Showcatally et al. | Mar 2018 | A1 |
20180093117 | Hyland et al. | Apr 2018 | A1 |
20180224349 | Fleury, Jr. et al. | Aug 2018 | A1 |
20190024352 | Ozburn | Jan 2019 | A1 |
20190214717 | Gibson et al. | Jul 2019 | A1 |
20190214718 | Ortiz et al. | Jul 2019 | A1 |
20190316983 | Fleury, Jr. et al. | Oct 2019 | A1 |
20200069987 | Hyland et al. | Mar 2020 | A1 |
20200072697 | Gibson et al. | Mar 2020 | A1 |
20200212549 | Gibson | Jul 2020 | A1 |
20200232863 | Moreno et al. | Jul 2020 | A1 |
20200232864 | Moreno et al. | Jul 2020 | A1 |
20200378859 | Gibson et al. | Dec 2020 | A1 |
20210023408 | Hyland et al. | Jan 2021 | A1 |
20210041323 | Gibson et al. | Feb 2021 | A1 |
20210249765 | Ortiz et al. | Aug 2021 | A1 |
20210355661 | Gibson et al. | Nov 2021 | A1 |
20220082467 | Fleury, Jr. et al. | Mar 2022 | A1 |
20220190471 | Gibson et al. | Jun 2022 | A1 |
20220291073 | Gibson et al. | Sep 2022 | A1 |
20220294104 | Ortiz et al. | Sep 2022 | A1 |
20220302580 | Ortiz et al. | Sep 2022 | A1 |
20220320721 | Gibson et al. | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
2011265675 | May 2015 | AU |
2015202550 | Nov 2017 | AU |
2017248541 | Mar 2019 | AU |
2154433 | Jan 1997 | CA |
2397174 | Aug 2008 | CA |
2634739 | Jun 2015 | CA |
3010333 | Jul 2020 | CA |
2766850 | Aug 2020 | CA |
3023529 | Aug 2020 | CA |
3070690 | Nov 2020 | CA |
2842042 | Jan 2021 | CA |
3057167 | Mar 2021 | CA |
3057202 | May 2021 | CA |
3060512 | Jun 2021 | CA |
3010345 | Jul 2021 | CA |
3095465 | Sep 2022 | CA |
1831478 | Jun 2013 | CN |
4211038 | Oct 1993 | DE |
19757581 | Jul 1998 | DE |
0711986 | May 1996 | EP |
1052492 | Nov 2000 | EP |
1077370 | Feb 2001 | EP |
1077371 | Feb 2001 | EP |
3293315 | Mar 2018 | EP |
2439990 | May 1980 | FR |
2250820 | Jun 1992 | GB |
2269900 | Feb 1994 | GB |
2367362 | Apr 2002 | GB |
2421311 | Jun 2006 | GB |
2550908 | Dec 2017 | GB |
59170739 | Sep 1984 | JP |
60111132 | Jun 1985 | JP |
08250777 | Sep 1996 | JP |
H10-2744 | Jan 1998 | JP |
11201859 | Jul 1999 | JP |
H11210028 | Aug 1999 | JP |
2000131179 | May 2000 | JP |
2002206965 | Jul 2002 | JP |
2002310840 | Oct 2002 | JP |
3595856 | Dec 2004 | JP |
2005315663 | Nov 2005 | JP |
2005321935 | Nov 2005 | JP |
2006062414 | Mar 2006 | JP |
2006062716 | Mar 2006 | JP |
2007047139 | Feb 2007 | JP |
2010068017 | Mar 2010 | JP |
2013528732 | Jul 2013 | JP |
H5654124 | Nov 2014 | JP |
101785664 | Nov 2017 | KR |
9850771 | Nov 1998 | WO |
0151904 | Jul 2001 | WO |
03049528 | Jun 2003 | WO |
2004073115 | Aug 2004 | WO |
2005052573 | Jun 2005 | WO |
2008047159 | Apr 2008 | WO |
2009057214 | May 2009 | WO |
2010135587 | Nov 2010 | WO |
2011021039 | Feb 2011 | WO |
2011058561 | May 2011 | WO |
2011159403 | Dec 2011 | WO |
2012000088 | Jan 2012 | WO |
2012153147 | Nov 2012 | WO |
2014016625 | Jan 2014 | WO |
2017139029 | Aug 2017 | WO |
2017139030 | Aug 2017 | WO |
2020050946 | Mar 2020 | WO |
2021231163 | Nov 2021 | WO |
Entry |
---|
US 11,296,403 B2, 04/2022, Gibson et al. (withdrawn) |
Hyland, Gregory; Extended European Search Report for serial No. 11796120.1, filed May 5, 2011, dated Nov. 4, 2016, 8 pgs. |
Hyland, Gregory E.; Office Action for European patent application No. 11796120.1, filed May 5, 2011, dated Feb. 9, 2018, 4 pgs. |
Hyland, Gregory E.; Australian Patent Examination Report for serial No. 2011265675, filed Jan. 21, 2012, dated Oct. 1, 2014, 3 pgs. |
Hyland, Gregory E.; Japanese Office Action for serial No. 2013515338, filed Jan. 30, 2012, dated Jun. 10, 2014, 8 pgs. |
Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Jul. 7, 2015, 9 pgs. |
Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Nov. 4, 2015,9 pgs. |
Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Aug. 12, 2016, 4 pgs. |
Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Feb. 9, 2017, 4 pgs. |
Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated May 16, 2017, 5 pgs. |
Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated Jul. 5, 2017, 4 pgs. |
Hyland, Gregory E.; Office Action for Mexico Patent Application No. MX/a/2017/006090, filed May 5, 2011, dated Sep. 26, 2018, 4 pgs. |
Hyland, Gregory E.; Examination Report for Australian patent application No. 2017248541, filed Oct. 20, 2017, dated Apr. 20, 2018, 5 pgs. |
Hyland, Gregory E.; Office Action for Canadian patent application No. 3,023,529, filed May 5, 2011, dated Nov. 26, 2019, 4 pgs. |
Keefe, Robert Paul, Office Action for Canadian application No. 3,060,512, filed May 5, 2011, dated Apr. 22, 2020, 5 pgs. |
Keefe, Robert Paul, Office Action for Canadian application No. 3,060,512, filed May 5, 2011, dated Jul. 13, 2020, 6 pgs. |
Fleury, Leo W.; International Search Report and Written Opinion for serial No. PCT/US 12/50390 filed Aug. 10, 2012, dated Dec. 17, 2012, 18 pgs. |
Fleury, Leo W.; International Preliminary Report on Patentability for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Feb. 18, 2014, 14 pgs. |
Fleury, et al.; Supplemental European Search Report for application No. 12823594.2, filed Aug. 20, 2012, dated Feb. 18, 2015, 6 pgs. |
Fleury Jr., Leo W.; European Search Report for serial No. 12823594, filed Aug. 10, 2012, dated Jun. 8, 2015, 11 pgs. |
Fleury Jr., Leo W.; European Search Report for Serial No. 12823594, filed Aug. 10, 2012, dated May 10, 2017, 4 pgs. |
Fleury Jr., Leo W.; European Search Report for Serial No. 12823594, filed Aug. 10, 2012, dated Dec. 21, 2017, 4 pgs. |
Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, mailed Apr. 24, 2018, 3 pgs. |
Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Feb. 28, 2019, 3 pgs. |
Fleury, Leo W.; Office Action for Canadian patent application No. 2,842,042, filed Aug. 10, 2012, dated Dec. 5, 82019, 3 pgs. |
Fleury, Leo W., U.S. Provisional Patent Application Entitled: Hydrant Leak Detector Communication Device, System, and Method under U.S. Appl. No. 61/523,274, filed Aug. 12, 2011; 35 pgs. |
Hunaidi, Osama; Non-Final Office Action for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jan. 20, 2010, 50 pgs. |
Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jun. 24, 2010, 8 pgs. |
Hunaidi, Osama; Issue Notification for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Sep. 22, 2010, 1 pg. |
Hunaidi, Osama; Non-final Office Action for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated Dec. 17, 2001, 6 pgs. |
Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated May 13, 2002, 4 pgs. |
Peter, Russo Anthony; European Search Report for Patent Application No. EP95307807, filed Nov. 1, 1995, dated Jul. 22, 1998, 5 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Jun. 4, 2018, 94 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Dec. 12, 2018, 25 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Feb. 19, 2019, 8 pgs. |
Ortiz, Jorge Isaac; Issue Notification for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Apr. 17, 2019, 1 pg. |
Ortiz, Jorge Isaac; Supplemental Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Mar. 13, 2019, 6 pgs. |
Ortiz, Jorge; International Search Report and Written Opinion for PCT/US16/67689, filed Dec. 20, 2016, dated Mar. 8, 2017, 9 pgs. |
Ortiz, Jorge Isaac; International Preliminary Reporton Patentability for PCT Application No. PCT/US2016/067689, filed Dec. 20, 2016, dated Aug. 23, 2018, 8 pgs. |
Ortiz, Jorge Isaac; Extended European Search Report for serial No. 16890114.8, filed Dec. 20, 2016, dated Sep. 26, 2019, 11 pgs. |
Ortiz, Jorge Isaac; Office Action for Canadian patent application No. 3,010,333, filed Dec. 20, 2016, dated Dec. 6, 2019, 4 pgs. |
Oritz, Jorge Isaac; Office Action for Canadian patent application No. 3,070,690, filed Dec. 20, 2016, dated Mar. 10, 2020, 3 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Feb. 23, 2018, 86 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Aug. 31, 2018, 33 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Jan. 17, 2019, 17 pgs. |
Gibson, Daryl Lee; Corrected Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Mar. 21, 2019, 6 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/352,045, filed Mar. 13, 2019, dated Nov. 25, 2020, 106 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 16/352,045, filed Mar. 13, 2019, dated May 4, 2021, 33 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Jan. 1, 2021, 105 pgs. |
Gibson, Daryl Lee; Requirement for Restriction/Election for U.S. Appl. No. 16/121,136, filed Sep. 14, 2018, dated May 7, 2020, 5 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/121,136, filed Sep. 4, 2018, dated Jun. 22, 2020, 94 pgs. |
Antenna. Merriam-Webster Dictionary, 2014 [retrieved on Jun. 1, 2014], Retrieved from the Internet: <URL: www.merriam-webster.com/dictionary/antenna>. |
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 6, 2017, 1 pg. |
Richarz, Werner Guenther; Restriction Requirement for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 27, 2013; 5 pgs. |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Nov. 6, 2013, 39 pgs. |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 4, 2014, 24 pgs. |
Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Oct. 20, 2014, 17 pgs. |
Richarz, Wemer Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Feb. 27, 2015, 15 pgs. |
J.A. Gallego-Juarez, G. Rodriguez-Corral and L. Gaete-Garreton, An ultrasonic transducer for high power applications in gases, Nov. 1978, Ultrasonics, published by IPC Business Press, p. 267-271. |
Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 10, 2015, 20 pgs. |
“Non-Patent Literature Murata (entitled ““Piezoelectric Sounds Components””), accessed at http://web.archive.org/web/20030806141815/http://www.murata.com/catalog/p37e17.pdf, archived on Aug. 6, 2003.” |
“Non-Patent Literature NerdKits, accessed at http://web.archive.org/web/20090510051850/http://www.nerdkits.com/videos/sound_meter/, archived on May 10, 2009.” |
“Non-Patent Literature Bimorph (entitled ““Bimoprh actuators””), accessed at http://web.archive.org/web/20080122050424/http://www.elpapiezo.ru/eng/curve_e.shtml, archived on Jan. 22, 2008.” |
Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Mar. 8, 2016, 27 pgs. |
Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 8, 2016, 36 pgs. |
Richarz, Werner Guenther; Notice of Allowance for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 13, 2017, 31 pgs. |
Richarz, Werner Guenther; Issue Notification for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 6, 2017, 1 pg. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 16, 2015, 60 pgs. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated May 17, 2016, 48 pgs. |
Chou, et al.; Article entitled: “Non-invasive Acceleration-based Methodology for Damage Detection and Assessment of Water Distribution System”, Mar. 2010, 17 pgs. |
Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Nov. 8, 2016, 31 pgs. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Mar. 16, 2017, 30 pgs. |
Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Oct. 18, 2017, 38 pgs. |
Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 11, 2018, 38 pgs. |
Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jun. 22, 2018, 39 pgs. |
Dintakurti, Ganapathi Deva Varma; Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Sep. 24, 2018, 21 pgs. |
Dintakurti, Ganapathi Deva Varma; Corrected Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 6, 2018, 6 pgs. |
Dintakurti, Ganapathi Deva Varma; Issue Notification for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 19, 2018, 1 pg. |
Fleury Jr, Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 23, 2013; 35 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Apr. 23, 2014, 19 pgs. |
Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Jun. 18, 2014, 4 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 21, 2014, 37 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated May 22, 2015, 28 pgs. |
Non-Patent Literature “Radiodetection Water Leak Detection Products”, 2008, Radiodetection Ltd.—SPX Corporation. |
Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 9, 2015, 3 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Mar. 1, 2016, 42 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 21, 2016, 18 pgs. |
Fleury, Jr., Leo W.; Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 24, 2016, 13 pgs. |
Fleury, Jr., Leo W.; Supplemental Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Nov. 22, 2016; 8 pgs. |
Fleury, Jr., Leo W.; Corrected Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 14, 2017; 8 pgs. |
Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 22, 2017; 1 page. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Apr. 16, 2019, 88 pgs. |
Fleury, Jr., Leo W.; Corrected Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Jun. 26, 2019, 55 pgs. |
Hyland; International Search Report and Written Opinion for serial No. PCT/US2011/035374, filed May 5, 2011, dated Sep. 13, 2011; 7 pgs. |
Hyland; International Preliminary Report on Patentability for serial No. PCT/US2011/035374, filed May 5, 2011, dated Dec. 19, 2012; 5 pgs. |
Hyland, Gregory E..; Office Action for Canadian Patent Application No. 2,766,850, filed May 5, 2011, dated Mar. 13, 2017, 4 pgs. |
Hyland, Gregory E.; Office Action for Canadian application No. 2,766,850, filed May 5, 2011, dated Aug. 16, 2018, 4 pgs. |
Hyland, Gregory E.; Office Action for Canadian patent application No. 2,766,850, filed May 5, 2011, dated Jun. 19, 2019, 4 pgs. |
Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated May 30, 2016, 4 pgs. |
Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Aug. 31, 2016, 4 pgs. |
Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Dec. 13, 2016, 5 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/121,136, filed Sep. 4, 2018, dated Sep. 29, 2020, 15 pgs. |
Gibson, Daryl Lee; Corrected Notice of Allowance for U.S. Appl. No. 16/121,136, filed Sep. 4, 2018, dated Nov. 9, 2020, 6 pgs. |
Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US21/31033, filed May 6, 2021, dated Jul. 15, 2021, 2 pgs. |
Hyland, Gregory E., Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jul. 31, 2013; 57 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Feb. 20, 2014; 29 pgs. |
Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Dec. 23, 2014, 1 pg. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jun. 5, 2014, 29 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Sep. 11, 2014, 11 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Nov. 25, 2014, 5 pgs. |
Hyland, Gregory E.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 19, 2017, 4 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 5, 2017, 23 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jun. 30, 2016, 24 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jan. 19, 2016, 101 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Nov. 8, 2016, 48 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jul. 17, 2017, 14 pgs. |
Hyland, Gregory E.; Notice of Decision from Post-Prosecution Pilot Program (P3) Conference for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Sep. 14, 2016, 4 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Oct. 20, 2017, 11 pgs. |
Hyland, Gregory; Issue Notification for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Dec. 20, 2017, 1 pg. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Aug. 19, 2016; 20 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 13, 2016, 52 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 6, 2017, 12 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Nov. 27, 2017, 6 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 19, 2017, 8 pgs. |
Hyland, Gregory; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Jun. 7, 2017, 25 pgs. |
Hyland, Gregory; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Mar. 4, 2016, 94 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jun. 11, 2020, 33 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Dec. 17, 2019, 23 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jul. 10, 2019, 74 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Aug. 21, 2020, 9 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Oct. 28, 2020, 4 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Dec. 7, 2020, 4 pgs. |
Hyland, Gregory; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Oct. 9, 2020, 4 pgs. |
Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jun. 26, 2020, 70 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jan. 28, 2020, 18 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Oct. 23, 2020, 16 pgs. |
Hyland, Gregory E.; Supplemental Notice of Allowance for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Nov. 10, 2020, 4 pgs. |
Fleury Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Nov. 5, 2014, 30 pgs. |
Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Jul. 9, 2014, 3 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 12, 2014; 19 pgs. |
Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 2, 2016, 1 pg. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 12, 2013; 37 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Feb. 2, 2016, 9 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated May 12, 2015, 9 pgs. |
Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 23, 2015, 11 pgs. |
Fleury, Leo W.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Feb. 28, 2018, 4 pgs. |
Fleury, Leo W.; Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Dec. 29, 2017, 24 pgs. |
Fleury, Leo; Non-Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Jun. 21, 2017, 88 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Nov. 25, 2020, 37 pgs. |
Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Feb. 19, 2020, 29 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Mar. 24, 2021, 32 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated May 27, 2020, 23 pgs. |
Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Sep. 25, 2019, 92 pgs. |
Richarz, Werner Guenther; Corrected Notice of Allowability for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Aug. 29, 2017, 6 pgs. |
Jul. 15, 2021, Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US21/31033, filed May 6, 2021, dated Jul. 15, 2021, 2 pgs. |
FleuryJr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dateded Aug. 27, 2021, 30 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 16/354,939, filed Mar. 15, 2019, dated Aug. 10, 2021, 126 pgs. |
Ortiz, Jorge Isaac; Requirement for Restriction/Election for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Jul. 22, 2021, 6 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/352,045, filed Mar. 13, 2019, dated Aug. 13, 2021, 20 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Aug. 5, 2021, 21 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Aug. 30, 2021, 84 pgs. |
Abt, Inc., Installation Instructions Belleville Washer springs (Year: 2014), 1 pg. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/428,744, filed May 31, 2019, dated Aug. 2, 2021, 121 pgs. |
QRFS, Storz FDCs and fire Hydrant Storz connections: Adapters or integral Storz, Mar. 2019 (Year: 2019), 21 pgs. |
Speacialinsert, Inserts for plastic (Year: 2016), 36 pgs. |
Gibson, Daryl; Office Action for U.S. Appl. No. 3,057,224, filed Oct. 1, 2019, dated Jun. 23, 2021, 4 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Sep. 16, 2021, 82 pgs. |
Ortiz, Jorge Isaac; Office Action for European patent application No. 16890114.8, filed Dec. 20, 2016, dated Oct. 4, 2021, 7 pgs. |
Gibson, Daryl Lee; Applicant-Initiated Interview Summary for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Oct. 14, 2021, 2 pgs. |
Gibson, Daryl Lee; Extended European Search Report for application No. 21180958.7, filed Aug. 7, 2019, dated Oct. 5, 2021, 8 pgs. |
Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US21/31033, filed May 6, 2021, dated Sep. 24, 2021, 12 pgs. |
Fleury Jr., Leo W., Advisory Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Dec. 7, 2021, 2 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Dec. 7, 2021, 28 pgs. |
Ortiz, Jorge Isaac; Office Action for Canadian patent application No. 3,095,465, filed Dec. 20, 2016, dated Nov. 8, 2021, 4 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/352,045, filed Mar. 13, 2019, dated Dec. 1, 2021, 24 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/234,715, filed Dec. 28, 2018, dated Dec. 7, 2021, 23 pgs. |
Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Dec. 14, 2021, 17 pgs. |
Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 17/071,632, filed Oct. 15, 2020, dated Mar. 30, 2022, 89 pgs. |
Fleury, Jr.; Non-Final Office Action for U.S. Appl. No. 16/453,318, filed Jun. 26, 2019, dated Mar. 2, 2022, 129 pgs. |
Fleury, Leo W., Jr.; Office Action for Canadian patent application No. 3,102,529, filed Aug. 10, 2012, dated Mar. 16, 2022, 4 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 16/354,939, filed Mar. 15, 2019, dated Mar. 17, 2022, 40 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Mar. 7, 2022, 13 pgs. |
Gibson, Daryl Lee; Applicant-Initiated Interview Summary for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Feb. 9, 2022, 2 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 17/079,642, filed Oct. 26, 2020, dated Mar. 1, 2022, 11 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/428,744, filed May 31, 2019, dated Mar. 16, 2022, 34 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,105,683, filed Aug. 7, 2019, dated Mar. 8, 2022, 4 pgs. |
Gibson, Daryl Lee; Extended European Search Report for application No. 19857477.4, filed Aug. 7, 2019, dated Apr. 5, 2022, 7 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 17/071,632, filed Oct. 15, 2020, dated Jun. 24, 2022, 11 pgs. |
Ortiz, Jorge Isaac, Notice of Allowance for U.S. Appl. No. 16/354,939, filed Mar. 15, 2019, dated Jun. 9, 2022, 10 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 16/874,340, filed May 14, 2020, dated May 27, 2022, 126 pgs. |
Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 17/071,632, filed Oct. 15, 2020, dated Aug. 29, 2022, 10 pgs. |
Hyland, Gregory E.; Office Action for Canadian patent application No. 3,116,787, filed Apr. 29, 2020, dated Aug. 15, 2022, 4 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U .S. U.S. Appl. No. 16/354,939, filed Mar. 15, 2019, dated Sep. 2, 2022, 9 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 17/245,181, filed Apr. 30, 2021, dated Sep. 19, 2022, 11 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/428,744, filed May 31, 2019, dated Sep. 14, 2022, 12 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,119,150, filed Dec. 20, 2016, dated Sep. 15, 2022, 6 pgs. |
Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 16/874,340, filed May 14, 2020, dated Sep. 12, 2022, 16 pgs. |
Fleury Jr., Leo W.; Final Office Action for U.S. Appl. No. 16/453,318, filed Jun. 26, 2019, dated Aug. 8, 2022, 53 pgs. |
Sansei Denki KK; Translation for JP3595856(B2), published on Dec. 2, 2004, 12 pgs. |
Wallace & Tiernan; Brochure for Hydraclam continuous water quality monitoring via hydrants, Allegedly Available as Early as 2008, 3 pgs. |
Wallace & Tiernan; Brochure for HYDRACLAM Distribution Water Quality Monitoring SB.50.700GE, Allegedly Available as Early as 2008, 8 pgs. |
Wallace & Tiernan; Product Sheet for Wallace & Tiernan Analysers and Controllers-HydraClam Water Quality Monitor with Remote Communications, Allegedly Available as Early as 2008, 4 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,113,517, filed Oct. 1, 2019, dated Jul. 8, 2022, 5 pgs. |
Fleury Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 16/453,318, filed Jun. 26, 2019, dated Oct. 25, 2022, 43 pgs. |
Fleury Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 16/453,318, filed Jun. 26, 2019, dated Dec. 5, 2022, 146 pgs. |
Fleury, Leo W., Jr.; Office Action for Canadian patent application No. 3,102,529, filed Aug. 10, 2012, dated Oct. 25, 2022, 4 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 17/833,230, filed Jun. 6, 2022, dated Oct. 25, 2022, 98 pgs. |
Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 17/829,759, filed Jun. 1, 2022, dated Oct. 24, 2022, 92 pgs. |
Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 17/683,090, filed Feb. 28, 2022, dated Dec. 13, 2022, 101 pgs. |
Gibson, Daryl Lee; Requirement for Restriction/Election for U.S. Appl. No. 17/683,090, filed Feb. 28, 2022, dated Nov. 9, 2022, 5 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,105,683, filed Aug. 7, 2019, dated Dec. 1, 2022, 3 pgs. |
Gibson, Daryl Lee; Supplementary Examination Written Opinion for Singapore patent application No. 11202101803V, filed Jul. 8, 2019, dated Nov. 2, 2022, 4 pgs. |
Gibson, Daryl Lee; International Preliminary Reporton Patentability for PCT Application No. PCT/US21/31033, filed May 6, 2021, dated Nov. 24, 2022, 9 pgs. |
Gibson, Daryl Lee; International Preliminary Reporton Patentability for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Aug. 23, 2018, 9 pgs. |
Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Mar. 2, 2017, 10 pgs. |
Gibson, Daryl Lee; Extended European Search Report for 16890115.5, filed Dec. 20, 2016, dated Jan. 24, 2020, 10 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,010,345, filed Dec. 20, 2016, dated Oct. 6, 2020, 4 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,010,345, filed Dec. 20, 2016, dated Dec. 16, 2019, 4 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,224, filed Oct. 1, 2019, dated Nov. 10, 2020, 4 pgs. |
Gibson, Daryl Lee; International Preliminary Reporton Patentability for PCT Application No. PCT/US19/45451, filed Aug. 7, 2019, dated Mar. 18, 2021, 8 pgs. |
Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US 19/45451, filed Aug. 7, 2019, dated Feb. 3, 2020, 11 pgs. |
Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US19/45451, filed Aug. 7, 2019, dated Oct. 10, 2019, 2 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated Nov. 19, 2019, 7 pgs. |
Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated May 25, 2020, 3 pgs. |
Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Dec. 19, 2019, 3 pgs. |
Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Apr. 2, 2020, 4 pgs. |
Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Aug. 31, 2020, 4 pgs. |
Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 17/833,230, filed Jun. 6, 2022, dated Feb. 10, 2023, 30 pgs. |
Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 17/829,759, filed Jun. 1, 2022, dated Feb. 15, 2023, 17 pgs. |
Number | Date | Country | |
---|---|---|---|
20210247261 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16428744 | May 2019 | US |
Child | 17245419 | US |