This application claims priority to European Patent Application No. 19290091.8 filed Sep. 12, 2019, the entire contents of which is incorporated herein by reference.
The present application relates to hydraulic actuator systems. In particular, the present application relates to pressure and/or load control at a hydraulic actuator end stroke stop.
Hydraulic actuators usually incorporate end stroke stops between a piston and a cylinder at both ends. In any actuator position, pressure loads in the chamber or chambers is a function of the external load applied to the actuator. Once an actuator piston contacts an end stroke stop, pressure in the chamber that is driving the actuator to the stop usually rises to a maximum system pressure. As an example, an opposite chamber (e.g. in a dual acting actuator system) is usually ported to drain, which means that there is almost no opposite hydraulic pressure load generated by a second actuator chamber.
The above, therefore, results in very high loads on actuator components within an actuator system. This has a significant impact on the fatigue of actuator components when actuator stops are contacted at every operating cycle.
Further, the size of actuator chamber(s) and system pressure is typically set to meet system performances when the load required to maintain the system against an end stroke stop is much lower than the load developed under full system pressure. This is the case, for example, in propeller pitch change actuators where the load required to maintain the blades in feather position is very small compared to the maximum load generated by blades in flight. This leads to oversizing of actuator components.
In one example, there is described a system for providing pressure/load control at an end stroke stop. The system includes an actuator housing having an end stroke stop and a first actuator housing side, an actuator piston provided in the actuator housing, wherein the actuator piston is movable along a longitudinal axis, the actuator piston having a first piston portion perpendicular to the longitudinal axis, and means for regulating the pressure/load control at the end stroke stop provided in the first piston portion, wherein the means for regulating the pressure/load control at the end stroke stop is configured to move from a closed position to an open position when in contact with the first actuator housing side.
The first piston portion may have an opening that extends through a first piston portion side to a second piston portion side. The means for regulating the pressure/load control at the end stroke stop may be provided within the opening.
The means for regulating the pressure/load control at the end stroke stop may further include a ball bearing, a first biasing spring, a rod, a valve assembly casing. When the valve assembly casing contacts the first actuator housing side, in use, the rod may move to contact the ball bearing such that the means for regulating the pressure/load control at the first actuator housing side provides fluid flow through the opening.
The means for regulating the pressure/load control may further include a valve piston and a second biasing spring, wherein, a first force, P1×A1, where P1 is a first pressure and A1 is the area of the valve piston, is exerted through the opening and on a first side of the valve piston, and wherein a second force, P2×A2+S, where P2 is a second pressure, A2 is the area of the valve piston and S is the force exerted by the second biasing spring, is exerted on a second side of the valve piston. When P1×A1 is greater than P2×A2+S, the valve piston may move such that pressure can be discharged through at least one passageway provided in the valve piston.
In an alternative example to the valve piston, there may be provided an orifice between the ball bearing and the second piston portion side. There may be provided a restriction in the orifice such that the restriction provides a pressure drop to regulate the pressure of the fluid through the opening.
In another example, there is described a method for providing pressure/load control at an end stroke stop. The method may include providing an actuator housing having an end stroke stop and a first actuator housing side, providing an actuator piston provided in the actuator housing, wherein the actuator piston is movable along a longitudinal axis, the actuator piston having a first piston portion perpendicular to the longitudinal axis, and providing means for regulating the pressure/load control at the end stroke stop provided in the first piston portion, wherein the means for regulating the pressure/load control at the end stroke stop is configured to move from a closed position to an open position when in contact with the first actuator housing side.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
With reference to
The end stroke stop valve assembly may be provided within and/or on the actuator piston 100, as shown in
The actuator housing 110 includes a first actuator housing side 120, as shown in
When the actuator piston 100 moves to the first actuator housing side 120, and the ball bearing 116 is in an open position, the valve piston 134 is able to move in response to pressure on either side of the end stroke stop valve assembly. The second biasing spring 112 is provided to the valve piston 134 and a pressure threshold is set in the end stroke stop valve assembly by increasing or decreasing the compressive force of the second biasing spring. The pressure exerted on the left hand side of the valve piston 134 in the first actuator chamber 11, e.g. fluid flow through the opening 130, may be denoted as P1. When the actuator piston 100 contacts the end stroke stop 115, P1 increases over time. The force exerted on the left side of the valve piston 134 may be denoted as P1×A1; A1 being the area of the valve piston 134 subject to pressure P1. The force exerted on the right hand side of the valve piston 134 may be denoted as P2×A2+S, where S is the force of the biasing spring, A2 is the area of the piston 134 subject to pressure P2 and P2 is the pressure in the second actuator chamber 12 on the right side of the valve piston 134. As P1 increases, and becomes high enough such that P1×A1>P2×A2+S, the valve piston 134 moves against the second biasing spring 112 to move to open a passage for fluid flow (shown in
In
The end stroke stop valve assembly may be provided within and/or on the actuator piston 100′, as shown in
In the example shown in
Although the invention has been described in terms of preferred examples as set forth above, it should be understood that these examples are illustrative only and that the claims are not limited to those examples. Those skilled in the art will be able to make modifications and alternatives in view of the disclosure which are contemplated as falling within the scope of the appended claims. In an example, the system described above can be used at the other actuator end end-stroke stop. Also, it is envisaged that the valve assembly could be installed in the housing with adequate connections via plumbing instead of in the piston 110.
Number | Date | Country | Kind |
---|---|---|---|
19290091.8 | Sep 2019 | EP | regional |