The present invention relates to an oil well pumping installation suitable for wells having a low flow rate.
U.S. Pat. No. 2,841,086 (Deitrickson 1958) discloses a form of hydraulic oil well pumping installation. The Deitrickson pump has not been in use for many years as it was supplanted by other technologies. However, the increased use of coil tubing has made it possible for hydraulic pumps, such as taught by Deitrickson to again be considered.
What is required is an improved configuration of hydraulic oil well pumping installation.
According to the present invention there is provided a hydraulic oil well pumping installation which includes a down hole pump positioned down a well, the down hole pump including a master cylinder and at least one slave cylinder in axial alignment with the master cylinder. A master piston is positioned in the master cylinder and divides the master cylinder into a first portion and a second portion. A slave piston is positioned in the at least one slave cylinder and divides the slave cylinder into a first portion and a second portion. The slave piston is connected by a rigid linkage to the master piston, such that movement of the master piston results in movement of the slave piston. A first hydraulic fluid conduit selectively supplying hydraulic fluid to and drawing hydraulic fluid from the first portion of the master cylinder. A second hydraulic fluid conduit selectively supplying hydraulic fluid to and drawing hydraulic fluid from the second portion of the master cylinder. An intake port is provided on the at least one slave cylinder. The intake port has a one way intake valve permitting entry of well fluids from the well into the at least one slave cylinder via the intake port and preventing well fluids from exiting the at least one slave cylinder via the intake port. An exhaust port on the at least one slave cylinder connected by conduit to surface, the exhaust port being controlled by a one way exhaust valve permitting well fluids from the well to exit the at least one slave cylinder via the exhaust port and preventing well fluids from the conduit to surface from flowing back into the at least one slave cylinder.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to in any way limit the scope of the invention to the particular embodiment or embodiments shown, wherein:
The preferred embodiment, a hydraulic oil well pumping installation, generally identified by reference numeral 10, will now be described with reference to
Structure and Relationship of Parts:
Referring to
Operation:
The use and operation of a hydraulic oil well pumping installation which includes a pump, generally identified by reference numeral 10, will now be described with reference to
Variations:
It was previously stated that more than one slave cylinder could be provided. Referring to
The movement of master piston 16 in pump 100 is identical to that described with reference to pump 10. When hydraulic fluids are supplied through conduit 32 to second portion 20 of master cylinder 12, master piston 16 moves in a first direction and hydraulic fluids are exhausted from first portion 18 of master cylinder 12 through conduit 30. When hydraulic fluids are supplied through conduit 30 to first portion 18 of master cylinder 12, master piston 16 moves in a second direction and hydraulic fluids are exhausted from second portion 20 of master cylinder 12 through conduit 32. The movement of fluids by slave piston in pump 100 differs from that described with respect to pump 10. When slave piston 50 moves in a first direction, well fluids are drawn into second portion 26 of slave cylinder 44 through perforations 56. When slave piston 50 moves in a second direction, the contents of second portion 26 of slave cylinder 44 pass through transfer ports 58 to first portion 24 of slave cylinder 44. When slave piston 50 resumes movement in the first direction, check valve 60 closes blocking transfer ports 58 and well fluids are forced passed intake valve 62 into second portion 26 of slave cylinder 46. When slave piston 52 moves in a second direction, the contents of second portion 26 of slave cylinder 46 pass through transfer ports 58 to first portion 24 of slave cylinder 46. When slave piston 52 resumes movement in the first direction, check valve 60 closes blocking transfer ports 58 and well fluids are forced passed intake valve 62 into second portion 26 of slave cylinder 48. When slave piston 54 moves in a second direction, the contents of second portion 26 of slave cylinder 48 pass through transfer ports 58 to first portion 24 of slave cylinder 48. When slave piston 54 resumes movement in the first direction, check valve 60 closes blocking transfer ports 58 and well fluids are forced to surface through exhaust port 38 and along exit conduit 40. One way exhaust valve 42 prohibits fluid in exit conduit 40 from returning to first portion 24 of slave cylinder 48 through exhaust port 38.
It will be apparent to one skilled in the art that modifications may be made to the illustrated embodiment without departing from the spirit and scope of the invention as hereinafter defined in the Claims.
Number | Name | Date | Kind |
---|---|---|---|
2261752 | Buckner | Nov 1941 | A |
2841086 | Deitrickson | Jul 1958 | A |
4334833 | Gozzi | Jun 1982 | A |
5104296 | Roeder | Apr 1992 | A |
5651666 | Martin | Jul 1997 | A |
5807082 | Skinner et al. | Sep 1998 | A |
6193476 | Sweeney | Feb 2001 | B1 |
Number | Date | Country |
---|---|---|
WO 9855766 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20050150224 A1 | Jul 2005 | US |