Hydraulic pumping system with detection of fluid in gas volume

Information

  • Patent Grant
  • 10619464
  • Patent Number
    10,619,464
  • Date Filed
    Wednesday, December 2, 2015
    8 years ago
  • Date Issued
    Tuesday, April 14, 2020
    4 years ago
Abstract
A pumping method can include displacing a rod string with pressure applied to an actuator by a pressure source including an accumulator and a separate gas volume in communication with the accumulator. A sensor indicates whether a fluid is in the gas volume. A pumping system can include an actuator, a pump connected between the actuator and an accumulator, a hydraulic fluid contacting a gas in the accumulator, a separate gas volume in communication with the accumulator, and a sensor that detects the hydraulic fluid in the gas volume. Another pumping system can include an actuator, a pump connected between the actuator and an accumulator that receives nitrogen gas from a nitrogen concentrator assembly while a hydraulic fluid flows between the pump and the actuator, a separate gas volume in communication with the accumulator, and a sensor that detects a presence of the hydraulic fluid in the gas volume.
Description
BACKGROUND

This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in one example described below, more particularly provides a hydraulic pumping system.


Reservoir fluids can sometimes flow to the earth's surface when a well has been completed. However, with some wells, reservoir pressure may be insufficient (at the time of well completion or thereafter) to lift the fluids (in particular, liquids) to the surface. In those circumstances, technology known as “artificial lift” can be employed to bring the fluids to the surface (or other desired location, such as a subsea production facility or pipeline, etc.).


Various types of artificial lift technology are known to those skilled in the art. In one type of artificial lift, a downhole pump is operated by reciprocating a string of “sucker” rods deployed in a well. An apparatus (such as, a walking beam-type pump jack or a hydraulic actuator) located at the surface can be used to reciprocate the rod string.


Therefore, it will be readily appreciated that improvements are continually needed in the arts of constructing and operating artificial lift systems. Such improvements may be useful for lifting oil, water, gas condensate or other liquids from wells, may be useful with various types of wells (such as, gas production wells, oil production wells, water or steam flooded oil wells, geothermal wells, etc.), and may be useful for any other application where reciprocating motion is desired.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a representative partially cross-sectional view of an example of a hydraulic pumping system and associated method which can embody principles of this disclosure.



FIG. 2 is a representative cross-sectional view of an example of a hydraulic actuator that may be used in the system and method of FIG. 1.



FIG. 3 is a representative cross-sectional view of an example piston position sensing technique that may be used in the system and method of FIG. 1.



FIG. 4 is a representative cross-sectional view of an example lower portion of the hydraulic actuator and an annular seal housing.



FIG. 5 is a representative top view of an example of a hydraulic pressure source that may be used in the system and method of FIG. 1.



FIG. 6 is a representative diagram of an example of a gas balancing assembly that may be used in the system and method of FIG. 1.



FIG. 7 is an example process and instrumentation diagram for the hydraulic pressure source of FIG. 5.



FIGS. 8A & B are representative examples of load versus displacement graphs for the system and method of FIG. 1.



FIG. 9 is a representative view of an example of a gas volume that may be used with the hydraulic pumping system and associated method.





DETAILED DESCRIPTION

Representatively illustrated in FIG. 1 is a hydraulic pumping system 10 and associated method for use with a subterranean well, which system and method can embody principles of this disclosure. However, it should be clearly understood that the hydraulic pumping system 10 and method are merely one example of an application of the principles of this disclosure in practice, and a wide variety of other examples are possible. Therefore, the scope of this disclosure is not limited at all to the details of the system 10 and method as described herein or depicted in the drawings.


In the FIG. 1 example, a hydraulic pressure source 12 is used to apply hydraulic pressure to, and exchange hydraulic fluid with, a hydraulic actuator 14 mounted on a wellhead 16. In response, the hydraulic actuator 14 reciprocates a rod string 18 extending into the well, thereby operating a downhole pump 20.


The rod string 18 may be made up of individual sucker rods connected to each other, although other types of rods or tubes may be used, the rod string 18 may be continuous or segmented, a material of the rod string 18 may comprise steel, composites or other materials, and elements other than rods may be included in the string. Thus, the scope of this disclosure is not limited to use of any particular type of rod string, or to use of a rod string at all. It is only necessary for purposes of this disclosure to communicate reciprocating motion of the hydraulic actuator 14 to the downhole pump 20, and it is therefore within the scope of this disclosure to use any structure capable of such transmission.


The downhole pump 20 is depicted in FIG. 1 as being of the type having a stationary or “standing” valve 22 and a reciprocating or “traveling” valve 24. The traveling valve 24 is connected to, and reciprocates with, the rod string 18, so that fluid 26 is pumped from a wellbore 28 into a production tubing string 30. However, it should be clearly understood that the downhole pump 20 is merely one example of a wide variety of different types of pumps that may be used with the hydraulic pumping system 10 and method of FIG. 1, and so the scope of this disclosure is not limited to any of the details of the downhole pump described herein or depicted in the drawings.


The wellbore 28 is depicted in FIG. 1 as being generally vertical, and as being lined with casing 32 and cement 34. In other examples, a section of the wellbore 28 in which the pump 20 is disposed may be generally horizontal or otherwise inclined at any angle relative to vertical, and the wellbore section may not be cased or may not be cemented. Thus, the scope of this disclosure is not limited to use of the hydraulic pumping system 10 and method with any particular wellbore configuration.


In the FIG. 1 example, the fluid 26 originates from an earth formation 36 penetrated by the wellbore 28. The fluid 26 flows into the wellbore 28 via perforations 38 extending through the casing 32 and cement 34. The fluid 26 can be a liquid, such as oil, gas condensate, water, etc. However, the scope of this disclosure is not limited to use of the hydraulic pumping system 10 and method with any particular type of fluid, or to any particular origin of the fluid.


As depicted in FIG. 1, the casing 32 and the production tubing string 30 extend upward to the wellhead 16 at or near the earth's surface 40 (such as, at a land-based wellsite, a subsea production facility, a floating rig, etc.). The production tubing string 30 can be hung off in the wellhead 16, for example, using a tubing hanger (not shown). Although only a single string of the casing 32 is illustrated in FIG. 1 for clarity, in practice multiple casing strings and optionally one or more liner (a liner string being a pipe that extends from a selected depth in the wellbore 28 to a shallower depth, typically sealingly “hung off” inside another pipe or casing) strings may be installed in the well.


In the FIG. 1 example, a rod blowout preventer stack 42 and an annular seal housing 44 are connected between the hydraulic actuator 14 and the wellhead 16. The rod blowout preventer stack 42 includes various types of blowout preventers (BOP's) configured for use with the rod string 18. For example, one blowout preventer can prevent flow through the blowout preventer stack 42 when the rod string 18 is not present therein, and another blowout preventer can prevent flow through the blowout preventer stack 42 when the rod string 18 is present therein. However, the scope of this disclosure is not limited to use of any particular type or configuration of blowout preventer stack with the hydraulic pumping system 10 and method of FIG. 1.


The annular seal housing 44 includes an annular seal (described more fully below) about a piston rod of the hydraulic actuator 14. The piston rod (also described more fully below) connects to the rod string 18 below the annular seal, although in other examples a connection between the piston rod and the rod string 18 may be otherwise positioned.


The hydraulic pressure source 12 may be connected directly to the hydraulic actuator 14, or it may be positioned remotely from the hydraulic actuator 14 and connected with, for example, suitable hydraulic hoses or pipes. Operation of the hydraulic pressure source 12 is controlled by a control system 46.


The control system 46 may allow for manual or automatic operation of the hydraulic pressure source 12, based on operator inputs and measurements taken by various sensors. The control system 46 may be separate from, or incorporated into, the hydraulic pressure source 12. In one example, at least part of the control system 46 could be remotely located or web-based, with two-way communication between the hydraulic pressure source 12 and the control system 46 being via, for example, satellite, wireless or wired transmission.


The control system 46 can include various components, such as a programmable controller, input devices (e.g., a keyboard, a touchpad, a data port, etc.), output devices (e.g., a monitor, a printer, a recorder, a data port, indicator lights, alert or alarm devices, etc.), a processor, software (e.g., an automation program, customized programs or routines, etc.) or any other components suitable for use in controlling operation of the hydraulic pressure source 12. The scope of this disclosure is not limited to any particular type or configuration of a control system.


In operation of the hydraulic pumping system 10 of FIG. 1, the control system 46 causes the hydraulic pressure source 12 to increase pressure applied to the hydraulic actuator 14 (delivering a volume of hydraulic fluid into the hydraulic actuator), in order to raise the rod string 18. Conversely, the hydraulic pressure source 12 receives a volume of hydraulic fluid from the hydraulic actuator 14 (thereby decreasing pressure applied to the hydraulic actuator), in order to allow the rod string 18 to descend. Thus, by alternately increasing and decreasing pressure in the hydraulic actuator 14, the rod string 18 is reciprocated, the downhole pump 20 is actuated and the fluid 26 is pumped out of the well.


Note that, when pressure in the hydraulic actuator 14 is decreased to allow the rod string 18 to displace downward (as viewed in FIG. 1), the pressure is not decreased to zero gauge pressure (e.g., atmospheric pressure). Instead, a “balance” pressure is maintained in the hydraulic actuator 14 to nominally offset a load due to the rod string 18 being suspended in the well (e.g., a weight of the rod string, taking account of buoyancy, inclination of the wellbore 28, friction, well pressure, etc.).


In this manner, the hydraulic pressure source 12 is not required to increase pressure in the hydraulic actuator 14 from zero to that necessary to displace the rod string 18 upwardly (along with the displaced fluid 26), and then reduce the pressure back to zero, for each reciprocation of the rod string 18. Instead, the hydraulic pressure source 12 only has to increase pressure in the hydraulic actuator 14 sufficiently greater than the balance pressure to displace the rod string 18 to its upper stroke extent, and then reduce the pressure in the hydraulic actuator 14 back to the balance pressure to allow the rod string 18 to displace back to its lower stroke extent.


Note that it is not necessary for the balance pressure in the hydraulic actuator 14 to exactly offset the load exerted by the rod string 18. In some examples, it may be advantageous for the balance pressure to be somewhat less than that needed to offset the load exerted by the rod string 18. In addition, it can be advantageous in some examples for the balance pressure to change over time. Thus, the scope of this disclosure is not limited to use of any particular or fixed balance pressure, or to any particular relationship between the balance pressure, any other force or pressure and/or time.


A reciprocation speed of the rod string 18 will affect a flow rate of the fluid 26. Generally speaking, the faster the reciprocation speed at a given length of stroke of the rod string 18, the greater the flow rate of the fluid 26 from the well (to a point).


It can be advantageous to control the reciprocation speed, instead of reciprocating the rod string 18 as fast as possible. For example, a fluid interface 48 in the wellbore 28 can be affected by the flow rate of the fluid 26 from the well. The fluid interface 48 could be an interface between oil and water, gas and water, gas and gas condensate, gas and oil, steam and water, or any other fluids or combination of fluids.


If the flow rate is too great, the fluid interface 48 may descend in the wellbore 28, so that eventually the pump 20 will no longer be able to pump the fluid 26 (a condition known to those skilled in the art as “pump-off”). On the other hand, it is typically desirable for the flow rate of the fluid 26 to be at a maximum level that does not result in pump-off. In addition, a desired flow rate of the fluid 26 may change over time (for example, due to depletion of a reservoir, changed offset well conditions, water or steam flooding characteristics, etc.).


A “gas-locked” downhole pump 20 can result from a pump-off condition, whereby gas is received into the downhole pump 20. The gas is alternately expanded and compressed in the downhole pump 20 as the traveling valve 24 reciprocates, but the fluid 26 cannot flow into the downhole pump 20, due to the gas therein.


In the FIG. 1 hydraulic pumping system 10 and method, the control system 46 can automatically control operation of the hydraulic pressure source 12 to regulate the reciprocation speed, so that pump-off is avoided, while achieving any of various desirable objectives. Those objectives may include maximum flow rate of the fluid 26, optimized rate of electrical power consumption, reduction of peak electrical loading, etc. However, it should be clearly understood that the scope of this disclosure is not limited to pursuing or achieving any particular objective or combination of objectives via automatic reciprocation speed regulation by the control system 46.


As mentioned above, the hydraulic pressure source 12 controls pressure in the hydraulic actuator 14, so that the rod string 18 is displaced alternately to its upper and lower stroke extents. These extents do not necessarily correspond to maximum possible upper and lower displacement limits of the rod string 18 or the pump 20.


For example, it is typically undesirable for a valve rod bushing 25 above the traveling valve 24 to impact a valve rod guide 23 above the standing valve 22 when the rod string 18 displaces downwardly (a condition known to those skilled in the art as “pump-pound”). Thus, it is preferred that the rod string 18 be displaced downwardly only until the valve rod bushing 25 is near its maximum possible lower displacement limit, so that it does not impact the valve rod guide 23.


On the other hand, the longer the stroke distance (without impact), the greater the productivity and efficiency of the pumping operation (within practical limits), and the greater the compression of fluid between the standing and traveling valves 22, 24 (e.g., to avoid gas-lock). In addition, a desired stroke of the rod string 18 may change over time (for example, due to gradual lengthening of the rod string 18 as a result of lowering of a liquid level (such as at fluid interface 48) in the well, etc.).


In the FIG. 1 hydraulic pumping system 10 and method, the control system 46 can automatically control operation of the hydraulic pressure source 12 to regulate the upper and lower stroke extents of the rod string 18, so that pump-pound is avoided, while achieving any of various desirable objectives. Those objectives may include maximizing rod string stroke length, maximizing production, minimizing electrical power consumption rate, minimizing peak electrical loading, etc. However, it should be clearly understood that the scope of this disclosure is not limited to pursuing or achieving any particular objective or combination of objectives via automatic stroke extent regulation by the control system 46.


Referring additionally now to FIG. 2, an enlarged scale cross-sectional view of an example of the hydraulic actuator 14 as used in the hydraulic pumping system 10 is representatively illustrated. Note that the hydraulic actuator 14 of FIG. 2 may be used with other systems and methods, in keeping with the principles of this disclosure.


As depicted in FIG. 2, the hydraulic actuator 14 includes a generally tubular cylinder 50, a piston 52 sealingly and reciprocably disposed in the cylinder 50, and a piston rod 54 connected to the piston 52. The piston 52 and piston rod 54 displace relative to the cylinder 50 in response to a pressure differential applied across the piston 52.


Hydraulic fluid and pressure are communicated between the hydraulic pressure source 12 and an annular chamber 56 in the cylinder 50 below the piston 52 via a port 58. A vent valve 60 is connected via a tubing 62 to an upper chamber 64 above the piston 52. The upper chamber 64 is maintained at substantially atmospheric pressure (zero gauge pressure), and pressure in the annular chamber 56 is controlled by the hydraulic pressure source 12, in order to control displacement of the piston 52 and piston rod 54 (and the rod string 18 connected thereto).


Note that, in this example, an annular seal assembly 66 is sealingly received in a lower flange 68 of the hydraulic actuator 14. The annular seal assembly 66 also sealingly engages an outer surface of the piston rod 54. Thus, a lower end of the annular chamber 56 is sealed off by the annular seal assembly 66.


In FIG. 2, the piston 52 is at a maximum possible upper limit of displacement. However, during a pumping operation, the piston 52 may not be displaced to this maximum possible upper limit of displacement. For example, as discussed above, an upper stroke extent of the rod string 18 may be regulated to achieve various objectives.


Similarly, during a pumping operation, the piston 52 also may not be displaced to a maximum possible lower limit of displacement. As described more fully below, upper and lower extents of displacement of the piston 52 and rod 54 can be varied to produce corresponding changes in the upper and lower stroke extents of the rod string 18, in order to achieve various objectives (such as, preventing pump-off, preventing pump-pound, optimizing pumping efficiency, reducing peak electrical loading, etc.).


Referring additionally now to FIG. 3, a further enlarged scale cross-sectional view of an upper portion of the hydraulic actuator 14 is representatively illustrated. This view is rotated somewhat about a vertical axis of the hydraulic actuator 14 (as compared to FIG. 2), so that a sensor 70, for example, a magnetic field sensor, is visible in FIG. 3.


The sensor 70 is secured to an outer surface of the cylinder 50 (for example, using a band clamp). In other examples, the sensor 70 could be bonded, threaded or otherwise attached to the cylinder 50, or could be incorporated into the cylinder or another component of the hydraulic actuator 14.


In some examples, a position of the sensor 70 relative to the cylinder 50 can be adjustable. The sensor 70 could be movable longitudinally along the cylinder 50, for example, via a threaded rod or another type of linear actuator.


A suitable magnetic field sensor is a Pepperl MB-F32-A2 magnetic flux sensing switch marketed by Pepperl+Fuchs North America of Twinsburg, Ohio USA. However, other magnetic field sensors may be used in keeping with the principles of this disclosure.


The sensor 70 (when a magnetic field sensor is used) is capable of sensing a presence of a magnet 72 through a wall 74 of the cylinder 50. The magnet 72 is secured to, and displaces with, the piston 52. In some examples, the sensor 70 can sense the presence of the magnet 72, even though the wall 74 comprises a ferromagnetic material (such as steel), and even though the wall is relatively thick (such as, approximately 1.27 cm or greater thickness).


A suitable magnet for use in the actuator 14 is a neodymium magnet (such as, a neodymium-iron-boron magnet) in ring form. However, other types and shapes of magnets may be used in keeping with the principles of this disclosure.


Although only one sensor 70 is visible in FIG. 3, it is contemplated that any number of sensors could be used with the hydraulic actuator 14. The sensors 70 could be distributed in a variety of different manners along the cylinder 50 (e.g., linearly, helically, evenly spaced, unevenly spaced, etc.).


In the FIG. 3 example, an output of the sensor 70 is communicated to the control system 46, so that a position of the piston 52 at any given point in the pumping operation is determinable. As the number of sensors 70 is increased, determination of the position of the piston 52 at any given point in the pumping operation can become more accurate.


For example, two of the sensors 70 could be positioned on the cylinder 50, with one sensor at a position corresponding to an upper stroke extent of the piston 52 and magnet 72, and the other sensor at a position corresponding to a lower stroke extent of the piston and magnet. When a sensor 70 detects that the piston 52 and magnet 72 have displaced to the corresponding stroke extent (by sensing the proximate presence of the magnet 72), the control system 46 appropriately reverses the stroke direction of the piston 52 by operation of hydraulic components to be described further below. In this example, the upper and lower stroke extents of the piston 52 can be conveniently varied by adjusting the longitudinal positions of the sensors 70 on the cylinder 50.


Referring additionally now to FIG. 4, a cross-sectional view of a lower portion of the hydraulic actuator 14, the annular seal housing 44 and an upper flange of the BOP stack 42 is representatively illustrated. In this view, a threaded connection 76 between the piston rod 54 and the rod string 18 can be seen in the annular seal housing 44 below an annular seal assembly 78.


The annular seal assembly 78 seals off an annular space between the exterior surface of the piston rod 54 and an interior surface of the annular seal housing 44. The annular seal assembly 78 is similar in some respects to the annular seal assembly 66 in the hydraulic actuator 14, but the annular seal assembly 78 shown in FIG. 4 is exposed to pressure in the well (when the rod BOP's are not actuated), whereas the annular seal assembly (66 in FIG. 3) is exposed to pressure in the annular chamber (56 in FIG. 3) of the hydraulic actuator 14.


A lubricant injector 80 slowly pumps grease or another lubricant 86 into an annular chamber 82 formed in the lower flange 68 of the hydraulic actuator 14 and an upper flange 84 of the annular seal housing 44. The lubricant 86 flows out of the annular chamber 82 to a reservoir 88. In one example, the lubricant 86 could be sourced from the hydraulic fluid in the annular chamber (56 in FIG. 3) or the hydraulic pressure source (12 in FIG. 1).


An advantage of having the lubricant 86 flow through the annular chamber 82 is that, if well fluid leaks past the annular seal assembly 78, or if hydraulic fluid leaks past the annular seal assembly (66 in FIG. 3), it will be apparent in the lubricant delivered to the reservoir 88. However, it is not necessary for the lubricant injector 80 to deliver pressurized lubricant 86 into the annular chamber 82 in keeping with the scope of this disclosure. For example, the lubricant 86 could instead be delivered from an unpressurized reservoir by gravity flow, etc.


An advantage of having the annular seal assemblies 66, 78 in the flanges 68, 84 is that they are both accessible by separating the flanges 68, 84 (for example, when the hydraulic actuator 14 is removed from the annular seal housing 44 for periodic maintenance). However, it should be clearly understood that the scope of this disclosure is not limited to pursuing or achieving any particular advantage, objective or combination of objectives by the hydraulic pumping system 10, hydraulic actuator 14, hydraulic pressure source 12 or annular seal housing 44.


Referring additionally now to FIG. 5, a top view of an example of the hydraulic pressure source 12 is representatively illustrated. In this view, a top cover of the hydraulic pressure source 12 is not illustrated, so that internal components of the hydraulic pressure source 12 are visible.


In the FIG. 5 example, the hydraulic pressure source 12 includes a prime mover 90, a primary hydraulic pump 92, an accessory hydraulic pump 94, a hydraulic fluid reservoir 96, a hydraulic fluid heat radiator 98 with fan 100, a nitrogen concentrator assembly 102, and a gas balancing assembly 104. The control system 46 is included with the hydraulic pressure source 12 in this example.


The prime mover 90 can be a fixed or variable speed electric motor (or any other suitable type of motor or engine). Preferably, the control system 46 controls operation of the prime mover 90 in an efficient manner that minimizes a cost of supplying electricity or fuel to the prime mover 90. This efficient manner may vary, depending on, for example, how a local electric utility company charges for electrical service (e.g., by peak load or by kilowatt hours used). Instead of an electric motor, the prime mover 90 could in other examples be an internal combustion engine, a turbine or positive displacement motor rotated by flow of gas from the well, or any other type of engine or motor. The type of prime mover is not in any way intended to limit the scope of this disclosure.


The primary hydraulic pump 92 is driven by the prime mover 90 and supplies hydraulic fluid 106 under pressure from the gas balancing assembly 104 to the hydraulic actuator 14, in order to raise the piston 52 (and piston rod 54 and rod string 18). A filter 108 filters the hydraulic fluid 106 that flows from the hydraulic actuator 14 to the primary hydraulic pump 92 (flow from the pump to the actuator bypasses the filter).


When the piston 52 (and piston rod 54 and rod string 18) descends, the hydraulic fluid 106 flows back through the primary hydraulic pump 92 to the gas balancing assembly 104. In some examples, this “reverse” flow of the hydraulic fluid 106 can cause a rotor in the prime mover 90 to rotate “backward” and thereby generate electrical power. In such examples, this generated electrical power may be used to offset a portion of the electrical power consumed by the prime mover 90, in order to reduce the cost of supplying electricity to the prime mover. However, the scope of this disclosure is not limited to generation of electrical power by reverse flow of the hydraulic fluid 106 through the primary hydraulic pump 92.


The accessory hydraulic pump 94 can be used to initially charge the gas balancing assembly 104 with the hydraulic fluid 106 and circulate the hydraulic fluid 106 through the radiator 98. The nitrogen concentrator assembly 102 is used to produce pressurized and concentrated nitrogen gas by removal of oxygen from air (that is, non-cryogenically). In other examples, cryogenic nitrogen or another inert gas source could be used instead of, or in addition to, the nitrogen concentrator assembly 102.


The nitrogen concentrator assembly 102 pressurizes the gas balancing assembly 104 and thereby causes the balance pressure discussed above to be applied to the hydraulic actuator 14. The balance pressure can be varied by control of the nitrogen concentrator assembly 102 by the control system 46. As described more fully below, the control system 46 controls operation of the nitrogen concentrator assembly 102 in response to various operator inputs and sensor measurements.


Referring additionally now to FIG. 6, a schematic view of an example of the gas balancing assembly 104 is representatively illustrated with the nitrogen concentrator assembly 102. In this view, it may be seen that the gas balancing assembly 104 includes one or more gas volumes 110 that receive pressurized nitrogen from the nitrogen concentrator assembly 102. The nitrogen concentrator assembly 102 includes a membrane filter 112 and a compressor 114 in this example.


A total volume of the gas volumes 110 can be varied, depending on well conditions, anticipated pressures, a stroke length and piston area of the piston (52 in FIG. 3), etc. Although three gas volumes 110 are depicted in FIG. 6, any number of gas volumes may be used, as desired.


The gas balancing assembly 104 also includes an accumulator 116 connected to the gas volumes 110. Thus, in this example, an upper portion of the accumulator 116 has the pressurized nitrogen gas 118 therein. In other examples, the gas volumes 110 could be combined with the accumulator 116.


A lower portion of the accumulator 116 has the hydraulic fluid 106 therein. Thus, the accumulator 116 is of the type known to those skilled in the art as a “gas over liquid” accumulator. However, in this example, there is no barrier (such as, a bladder or piston) separating the nitrogen gas 118 from the hydraulic fluid 106 in the accumulator 116. Thus, the hydraulic fluid 106 is in direct contact with the nitrogen gas 118 in the accumulator 116, and maintenance requirements for the accumulator 116 are reduced or eliminated (due at least to the absence of a barrier between the nitrogen gas 118 and the hydraulic fluid 106).


A suitable hydraulic fluid for use in the accumulator 116 in direct contact with the nitrogen gas 118 is a polyalkylene glycol (PAG) synthetic oil, such as SYNLUBE P12 marketed by American Chemical Technologies, Inc. of Fowlerville, Mich. USA. However, other enhancements thereof and other hydraulic fluids may be used without departing from the scope of this disclosure.


The compressor 114 pressurizes the nitrogen gas 118, and this pressure is applied to the hydraulic fluid 106 in the accumulator 116. A valve 120 (such as, a pilot operated control valve) selectively permits and prevents flow of the hydraulic fluid 106 between the accumulator 116 and the primary hydraulic pump 92. The valve 120 is open while the hydraulic pressure source 12 is being used to reciprocate the rod string 18 (thereby allowing the hydraulic fluid 106 to flow back and forth between the accumulator 116 and the hydraulic actuator 14), and is otherwise normally closed. The control system 46 can control operation of the valve 120.


One or more liquid level sensors 122 on the accumulator 116 detect whether a level of the hydraulic fluid 106 is at upper or lower limits. The hydraulic fluid 106 level typically should not (although at times it may) rise above the upper limit when the piston (52 in FIG. 3) displaces to its lower stroke extent in the cylinder (50 in FIG. 3) and triggers a sensor (70 in FIG. 3), and the hydraulic fluid 106 level typically should not (although at times it may) fall below the lower limit when the piston (52 in FIG. 3) rises to its upper stroke extent and triggers a sensor (70 in FIG. 3).


A suitable liquid level sensor for use on the accumulator 116 is an electro-optic level switch model no. ELS-1150XP marketed by Gems Sensors & Controls of Plainville, Conn. USA. However, other types of sensors may be used in keeping with the scope of this disclosure.


The liquid level sensors 122 are connected to the control system 46, which can increase the hydraulic fluid 106 level by operation of the accessory hydraulic pump 94. Typically, a decrease in hydraulic fluid 106 level is constantly occurring via a lubrication case drain of the primary hydraulic pump 92 and other seals of the hydraulic pressure source 12 and hydraulic actuator 14, with this hydraulic fluid 106 being directed back to the radiator 98 and hydraulic fluid reservoir 96. Although two liquid level sensors 122 are depicted in FIG. 6, any number of liquid level sensors (or a single continuous sensor) may be used, as may be desired.


Referring additionally now to FIG. 7, an example process and instrumentation diagram for the hydraulic pressure source 12 is representatively illustrated. Various components of the hydraulic pressure source 12 are indicated in the diagram using the following symbols in the table below labeled “Equipment.”














Equipment








E-1
N2 Volume Bottle (110)


E-2
N2 Volume Bottle (110)


E-3
N2 Volume Bottle (110)


E-4
Accumulator (116)


E-5
Hydraulic Fluid Vessel


E-6
Prime Mover (90)


E-7
Primary Hydraulic Pump (92)


E-8
Accessory Hydraulic Pump (94)


E-9
Radiator (98)


E-10
Hydraulic Fluid Reservoir (96)


E-11
N2 Membrane Filter (112)


E-12
Air Particle Filter (1st stage)


E-13
Air Particle Filter (2nd stage)


E-14
Air Carbon Filter


E-15
Air Compressor


E-16
N2 Booster Compressor (15:1) (114)


E-17
Hydraulic Fluid Filter


E-18
Fan


E-19
Air Cooler







Valves








V-1
Pilot Operated Control Valve V-1 (120)


V-2
Solenoid Valve (for actuation of V-1)


V-3
Charge Shunt Valve


V-4
Safety Relief Valve


V-5
Pressure Reducing Valve


V-6
Reverse Flow Check Valve


V-7
Reverse Flow Check Valve







Instrumentation








I-1
Fluid Level Sensor for Hydraulic Fluid Reservoir E-10 (96)


I-2
Temperature Sensor for Hydraulic Fluid Reservoir E-10 (96)


I-3
N2 Pressure Sensor


I-4
Magnetic Field Sensor(s) (70) on Cylinder (50)


I-5
Control System (46)


I-6
Accumulator E-4 (116) High Fluid Level Sensor (122)


I-7
Accumulator E-4 (116) Low Fluid Level Sensor (122)


I-8
Temperature Sensor on Primary Pump E-7 (92) Outlet


I-9
Pressure Sensor on Primary Hydraulic Pump E-7 (92) Accumulator







Side (to prevent cavitation)








I-10
Pressure Sensor on Primary Hydraulic Pump E-7 (92) Outlet (to







Cylinder 50)


Piping








P-1
Flow to/from Primary Hydraulic Pump E-7 (92) and Cylinder 50


P-2
Flow from Control Valve V-1 (120) to Primary Pump E-7 (92)


P-3
Flow from Hydraulic Fluid Vessel E-5 to Control Valve V-1 (120)


P-4
Flow from Accumulator E-4 (116) to Hydraulic Vessel E-5


P-5
Flow to/from N2 Volume Bottle E-3 (110) and Accumulator







E-4 (116)








P-6
Flow to/from N2 Volume Bottles E-2,3 (110)


P-7
Flow to/from N2 Volume Bottles E-1,2 (110)


P-8
N2 Flow from Compressor E-16 to N2 Volume Bottle E-1 (110)


P-9
Flow from Air Cooler E-19 to Air Particle Filter E-12


P-10
Flow from Air Compressor E-15 to Air Cooler E-19


P-11
Flow from Air Particle Filters E-12,13 to Air Carbon Filter E-14


P-12
Flow from Air Carbon Filter E-14 to N2 Membrane Filter







E-11 (112)








P-13
Flow from N2 Membrane Filter E-11 (112) to N2 Booster







Compressor E-16








P-14
Flow from Accessory Hydraulic Pump E-8 (94) to Valve Manifold







V-2/3/4








P-15
Flow from Valve V-2 to actuate Control Valve V-1 (120)


P-16
Flow from Primary Hydraulic Pump E-7 (92) case drain and







controls to Radiator E-9 (98)








P-17
Flow from Valve Manifold V-2/3/4 to Radiator E-9 (98)


P-18
Flow from Cylinder Vent Valve (60) to Reservoir E-10 (96)


P-19
Flow from Air Compressor E-15 to N2 Booster Compressor E-16


P-20
Flow From Radiator E-9 (98) to Hydraulic Fluid Reservoir







E-10 (96)









Note that the scope of this disclosure is not limited to any specific details of the hydraulic pressure source 12, or any of the components thereof, as described herein or depicted in the drawings. For example, although the nitrogen booster compressor E-16 is listed above as having a 15:1 ratio, other types of compressors may be used if desired.


In a normal start-up operation, the hydraulic pressure source 12 is powered on, and certain parameters are input to the control system 46 (for example, via a touch screen, keypad, data port, etc.). These parameters can include characteristics of the hydraulic actuator 14 (such as, piston 52 area and maximum stroke length), characteristics of the well (such as, expected minimum and maximum rod string 18 loads, expected well pressure, initial fluid 26 flow rate, etc.), or any other parameters or combination of parameters. Some parameters may already be input to the control system 46 (such as, stored in non-volatile memory), for example, characteristics of the hydraulic pressure source 12 and hydraulic actuator 14 that are not expected to change, or default parameters.


At this point, the piston rod 54 is already connected to the rod string 18, and the hydraulic actuator 14 is installed on the wellhead 16 above the rod BOP stack 42 and the annular seal housing 44. The control valve 120 is closed, thereby preventing communication between the gas balancing assembly 104 and the primary pump 92.


The volumes 110 and accumulator 116 may be purged with nitrogen and optionally pre-charged with pressure prior to the start-up operation. Similarly, lines and volumes in the hydraulic pressure source 12 and the hydraulic actuator 14, and lines between the hydraulic pressure source 12 and the hydraulic actuator 14, may be purged with hydraulic fluid 106 prior to (or as part of) the start-up operation.


The control system 46 determines a minimum volume of the hydraulic fluid 106 that will be needed for reciprocating the piston 52 in the cylinder 50. Alternatively, a default volume of the hydraulic fluid 106 (which volume is appropriate for the actuator 14 characteristics) may be used.


An appropriate volume of the hydraulic fluid 106 (which volume is preferably greater than the minimum needed) is flowed by operation of the accessory pump 94 from the hydraulic fluid reservoir 96 to fill the hydraulic fluid vessel (E-5 in the Equipment Table) and a lower portion of the accumulator 116. The level sensors 122 are used with the control system 46 to verify that an appropriate level of the hydraulic fluid 106 is present in the accumulator 116.


The control system 46 determines an appropriate balance pressure that should be applied, based on, for example, the input parameters. Nominally, the balance pressure can be equal to the expected minimum load exerted by the rod string 18 in operation, divided by the piston area of the piston 52. However, as mentioned above, it may in some circumstances be advantageous to increase or decrease the balance pressure somewhat.


The air compressor (E-15 in the Equipment Table) is activated to supply a flow of pressurized air through the cooler (E-19 in the Equipment Table) and the air filters (E-12, E-13, E-14 in the Equipment Table) to the membrane filter 112. The membrane filter 112 provides a flow of concentrated nitrogen 118 (e.g., by removal of substantially all oxygen from the air) to the booster compressor 114. Note that pressurized air is also supplied to the booster compressor 114 from the compressor E-15 for operation of the booster compressor.


The nitrogen 118 flows from the booster compressor 114 into the volumes 110 and an upper portion of the accumulator 116. The booster compressor 114 elevates a pressure of this nitrogen 118 to the desired balance pressure.


The pressure sensor I-3 monitors the pressure in the gas balancing assembly 104. By virtue of the hydraulic fluid 106 being in contact with the nitrogen 118 in the accumulator 116, the nitrogen pressure is the same as the hydraulic fluid pressure.


Note that each of the sensors (I-1, I-2, I-3, I-4, I-6, I-7, I-8, I-9, I-10 in the Equipment Table) is connected to the control system 46, so that the control system 46 is capable of monitoring parameters sensed by the sensors. Adjustments to the input parameters can be made by the control system 46 in response to measurements made by the sensors if needed to maintain a desired condition (such as, efficient and economical operation), or to mitigate an undesired condition (such as, pump-off or pump-pound). Such adjustments may be made manually (for example, based on user input), or automatically (for example, based on instructions or programs stored in the control system 46 memory), or a combination of manually and automatically (for example, using a program that initiates automatic control in response to a manual input).


The piston 52, piston rod 54 and rod string 18 can now be raised by opening the control valve 120 and operating the primary hydraulic pump 92. When the control valve 120 is opened, the balance pressure is applied to the annular chamber 56 below the piston 52 (see FIG. 2). Depending on the selected level of the balance pressure, the balance pressure applied to the annular chamber 56 will typically not cause the piston 52 and attached rod string 18 to displace upward, but some upward displacement of the rod string 18 may be desired in some circumstances.


The primary hydraulic pump 92 flows pressurized hydraulic fluid 106 from the accumulator 116 and hydraulic fluid vessel E-5 to the annular chamber 56 of the hydraulic actuator 14, and increases the hydraulic fluid pressure therein, thereby causing the piston 52 and attached rod string 18 to rise in the wellbore 16 and operate the downhole pump 20 (see FIG. 1). A hydraulic fluid pressure increase (greater than the balance pressure) needed to displace the piston 52 upwardly to its upper stroke extent is dependent on various factors (such as, rod string 18 weight, friction in the well and in the hydraulic actuator 14, piston 52 area, well fluid 26 density, depth to the downhole pump 20, etc.).


Nevertheless, the control system 46 can operate the primary hydraulic pump 92, so that the hydraulic fluid 106 flows into the annular chamber 56 until the piston 52 is displaced to its upper stroke extent. Such displacement of the piston 52 is indicated to the control system 46 by the sensor(s) 70 of the hydraulic actuator 14. Note that the control system 46 can operate the primary hydraulic pump 92 in a manner that avoids an abrupt halt of the piston 52 displacement at the upper stroke extent (e.g., by reducing a flow rate of the hydraulic fluid 106 as the piston 52 approaches the upper stroke extent).


The piston 52, piston rod 54 and rod string 18 can then be lowered by ceasing operation of the primary pump 92, and allowing the hydraulic fluid 106 to flow from the annular chamber 56 back through the primary hydraulic pump to the hydraulic fluid vessel E-5 and the accumulator 116. Pressure in the annular chamber 56 below the piston 52 will, thus, return to the balance pressure and the load exerted by the rod string 18 will cause the piston 52 and piston rod 54 to descend in the cylinder 50.


Depending on the level of the balance pressure at this point, the piston 52 may not return to its initial, lowermost position. Instead, the piston 52 typically will descend to a lower stroke extent that avoids pump-pound (e.g., bottoming out of the valve rod bushing 25 against the valve rod guide 23), while providing for efficient and economical operation. As the piston 52 descends in the cylinder 50 and the hydraulic fluid 106 flows from the annular chamber 56 to the hydraulic fluid vessel E-5 and accumulator 116, the control system 46 can operate a variable displacement swash plate (not shown separately) in the primary hydraulic pump 92 in a manner that avoids an abrupt halt of the piston 52 displacement at the lower stroke extent (e.g., by reducing a flow rate of the hydraulic fluid as the piston 52 approaches the lower stroke extent).


The “reverse” flow of the hydraulic fluid 106 through the primary hydraulic pump 92 could, in some examples, cause the primary hydraulic pump 92 to rotate backward and thereby cause the prime mover 90 (when an electric motor is used) to generate electrical power. Thus, the prime mover 90 can serve as a motor when the hydraulic fluid 106 is pumped to the hydraulic actuator 14, and a generator when the hydraulic fluid is returned to the hydraulic pressure source 12. The generated electrical power may be stored (for example, using batteries, capacitors, etc.) for use by the hydraulic pressure source 12, or the electrical power may be supplied to the local electrical utility (for example, to offset the cost of electrical power supplied to the hydraulic pumping system 10, such as, in situations where the cost is based on demand and/or total usage).


The above-described actions of raising and lowering the piston 52, piston rod 54 and rod string 18 can be repeated indefinitely, in order to reciprocate the rod string 18 in the well and operate the downhole pump 20 to flow the well fluid 26 to the surface. However, it should be understood that variations in operation of the hydraulic pressure source 12 and the hydraulic actuator 14 are to be expected as the pumping operation progresses.


For example, assumptions or estimates may have been made to arrive at certain parameters initially input to the control system 46. After an initial stroking of the hydraulic actuator 14, adjustments may be made automatically or manually (or both) via the control system 46 to account for actual conditions. Such adjustments could include varying the balance pressure, the piston 52 upper or lower stroke extents, the number of piston 52 strokes per minute (spm), etc.


At any point in the pumping operation, actuation of the hydraulic actuator 14 can be stopped, so that displacement of the piston 52 ceases, and a pressure level in the annular chamber 56 (e.g., sensed using the pressure sensor I-10) needed to support the load exerted by the rod string 18 can be measured. The pressure in the accumulator 116 can then be adjusted, if needed, to provide an appropriate balance.


The booster compressor 114 can be automatically operated by the control system 46 to increase the balance pressure when appropriate. For example, based on measurements of the pressure applied to the hydraulic actuator 14 over time (sensed by the pressure sensor I-10), it may be determined that efficiency or economy of operation (or work performed, as described more fully below) would be enhanced by increasing the balance pressure. In such circumstances, the control system 46 can operate the booster compressor 114 to increase the pressure on the accumulator 116 until a desired, increased hydraulic balance pressure is achieved (e.g., as sensed by the pressure sensor I-3).


If a pump-off condition is detected during the pumping operation, a reciprocation speed can be adjusted to avoid this condition. For example, the control system 46 can regulate the hydraulic fluid 106 flow rate (e.g., by varying an operational characteristic of the primary hydraulic pump 92 (such as, by adjusting a swash plate of the primary hydraulic pump 92), varying a rotational speed of the prime mover 90, varying a restriction to flow through the control valve 120, etc.) to decrease a speed of ascent or descent (or both) of the piston 52 in the cylinder 50 if pump-off is detected. Alternatively (or in addition), a stroke length of the piston 52 could be decreased to cause a decrease in the flow rate of the fluid 26 from the well.


If a pump-pound condition is detected during the pumping operation, the lower stroke extent of the piston 52 can be raised, for example, to avoid contact between the valve rod bushing 25 and the valve rod guide 23 in the downhole pump 20. The lower stroke extent can be raised by decreasing the volume of hydraulic fluid 106 returned to the hydraulic pressure source 12 from the hydraulic actuator 14 (e.g., by the control system 46 beginning to change displacement of a swash plate of the primary hydraulic pump 92 and thereby terminate reverse flow when the piston 52 has descended to the raised lower stroke extent). If the detected pump-pound is due to contacting another component of the downhole pump 20 on an upward stroke, the upper stroke extent of the piston 52 can be lowered by decreasing the volume of hydraulic fluid 106 pumped into the hydraulic actuator 14 (e.g., by the control system 46 ceasing operation of the primary hydraulic pump 92 when the piston 52 has ascended to the lowered upper stroke extent).


The balance pressure can be increased at any point in the pumping operation by the control system 46 operating the nitrogen concentrator assembly 102 and the booster compressor 114. The balance pressure can be decreased at any point in the operation by discharging an appropriate volume of the nitrogen 118 in the accumulator 116 and/or the nitrogen volumes 110 to the atmosphere.


The valve manifold V-2/V-3/V-4 can comprise a two position manifold (such as, a National Fluid Power Association (NFPA) D05 manifold marketed by Daman Products Company, Inc. of Mishawaka, Ind. USA) with two position spring return solenoid valves. In one example, a solenoid valve V-2 of the manifold activates V-1 (control valve 120) upon V-2 being energized, and for as long as V-2 remains energized it holds the V-1 control valve (120) open. A sandwich relief valve (such as, an NFPA D05 20 MPa over-pressure safety relief valve marketed by Parker Hannifin Corporation of Cleveland, Ohio USA) can be used with the V-2 valve. Another sandwich relief valve V-4 (such as, adjustable 1 MPa to 7 MPa, set to 2 MPa) of the manifold can function as a charge circuit back-pressure/relief valve placed under a solenoid valve V-3.


Energizing the V-3 solenoid valve of the manifold closes off a 2 MPa relief flow to the radiator 98 (and back to the hydraulic fluid reservoir 96) to cause pressure from the accessory hydraulic pump 94 to rise to the balance pressure and inject a volume of hydraulic fluid 106 into P-3 (for example, to make up losses from the pressurized gas balancing assembly 104, primary hydraulic pump 92 and cylinder 50 circuit), until the level sensor I-6 indicates that sufficient hydraulic fluid is present in the accumulator 116. When V-3 de-energizes, the accessory hydraulic pump 94 output pressure (in P-14) returns to the 2 MPa relief valve setting. Of course, other settings and other types of valve manifolds may be used, without departing from the scope of this disclosure.


As mentioned above, certain adjustments may be made if a pump-pound condition is detected. In the FIG. 7 example, a pump-pound condition can be detected by monitoring pressure of the hydraulic fluid 106 as sensed using the sensor I-10.


The pump-pound condition will be apparent from fluctuations in pressure sensed by the sensor I-10. For example, when the valve rod bushing 25 strikes the valve rod guide 23 of the downhole pump 20, this will cause an abrupt change in the rod string 18 displacement and the load exerted by the rod string, resulting in a corresponding abrupt change in the piston rod 54 and piston 52 displacement. Such abrupt displacement and load changes will, in turn, produce corresponding pressure changes in the hydraulic fluid 106 flowing from the hydraulic actuator 14 to the hydraulic pressure source 12.


The control system 46 can be programmed to recognize hydraulic fluid pressure fluctuations that are characteristic of a pump-pound condition. For example, pressure fluctuations having a certain range of frequencies or amplitudes (or both) could be characteristic of a pump-pound condition, and if such frequencies or amplitudes are detected in the sensor I-10 output, the control system 46 can cause certain actions to take place in response. The actions could include displaying an alert, sounding an alarm, recording an event record, transmitting an indication of the pump-pound condition to a remote location, initiating a routine to appropriately raise the lower stroke extent of the piston 52, etc.


An action that may be automatically implemented by the control system 46 to raise the lower stroke extent of the piston 52 can include incrementally decreasing the volume of hydraulic fluid 106 returned to the hydraulic pressure source 12 from the hydraulic actuator 14 (e.g., by the control system 46 adjusting the swash plate of the primary hydraulic pump 92 to terminate reverse flow when the piston 52 has descended to the raised lower stroke extent), until the pump-pound condition is no longer detected. If pump-pound is detected on an upward stroke of the piston 52, then a similar set of actions can be initiated by the control system 46 to appropriately lower the upper stroke extent of the piston (e.g., by incrementally decreasing the volume of hydraulic fluid 106 pumped into the hydraulic actuator 14 when the piston 52 is stroked upwardly, until the pump-pound condition is no longer detected). As mentioned above, the upper and lower stroke extents could, in some examples, be adjusted by changing positions of the sensors 70 on the cylinder 50.


Note that pressure fluctuations that are characteristic of a pump-pound condition can change based on a variety of different factors, and the characteristics of pressure fluctuations indicative of a pump-pound condition are not necessarily the same from one well to another. For example, a depth to the downhole pump 20 could affect the amplitude of the pressure fluctuations, and a density of the fluid 26 could affect the frequency of the pressure fluctuations. Therefore, it may be advantageous during the start-up operation to intentionally produce a pump-pound condition, in order to enable detection of pressure fluctuations that are characteristic of the pump-pound condition in that particular well, so that such characteristics can be stored in the control system 46 for use in detecting pump-pound conditions in that particular well. Pressure fluctuations are considered to be a type of vibration of the hydraulic fluid 106.


However, it should be clearly understood that the scope of this disclosure is not limited to use of pressure fluctuation measurements to detect a pump-pound condition. Various other types of vibration measurements can be used to indicate a pump-pound condition, and suitable sensors can be included in the system 10 to sense these other types of vibrations. For example, an acoustic sensor, geophone or seismometer (e.g., a velocity sensor, motion sensor or accelerometer) may be used to sense vibrations resulting from a pump-pound condition. The sensor(s) 70 on the actuator 14 could include such sensors, or separate sensors could be used for such purpose if desired.


As mentioned above, certain adjustments may be made if a pump-off condition is detected. In the FIG. 7 example, a pump-pound condition can be detected by monitoring over time the pressure of the hydraulic fluid 106 as sensed using the sensor I-10, and the displacement of the piston 52 as sensed using the sensor(s) 70.


In operation, pressure of the hydraulic fluid 106 is directly related to the load or force transmitted between the hydraulic actuator 14 and the rod string 18. Force multiplied by displacement equals work. If a pump-off condition occurs, the total work performed during a reciprocation cycle will decrease due, for example, to gas intake to the pump 20 and/or to less fluid 26 being pumped to the surface.


Thus, by monitoring the work performed during individual reciprocation cycles over time, the control system 46 can detect whether a pump-off condition is occurring, and can make appropriate adjustments to mitigate the pump-off condition (such as, by decreasing a reciprocation speed of the hydraulic actuator 14, as discussed above). Such adjustments may be made automatically or manually (or both). Other actions (for example, displaying an alert, sounding an alarm, recording an event record, transmitting an indication of the pump-off condition to a remote location, etc.) may be performed by the control system 46 as an alternative to, or in addition to, the adjustments.


In FIGS. 8A & B, examples of load versus displacement graphs for the system 10 are representatively illustrated. As mentioned above, in operation, load or force transmitted between the hydraulic actuator 14 and the rod string 18 is directly related to hydraulic fluid pressure, and so the graphs could instead be drawn for pressure versus displacement, if desired. Thus, the scope of this disclosure is not limited to any particular technique for determining work performed by the hydraulic actuator 14.


A reciprocation cycle for the hydraulic actuator 14 is depicted in FIG. 8A without a pump-off condition. In the FIG. 8A graph, it may be observed that the force quickly increases as the hydraulic actuator 14 begins to raise the rod string 18, and then the force substantially levels off as the fluid 26 flows from the well (although in practice the force can decrease somewhat due to fluid 26 inertia effects and as less fluid is lifted near the end of the upward stroke). The force then quickly decreases as the hydraulic actuator 14 allows the rod string 18 to descend in the well, and then the force substantially levels off until an end of the downward stroke.


The graph of FIG. 8A has a shape (e.g., generally parallelogram) that is indicative of a reciprocation cycle with no pump-off condition. In actual practice, the idealized parallelogram shape of the FIG. 8A graph will not be exactly produced, but the control system 46 can be programmed to recognize shapes that are indicative of reciprocation cycles with no pump-off condition.


An area A1 of the FIG. 8A graph is representative of the total work performed during this reciprocation cycle (e.g., including a summation of the work performed during the upward and downward strokes). The area A1 can be readily calculated by the control system 46 for comparison to other areas of reciprocation cycles, either prior to or after the FIG. 8A reciprocation cycle.


By comparing the total work performed in different reciprocation cycles, the control system 46 can determine whether and how the work performed has changed. If the total work performed has changed, the control system 46 can make appropriate adjustments to certain parameters, in order to mitigate any undesired conditions, or to enhance any desired conditions.


In FIG. 8B, the force versus displacement graph for another reciprocation cycle is depicted, in which a pump-off condition is occurring. Note that an area A2 of the FIG. 8B graph is less than the area A1 of the FIG. 8A graph. This indicates that less total work is performed in the FIG. 8B reciprocation cycle, as compared to the FIG. 8A reciprocation cycle.


If the FIG. 8B reciprocation cycle is after the FIG. 8A reciprocation cycle, the control system 46 can recognize that less total work is being performed over time, and can make appropriate adjustments (such as, by reducing the reciprocation speed). Such adjustments can be made incrementally, with repeated comparisons of total work performed over time, so that the control system 46 can verify whether the adjustments are accomplishing intended results (e.g., increased total work performed over time, due to reduced pump-off).


If the FIG. 8A reciprocation cycle is after the FIG. 8B reciprocation cycle, the control system 46 can recognize that more work is being performed over time and that, if incremental adjustments are being made, those incremental adjustments should continue. However, the control system 46 can discontinue the adjustments, for example, if other objectives (such as, operational efficiency, economy, etc.) would be reduced if the adjustments continue.


The FIG. 8B graph has a shape that is not indicative of a reciprocation cycle in which a pump-off condition is not occurring. Stated differently, the shape of the FIG. 8B graph (for example, with a rounded upward slope, reduced maximum force on the upward stroke and one or more reductions in force during the upward stroke) is indicative of a pump-off condition. The control system 46 can be programmed to recognize such shapes, so that adjustments can be made to mitigate the pump-off condition.


Similar to the procedure described above for situations (where the control system 46 recognizes a substantial change in total work performed), the control system can incrementally decrease the reciprocation speed if a pump-off condition is detected, until the shape of the force (or pressure) versus displacement graph for a reciprocation cycle does not indicate pump-off. If force (or pressure) versus displacement graphs initially do not indicate a pump-off condition, the control system 46 can incrementally increase the reciprocation speed (to thereby increase a rate of production), until the shape of the graph for a reciprocation cycle does begin to indicate pump-off, at which point the control system can incrementally decrease the reciprocation speed until the shape of the graph does not indicate pump-off. In this manner, production rate can be maximized, without any sustained pump-off condition.


It will be readily appreciated that the graphs shown in FIGS. 8A and 8B are visual illustrations of measured force or pressure with respect to measured displacement of the piston 52 and rod string 18. If automatic adjustment of any of the hydraulic actuator 14 operating parameters, e.g., reciprocation rate, maximum stroke extent, etc. are implemented by the control system 46, actual graphs may not be constructed or displayed; the control system 46 may detect the numerical or other equivalent of the “shape” of a graph by implementing suitable detection and control processes therein in response to measurements from any one or more of the various sensors described above.


Referring additionally now to FIG. 9, another example of the gas volume 110 identified as E-1 in the FIG. 7 process and instrumentation diagram is representatively illustrated. In this example, the gas volume 110 is provided with one or more sensors 130a-f for determining whether hydraulic fluid 106 has undesirably accumulated in the gas volume 110. In addition, some of the sensors 130a-f are capable of providing an indication of a level of the hydraulic fluid 106 in the gas volume 110.


The sensor 130a can be a flowmeter, such as a mass flowmeter or an ultrasonic flowmeter. A suitable mass flowmeter is the Model FMA6701 available from Omega Engineering, Inc. of Stamford, Conn. USA. A suitable ultrasonic flowmeter is the Model FDT31 available from Omega Engineering, Inc. The sensor 130a is connected to the control system 46 and provides an output that indicates whether the hydraulic fluid 106 (instead of, or in addition to, the gas 118) is flowing into or out of the gas volume 110 via the pipe P-7.


The sensor 130b can be an ultrasonic sensor that detects an acoustic signature of the gas volume 110 at a lower end thereof. It will be appreciated that the acoustic signature will change if the hydraulic fluid 106 is present in the gas volume 110, as compared to the acoustic signature if the hydraulic fluid is not present in the gas volume. A suitable ultrasonic sensor is the Model LVSW-710 available from Omega Engineering, Inc. The sensor 130b is connected to the control system 46 and provides an output that indicates whether the hydraulic fluid 106 is present in the gas volume 110.


The sensor 130c can be a sight glass that provides for viewing an interior of the gas volume 110, or at least for viewing the level of the hydraulic fluid 106 in the gas volume. The sensor 130c is a “sensor” in that it provides for visual monitoring of the interior of the gas volume 110. A Series RS sight glass is available from Papailias Incorporated of Northvale, N.J. USA.


The sensor 130d can be a liquid level sensor that provides an indication if the hydraulic fluid 106 level is at or above a preselected level. The sensor 130d could, for example, be a liquid level switch, such as a float switch or another type of liquid level sensor, such as an ultrasonic sensor. The sensor 130d is connected to the control system 46 and provides an output that indicates whether the hydraulic fluid 106 is at the preselected level in the gas volume 110.


The sensor 130e can be an acoustic liquid level sensor that detects the presence or level of the hydraulic fluid 106 by reflecting an acoustic wave off of the hydraulic fluid. A Model LVCN210 liquid level sensor is available from Omega Engineering, Inc. The sensor 130e is connected to the control system 46 and provides an output that indicates whether the hydraulic fluid 106 is present in the gas volume 110 and, if so, the level of the hydraulic fluid in the gas volume.


The sensor 130f can be a strip of material that changes color in response to temperature change. The strip may include thermo-chromic liquid crystal color-changing materials. Use of such materials to sense liquid level is described in U.S. Pat. No. 3,696,675. The sensor 130f provides a visual indication of the presence and level (if any) of the hydraulic fluid 106 in the gas volume 110.


Note that the sensors 130a-f are merely examples of a wide variety of different types of sensors that may be used to detect whether the hydraulic fluid 106 is present in the gas volume 110, or a level of the hydraulic fluid if it is present. Thus, the scope of this disclosure is not limited to use of any particular type, number or combination of sensor(s).


If the hydraulic fluid 106 is detected in the gas volume 110, certain steps may be taken to remove the fluid from the gas volume. For example, a drain (not shown) could be opened to allow the fluid 106 to drain from the gas volume 110, a pressure of the gas 118 above the fluid 106 could be increased to force the fluid out of the gas volume 110, etc. In some cases, the fluid 106 may be removed from the gas volume 110 when a level of the fluid in the gas volume increases to a preselected maximum level.


It may now be fully appreciated that the above description provides significant advancements to the art of artificial lifting for subterranean wells. In various examples described above, pumping of a fluid from a well can be made more efficient, convenient, economical and productive utilizing the hydraulic pumping system 10 and associated methods.


The above disclosure provides to the art a hydraulic pumping method for use with a subterranean well having a rod string 18 connected to a downhole pump 20. In one example, the method comprises: displacing the rod string 18 in response to pressure applied to a hydraulic actuator 14 by a hydraulic pressure source 12 connected to the hydraulic actuator, the hydraulic pressure source 12 including an accumulator 116 and a separate gas volume 110 in communication with the accumulator, wherein a sensor 130a-f provides an indication of whether a hydraulic fluid 106 is present in the gas volume 110.


The sensor 130a-f may also provide an indication of a level of the hydraulic fluid 106 in the gas volume 110. The method can include removing the hydraulic fluid 106 from the gas volume 110 in response to the sensor 130a-f indication.


The method may include automatically regulating pressure in the accumulator 116 in response to measurements of the pressure applied to the hydraulic actuator 14. The automatically regulating step can comprise maintaining a maximum level of the pressure in the accumulator 116 at substantially a minimum level of the pressure applied to the hydraulic actuator 14.


The method may include delivering a pressurized lubricant 86 to a space between first and second seal assemblies 66, 78. The first seal assembly 66 seals about a piston rod 54 of the hydraulic actuator 14 and is exposed to the pressure in the actuator. The second seal assembly 78 seals about the piston rod 54 and is exposed to pressure in the well. The method can also include disconnecting the hydraulic actuator 14 from an annular seal housing 44 containing the second seal assembly 78, thereby permitting access to the second seal assembly in the annular seal housing 44.


The hydraulic fluid 106 may be in contact with a pressurized gas 118 in the accumulator 116. The accumulator 116 may receive nitrogen gas 118 from a nitrogen concentrator assembly 102 while the hydraulic fluid 106 flows between the hydraulic pressure source 12 and the hydraulic actuator 14.


Also provided to the art by the above disclosure is a hydraulic pumping system 10 for use with a subterranean well. In one example, the system 10 can include a hydraulic actuator 14 including a piston rod 54 that displaces in response to pressure in the hydraulic actuator, a hydraulic pump 92 connected between the hydraulic actuator 14 and an accumulator 116, a hydraulic fluid 106 in contact with a pressurized gas 118 in the accumulator 116, a separate gas volume 110 in communication with the accumulator 116, and a sensor 130a-f that detects a presence of the hydraulic fluid 106 in the gas volume 110.


The sensor 130a-f may detect a level of the hydraulic fluid 106 in the gas volume 110. The sensor 130a-f may output an indication of the presence of the hydraulic fluid 106 to a control system 46 that controls operation of the hydraulic pump 92.


The system 10 may include a first seal assembly 66 that seals about the piston rod 54 and is exposed to the pressure in the hydraulic actuator 14, a second seal assembly 78 that seals about the piston rod 54 and is exposed to pressure in the well, and a lubricant injector 80 that delivers a pressurized lubricant 86 to a space between the first and second seal assemblies 66, 78.


The pressure in the accumulator 116 may be varied in response to measurements of pressure applied to the hydraulic actuator 14. A maximum level of the pressure in the accumulator 116 may be maintained at substantially a minimum level of the pressure applied to the hydraulic actuator 14.


The accumulator 116 may receive nitrogen gas 118 from a nitrogen concentrator assembly 102 while the hydraulic fluid 106 flows between the hydraulic pump 92 and the hydraulic actuator 14.


Another hydraulic pumping system 10 for use with a subterranean well is also described above. In this example, the system 10 comprises a hydraulic actuator 14 including a piston 52 that displaces in response to pressure in the hydraulic actuator, a hydraulic pump 92 connected between the hydraulic actuator 14 and an accumulator 116 that receives nitrogen gas 118 from a nitrogen concentrator assembly 102 while a hydraulic fluid 106 flows between the hydraulic pump 92 and the hydraulic actuator 14, a separate gas volume 110 in communication with the accumulator 116, and a sensor 130a-f that detects a presence of the hydraulic fluid 106 in the gas volume 110.


Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.


Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.


It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.


In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.


The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”


Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. For example, structures disclosed as being separately formed can, in other examples, be integrally formed and vice versa. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.

Claims
  • 1. A hydraulic pumping system for use with a subterranean well, the system comprising: a hydraulic actuator including a piston rod that displaces in response to pressure in the hydraulic actuator;a hydraulic pump connected between the hydraulic actuator and an accumulator;a hydraulic fluid in contact with a pressurized gas in the accumulator;a separate gas volume in communication with the accumulator; anda sensor that detects a presence of the hydraulic fluid in the gas volume.
  • 2. The system of claim 1, wherein the sensor detects a level of the hydraulic fluid in the gas volume.
  • 3. The system of claim 1, wherein the sensor outputs an indication of the presence of the hydraulic fluid to a control system that controls operation of the hydraulic pump.
  • 4. The system of claim 1, further comprising: a first seal assembly that seals about the piston rod and is exposed to the pressure in the hydraulic actuator;a second seal assembly that seals about the piston rod and is exposed to pressure in the well; anda lubricant injector that delivers a pressurized lubricant to a space between the first and second seal assemblies.
  • 5. The system of claim 1, wherein pressure in the accumulator is varied in response to measurements of pressure applied to the hydraulic actuator.
  • 6. The system of claim 5, wherein a maximum level of the pressure in the accumulator is maintained at substantially a minimum level of the pressure applied to the hydraulic actuator.
  • 7. The system of claim 1, wherein the accumulator receives nitrogen gas from a nitrogen concentrator assembly while the hydraulic fluid flows between the hydraulic pump and the hydraulic actuator.
  • 8. A hydraulic pumping system for use with a subterranean well, the system comprising: a hydraulic actuator including a piston that displaces in response to pressure in the hydraulic actuator;a hydraulic pump connected between the hydraulic actuator and an accumulator that receives nitrogen gas from a nitrogen concentrator assembly while a hydraulic fluid flows between the hydraulic pump and the hydraulic actuator, wherein the hydraulic fluid is in contact with the nitrogen gas in the accumulator;a separate gas volume in communication with the accumulator; anda sensor that detects a presence of the hydraulic fluid in the gas volume.
  • 9. The system of claim 8, wherein the sensor detects a level of the hydraulic fluid in the gas volume.
  • 10. The system of claim 8, wherein the sensor outputs an indication of the presence of the hydraulic fluid to a control system that controls operation of the hydraulic pump.
  • 11. The system of claim 8, wherein pressure in the accumulator is automatically regulated in response to measurements of pressure applied to the hydraulic actuator.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of prior International Application No. PCT/US15/43694 filed on 5 Aug. 2015. The entire disclosure of the prior application is incorporated herein by this reference for all purposes.

US Referenced Citations (87)
Number Name Date Kind
2497491 Douglas Feb 1950 A
3212406 McDuffie Oct 1965 A
3635081 Gibbs Jan 1972 A
3696675 Gilmour Oct 1972 A
3782123 Muschalek, Jr. Jan 1974 A
4167201 Zahid Sep 1979 A
4178133 Rawicki Dec 1979 A
4327804 Reed May 1982 A
4380150 Carlson Apr 1983 A
4392792 Rogers Jul 1983 A
4428401 Chun Jan 1984 A
4471304 Wolf Sep 1984 A
4480685 Gilbertson Nov 1984 A
4487226 Chun Dec 1984 A
4490095 Soderberg Dec 1984 A
4490097 Gilbertson Dec 1984 A
4546607 Kime Oct 1985 A
4565496 Soderberg Jan 1986 A
4646517 Wright Mar 1987 A
4662177 David May 1987 A
4691511 Dollison Sep 1987 A
4707993 Kime Nov 1987 A
4736674 Stoll Apr 1988 A
4762473 Tieben Aug 1988 A
4788851 Brault Dec 1988 A
4848085 Rosman Jul 1989 A
5042149 Holland Aug 1991 A
5079997 Hong Jan 1992 A
5184507 Drake Feb 1993 A
5209495 Palmour May 1993 A
5281100 Diederich Jan 1994 A
5431230 Land et al. Jul 1995 A
5447026 Stanley Sep 1995 A
5481873 Saruwatari et al. Jan 1996 A
5628516 Grenke May 1997 A
5755372 Cimbura, Sr. May 1998 A
5996688 Schultz et al. Dec 1999 A
6310472 Chass Oct 2001 B1
6346806 Schabuble et al. Feb 2002 B1
6789458 Schumacher et al. Sep 2004 B2
6817252 Wiklund et al. Nov 2004 B2
6919719 Reininger Jul 2005 B2
7255163 Rivard Aug 2007 B2
7263781 Sielemann Sep 2007 B2
7293496 Nassif Nov 2007 B2
7600563 Brecheisen Oct 2009 B2
7775776 Bolding Aug 2010 B2
8066496 Brown Nov 2011 B2
8083499 Krug et al. Dec 2011 B1
8336613 Ramsey et al. Dec 2012 B2
8444393 Beck et al. May 2013 B2
8523533 Best Sep 2013 B1
8613317 Briquet et al. Dec 2013 B2
8851860 Mail Oct 2014 B1
9115705 Best Aug 2015 B2
9279432 Jirgal Mar 2016 B2
9429001 Best Aug 2016 B2
9541099 Pekarsky Jan 2017 B2
9644442 Kotrla May 2017 B2
9745975 Dancek Aug 2017 B2
20040062657 Beck et al. Apr 2004 A1
20040112586 Matthews et al. Jun 2004 A1
20050087068 Nagai et al. Apr 2005 A1
20050142012 Padgett et al. Jun 2005 A1
20070056747 Jacob Mar 2007 A1
20080118382 Ramsey et al. May 2008 A1
20090121440 Feistel et al. May 2009 A1
20090194291 Fesi et al. Aug 2009 A1
20110284204 Bertane et al. Nov 2011 A1
20120247754 Wright et al. Oct 2012 A1
20120247785 Schmitt Oct 2012 A1
20120315155 Rogers et al. Dec 2012 A1
20130043037 Ramsey et al. Feb 2013 A1
20130151216 Palka et al. Jun 2013 A1
20140079560 Hodges et al. Mar 2014 A1
20140231093 Lee Aug 2014 A1
20140262259 Fouillard et al. Sep 2014 A1
20140294603 Best Oct 2014 A1
20140328664 Hearn Nov 2014 A1
20150078926 Krug et al. Mar 2015 A1
20150285041 Dancek Oct 2015 A1
20150285243 Adeleye Oct 2015 A1
20150308420 Donnally et al. Oct 2015 A1
20150345802 Van Haaren Dec 2015 A1
20160177982 Kobayashi Jun 2016 A1
20160222995 Zientara Aug 2016 A1
20170037713 Trapani et al. Feb 2017 A1
Foreign Referenced Citations (12)
Number Date Country
1193345 Sep 1985 CA
2288479 May 2001 CA
2436924 Feb 2004 CA
2436924 Sep 2004 CA
2515616 Feb 2006 CA
2526345 Apr 2007 CA
2826593 Mar 2014 CA
9734095 Sep 1997 WO
2004092539 Oct 2004 WO
200909338 Aug 2009 WO
2009097338 Aug 2009 WO
2013063591 May 2013 WO
Non-Patent Literature Citations (54)
Entry
Specification and Drawings for International Patent Application No. PCT/US15/43694, filed Aug. 5, 2015, 54 pages.
Omega; “Transit-Time Ultrasonic Flow Meter”, FDT-30 Series, 2 pages.
Rota Engineering Ltd.; “Linear Transducers”, Mobile brochure MIM1-(1-9)-r4, 9 pages.
“Multi Parameter Gas Mass Flowmeters”, FMA6600 Series, 3 pages.
“Ultrasonic Level Transmitter and Controller”, LVCN210 Series, 1 page.
“Comanct Ultrasonic Solid State Liquid Level Switch”, LVSW-710/LVSW-720, 1 page.
Papailias Incorporated; “Rectangular Sightglasses Series RS”, company brochure, 1 page.
Sultan; “Quickstart”, product guide, dated Jan. 2011, 16 pages.
European Search Report dated Dec. 14, 2016 for EP Patent Application No. 16183125.0, 9 pages.
European Search Report dated May 2, 2017 for EP Patent Application No. 16183123.5-1614/3135859, 6 pages.
Canadian Office Action dated Jun. 16, 2017 for CA Patent Application No. 2,936,220, 6 pages.
Canadian Office Action dated Jun. 15, 2017 for CA Patent Application No. 2,936,221, 5 pages.
Canadian Office Action dated Jun. 19, 2017 for CA Patent Application No. 2,936,322, 5 pages.
Canadian Office Action dated Jun. 21, 2017 for CA Patent Application No. 2,936,302, 5 pages.
Canadian Office Action dated Jul. 4, 2017 for CA Patent Application No. 2,936,320, 6 pages.
Office Action dated Sep. 8, 2017 for U.S. Appl. No. 14/947,839, 41 pages.
Office Action dated Sep. 8, 2017 for U.S. Appl. No. 14/991,253, 47 pages.
Hua, C.; “Sucker Rod String Design of the Pumping Systems”, Indenieria E Investigacion vol. 35, dated Aug. 2, 2015, 9 pages.
European Examination Report dated Oct. 23, 2017 for EP Patent Application No. 16183105.2, 5 pages.
Notice of Allowance dated Nov. 2, 2017 for U.S. Appl. No. 14/956,863, 30 pages.
Canadian Office Action dated Nov. 8, 2017 for CA Patent Application No. 2,936,221, 3 pages.
Office Action dated Nov. 13, 2017 for U.S. Appl. No. 14/956,527, 49 pages.
Office Action dated Feb. 23, 2018 for U.S. Appl. No. 14/956,545, 46 pages.
Office Action dated Jan. 26, 2018 for U.S. Appl. No. 14/991,253, 55 pages.
Canadian Office Action dated Dec. 6, 2017 for CA Patent Application No. 2936,320, 4 pages.
Office Action dated Jan. 25, 2018 for U.S. Appl. No. 14/947,839, 49 pages.
European Search Report dated Feb. 17, 2017 for EP Patent Application No. 16199698.8, 6 pages.
European Search Report dated May 2, 2017 for EP Patent Application No. 16183114.4, 14 pages.
T.A. Everitt et al; “An Improved Finite-Difference Calculation of Downhole Dynamometer Cards for Sucker-Rod Pumps”, SPE Production Engineering, vol. 7, No. 01, dated Feb. 1, 1992, 7 pages.
European Search Report dated May 4, 2017 for EP Patent Application No. 16199697.0, 7 pages.
Specification and Drawings for U.S. Appl. No. 14/991,253, filed Jan. 8, 2016, 49 pages.
International Search Report with Written Opinion dated Jan. 20, 2016 for PCT Patent Application No. PCT/US15/43694, 13 pages.
Office Action dated Aug. 23, 2018 for U.S. Appl. No. 14/956,527, 24 pages.
Office Action dated Sep. 7, 2018 for U.S. Appl. No. 14/956,545, 26 pages.
European Examination Report dated Mar. 15, 2018 for EP Patent Application No. 16183105.2, 5 pages.
European Examination Report dated Mar. 15, 2018 for EP Patent Application No. 16183114.4, 5 pages.
European Examination Report dated Mar. 15, 2018 for EP Patent Application No. 16183126.8, 7 pages.
Office Action dated Apr. 6, 2018 for U.S. Appl. No. 14/956,527, 30 pages.
European Examination Report dated Oct. 19, 2018 for EP Patent Application No. 16 183 105.2, 5 pages.
European Examination Report dated Oct. 9, 2018 for EP Patent Application No. 16 183 114.4, 5 pages.
European Examination Report dated Oct. 19, 2018 for EP Patent Application No. 16 183 126.8, 6 pages.
Office Action dated Oct. 3, 2018 for U.S. Appl. No. 14/991,253, 74 pages.
T.A. Everitt, et al.; “An Improved Finite-Difference Calculation of Downhole Dynamometer Cards for Sucker-Rod Pumps”, SPE18189, dated Feb. 1992, 7 pages.
Office Action dated Oct. 4, 2018 for U.S. Appl. No. 14/947,839, 37 pages.
European Examination Report dated Jul. 17, 2018 for EP Patent Application No. 16 199 697.0, 5 pages.
European Examination Report dated Jul. 17, 2018 for EP Patent Application No. 16 199 698.8, 5 pages.
Canadian Office Action dated Apr. 13, 2018 for CA Patent Application No. 2,936,221, 4 pages.
Office Action dated Apr. 10, 2019 for U.S. Appl. No. 14/956,527, 28 pages.
Office Action dated Mar. 8, 2019 for U.S. Appl. No. 14/956,545, 25 pages.
Canadian Office Action dated Oct. 18, 2018 for CA Patent Application No. 2,936,221, 5 pages.
Examiner's Answer dated Oct. 24, 2019 for U.S. Appl. No. 14/956,545, 12 pages.
European Office Action dated Jun. 28, 2019 for EP Patent Application No. 16 183 105.2, 6 pages.
European Office Action dated Jun. 28, 2019 for EP Patent Application No. 16 183 114.4, 5 pages.
European Office Action dated Jun. 28, 2019 for EP Patent Application No. 16 183 126.8, 7 pages.
Related Publications (1)
Number Date Country
20170037715 A1 Feb 2017 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2015/043694 Aug 2015 US
Child 14956601 US