Hydrocarbon gas processing

Information

  • Patent Grant
  • 9021832
  • Patent Number
    9,021,832
  • Date Filed
    Tuesday, December 28, 2010
    14 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
A process and an apparatus are disclosed for recovering ethane, ethylene, and heavier hydrocarbon components from a hydrocarbon gas stream. The stream is cooled, expanded to lower pressure, and supplied to a first fractionation tower at a mid-column feed position. A distillation liquid stream is withdrawn from the first fractionation tower below the feed position of the expanded stream, heated, and directed into a second fractionation tower that produces an overhead vapor stream and a bottom liquid stream. The overhead vapor stream is cooled to condense it, with a portion of the condensed stream directed to the second fractionation tower as its top feed and the remainder directed to the first fractionation tower at a lower column feed position. The bottom liquid stream from the second fractionation tower is cooled and directed to the first fractionation tower as its top feed.
Description
BACKGROUND OF THE INVENTION

This invention relates to a process for the separation of a hydrocarbon bearing gas stream containing significant quantities of components more volatile than methane (e.g., hydrogen, nitrogen, etc.) into two fractions: a first fraction containing predominantly methane and the more volatile components, and a second fraction containing the recovered desirable ethane/ethylene and heavier hydrocarbon components.


Ethylene, ethane, propylene, propane, and/or heavier hydrocarbons can be recovered from a variety of gases, such as natural gas, refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite. Hydrocarbon bearing gas typically contains components more volatile than methane (e.g., hydrogen, nitrogen, etc.) and often unsaturated hydrocarbons (e.g., ethylene, propylene, etc.) and aromatic hydrocarbons (e.g., benzene, toluene, etc.) in addition to methane, ethane, and hydrocarbons of higher molecular weight such as propane, butane, and pentane. Sulfur-containing gases and carbon dioxide are also sometimes present.


The present invention is generally concerned with the recovery of ethylene, ethane, and heavier (C2+) hydrocarbons from such gas streams. Recent changes in ethylene demand have created increased markets for ethylene and derivative products. In addition, fluctuations in the prices of both natural gas and its natural gas liquid (NGL) constituents have increased the value of ethane and heavier components as liquid products. These market conditions have resulted in the demand for processes which can provide high ethylene and ethane recovery and more efficient recovery of all these products. Available processes for separating these materials include those based upon cooling and refrigeration of gas, oil absorption, and refrigerated oil absorption. Additionally, cryogenic processes have become popular because of the availability of economical equipment that produces power while simultaneously expanding and extracting heat from the gas being processed. Depending upon the pressure of the gas source, the richness (ethane, ethylene, and heavier hydrocarbons content) of the gas, and the desired end products, each of these processes or a combination thereof may be employed.


The cryogenic expansion process is now generally preferred for natural gas liquids recovery because it provides maximum simplicity with ease of startup, operating flexibility, good efficiency, safety, and good reliability. U.S. Pat. Nos. 3,292,380; 4,061,481; 4,140,504; 4,157,904; 4,171,964; 4,185,978; 4,251,249; 4,278,457; 4,519,824; 4,617,039; 4,687,499; 4,689,063; 4,690,702; 4,854,955; 4,869,740; 4,889,545; 5,275,005; 5,555,748; 5,566,554; 5,568,737; 5,771,712; 5,799,507; 5,881,569; 5,890,378; 5,983,664; 6,182,469; 6,578,379; 6,712,880; 6,915,662; 7,191,617; 7,219,513; reissue U.S. Pat. No. 33,408; and co-pending application Ser. Nos. 11/430,412; 11/839,693; 11/971,491; 12/206,230; 12/689,616; 12/717,394; 12/750,862; 12/772,472; 12/781,259; 12/868,993; 12/869,007; and 12/869,139 describe relevant processes (although the description of the present invention in some cases is based on different processing conditions than those described in the cited U.S. patents and applications).


In a typical cryogenic expansion recovery process, a feed gas stream under pressure is cooled by heat exchange with other streams of the process and/or external sources of refrigeration such as a propane compression-refrigeration system. As the gas is cooled, liquids may be condensed and collected in one or more separators as high-pressure liquids containing some of the desired C2+ components. Depending on the richness of the gas and the amount of liquids formed, the high-pressure liquids may be expanded to a lower pressure and fractionated. The vaporization occurring during expansion of the liquids results in further cooling of the stream. Under some conditions, pre-cooling the high pressure liquids prior to the expansion may be desirable in order to further lower the temperature resulting from the expansion. The expanded stream, comprising a mixture of liquid and vapor, is fractionated in a distillation (demethanizer or deethanizer) column. In the column, the expansion cooled stream(s) is (are) distilled to separate residual methane, hydrogen, nitrogen, and other volatile gases as overhead vapor from the desired C2 components, C3 components, and heavier hydrocarbon components as bottom liquid product, or to separate residual methane, C2 components, hydrogen, nitrogen, and other volatile gases as overhead vapor from the desired C3 components and heavier hydrocarbon components as bottom liquid product.


If the feed gas is not totally condensed (typically it is not), the vapor remaining from the partial condensation can be passed through a work expansion machine or engine, or an expansion valve, to a lower pressure at which additional liquids are condensed as a result of further cooling of the stream. The pressure after expansion is essentially the same as the pressure at which the distillation column is operated. The combined vapor-liquid phases resulting from the expansion are supplied as feed to the column.


In the ideal operation of such a separation process, the residue gas leaving the process will contain substantially all of the methane and more volatile components in the feed gas with essentially none of the heavier hydrocarbon components, and the bottoms fraction leaving the demethanizer will contain substantially all of the heavier hydrocarbon components with essentially no methane or more volatile components. In practice, however, this ideal situation is not obtained because the conventional demethanizer is operated largely as a stripping column. The methane product of the process, therefore, typically comprises vapors leaving the top fractionation stage of the column, together with vapors not subjected to any rectification step. Considerable losses of ethylene and ethane occur because the top liquid feed contains substantial quantities of C2+ components and heavier hydrocarbon components, resulting in corresponding equilibrium quantities of C2+ components in the vapors leaving the top fractionation stage of the demethanizer. This problem is exacerbated if the gas stream(s) being processed contain relatively large quantities of components more volatile than methane (e.g., hydrogen, nitrogen, etc.) because the volatile vapors rising up the column strip C2+ components from the liquids flowing downward. The loss of these desirable C2+ components could be significantly reduced if the rising vapors could be brought into contact with a significant quantity of liquid (reflux) capable of absorbing the C2+ components from the vapors.


A number of processes have been developed to use a cold liquid that is predominantly methane as the reflux stream to contact the rising vapors in a rectification section in the distillation column. Typical process schemes of this type are disclosed in U.S. Pat. Nos. 4,889,545; 5,568,737; and 5,881,569, and in Mowrey, E. Ross, “Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber”, Proceedings of the Eighty-First Annual Convention of the Gas Processors Association, Dallas, Tex., Mar. 11-13, 2002. Unfortunately, these processes require the use of a compressor to provide the motive force for recycling the reflux stream to the demethanizer, adding to both the capital cost and the operating cost of facilities using these processes. In addition, the cold methane reflux creates temperatures within the distillation column that are −112° F. [−80° C.] and colder. Many gas streams of this type contain significant quantities of nitrous oxides (NOX) at times, which can accumulate in cold sections of a processing plant as NOX gums (commonly referred to as “blue ice”) at temperatures lower than this. “Blue ice” can become explosive upon warming, and has been identified as the cause of a number of deflagrations and/or explosions in processing plants.


Other processes have been developed that use a heavy (C4-C10 typically) hydrocarbon absorbent stream to reflux the distillation column. Examples of processes of this type are U.S. Pat. Nos. 4,318,723; 5,546,764; 7,273,542; and 7,714,180. While such processes generally operate at temperatures warm enough to avoid concerns about “blue ice”, the absorbent stream is typically produced from the distillation column bottoms stream, with the result that any aromatic hydrocarbons present in the feed gas will concentrate in the distillation column. Aromatic hydrocarbons such as benzene can freeze solid at normal processing temperatures, causing frequent disruptions in the processing plant.


In accordance with the present invention, it has been found that ethane recovery in excess of 88% can be obtained without requiring any temperatures to be lower than −112° F. [−80° C.]. The present invention is particularly advantageous when processing feed gases containing more than 10 mole % of components more volatile than methane.





For a better understanding of the present invention, reference is made to the following examples and drawings. Referring to the drawings:



FIG. 1 is a flow diagram of gas processing plant in accordance with the present invention; and



FIG. 2 is a flow diagrams illustrating alternative means of application of the present invention to a gas stream.





In the following explanation of the above figures, tables are provided summarizing flow rates calculated for representative process conditions. In the tables appearing herein, the values for flow rates (in moles per hour) have been rounded to the nearest whole number for convenience. The total stream rates shown in the tables include all non-hydrocarbon components and hence are generally larger than the sum of the stream flow rates for the hydrocarbon components. Temperatures indicated are approximate values rounded to the nearest degree. It should also be noted that the process design calculations performed for the purpose of comparing the processes depicted in the figures are based on the assumption of no heat leak from (or to) the surroundings to (or from) the process. The quality of commercially available insulating materials makes this a very reasonable assumption and one that is typically made by those skilled in the art.


For convenience, process parameters are reported in both the traditional British units and in the units of the Système International d'Unitès (SI). The molar flow rates given in the tables may be interpreted as either pound moles per hour or kilogram moles per hour. The energy consumptions reported as horsepower (HP) and/or thousand British Thermal Units per hour (MBTU/Hr) correspond to the stated molar flow rates in pound moles per hour. The energy consumptions reported as kilowatts (kW) correspond to the stated molar flow rates in kilogram moles per hour.


DESCRIPTION OF THE INVENTION


FIG. 1 illustrates a flow diagram of a process in accordance with the present invention. In the simulation of the FIG. 1 process, inlet gas enters the plant at 100° F. [38° C.] and 77 psia [531 kPa(a)] as stream 51 If the inlet gas contains a concentration of sulfur compounds and/or carbon dioxide which would prevent the product streams from meeting specifications, the sulfur compounds and/or carbon dioxide are removed by appropriate pretreatment of the feed gas (not illustrated).


The inlet gas is compressed to higher pressure in three stages before processing (compressors 10 and 15 driven by an external power source and compressor 13 driven by work expansion machine 14). Discharge coolers 11 and 16 are used to cool the gas between stages, and separators 12 and 17 are used to remove any water or other liquids that condense from the gas stream as it is cooled. The cooled compressed gas stream 54 leaving separator 17 is dehydrated in dehydration unit 18 to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccant has typically been used for this purpose.


The dehydrated gas stream 61 at 100° F. [38° C.] and 560 psia [3,859 kPa(a)] enters heat exchanger 20 and is cooled by heat exchange with cool residue gas (stream 68a), liquid product at 28° F. [−2° C.] (stream 71a), demethanizer reboiler liquids at 13° F. [−11° C.] (stream 70), and propane refrigerant. Note that in all cases exchanger 20 is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof (The decision as to whether to use more than one heat exchanger for the indicated cooling services will depend on a number of factors including, but not limited to, inlet gas flow rate, heat exchanger size, stream temperatures, etc.) The cooled stream 61a enters separator 21 at 40° F. [4° C.] and 550 psia [3,790 kPa(a)] where the vapor (stream 62) is separated from the condensed liquid (stream 63). The separator liquid (stream 63) is expanded to the operating pressure (approximately 175 psia [1,207 kPa(a)]) of fractionation tower 28 by expansion valve 22, cooling stream 63a to 16° F. [−9° C.] before it is supplied to fractionation tower 28 at a lower column feed point.


The vapor (stream 62) from separator 21 is further cooled in heat exchanger 23 by heat exchange with cold residue gas (stream 68), demethanizer side reboiler liquids at −10° F. [−23° C.] (stream 69), flashed liquids (stream 65a), and propane refrigerant. The cooled stream 62a enters separator 24 at −42° F. [−41° C.] and 535 psia [3,686 kPa(a)] where the vapor (stream 64) is separated from the condensed liquid (stream 65). The separator liquid (stream 65) is expanded to slightly above the tower operating pressure by expansion valve 25, cooling stream 65a to −63° F. [−53° C.] before it is heated to −40° F. [−40° C.] in heat exchanger 23. The heated stream 65b is then supplied to fractionation tower 28 at a lower mid-column feed point.


The vapor (stream 64) from separator 24 enters work expansion machine 14 in which mechanical energy is extracted from this portion of the high pressure feed. The machine 14 expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream 64a to a temperature of approximately −105° F. [−76° C.]. The typical commercially available expanders are capable of recovering on the order of 80-85% of the work theoretically available in an ideal isentropic expansion. The work recovered is often used to drive a centrifugal compressor (such as item 13) that can be used to compress the inlet gas (stream 52), for example. The partially condensed expanded stream 64a is thereafter supplied as feed to fractionation tower 28 at an upper mid-column feed point.


The demethanizer in tower 28 is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The demethanizer tower consists of two sections: an upper absorbing (rectification) section that contains the trays and/or packing to provide the necessary contact between the vapor portion of the expanded stream 64a rising upward and cold liquid falling downward to condense and absorb the C2 components, C3 components, and heavier components from the vapors rising upward; and a lower, stripping (demethanizing) section that contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section also includes one or more reboilers (such as the reboiler and side reboiler described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product, stream 71, of methane and lighter components. Stream 64a enters demethanizer 28 at an intermediate feed position located in the lower region of the absorbing section of demethanizer 28. The liquid portion of the expanded stream commingles with liquids falling downward from the absorbing section and the combined liquid continues downward into the stripping section of demethanizer 28. The vapor portion of the expanded stream rises upward through the absorbing section and is contacted with cold liquid falling downward to condense and absorb the C2 components, C3 components, and heavier components.


A portion of the distillation liquid (stream 72) is withdrawn from an intermediate region of the stripping section in fractionation column 28, below the feed position of expanded stream 64a in the lower region of the absorbing section but above the feed position of expanded liquid stream 63a in the stripping section. Withdrawing the distillation liquid at this location provides a liquid stream that is predominantly C2-C5 hydrocarbons containing very little of the volatile components (e.g., methane, hydrogen, nitrogen, etc.) and little of the aromatic hydrocarbons and heavier hydrocarbon components. This distillation vapor stream 72 is pumped to higher pressure by pump 30 (stream 72a) and then heated from −25° F. [−32° C.] to 77° F. [25° C.] and partially vaporized in heat exchanger 31 by heat exchange with the hot depropanizer bottom stream 78. The heated stream 72b then enters depropanizer 32 (operating at 265 psia [1,828 kPa(a)]) at a mid-column feed point.


The depropanizer in tower 32 is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The depropanizer tower consists of two sections: an upper absorbing (rectification) section that contains the trays and/or packing to provide the necessary contact between the vapor portion of the heated stream 72b rising upward and cold liquid falling downward to condense and absorb the C4 components and heavier components; and a lower, stripping (depropanizing) section that contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward. The depropanizing section also includes one or more reboilers (such as reboiler 33) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the bottom liquid product, stream 78, of C3 components and lighter components. Stream 72b enters depropanizer 32 at an intermediate feed position located between the absorbing section and the stripping section of depropanizer 32. The liquid portion of the heated stream commingles with liquids falling downward from the absorbing section and the combined liquid continues downward into the stripping section of depropanizer 32. The vapor portion of the heated stream rises upward through the absorbing section and is contacted with cold liquid falling downward to condense and absorb the C4 components and heavier components.


The overhead vapor (stream 73) from depropanizer 32 enters reflux condenser 34 and is cooled by propane refrigerant from 59° F. [15° C.] to −33° F. [−36° C.] to condense it before entering reflux separator 35 at 260 psia [1,793 kPa(a)]. If there is any uncondensed vapor (stream 74), it is expanded to the operating pressure of demethanizer 28 by expansion valve 38 and returned to demethanizer 28 at a lower column feed point. In the simulation of FIG. 1, however, all of the overhead vapor is condensed and leaves reflux separator 35 in liquid stream 75. Stream 75 is pumped by pump 36 to a pressure slightly above the operating pressure of depropanizer 32, and a portion (stream 76) of stream 75a is then supplied as top column feed (reflux) to depropanizer 32 to absorb and condense the C4 components and heavier components rising in the absorbing section of the column. The remaining portion (stream 77) contains the C3 and lighter components stripped from distillation liquid stream 72. It is expanded to the operating pressure of demethanizer 28 by expansion valve 37, cooling stream 37a to −44° F. [−42° C.] before it is returned to demethanizer 28 at a lower column feed point, below the withdrawal point of distillation liquid stream 72.


The bottom liquid product from depropanizer 32 (stream 78) has been stripped of the C3 and lighter components, and is predominantly C4-C5 hydrocarbons. It leaves the bottom of depropanizer 32 at 230° F. [110° C.] and is cooled to −20° F. [−29° C.] in heat exchanger 31 as described earlier. Stream 78a is further cooled to −35° F. [−37° C.] with propane refrigerant in heat exchanger 39 (stream 78b) and then expanded to the operating pressure of demethanizer 28 in expansion valve 40. The expanded stream 78c is then supplied to demethanizer 28 as reflux, entering at the top feed location at −35° F. [−37° C.]. The C4-C5 hydrocarbons in stream 78c act as an absorbent to capture the C2+ components in the vapors flowing upward in the absorbing section of demethanizer 28.


In the stripping section of demethanizer 28, the feed streams are stripped of their methane and lighter components. The resulting liquid product (stream 71) exits the bottom of tower 28 at 24° F. [−4° C.] and is pumped to higher pressure in pump 29. The pumped stream 71a is then heated to 93° F. [34° C.] in heat exchanger 20 as described previously. The cold residue gas stream 68 leaves demethanizer 28 at −32° F. [−35° C.] and passes countercurrently to the incoming feed gas in heat exchanger 23 where it is heated to 32° F. [0° C.] (stream 68a) and in heat exchanger 20 where it is heated to 95° F. [35° C.] (stream 68b) as it provides cooling as previously described. The residue gas product then flows to the fuel gas distribution header at 165 psia [1,138 kPa(a)].


A summary of stream flow rates and energy consumption for the process illustrated in FIG. 1 is set forth in the following table:









TABLE I





(FIG. 1)


Stream Flow Summary - Lb. Moles/Hr [kg moles/Hr]























Stream
Stream
Stream


Component
Stream 61
Stream 62
63
64
65





Hydrogen
833
823
10
814
9


Methane
2,375
2,225
150
1,980
245


Ethylene
115
95
20
60
35


Ethane
944
710
234
349
361


Propylene
212
112
100
23
89


Propane
597
293
304
51
242


Butylene/Butadiene
135
36
99
2
34


i-Butane
78
23
55
2
21


n-Butane
166
39
127
2
37


Pentanes+
46
5
41
0
5


Totals
5,577
4,431
1,146
3,348
1,083








Stream
Stream
Stream


Component
Stream 72
Stream 73
75
76
77





Hydrogen
0
0
0
0
0


Methane
186
298
298
112
186


Ethylene
89
142
142
53
89


Ethane
836
1,336
1,336
500
836


Propylene
129
194
194
73
121


Propane
353
482
482
180
302


Butylene/Butadiene
239
24
24
9
15


i-Butane
111
18
18
7
11


n-Butane
396
16
16
6
10


Pentanes+
220
0
0
0
0


Totals
2,569
2,515
2,515
941
1,574















Component
Stream 78
Stream 68
Stream 71







Hydrogen
0
833
0



Methane
0
2,352
23



Ethylene
0
45
70



Ethane
0
109
835



Propylene
8
4
208



Propane
51
21
576



Butylene/Butadiene
224
22
113



i-Butane
100
12
66



n-Butane
386
29
137



Pentanes+
220
4
42



Totals
995
3,501
2,076















Recoveries*





Ethylene
60.81%



Ethane
88.41%



Propylene
98.22%



Propane
96.57%



Butanes+
84.03%



Power



Inlet Gas Compression
6,072 HP
[9,982 kW]



Refrigerant Compression
5,015 HP
[8,245 kW]



Total Compression
11,087 HP 
[18,227 kW] 







*(Based on un-rounded flow rates)






Other Embodiments

In accordance with this invention, it is generally advantageous to design the absorbing (rectification) section of the demethanizer to contain multiple theoretical separation stages. However, the benefits of the present invention can be achieved with as few as two theoretical stages. For instance, all or a part of the reflux liquid (stream 78c) and all or a part of the expanded stream 64a can be combined (such as in the piping to the demethanizer) and if thoroughly intermingled, the vapors and liquids will mix together and separate in accordance with the relative volatilities of the various components of the total combined streams. Such commingling of the two streams, shall be considered for the purposes of this invention as constituting an absorbing section.



FIG. 2 displays another embodiment of the present invention that may be preferred in some circumstances. In the FIG. 2 embodiment, a portion (stream 66) of vapor stream 64 from separator 24 is expanded to an intermediate pressure by expansion valve 26 and then combined with cooled depropanizer bottoms stream 78b to form a combined stream 79. The combined stream 79 is cooled in heat exchanger 27 (stream 79a) by the cold demethanizer overhead stream 68, then expanded to the operating pressure of demethanizer 28 by expansion valve 40. The expanded stream 79b is then supplied as reflux to the top feed position of demethanizer 28. The remaining portion (stream 67) of vapor stream 64) is expanded to the tower operating pressure by work expansion machine 14, and the expanded stream 67a is supplied to the upper mid-column feed position on demethanizer 28.


Feed gas conditions, plant size, available equipment, or other factors may indicate that elimination of work expansion machine 14, or replacement with an alternate expansion device (such as an expansion valve), is feasible. Although individual stream expansion is depicted in particular expansion devices, alternative expansion means may be employed where appropriate. For example, conditions may warrant work expansion of the reflux stream (stream 78b or stream 79a).


When the inlet gas is leaner, separator 21 in FIGS. 1 and 2 may not be justified. In such cases, the feed gas cooling accomplished in heat exchangers 20 and 23 in FIGS. 1 and 2 may be accomplished without an intervening separator. The decision of whether or not to cool and separate the feed gas in multiple steps will depend on the richness of the feed gas, plant size, available equipment, etc. Depending on the quantity of heavier hydrocarbons in the feed gas and the feed gas pressure, the cooled feed stream 61a leaving heat exchanger 20 and/or the cooled stream 62a leaving heat exchanger 23 in FIGS. 1 and 2 may not contain any liquid (because it is above its dewpoint, or because it is above its cricondenbar), so that separator 21 and/or separator 24 shown in FIGS. 1 and 2 are not required.


The expanded liquid (stream 65a in FIGS. 1 and 2) need not be heated before it is supplied to the lower mid-column feed point on the distillation column. Instead, all or a portion of it may be supplied directly to the column. Any remaining portion of the expanded liquid may then be heated before it is fed to the distillation column.


In accordance with the present invention, the use of external refrigeration to supplement the cooling available to the inlet gas from other process streams may be employed, particularly in the case of a rich inlet gas. The use and distribution of separator liquids and demethanizer side draw liquids for process heat exchange, and the particular arrangement of heat exchangers for inlet gas cooling must be evaluated for each particular application, as well as the choice of process streams for specific heat exchange services.


In accordance with the present invention, the splitting of the vapor feed for the FIG. 2 embodiment may be accomplished in several ways. In the process of FIG. 2, the splitting of vapor occurs following cooling and separation of any liquids which may have been formed. The high pressure gas may be split, however, prior to any cooling of the inlet gas or after the cooling of the gas and prior to any separation stages. In some embodiments, vapor splitting may be effected in a separator.


It will also be recognized that the relative amount of feed found in each branch of the split vapor feed of the FIG. 2 embodiment will depend on several factors, including gas pressure, feed gas composition, the amount of heat which can economically be extracted from the feed, and the quantity of horsepower available. More feed to the top of the column may increase recovery while decreasing power recovered from the expander thereby increasing the compression horsepower requirements. Increasing feed lower in the column reduces the horsepower consumption but may also reduce product recovery. The relative locations of the mid-column feeds may vary depending on inlet composition or other factors such as desired recovery levels and amount of liquid formed during inlet gas cooling. Moreover, two or more of the feed streams, or portions thereof, may be combined depending on the relative temperatures and quantities of individual streams, and the combined stream then fed to a mid-column feed position.


The present invention provides improved recovery of C2 components, C3 components, and heavier hydrocarbon components per amount of utility consumption required to operate the process. An improvement in utility consumption required for operating the demethanizer process may appear in the form of reduced power requirements for compression or re-compression, reduced power requirements for external refrigeration, reduced energy requirements for tower reboilers, or a combination thereof.


While there have been described what are believed to be preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto, e.g. to adapt the invention to various conditions, types of feed, or other requirements without departing from the spirit of the present invention as defined by the following claims.

Claims
  • 1. In a process or the separation of a gas stream containing methane and more volatile components, C2 components, C3 components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C2 components, C3 components, and heavier hydrocarbon components, in which process (a) said gas stream is cooled under pressure to provide a cooled stream;(b) said cooled stream is expaned to lower pressure whereby it is further cooled; and(c) said further cooled stream is directed into a first distillation column and fractionated at said lower pressure whereby the components of said relatively less volatile fraction are recovered;the improvement wherein(1) said further cooled expanded stream is directed to said first distillation column at a mid-column feed position;(2) a distillation liquid stream is withdrawn from a region of said first distillation column below said mid-column feed position;(3) said distillation liquid stream is heated, and thereafter directed into a second distillation column and fractionated into an overhead vapor stream and a bottom liquid stream;(4) said overhead vapor stream is cooled to condense substantially all of it, thereby forming a condensed stream;(5) said condensed stream is divided into a first portion and a second portion, whereupon said first portion is directed to said second distillation column at a top feed position;(6) said second portion is directed to said first distillation column at a lower column feed position below said region wherein said distillation liquid stream is withdrawn from said first distillation column;(7) said bottom liquid stream is cooled, thereby to supply at least a portion of the heating of step (3);(8) said cooled bottom liquid stream is directed to said first distillation column at a top feed position;(9) the quantities and temperatures of said feed streams to said second distillation column are effective to maintain the overhead temperature of said second distillation column at a temperature whereby said overhead vapor stream is predominantly C3 hydrocarbon components and more volatile components, and said bottom liquid stream is predominatly C4-C5hydrocarbon components, and(10) the quantities and temperatures of said feed streams to said first distillation column are effective to maintain the overhead temperature of said first distillation column at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.
  • 2. The process according to claim 1 wherein said gas stream is cooled sufficiently to partially condense it; and(a) said partially condensed gas stream is separated thereby to provide a vapor stream and at least one liquid stream;(b) said vapor stream is expanded to said lower pressure and is supplied to said first distillation column at said mid-column feed position;(c) at least a portion of said at least one liquid stream is expanded to said lower pressure and is supplied to said first distillation column at a lower mid-columnm feed position below said mid-column feed position; and(d) said distillation liquid stream is withdrawn from a region of said first distillation column below said mid-column feed position and above said lower mid-column feed position.
  • 3. The process according to claim 1 wherein said cooled stream is divided into first and second streams; and(a) said second stream is expanded to said lower pressure and is supplied to said first distillation column at said mid-column feed position;(b) said first stream is expanded to an intermediate pressure and thereafter combined with said cooled bottom liquid stream to form a combined stream;(c) said combined stream is cooled and thereafter expanded to said lower pressure; and(d) said expanded cooled combined stream is directed to said first distillation column at said top feed position.
  • 4. The process according to claim 2 wherein (a) said vapor stream is divided into first and second streams;(b) said second stream is expanded to said lower pressure and is supplied to said first distillation column at said mid-column feed position;(c) said first stream is expanded to an intermediate pressure and thereafter combined with said bottom liquid stream to form a combined stream;(d) said combined stream is cooled and thereafter expanded to said lower pressure; and(e) said expanded cooled combined stream is directed to said first distillation column at said top feed position.
  • 5. The process according to claim 2 or 4 wherein said expanded at least a portion of said at least one liquid stream is heated and thereafter supplied to said first distillation column at said another lower mid-column feed position below said mid-column feed position.
  • 6. The process according to claim 1, 2, 3, or 4 wherein (1) said overhead vapor stream is cooled sufficiently to partially condense it;(2) said partially condensed overhead vapor stream is separated thereby to provide a residual vapor stream and said condensed stream; and(3) said residual vapor stream is directed to said first distillation column at another lower column feed position below said region wherein said distillation liquid stream is withdrawn from said distillation column.
  • 7. The process according to claim 5 wherein (1) said overhead vapor stream is cooled sufficiently to partially condense it;(2) said partially condensed overhead vapor stream is separated thereby to provide a residual vapor stream and said condensed stream; and(3) said residual vapor stream is directed to said first distillation column at another lower column feed position below said region wherein said distillation liquid stream is withdrawn from said first distillation column.
  • 8. In an apparatus for the separation of a gas stream containing methane and more volatile components, C2 components, C3 components, and heavier hydrocarbon components into a volatile residue gas fraction and a relatively less volatile fraction containing a major portion of said C2 components, C3 components, and heavier hydrocarbon components, in said apparatus there being (a) a first cooling means to cool said gas stream under pressure connected to provide a cooled stream under pressure;(b) an expansion means connected to receive at least a portion of said cooled stream under pressure and expand it to a lower pressure, whereby said stream is further cooled; and(c) a first distillation column connected to receive said further cooled stream, said first distillation column being adapted to separate said further cooled stream into said volatile residue gas fraction and said relatively less volatile fraction;the improvement wherein said further cooled expanded stream is directed to said first distillation column at a mid-column feed position, and said apparatus includes(1) liquid withdrawing means connected to said first distillation column to receive a distillation liquid stream from a region of said first distillation column below said mid-column feed position;(2) heat exchange means connected to said liquid withdrawing means to receive said distillation stream and heat it;(3) second distillation column connected to said heat exchange means to receive said heated distillation liquid stream and fractionate it into an overhead vapor stream and a bottom liquid stream;(4) second cooling means connected to said second distillation column to receive said overhead vapor stream and cool it sufficiently to substantially condense it, thereby forming a condensed stream;(5) dividing means connected to said second cooling means to receive said condensed stream and divide it into at least a first portion and a second portion;(6) said dividing means connected to said second distillation column to supply said first portion to said second distillation column at a top feed portion;(7) said dividing means being further connected to said first distillation column to supply said second portion to said first distillation column at a lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream;(8) said heat exchange means being further connected to said second distillation column to receive said bottom liquid stream and cool it, thereby to supply at least a portion of the heating of step (2),said heat exchange means being further connected to said first distillation column to supply said cooled bottom liquid stream to said first distillation column at a top feed position;(9) first control means adapted to regulate the quantities and temperatures of said feed to streams to said second distillation column to maintain the overhead temperature of said second distillation column at a whereby said overhead vapor stream is predominantly C3 hydrocarbon components and more volatile components, and said bottom liquid stream is predominantly C4-C5 hydrocarbon components; and(10) second control means adapted to regulate the quantities and temperatures of said feed streams to said first distillation column to maintain the overhead temperature of said first distillation column at a temperature whereby the major portions of the components in said relatively less volatile fraction are recovered.
  • 9. The apparatus according to claim 8 wherein said apparatus includes(a) said first cooling means being adapted to cool said gas stream under pressure sufficiently to partially condense it;(b) separating means connected to said first cooling means to receive said partially condensed gas stream and separate it into a vapor stream and at least one liquid stream;(c) said expansion means being connected to said separating means to receive said vapor stream and expand it to said lower pressure, said expansion means being further connected to said first distillation column to supply said expanded vapor stream to said first distillation column at said mid-column feed position;(d) another expansion means connected to said separating means to receive at least a portion of said at least one liquid stream and expand it to said lower pressure, said another expansion means being further connected to said first distillation column to supply said expanded liquid stream to said first distillation column at a lower mid-column feed position below said mid-column feed position; and(e) said liquid withdrawing means connected to said first distillation column to receive a distillation liquid stream from a region of said first distillation column below said mid-column feed position and above said lower mid-column feed position.
  • 10. The apparatus according to claim 8 wherein said apparatus includes(a) another dividing means connected to said first cooling means to receive said cooled stream and dividing it into first and second streams;(b) said expansion means being connected to said another dividing means to receive said second stream and expand it to said lower pressure, said expansion means being further connected to said distillation column to supply said expanded second stream to said first distillation column at said mid-column feed position;(c) another expansion means connected to said first dividing means to receive said first stream and expand it to an intermediate pressure;(d) combining means connected to said another expansion means said heat exchange means to receive said expanded first stream and said cooled bottom liquid stream and form a combined stream;(e) third cooling means connected to said combining means to receive said combined stream and cool it; and(f) further expansion means connected to said third cooling means to receive said cooled combined stream and expand it to said lower pressure, said further expansion means being further connected to said first distillation column to supply said expanded cooled combined stream to said first distillation column at said top feed position.
  • 11. The apparatus according to claim 9 wherein (a) another dividing means connected to said separating means to receive said vapor stream and divide it into first and second streams;(b) said expansion means being connected to said another dividing means to receive said second stream and expand it to said lower pressure, said expanded second stream to said first distillation column at said mid-column feed position;(c) further expansion means connected to said first dividing means to receive said first stream and expand it to an intermediate pressure;(d) combining means connected to said further expansion means and said heat exchange means to receive said expanded first stream and said cooled bottom liquid stream and form a combined stream;(e) third cooling means connected to said combining means to receive said combined stream and cool it; and(f) additional expansion means connected to said third cooling means to receive said cooled combined stream and expand it to said lower pressure, said additional expansion means being further connected to said first distillation column to supply said expanded cooled combined stream to said first distillation column at said top feed position.
  • 12. The improvement according to claim 8 wherein (1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;(2) a separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;(3) said dividing means is adapted to be connected to said separating means to receive to said condensed stream;and(4) said separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.
  • 13. The apparatus according to claim 9 wherein (1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;(2) another separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;(3) said dividing means is adapted to be connected to said another separating means to receive said condensed stream;and(4) said another separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.
  • 14. The apparatus according to claim 10 wherein (1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;(2) a separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;(3) said second dividing means is adapted to be connected to said separating means to receive said condensed stream; and(4) said separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.
  • 15. The apparatus according to claim 11 wherein (1) said second cooling means is adapted to cool said overhead vapor stream sufficiently to partially condense it;(2) another separating means is connected to said second cooling means to receive said partially condensed overhead vapor stream and separate it into a residual vapor stream and said condensed stream;(3) said dividing means is adapted to be connected to said another separating means to receive condensed stream; and(4) said another separating means is connected to said first distillation column to supply said residual vapor stream to said first distillation column at another lower column feed position below said region where said liquid withdrawing means is connected to said first distillation column to withdraw said distillation liquid stream.
  • 16. The apparatus according to claim 9, 11, 13, or 15 wherein a heating means is connected to said second expansion means to receive said expanded liquid stream and heat it,said heating means being further connected to said first distillation column to supply said heated expanded liquid stream to said first distillation column at said lower mid-column feed position.
Parent Case Info

The applicants claim the benefits under Title 35, U.S. Code, Section 119(e) of prior U.S. Provisional Application No. 61/295,119 which was filed on Jan. 14, 2010.

US Referenced Citations (170)
Number Name Date Kind
2880592 Davison et al. Apr 1959 A
2952984 Marshall, Jr. Sep 1960 A
3292380 Bucklin Dec 1966 A
3507127 De Marco Apr 1970 A
3516261 Hoffman Jun 1970 A
3524897 Kniel Aug 1970 A
3656311 Kaiser Apr 1972 A
3675435 Jackson et al. Jul 1972 A
3837172 Markbreiter et al. Sep 1974 A
3902329 King, III et al. Sep 1975 A
3920767 Carter Nov 1975 A
3983711 Solomon Oct 1976 A
4002042 Pryor et al. Jan 1977 A
4004430 Solomon et al. Jan 1977 A
4061481 Campbell et al. Dec 1977 A
4115086 Jordan et al. Sep 1978 A
4132604 Alexion et al. Jan 1979 A
4140504 Campbell et al. Feb 1979 A
4157904 Campbell et al. Jun 1979 A
4171964 Campbell et al. Oct 1979 A
4185978 McGalliard et al. Jan 1980 A
4203741 Bellinger et al. May 1980 A
4251249 Gulsby Feb 1981 A
4278457 Campbell et al. Jul 1981 A
4284423 Eakman et al. Aug 1981 A
4318723 Holmes et al. Mar 1982 A
4322225 Bellinger et al. Mar 1982 A
4356014 Higgins Oct 1982 A
4445917 Chiu May 1984 A
4507133 Khan et al. Mar 1985 A
4519824 Huebel May 1985 A
4525185 Newton Jun 1985 A
4545795 Liu et al. Oct 1985 A
4592766 Kumman et al. Jun 1986 A
4596588 Cook Jun 1986 A
4600421 Kummann Jul 1986 A
4617039 Buck Oct 1986 A
4657571 Gazzi Apr 1987 A
4687499 Aghili Aug 1987 A
4689063 Paradowski et al. Aug 1987 A
4690702 Paradowski et al. Sep 1987 A
4698081 Aghili Oct 1987 A
4705549 Sapper Nov 1987 A
4707170 Ayres et al. Nov 1987 A
4710214 Sharma et al. Dec 1987 A
4711651 Sharma et al. Dec 1987 A
4718927 Bauer et al. Jan 1988 A
4738699 Apffel Apr 1988 A
4746342 DeLong et al. May 1988 A
4755200 Liu et al. Jul 1988 A
4851020 Montgomery, IV Jul 1989 A
4854955 Campbell et al. Aug 1989 A
4869740 Campbell et al. Sep 1989 A
4889545 Campbell et al. Dec 1989 A
4895584 Buck et al. Jan 1990 A
RE33408 Khan et al. Oct 1990 E
4966612 Bauer Oct 1990 A
5114451 Rambo et al. May 1992 A
5275005 Campbell et al. Jan 1994 A
5291736 Paradowski Mar 1994 A
5335504 Durr et al. Aug 1994 A
5363655 Kikkawa et al. Nov 1994 A
5365740 Kikkawa et al. Nov 1994 A
5546764 Mehra Aug 1996 A
5555748 Campbell et al. Sep 1996 A
5566554 Vijayaraghavan et al. Oct 1996 A
5568737 Campbell et al. Oct 1996 A
5600969 Low Feb 1997 A
5615561 Houshmand et al. Apr 1997 A
5651269 Prevost et al. Jul 1997 A
5675054 Manley et al. Oct 1997 A
5685170 Sorensen Nov 1997 A
5755114 Foglietta May 1998 A
5755115 Manley May 1998 A
5771712 Campbell et al. Jun 1998 A
5799507 Wilkinson et al. Sep 1998 A
5881569 Campbell et al. Mar 1999 A
5890377 Foglietta Apr 1999 A
5890378 Rambo et al. Apr 1999 A
5893274 Nagelvoort et al. Apr 1999 A
5970742 Agrawal et al. Oct 1999 A
5983664 Campbell et al. Nov 1999 A
5992175 Yao et al. Nov 1999 A
6014869 Elion et al. Jan 2000 A
6023942 Thomas et al. Feb 2000 A
6053007 Victory et al. Apr 2000 A
6062041 Kikkawa et al. May 2000 A
6116050 Yao et al. Sep 2000 A
6119479 Roberts et al. Sep 2000 A
6125653 Shu et al. Oct 2000 A
6182469 Campbell et al. Feb 2001 B1
6237365 Trebble May 2001 B1
6244070 Lee et al. Jun 2001 B1
6250105 Kimble Jun 2001 B1
6269655 Roberts et al. Aug 2001 B1
6272882 Hodges et al. Aug 2001 B1
6308531 Roberts et al. Oct 2001 B1
6324867 Fanning et al. Dec 2001 B1
6336344 O'Brien Jan 2002 B1
6347532 Agrawal et al. Feb 2002 B1
6361582 Pinnau et al. Mar 2002 B1
6363744 Finn et al. Apr 2002 B2
6367286 Price Apr 2002 B1
6417420 Stewart et al. Jul 2002 B1
6453698 Jain et al. Sep 2002 B2
6516631 Trebble Feb 2003 B1
6526777 Campbell et al. Mar 2003 B1
6550274 Agrawal Apr 2003 B1
6564579 McCartney May 2003 B1
6565626 Baker et al. May 2003 B1
6578379 Paradowski Jun 2003 B2
6604380 Reddick et al. Aug 2003 B1
6694775 Higginbotham et al. Feb 2004 B1
6712880 Foglietta et al. Mar 2004 B2
6742358 Wilkinson et al. Jun 2004 B2
6889523 Wilkinson et al. May 2005 B2
6907752 Schroeder et al. Jun 2005 B2
6915662 Wilkinson et al. Jul 2005 B2
6941771 Reddick et al. Sep 2005 B2
6945075 Wilkinson et al. Sep 2005 B2
7069743 Prim Jul 2006 B2
7155931 Wilkinson et al. Jan 2007 B2
7159417 Foglietta et al. Jan 2007 B2
7165423 Winningham Jan 2007 B2
7191617 Cuellar et al. Mar 2007 B2
7210311 Wilkinson et al. May 2007 B2
7216507 Cuellar et al. May 2007 B2
7219513 Mostafa May 2007 B1
7273542 Duhon et al. Sep 2007 B2
7631516 Cuellar et al. Dec 2009 B2
7714180 Duhon et al. May 2010 B2
8590340 Pitman et al. Nov 2013 B2
20020166336 Wilkinson et al. Nov 2002 A1
20040079107 Wilkinson et al. Apr 2004 A1
20040172967 Patel et al. Sep 2004 A1
20050204774 Foglietta et al. Sep 2005 A1
20050229634 Huebel et al. Oct 2005 A1
20050247078 Wilkinson et al. Nov 2005 A1
20050268649 Wilkinson et al. Dec 2005 A1
20060032269 Cuellar et al. Feb 2006 A1
20060086139 Eaton et al. Apr 2006 A1
20060283207 Pitman et al. Dec 2006 A1
20070231244 Shah et al. Oct 2007 A1
20080000265 Cuellar et al. Jan 2008 A1
20080078205 Cuellar et al. Apr 2008 A1
20080141712 Verma Jun 2008 A1
20080271480 Mak Nov 2008 A1
20080282731 Cuellar et al. Nov 2008 A1
20090100862 Wilkinson et al. Apr 2009 A1
20090107174 Ambari et al. Apr 2009 A1
20090107175 Patel et al. Apr 2009 A1
20090113930 Patel et al. May 2009 A1
20090282865 Martinez et al. Nov 2009 A1
20100236285 Johnke et al. Sep 2010 A1
20100251764 Johnke et al. Oct 2010 A1
20100275647 Johnke et al. Nov 2010 A1
20100287982 Martinez et al. Nov 2010 A1
20100287983 Johnke et al. Nov 2010 A1
20100287984 Johnke et al. Nov 2010 A1
20100326134 Johnke et al. Dec 2010 A1
20110067441 Martinez et al. Mar 2011 A1
20110067442 Martinez et al. Mar 2011 A1
20110067443 Martinez et al. Mar 2011 A1
20110226011 Johnke et al. Sep 2011 A1
20110226012 Johnke et al. Sep 2011 A1
20110226013 Johnke et al. Sep 2011 A1
20110226014 Johnke et al. Sep 2011 A1
20110232328 Johnke et al. Sep 2011 A1
20110296867 Cuellar et al. Dec 2011 A1
20130125582 Martinez et al. May 2013 A1
Foreign Referenced Citations (12)
Number Date Country
0 182 643 May 1986 EP
1 114 808 Jul 2001 EP
2102931 Feb 1983 GB
9923428 May 1999 WO
9937962 Jul 1999 WO
0033006 Jun 2000 WO
0034724 Jun 2000 WO
0188447 Nov 2001 WO
0214763 Feb 2002 WO
2004076946 Sep 2004 WO
2007001669 Jan 2007 WO
2009010558 Jan 2009 WO
Non-Patent Literature Citations (12)
Entry
B.C. Price et al., “LNG Production for Peak Shaving Operations”, Proceedings of the Seventy-eighth Annual Convention of the Gas Processors Association, Nashville, Tennessee, Mar. 1-3, 1999, 8 sheets.
Fig. 16-33, on p. 16-24 of the Engineering Data Book, Twelfth Edition, published by the Gas Processors Suppliers Association 2004.
Finn et al., “LNG Technology for Offshore and Mid-scale Plants”, Proceedings of the Seventy-ninth Annual Convention of the Gas Processors Association, Atlanta, Georgia, Mar. 13-15, 2003, 23 sheets.
Kikkawa et al., “Optimize the Power System of Baseload LNG Plant”, Proceedings of the Eightieth Annual Convention of the Gas Processors Association, San Antonio, Texas, Mar. 12-14, 2001, 23 sheets.
International Search Report issued in International Application No. PCT/US2010/062402 dated Feb. 25, 2011—1 page.
Written Opinion issued in International Application No. PCT/US2010/062402 dated Feb. 25, 2011—10 pages.
Mowrey, E. Ross., “Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber,” Proceedings of the Eighty-First Annual Convention of the Gas Processors Association, Dallas, Texas, Mar. 11-13, 2002—10 pages.
“Dew Point Control Gas Conditioning Units,” SME Products Brochure, Gas Processors Assoc. Conference (Apr. 5, 2009)—2 pages.
“Fuel Gas Conditioning Units for Compressor Engines,” SME Products Brochure, Gas Processors Assoc. Conference (Apr. 5, 2009)—2 pages.
“P&ID Fuel Gas Conditioner,” Drawing No. SMEP-901, Date Drawn: Aug. 29, 2007, SME, available at http://www.sme-llc.com/sme.cfm?a=prd&catID=58&subID=44&prdID=155 (Apr. 24, 2009)—1 page.
“Fuel Gas Conditioner Preliminary Arrangement,” Drawing No. SMP-1007-00, Date Drawn: Nov. 11, 2008, SME, available at http://www.sme-llc.com/sme.cfm?a=prd&catID=58&subID=44&prdID=155 (Apr. 24, 2009)—2 pages.
“Product: Fuel Gas Conditioning Units,” SME Associates, LLC, available at http://www.smellc.com/sme.cfm?a=prd&catID=58&subID=44&prdID=155 (Apr. 24, 2009)—1 page.
Related Publications (1)
Number Date Country
20110167868 A1 Jul 2011 US
Provisional Applications (1)
Number Date Country
61295119 Jan 2010 US