This invention relates to a process for the separation of a gas containing hydrocarbons. The applicants claim the benefits under Title 35, United States Code, Section 119(e) of prior U.S. Provisional Application No. 60/449,772 which was filed on Feb. 25, 2003.
Ethylene, ethane, propylene, propane and/or heavier hydrocarbons can be recovered from a variety of gases, such as natural gas, refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite. Natural gas usually has a major proportion of methane and ethane, i.e., methane and ethane together comprise at least 50 mole percent of the gas. The gas also contains relatively lesser amounts of heavier hydrocarbons such as propane, butanes, pentanes and the like, as well as hydrogen, nitrogen, carbon dioxide and other gases.
The present invention is generally concerned with the recovery of ethylene, ethane, propylene, propane and heavier hydrocarbons from such gas streams. A typical analysis of a gas stream to be processed in accordance with this invention would be, in approximate mole percent, 80.8% methane, 9.4% ethane and other C2 components, 4.7% propane and other C3 components, 1.2% iso-butane, 2.1% normal butane, and 1.1% pentanes plus, with the balance made up of nitrogen and carbon dioxide. Sulfur containing gases are also sometimes present.
The historically cyclic fluctuations in the prices of both natural gas and its natural gas liquid (NGL) constituents have at times reduced the incremental value of ethane, ethylene, propane, propylene, and heavier components as liquid products. This has resulted in a demand for processes that can provide more efficient recoveries of these products, for processes that can provide efficient recoveries with lower capital investment, and for processes that can be easily adapted or adjusted to vary the recovery of a specific component over a broad range. Available processes for separating these materials include those based upon cooling and refrigeration of gas, oil absorption, and refrigerated oil absorption. Additionally, cryogenic processes have become popular because of the availability of economical equipment that produces power while simultaneously expanding and extracting heat from the gas being processed. Depending upon the pressure of the gas source, the richness (ethane, ethylene, and heavier hydrocarbons content) of the gas, and the desired end products, each of these processes or a combination thereof may be employed.
The cryogenic expansion process is now generally preferred for natural gas liquids recovery because it provides maximum simplicity with ease of startup, operating flexibility, good efficiency, safety, and good reliability. U.S. Pat. Nos. 3,292,380; 4,061,481; 4,140,504; 4,157,904; 4,171,964; 4,185,978; 4,251,249; 4,278,457; 4,519,824; 4,617,039; 4,687,499; 4,689,063; 4,690,702; 4,854,955; 4,869,740; 4,889,545; 5,275,005; 5,555,748; 5,568,737; 5,771,712; 5,799,507; 5,881,569; 5,890,378; 5,983,664; 6,182,469; reissue U.S. Pat. No. 33,408; and co-pending application Ser. No. 09/677,220 describe relevant processes (although the description of the present invention in some cases is based on different processing conditions than those described in the cited U.S. patents).
In a typical cryogenic expansion recovery process, a feed gas stream under pressure is cooled by heat exchange with other streams of the process and/or external sources of refrigeration such as a propane compression-refrigeration system. As the gas is cooled, liquids may be condensed and collected in one or more separators as high-pressure liquids containing some of the desired C2+ components. Depending on the richness of the gas and the amount of liquids formed, the high-pressure liquids may be expanded to a lower pressure and fractionated. The vaporization occurring during expansion of the liquids results in further cooling of the stream. Under some conditions, pre-cooling the high pressure liquids prior to the expansion may be desirable in order to further lower the temperature resulting from the expansion. The expanded stream, comprising a mixture of liquid and vapor, is fractionated in a distillation (demethanizer or deethanizer) column. In the column, the expansion cooled stream(s) is (are) distilled to separate residual methane, nitrogen, and other volatile gases as overhead vapor from the desired C2 components, C3 components, and heavier hydrocarbon components as bottom liquid product, or to separate residual methane, C2 components, nitrogen, and other volatile gases as overhead vapor from the desired C3 components and heavier hydrocarbon components as bottom liquid product.
If the feed gas is not totally condensed (typically it is not), the vapor remaining from the partial condensation can be split into two streams. One portion of the vapor is passed through a work expansion machine or engine, or an expansion valve, to a lower pressure at which additional liquids are condensed as a result of further cooling of the stream. The pressure after expansion is essentially the same as the pressure at which the distillation column is operated. The combined vapor-liquid phases resulting from the expansion are supplied as feed to the column.
The remaining portion of the vapor is cooled to substantial condensation by heat exchange with other process streams, e.g., the cold fractionation tower overhead. Some or all of the high-pressure liquid may be combined with this vapor portion prior to cooling. The resulting cooled stream is then expanded through an appropriate expansion device, such as an expansion valve, to the pressure at which the demethanizer is operated. During expansion, a portion of the liquid will vaporize, resulting in cooling of the total stream. The flash expanded stream is then supplied as top feed to the demethanizer. Typically, the vapor portion of the expanded stream and the demethanizer overhead vapor combine in an upper separator section in the fractionation tower as residual methane product gas. Alternatively, the cooled and expanded stream may be supplied to a separator to provide vapor and liquid streams. The vapor is combined with the tower overhead and the liquid is supplied to the column as a top column feed.
In the ideal operation of such a separation process, the residue gas leaving the process will contain substantially all of the methane in the feed gas with essentially none of the heavier hydrocarbon components and the bottoms fraction leaving the demethanizer will contain substantially all of the heavier hydrocarbon components with essentially no methane or more volatile components. In practice, however, this ideal situation is not obtained because the conventional demethanizer is operated largely as a stripping column. The methane product of the process, therefore, typically comprises vapors leaving the top fractionation stage of the column, together with vapors not subjected to any rectification step. Considerable losses of C3 and C4+ components occur because the top liquid feed contains substantial quantities of these components and heavier hydrocarbon components, resulting in corresponding equilibrium quantities of C3 components, C4 components, and heavier hydrocarbon components in the vapors leaving the top fractionation stage of the demethanizer. The loss of these desirable components could be significantly reduced if the rising vapors could be brought into contact with a significant quantity of liquid (reflux) capable of absorbing the C3 components, C4 components, and heavier hydrocarbon components from the vapors.
In recent years, the preferred processes for hydrocarbon separation use an upper absorber section to provide additional rectification of the rising vapors. The source of the reflux stream for the upper rectification section is typically a recycled stream of residue gas supplied under pressure. The recycled residue gas stream is usually cooled to substantial condensation by heat exchange with other process streams, e.g., the cold fractionation tower overhead. The resulting substantially condensed stream is then expanded through an appropriate expansion device, such as an expansion valve, to the pressure at which the demethanizer is operated. During expansion, a portion of the liquid will usually vaporize, resulting in cooling of the total stream. The flash expanded stream is then supplied as top feed to the demethanizer. Typically, the vapor portion of the expanded stream and the demethanizer overhead vapor combine in an upper separator section in the fractionation tower as residual methane product gas. Alternatively, the cooled and expanded stream may be supplied to a separator to provide vapor and liquid streams, so that thereafter the vapor is combined with the tower overhead and the liquid is supplied to the column as a top column feed. Typical process schemes of this type are disclosed in U.S. Pat. Nos. 4,889,545; 5,568,737; and 5,881,569, and in Mowrey, E. Ross, “Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber”, Proceedings of the Eighty-First Annual Convention of the Gas Processors Association, Dallas, Tex., Mar. 11–13, 2002. Unfortunately, these processes require the use of a compressor to provide the motive force for recycling the reflux stream to the demethanizer, adding to both the capital cost and the operating cost of facilities using these processes.
The present invention also employs an upper rectification section (or a separate rectification column in some embodiments). However, the reflux stream for this rectification section is provided by using a side draw of the vapors rising in a lower portion of the tower. Because of the relatively high concentration of C2 components in the vapors lower in the tower, a significant quantity of liquid can be condensed in this side draw stream without elevating its pressure, often using only the refrigeration available in the cold vapor leaving the upper rectification section. This condensed liquid, which is predominantly liquid methane and ethane, can then be used to absorb C3 components, C4 components, and heavier hydrocarbon components from the vapors rising through the upper rectification section and thereby capture these valuable components in the bottom liquid product from the demethanizer.
Heretofore, such a side draw feature has been employed in C3+ recovery systems, as illustrated in the assignee's U.S. Pat. No. 5,799,507. The process and apparatus of U.S. Pat. No. 5,799,507, however, is unsuitable for high ethane recovery. Surprisingly, applicants have found that by combining the side draw feature of the assignee's U.S. Pat. No. 5,799,507 invention with the split vapor feed invention of the assignee's U.S. Pat. No. 4,278,457, C3+ recoveries may be improved without sacrificing C2 component recovery levels or system efficiency.
In accordance with the present invention, it has been found that C3 and C4+ recoveries in excess of 99 percent can be obtained without the need for compression of the reflux stream for the demethanizer with no loss in C2 component recovery. The present invention provides the further advantage of being able to maintain in excess of 99 percent recovery of the C3 and C4+ components as the recovery of C2 components is adjusted from high to low values. In addition, the present invention makes possible essentially 100 percent separation of methane and lighter components from the C2 components and heavier components at reduced energy requirements compared to the prior art while maintaining the same recovery levels. The present invention, although applicable at lower pressures and warmer temperatures, is particularly advantageous when processing feed gases in the range of 400 to 1500 psia [2,758 to 10,342 kPa(a)] or higher under conditions requiring NGL recovery column overhead temperatures of −50° F. [−46° C.] or colder.
For a better understanding of the present invention, reference is made to the following examples and drawings. Referring to the drawings:
In the following explanation of the above figures, tables are provided summarizing flow rates calculated for representative process conditions. In the tables appearing herein, the values for flow rates (in moles per hour) have been rounded to the nearest whole number for convenience. The total stream rates shown in the tables include all non-hydrocarbon components and hence are generally larger than the sum of the stream flow rates for the hydrocarbon components. Temperatures indicated are approximate values rounded to the nearest degree. It should also be noted that the process design calculations performed for the purpose of comparing the processes depicted in the figures are based on the assumption of no heat leak from (or to) the surroundings to (or from) the process. The quality of commercially available insulating materials makes this a very reasonable assumption and one that is typically made by those skilled in the art.
For convenience, process parameters are reported in both the traditional British units and in the units of the Systëme International d'Unitës (SI). The molar flow rates given in the tables may be interpreted as either pound moles per hour or kilogram moles per hour. The energy consumptions reported as horsepower (HP) and/or thousand British Thermal Units per hour (MBTU/Hr) correspond to the stated molar flow rates in pound moles per hour. The energy consumptions reported as kilowatts (kW) correspond to the stated molar flow rates in kilogram moles per hour.
The feed stream 31 is cooled in heat exchanger 10 by heat exchange with cool residue gas at −6° F. [−21° C.] (stream 38b), demethanizer lower side reboiler liquids at 30° F. [−1° C.] (stream 40), and propane refrigerant. Note that in all cases exchanger 10 is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof. (The decision as to whether to use more than one heat exchanger for the indicated cooling services will depend on a number of factors including, but not limited to, inlet gas flow rate, heat exchanger size, stream temperatures, etc.) The cooled stream 31a enters separator 11 at 0° F. [−18° C.] and 955 psia [6,584 kPa(a)] where the vapor (stream 32) is separated from the condensed liquid (stream 33). The separator liquid (stream 33) is expanded to the operating pressure (approximately 445 psia [3,068 kPa(a)]) of fractionation tower 20 by expansion valve 12, cooling stream 33a to −27° F. [−33° C.] before it is supplied to fractionation tower 20 at a lower mid-column feed point.
The separator vapor (stream 32) is further cooled in heat exchanger 13 by heat exchange with cool residue gas at −34° F. [−37° C.] (stream 38a) and demethanizer upper side reboiler liquids at −38° F. [−39° C.] (stream 39). The cooled stream 32a enters separator 14 at −27° F. [−33° C.] and 950 psia [6,550 kPa(a)] where the vapor (stream 34) is separated from the condensed liquid (stream 37). The separator liquid (stream 37) is expanded to the tower operating pressure by expansion valve 19, cooling stream 37a to −61° F. [−52° C.] before it is supplied to fractionation tower 20 at a second lower mid-column feed point.
The vapor (stream 34) from separator 14 is divided into two streams, 35 and 36. Stream 35, containing about 38% of the total vapor, passes through heat exchanger 15 in heat exchange relation with the cold residue gas at −124° F. [−87° C.] (stream 38) where it is cooled to substantial condensation. The resulting substantially condensed stream 35a at −119° F. [−84° C.] is then flash expanded through expansion valve 16 to the operating pressure of fractionation tower 20. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in
The remaining 62% of the vapor from separator 14 (stream 36) enters a work expansion machine 17 in which mechanical energy is extracted from this portion of the high pressure feed. The machine 17 expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream 36a to a temperature of approximately −83° F. [−64° C.]. The typical commercially available expanders are capable of recovering on the order of 80–85% of the work theoretically available in an ideal isentropic expansion. The work recovered is often used to drive a centrifugal compressor (such as item 18) that can be used to re-compress the residue gas (stream 38c), for example. The partially condensed expanded stream 36a is thereafter supplied as feed to fractionation tower 20 at an upper mid-column feed point.
The demethanizer in tower 20 is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. As is often the case in natural gas processing plants, the fractionation tower may consist of two sections. The upper section 20a is a separator wherein the partially vaporized top feed is divided into its respective vapor and liquid portions, and wherein the vapor rising from the lower distillation or demethanizing section 20b is combined with the vapor portion of the top feed to form the cold demethanizer overhead vapor (stream 38) which exits the top of the tower at −124° F. [−87° C.]. The lower, demethanizing section 20b contains the trays and/or packing and provides the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section 20b also includes reboilers (such as reboiler 21 and the side reboilers described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product, stream 41, of methane and lighter components.
The liquid product stream 41 exits the bottom of the tower at 113° F. [45° C.], based on a typical specification of a methane to ethane ratio of 0.025:1 on a molar basis in the bottom product. The residue gas (demethanizer overhead vapor stream 38) passes countercurrently to the incoming feed gas in heat exchanger 15 where it is heated to −34° F. [−37° C.] (stream 38a), in heat exchanger 13 where it is heated to −6° F. [−21° C.] (stream 38b), and in heat exchanger 10 where it is heated to 80° F. [27° C.] (stream 38c). The residue gas is then re-compressed in two stages. The first stage is compressor 18 driven by expansion machine 17. The second stage is compressor 25 driven by a supplemental power source which compresses the residue gas (stream 38d) to sales line pressure. After cooling to 120° F. [49° C.] in discharge cooler 26, the residue gas product (stream 38f) flows to the sales gas pipeline at 1015 psia [6,998 kPa(a)], sufficient to meet line requirements (usually on the order of the inlet pressure).
A summary of stream flow rates and energy consumption for the process illustrated in
In the simulation of the
The feed stream 31 is cooled in heat exchanger 10 by heat exchange with cool residue gas at −7° F. [−21° C.] (stream 38b), flash expanded liquids (stream 33a), and propane refrigerant. The cooled stream 31a enters separator 11 at 0° F. [−18° C.] and 955 psia [6,584 kPa(a)] where the vapor (stream 32) is separated from the condensed liquid (stream 33). The separator liquid (stream 33) is expanded to slightly above the operating pressure (approximately 444 psia [3,061 kPa(a)]) of fractionation tower 20 by expansion valve 12, cooling stream 33a to −27° F. [−33° C.] before it enters heat exchanger 10 and is heated as it provides cooling of the incoming feed gas as described earlier. The expanded liquid stream is heated to 75° F. [24° C.], partially vaporizing stream 33b before it is supplied to fractionation tower 20 at a lower mid-column feed point.
The separator vapor (stream 32) is further cooled in heat exchanger 13 by heat exchange with cool residue gas at −30° F. [−34° C.] (stream 38a) and flash expanded liquids (stream 37a). The cooled stream 32a enters separator 14 at −14° F. [−25° C.] and 950 psia [6,550 kPa(a)] where the vapor (stream 34) is separated from the condensed liquid (stream 37). The separator liquid (stream 37) is expanded to slightly above the operating pressure of fractionation tower 20 by expansion valve 19, cooling stream 37a to −44° F. [−42° C.] before it enters heat exchanger 13 and is heated as it provides cooling of stream 32 as described earlier. The expanded liquid stream is heated to −5° F. [−21° C.], partially vaporizing stream 37b before it is supplied to fractionation tower 20 at a second lower mid-column feed point.
The vapor (stream 34) from separator 14 is divided into two streams, 35 and 36. Stream 35, containing about 32% of the total vapor, passes through heat exchanger 15 in heat exchange relation with the cold residue gas at −101° F. [−74° C.] (stream 38) where it is cooled to substantial condensation. The resulting substantially condensed stream 35a at −96° F. [−71° C.] is then flash expanded through expansion valve 16 to the operating pressure of fractionation tower 20. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in
The remaining 68% of the vapor from separator 14 (stream 36) enters a work expansion machine 17 in which mechanical energy is extracted from this portion of the high pressure feed. The machine 17 expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream 36a to a temperature of approximately −70° F. [−57° C.]. The partially condensed expanded stream 36a is thereafter supplied as feed to fractionation tower 20 an upper mid-column feed point.
The liquid product stream 41 exits the bottom of the tower at 140° F. [60° C.]. The residue gas (demethanizer overhead vapor stream 38) passes countercurrently to the incoming feed gas in heat exchanger 15 where it is heated to −30° F. [−34° C.] (stream 38a), in heat exchanger 13 where it is heated to −7° F. [−21° C.] (stream 38b), and in heat exchanger 10 where it is heated to 80° F. [27° C.] (stream 38c). The residue gas is then re-compressed in two stages, compressor 18 driven by expansion machine 17 and compressor 25 driven by a supplemental power source. After stream 38e is cooled to 120° F. [49° C.] in discharge cooler 26, the residue gas product (stream 38f) flows to the sales gas pipeline at 1015 psia [6,998 kPa(a)].
A summary of stream flow rates and energy consumption for the process illustrated in
In the simulation of the
The separator vapor (stream 32) is further cooled in heat exchanger 13 by heat exchange with cool residue gas at −36° F. [−38° C.] (stream 45a) and demethanizer upper side reboiler liquids at −38° F. [−39° C.] (stream 39). The cooled stream 32a enters separator 14 at −29° F. [−34° C.] and 950 psia [6,550 kPa(a)] where the vapor (stream 34) is separated from the condensed liquid (stream 37). The separator liquid (stream 37) is expanded to the tower operating pressure by expansion valve 19, cooling stream 37a to −64° F. [−53° C.] before it is supplied to fractionation tower 20 at a second lower mid-column feed point.
The vapor (stream 34) from separator 14 is divided into two streams, 35 and 36. Stream 35, containing about 37% of the total vapor, passes through heat exchanger 15 in heat exchange relation with the cold residue gas at −120° F. [−84° C.] (stream 45) where it is cooled to substantial condensation. The resulting substantially condensed stream 35a at −115° F. [−82° C.] is then flash expanded through expansion valve 16 to the operating pressure of fractionation tower 20. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in
The remaining 63% of the vapor from separator 14 (stream 36) enters a work expansion machine 17 in which mechanical energy is extracted from this portion of the high pressure feed. The machine 17 expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream 36a to a temperature of approximately −84° F. [−65° C.]. The partially condensed expanded stream 36a is thereafter supplied as feed to fractionation tower 20 a lower mid-column feed point.
The demethanizer in tower 20 is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing. The demethanizer tower consists of two sections: an upper absorbing (rectification) section 20a that contains the trays and/or packing to provide the necessary contact between the vapor portion of the expanded streams 35b and 36a rising upward and cold liquid falling downward to condense and absorb the ethane, propane, and heavier components; and a lower, stripping section 20b that contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward. The demethanizing section 20b also includes reboilers (such as reboiler 21 and the side reboilers described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product, stream 41, of methane and lighter components. Stream 36a enters demethanizer 20 at an intermediate feed position located in the lower region of absorbing section 20a of demethanizer 20. The liquid portion of the expanded stream commingles with liquids falling downward from the absorbing section 20a and the combined liquid continues downward into the stripping section 20b of demethanizer 20. The vapor portion of the expanded stream rises upward through absorbing section 20a and is contacted with cold liquid falling downward to condense and absorb the ethane, propane, and heavier components.
A portion of the distillation vapor (stream 42) is withdrawn from the upper region of stripping section 20b. This stream is then cooled from −91° F. [−68° C.] to −122° F. [−86° C.] and partially condensed (stream 42a) in heat exchanger 22 by heat exchange with the cold demethanizer overhead stream 38 exiting the top of demethanizer 20 at −127° F. [−88° C.]. The cold demethanizer overhead stream is warmed slightly to −120° F. [−84° C.] (stream 38a) as it cools and condenses at least a portion of stream 42.
The operating pressure in reflux separator 23 (447 psia [3,079 kPa(a)]) is maintained slightly below the operating pressure of demethanizer 20. This provides the driving force which causes distillation vapor stream 42 to flow through heat exchanger 22 and thence into the reflux separator 23 wherein the condensed liquid (stream 44) is separated from any uncondensed vapor (stream 43). Stream 43 then combines with the warmed demethanizer overhead stream 38a from heat exchanger 22 to form cold residue gas stream 45 at −120° F. [−84° C.].
The liquid stream 44 from reflux separator 23 is pumped by pump 24 to a pressure slightly above the operating pressure of demethanizer 20, and stream 44a is then supplied as cold top column feed (reflux) to demethanizer 20. This cold liquid reflux absorbs and condenses the propane and heavier components rising in the upper rectification region of absorbing section 20a of demethanizer 20.
In stripping section 20b of demethanizer 20; the feed streams are stripped of their methane and lighter components. The resulting liquid product (stream 41) exits the bottom of tower 20 at 114° F. [45° C.]. The distillation vapor stream forming the tower overhead (stream 38) is warmed in heat exchanger 22 as it provides cooling to distillation stream 42 as described previously, then combines with stream 43 to form the cold residue gas stream 45. The residue gas passes countercurrently to the incoming feed gas in heat exchanger 15 where it is heated to −36° F. [−38° C.] (stream 45a), in heat exchanger 13 where it is heated to −5° F. [−20° C.] (stream 45b), and in heat exchanger 10 where it is heated to 80° F. [27° C.] (stream 45c) as it provides cooling as previously described. The residue gas is then re-compressed in two stages, compressor 18 driven by expansion machine 17 and compressor 25 driven by a supplemental power source. After stream 45e is cooled to 120° F. [49° C.] in discharge cooler 26, the residue gas product (stream 45f) flows to the sales gas pipeline at 1015 psia [6,998 kPa(a)].
A summary of stream flow rates and energy consumption for the process illustrated in
A comparison of Tables I and III shows that, compared to the prior art, the present invention improves ethane recovery from 84.21% to 85.08%, propane recovery from 98.58% to 99.20%, and butanes+ recovery from 99.88% to 99.98%. Comparison of Tables I and III further shows that the improvement in yields was achieved using essentially the same horsepower and utility requirements.
The improvement in recoveries provided by the present invention is due to the supplemental rectification provided by reflux stream 44a, which reduces the amount of propane and C4+ components contained in the inlet feed gas that is lost to the residue gas. Although the expanded substantially condensed feed stream 35b supplied to absorbing section 20a of demethanizer 20 provides bulk recovery of the ethane, propane, and heavier hydrocarbon components contained in expanded feed 36a and the vapors rising from stripping section 20b, it cannot capture all of the propane and heavier hydrocarbon components due to equilibrium effects because stream 35b itself contains propane and heavier hydrocarbon components. However, reflux stream 44a of the present invention is predominantly liquid methane and ethane and contains very little propane and heavier hydrocarbon components, so that only a small quantity of reflux to the upper rectification section in absorbing section 20a is sufficient to capture nearly all of the propane and heavier hydrocarbon components. As a result, nearly 100% of the propane and substantially all of the heavier hydrocarbon components are recovered in liquid product 41 leaving the bottom of demethanizer 20. Due to the bulk liquid recovery provided by expanded substantially condensed feed stream 35b, the quantity of reflux (stream 44a) needed is small enough that the cold demethanizer overhead vapor (stream 38) can provide the refrigeration to generate this reflux without significantly impacting the cooling of feed stream 35 in heat exchanger 15.
In those cases where the C2 component recovery level in the liquid product must be reduced (as in the
In the simulation of the
The feed stream 31 is cooled in heat exchanger 10 by heat exchange with cool residue gas at −5° F. [−21° C.] (stream 45b), flash expanded liquids (stream 33a), and propane refrigerant. The cooled stream 31a enters separator 11 at 0° F. [−18° C.] and 955 psia [6,584 kPa(a)] where the vapor (stream 32) is separated from the condensed liquid (stream 33). The separator liquid (stream 33) is expanded to slightly above the operating pressure (approximately 450 psia [3,103 kPa(a)]) of fractionation tower 20 by expansion valve 12, cooling stream 33a to −26° F. [−32° C.] before it enters heat exchanger 10 and is heated as it provides cooling of the incoming feed gas as described earlier. The expanded liquid stream is heated to 75° F. [24° C.], partially vaporizing stream 33b before it is supplied to fractionation tower 20 at a lower mid-column feed point.
The separator vapor (stream 32) is further cooled in heat exchanger 13 by heat exchange with cool residue gas at −66° F. [−54° C.] (stream 45a) and flash expanded liquids (stream 37a). The cooled stream 32a enters separator 14 at −38° F. [−39° C.] and 950 psia [6,550 kPa(a)] where the vapor (stream 34) is separated from the condensed liquid (stream 37). The separator liquid (stream 37) is expanded to slightly above the operating pressure of fractionation tower 20 by expansion valve 19, cooling stream 37a to −75° F. [−59° C.] before it enters heat exchanger 13 and is heated as it provides cooling of stream 32 as described earlier. The expanded liquid stream is heated to −5° F. [−21° C.], partially vaporizing stream 37b before it is supplied to fractionation tower 20 at a second lower mid-column feed point.
The vapor (stream 34) from separator 14 is divided into two streams, 35 and 36. Stream 35, containing about 15% of the total vapor, passes through heat exchanger 15 in heat exchange relation with the cold residue gas at −82° F. [−63° C.] (stream 45) where it is cooled to substantial condensation. The resulting substantially condensed stream 35a at −77° F. [−61° C.] is then flash expanded through expansion valve 16 to the operating pressure of fractionation tower 20. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in
The remaining 85% of the vapor from separator 14 (stream 36) enters a work expansion machine 17 in which mechanical energy is extracted from this portion of the high pressure feed. The machine 17 expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream 36a to a temperature of approximately −93° F. [−69° C.]. The partially condensed expanded stream 36a is thereafter supplied as feed to fractionation tower 20 a lower mid-column feed point.
A portion of the distillation vapor (stream 42) is withdrawn from the upper region of the stripping section in fractionation tower 20. This stream is then cooled from −65° F. [−54° C.] to −77° F. [−60° C.] and partially condensed (stream 42a) in heat exchanger 22 by heat exchange with the cold demethanizer overhead stream 38 exiting the top of demethanizer 20 at −108° F. [−78° C.] and demethanizer liquid stream 49 at −95° F. [−70° C.] withdrawn from the lower region of the absorbing section in fractionation tower 20. The cold demethanizer overhead stream is warmed slightly to −103° F. [−75° C.] (stream 38a) and the demethanizer liquid stream is heated to −79° F. [−62° C.] (stream 49a) as they cool and condense at least a portion of stream 42. The heated and partially vaporized stream 49a is returned to the middle region of the stripping section in demethanizer 20.
The operating pressure in reflux separator 23 (447 psia [3,079 kPa(a)]) is maintained slightly below the operating pressure of demethanizer 20. This pressure differential allows distillation vapor stream 42 to flow through heat exchanger 22 and thence into the reflux separator 23 wherein the condensed liquid (stream 44) is separated from any uncondensed vapor (stream 43). Stream 43 then combines with the warmed demethanizer overhead stream 38a from heat exchanger 22 to form cold residue gas stream 45 at −82° F. [−63° C.].
The liquid stream 44 from reflux separator 23 is pumped by pump 24 to a pressure slightly above the operating pressure of demethanizer 20. The pumped stream 44a is then divided into at least two portions, streams 52 and 53. One portion, stream 52 containing about 50% of the total, is supplied as cold top column feed (reflux) to the absorbing section in demethanizer 20. This cold liquid reflux absorbs and condenses the propane and heavier components rising in the upper rectification region of the absorbing section of demethanizer 20. The other portion, stream 53, is supplied to demethanizer 20 at a mid-column feed position located in the upper region of the stripping section, in substantially the same region where distillation vapor stream 42 is withdrawn, to provide partial rectification of stream 42.
The liquid product stream 41 exits the bottom of the tower at 142° F. [61° C.]. The distillation vapor stream forming the tower overhead (stream 38) is warmed in heat exchanger 22 as it provides cooling to distillation stream 42 as described previously, then combines with stream 43 to form the cold residue gas stream 45. The residue gas passes countercurrently to the incoming feed gas in heat exchanger 15 where it is heated to −66° F. [−54° C.] (stream 45a), in heat exchanger 13 where it is heated to −5° F. [−21° C.] (stream 45b), and in heat exchanger 10 where it is heated to 80° F. [27° C.] (stream 45c) as it provides cooling as previously described. The residue gas is then re-compressed in two stages, compressor 18 driven by expansion machine 17 and compressor 25 driven by a supplemental power source. After stream 45e is cooled to 120° F. [49° C.] in discharge cooler 26, the residue gas product (stream 45f) flows to the sales gas pipeline at 1015 psia [6,998 kPa(a)].
A summary of stream flow rates and energy consumption for the process illustrated in
A comparison of Tables II and IV shows that, compared to the prior art, the present invention improves propane recovery from 96.51% to 99.78% and butanes+ recovery from 99.68% to 100.00%. Comparison of Tables II and IV further shows that the improvement in yields was achieved using essentially the same horsepower and utility requirements.
Similar to the
In accordance with this invention, it is generally advantageous to design the absorbing (rectification) section of the demethanizer to contain multiple theoretical separation stages. However, the benefits of the present invention can be achieved with as few as one theoretical stage, and it is believed that even the equivalent of a fractional theoretical stage may allow achieving these benefits. For instance, all or a part of the pumped condensed liquid (stream 44a) leaving reflux separator 23 and all or a part of the expanded substantially condensed stream 35b from expansion valve 16 can be combined (such as in the piping joining the expansion valve to the demethanizer) and if thoroughly intermingled, the vapors and liquids will mix together and separate in accordance with the relative volatilities of the various components of the total combined streams. Such commingling of the two streams shall be considered for the purposes of this invention as constituting an absorbing section.
Some circumstances may favor mixing the remaining vapor portion of distillation stream 42a with the fractionation column overhead (stream 38), then supplying the mixed stream to heat exchanger 22 to provide cooling of distillation stream 42. This is shown in
As described earlier, the distillation vapor stream 42 is partially condensed and the resulting condensate used to absorb valuable C3 components and heavier components from the vapors rising through absorbing section 20a of demethanizer 20. However, the present invention is not limited to this embodiment. It may be advantageous, for instance, to treat only a portion of these vapors in this manner, or to use only a portion of the condensate as an absorbent, in cases where other design considerations indicate portions of the vapors or the condensate should bypass absorbing section 20a of demethanizer 20. Some circumstances may favor total condensation, rather than partial condensation, of distillation stream 42 in heat exchanger 22. Other circumstances may favor that distillation stream 42 be a total vapor side draw from fractionation column 20 rather than a partial vapor side draw. It should also be noted that, depending on the composition of the feed gas stream, it may be advantageous to use external refrigeration to provide partial cooling of distillation vapor stream 42 in heat exchanger 22.
Feed gas conditions, plant size, available equipment, or other factors may indicate that elimination of work expansion machine 17, or replacement with an alternate expansion device (such as an expansion valve), is feasible. Although individual stream expansion is depicted in particular expansion devices, alternative expansion means may be employed where appropriate. For example, conditions may warrant work expansion of the substantially condensed portion of the feed stream (stream 35a).
In the practice of the present invention, there will necessarily be a slight pressure difference between demethanizer 20 and reflux separator 23 which must be taken into account. If the distillation vapor stream 42 passes through heat exchanger 22 and into reflux separator 23 without any boost in pressure, the reflux separator shall necessarily assume an operating pressure slightly below the operating pressure of demethanizer 20. In this case, the liquid stream withdrawn from the reflux separator can be pumped to its feed position(s) in the demethanizer. An alternative is to provide a booster blower for distillation vapor stream 42 to raise the operating pressure in heat exchanger 22 and reflux separator 23 sufficiently so that the liquid stream 44 can be supplied to demethanizer 20 without pumping.
In those circumstances when the fractionation column is constructed as two vessels, it may be desirable to operate absorber column 27 at higher pressure than stripper column 20 as shown in
When the inlet gas is leaner, separator 11 in
The high pressure liquid (stream 37 in
In accordance with this invention, the use of external refrigeration to supplement the cooling available to the inlet gas from other process streams may be employed, particularly in the case of a rich inlet gas. The use and distribution of separator liquids and demethanizer side draw liquids for process heat exchange, and the particular arrangement of heat exchangers for inlet gas cooling must be evaluated for each particular application, as well as the choice of process streams for specific heat exchange services.
Some circumstances may favor using a portion of the cold distillation liquid leaving absorbing section 20a for heat exchange, such as stream 49 in
In accordance with this invention, the splitting of the vapor feed may be accomplished in several ways. In the processes of
It will also be recognized that the relative amount of feed found in each branch of the split vapor feed will depend on several factors, including gas pressure, feed gas composition, the amount of heat which can economically be extracted from the feed, and the quantity of horsepower available. More feed to the top of the column may increase recovery while decreasing power recovered from the expander thereby increasing the recompression horsepower requirements. Increasing feed lower in the column reduces the horsepower consumption but may also reduce product recovery. The relative locations of the mid-column feeds may vary depending on inlet composition or other factors such as desired recovery levels and amount of liquid formed during inlet gas cooling. Moreover, two or more of the feed streams, or portions thereof, may be combined depending on the relative temperatures and quantities of individual streams, and the combined stream then fed to a mid-column feed position.
The present invention provides improved recovery of C3 components and heavier hydrocarbon components per amount of utility consumption required to operate the process. An improvement in utility consumption required for operating the demethanizer process may appear in the form of reduced power requirements for compression or re-compression, reduced power requirements for external refrigeration, reduced energy requirements for tower reboilers, or a combination thereof.
While there have been described what are believed to be preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto, e.g. to adapt the invention to various conditions, types of feed, or other requirements without departing from the spirit of the present invention as defined by the following claims.
This application is a continuation of International Patent Application No. PCT/US2004/004206 which claims priority to U.S. Provisional Patent Application No. 60/449,772.
Number | Name | Date | Kind |
---|---|---|---|
2952984 | Marshall | Sep 1960 | A |
3292380 | Bucklin | Dec 1966 | A |
3837172 | Markbreiter et al. | Sep 1974 | A |
4061481 | Campbell et al. | Dec 1977 | A |
4140504 | Campbell et al. | Feb 1979 | A |
4157904 | Campbell et al. | Jun 1979 | A |
4171964 | Campbell et al. | Oct 1979 | A |
4185978 | McGalliard et al. | Jan 1980 | A |
4251249 | Gulsby | Feb 1981 | A |
4278457 | Campbell et al. | Jul 1981 | A |
4445917 | Chiu | May 1984 | A |
4519824 | Huebel | May 1985 | A |
4525185 | Newton | Jun 1985 | A |
4545795 | Liu et al. | Oct 1985 | A |
4600421 | Kummann | Jul 1986 | A |
4617039 | Buck | Oct 1986 | A |
4687499 | Aghili | Aug 1987 | A |
4689063 | Paradowski et al. | Aug 1987 | A |
4690702 | Paradowski et al. | Sep 1987 | A |
4707170 | Ayres et al. | Nov 1987 | A |
4710214 | Sharma et al. | Dec 1987 | A |
4755200 | Liu et al. | Jul 1988 | A |
4851020 | Montgomery, IV | Jul 1989 | A |
4854955 | Campbell et al. | Aug 1989 | A |
4869740 | Campbell et al. | Sep 1989 | A |
4889545 | Campbell et al. | Dec 1989 | A |
4895584 | Buck et al. | Jan 1990 | A |
RE33408 | Khan | Oct 1990 | E |
5114451 | Rambo et al. | May 1992 | A |
5275005 | Campbell et al. | Jan 1994 | A |
5291736 | Paradowski | Mar 1994 | A |
5363655 | Kikkawa et al. | Nov 1994 | A |
5365740 | Kikkawa et al. | Nov 1994 | A |
5555748 | Campbell et al. | Sep 1996 | A |
5566554 | Vijayaraghavan et al. | Oct 1996 | A |
5568737 | Campbell et al. | Oct 1996 | A |
5600969 | Low | Feb 1997 | A |
5615561 | Houshmand et al. | Apr 1997 | A |
5651269 | Prevost et al. | Jul 1997 | A |
5755114 | Foglietta | May 1998 | A |
5755115 | Manley | May 1998 | A |
5771712 | Campbell et al. | Jun 1998 | A |
5799507 | Wilkinson et al. | Sep 1998 | A |
5881569 | Campbell et al. | Mar 1999 | A |
5890378 | Rambo et al. | Apr 1999 | A |
5893274 | Nagelvoort et al. | Apr 1999 | A |
5983664 | Campbell et al. | Nov 1999 | A |
6014869 | Elion et al. | Jan 2000 | A |
6023942 | Thomas et al. | Feb 2000 | A |
6053007 | Victory et al. | Apr 2000 | A |
6062041 | Kikkawa et al. | May 2000 | A |
6116050 | Yao et al. | Sep 2000 | A |
6119479 | Roberts et al. | Sep 2000 | A |
6125653 | Shu et al. | Oct 2000 | A |
6182469 | Campbell et al. | Feb 2001 | B1 |
6250105 | Kimble | Jun 2001 | B1 |
6269655 | Roberts et al. | Aug 2001 | B1 |
6272882 | Hodges et al. | Aug 2001 | B1 |
6308531 | Roberts et al. | Oct 2001 | B1 |
6324867 | Fanning et al. | Dec 2001 | B1 |
6336344 | O'Brien | Jan 2002 | B1 |
6347532 | Agrawal et al. | Feb 2002 | B1 |
6363744 | Finn et al. | Apr 2002 | B2 |
6367286 | Price | Apr 2002 | B1 |
6526777 | Campbell et al. | Mar 2003 | B1 |
6712880 | Foglietta et al. | Mar 2004 | B2 |
6742358 | Wilkinson et al. | Jun 2004 | B2 |
20020166336 | Wilkinson et al. | Nov 2002 | A1 |
20030005722 | Wilkinson et al. | Jan 2003 | A1 |
20030158458 | Prim | Aug 2003 | A1 |
20040079107 | Wilkinson et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
0188447 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060032269 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
60449772 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2004/004206 | Feb 2004 | US |
Child | 11201358 | US |