The invention is directed toward hydroclones and systems for separating constituents of liquid mixtures.
Various techniques have been utilized to separate suspended particles from liquids including coagulation, flocculation, sedimentation, filtration and cyclonic separation. For example, in a typical hydroclone embodiment, pressurized feed liquid is introduced into a conically shaped chamber under conditions that create a vortex within the chamber. Feed liquid is introduced near the top of a conical chamber and an effluent stream is discharged near the bottom. Centrifugal forces associated with the vortex urge denser particles towards the periphery of the chamber. As a result, liquid located near the center of the vortex has a lower concentration of particles than that at the periphery. This “cleaner” liquid can then be withdrawn from a central region of the hydroclone. Examples of hydroclones are described in: U.S. Pat. No. 3,061,098, U.S. Pat. No. 3,529,544, U.S. Pat. No. 4,414,112, U.S. Pat. No. 5,104,520, U.S. Pat. No. 5,407,584 and U.S. Pat. No. 5,478,484. Separation efficiency can be improved by including a filter within the chamber such that a portion of the liquid moving to the center of the chamber passes through the filter. In such embodiments, cyclonic separation is combined with cross-flow filtration. Examples of such embodiments are described in: U.S. Pat. No. 7,632,416, U.S. Pat. No. 7,896,169, U.S. Pat. No. 8,201,697 and US2012/0010063.
Size and separation efficiency are limiting factors for any given separation system. For example, while flocculation and sedimentation techniques are relatively energy efficient, they typically require settling ponds and long separation times. Hydroclones offer a smaller footprint, but have higher energy demand and are less effective at removing small particulate matter. Cross-flow filtration systems are small and produce high quality separations but are prone to fouling and are energy intensive. New systems are sought which offer an improved balance of attributes including overall size, separation efficiency and energy efficiency.
The invention includes multiple embodiments of hydroclones, hydroclone systems and methods for their corresponding use. In one embodiment, the invention includes a hydroclone (10) including: a tank (12) comprising an inlet (14), an effluent outlet (18), a process fluid outlet (20) and an inner peripheral wall (22) enclosing: a vortex chamber (24) in fluid communication with the inlet (14), a process fluid chamber (32) in fluid communication with the process fluid outlet (20), an effluent separation chamber (30) located between the vortex chamber (24) and process fluid chamber (32) and including an outer circumferential surface (23), a vortex flow barrier (34) located between the vortex chamber (24) and the effluent separation chamber (30), the vortex flow barrier (34) providing at least one opening (42) near the outer circumferential surface (23) of the of the effluent separation chamber (30) which is adapted to allow liquid from the vortex chamber (24) to pass into the effluent separation chamber (30) near the outer circumferential surface (23); an effluent barrier (36) located between the effluent separation chamber (30) and the process fluid chamber (32) including at least one opening (42′) near the outer circumferential surface (23) which is adapted to allow liquid from the effluent separation chamber (30) to pass into the process fluid chamber (32) near the outer circumferential surface (23); and an effluent opening (38) centrally located within the effluent separation chamber (30) in fluid communication with the effluent outlet (18); wherein the effluent separation chamber (30) has a median distance (80) between the vortex flow barrier (34) and effluent barrier (36) which is adjustable.
In another embodiment, the invention includes a hydroclone system including: a tank (12) having an inlet (14), an effluent outlet (18), a process fluid outlet (20) and an inner peripheral wall (22) enclosing: a vortex chamber (24) in fluid communication with the inlet (14), a process fluid chamber (32) in fluid communication with the process fluid outlet (20), an effluent separation chamber (30) located between the vortex chamber (24) and process fluid chamber (32) and including an outer circumferential surface (23), a vortex flow barrier (34) located between the vortex chamber (24) and the effluent separation chamber (30), the vortex flow barrier (34) providing at least one opening (42) near the outer circumferential surface (23) of the of the effluent separation chamber (30) which is adapted to allow liquid from the vortex chamber (24) to pass into the effluent separation chamber (30) near the outer circumferential surface (23); an effluent barrier (36) located between the effluent separation chamber (30) and the process fluid chamber (32) including at least one opening (42′) near the outer circumferential surface (23) which is adapted to allow liquid from the effluent separation chamber (30) to pass into the process fluid chamber (32) near the outer circumferential surface (23); and an effluent opening (38) centrally located within the effluent separation chamber (30) in fluid communication with the effluent outlet (18); a fluid treatment pathway (28) that extends from the tank inlet (14) and successively through the vortex chamber (24), effluent separation chamber (30) and process fluid chamber (32) and exits the tank (12) by way of the process fluid outlet (18); a recirculation loop (A) comprising the fluid treatment pathway (28) and extending from the process fluid outlet (18) to the inlet (14); and a recirculation pump (Z) located within the recirculation loop (A) that is adapted for moving liquid through the recirculation loop (A).
Many additional embodiments are described.
Various aspects of the invention may be better understood by reference to the following description taken in conjunction with the accompanying drawings wherein like numerals have been used throughout the various views to designate like parts. The depictions are illustrative and are not intended to be to scale or otherwise limit the invention.
The present invention includes a hydroclone adapted for separating constituents of liquid mixtures. Applicable liquid mixtures include liquid-liquid mixtures, liquid-solid mixtures and combinations. Examples include the separation of solid particles from liquid and the separation of emulsified mixtures including liquids of differing densities (e.g. oil and water). Specific applications include the treatment of pulp effluent generated by paper mills, process water generated by oil and gas recovery, bilge water, and municipal and industrial waste water.
An embodiment of the invention is illustrated in
The vortex chamber (24) is in fluid communication with the inlet (14). During operation, pressurized liquid mixture enters the tank (12) by way of inlet (14) and creates a vortex about an optional central member (15) positioned concentric with the central axis χ within the vortex chamber (24). As illustrated in the figures, the central member (15) may vary in circumference and in some embodiments, may comprise a filter assembly (as will be described in connection with
As shown in
The effluent separation chamber (30) is located below and in fluid communication with the vortex chamber (24). The effluent separation chamber (30) has an outer circumferential surface (23) near the inner peripheral wall (22) of the tank (12). In operation, the effluent separation chamber (30) receives liquid from the vortex chamber (24), and the majority of liquid is caused to enter and exit the effluent separation chamber (30) at locations near its outer circumferential surface (23). In the embodiment of
The process fluid chamber (32) is shown located below and in fluid communication with the effluent separation chamber (30). The process fluid chamber (32) is also in fluid communication with the process fluid outlet (20) by which process liquid may exit the tank (12).
A vortex flow barrier (34) is located between the vortex and effluent separation chambers (24, 30). The vortex flow barrier (34) is designed to maintain vortex fluid flow in the vortex chamber (24), disrupt the vortex as fluid flows from the vortex chamber (24) into the effluent separation chamber (30) and reduce the rotational fluid flow within the effluent separation chamber (30). The vortex flow barrier (24) directs fluid flow between the vortex and effluent separation (24, 30) chambers to locations adjacent to the outer circumferential surface (23) of the effluent separation chamber (30).
The vortex flow barrier (34) includes an outer periphery (40) that extends to locations adjacent to (e.g. within 50 mm, 25 mm or even 10 mm) or in contact with the outer circumferential surface (23) of the effluent separation chamber (30). The vortex flow barrier (34) provides at least one opening (42) near the outer circumferential surface (23) of the effluent separation chamber (24) that allows rotating fluid from the vortex chamber (24) to enter the effluent separation chamber (30). In the embodiment of
The vortex flow barrier (34) is designed to control the flow of liquid through the chambers of the tank (12) with a majority (e.g. preferably at least 75%, at least 80%, and in some embodiments all) of volumetric flow passing into the effluent separation chamber (30) being preferentially directed to locations near (e.g. within at least 50 mm, 25 mm or even 10 mm) its outer circumferential surface (23). With that said, a minority (e.g. less than 50% and more preferably less than 25% and still more preferably less than 10%) of the fluid flow may be directed to alternative locations including the center location. While the illustrated embodiments in
An effluent barrier (36) is located between the effluent separation chamber (30) and the process fluid chamber (32). The effluent barrier (36) provides at least one opening (42′) near the outer circumferential surface (23) of the effluent separation chamber (30) that allows a majority of liquid entering the effluent separation chamber (30) to pass into the process fluid chamber (32). As described with respect to the vortex flow barrier (34), the opening (42′) may be an annular region formed between the effluent barrier (36) and the outer circumferential surface (23) of the effluent separation chamber (30). The selection of a preferred configuration of the effluent barrier (36) will depend upon the operating conditions and composition of the feed mixture. However, a variety of representative embodiments for the effluent barrier (36) are illustrated in
The vortex flow barrier (34) and effluent barrier (36) include respective upper and lower surfaces (35, 37) that define a median (vertical) distance (80) of the effluent separation chamber (30). A median diameter (82) of the effluent separation chamber (30) can also be determined from the distance between opposite points on the outer circumferential surface (23). A preferred median distance (80) is between 3 cm and 50 cm, more preferably between 6 cm and 30 cm. A preferred median diameter (82) is between 10 cm and 60 cm, more preferably between 20 cm and 50 cm. In a preferred embodiment, the median distance (80) is adjustable. For example, the location of vortex flow and effluent barriers (34, 36) along the central axis χ may be set (or changed) for a given application, depending upon various operating parameters, e.g. composition of the liquid feed mixture, operating pressures, recycle rates, desired permeate quality, etc. This feature of adjustability may be achieved using a variety of means, e.g. by replacing barriers (34, 36) with barriers of a different dimension, by fitting the barriers (34, 36) with adjustable set screws, etc. In one embodiment, one or both barriers (34, 36) are equipped with springs, elastomers, or other deflectable means which allow movement along the central axis χ when subject to a predetermined load. In another embodiment, the median distance (80) between the vortex flow barrier (34) and the effluent barrier (36) is adjustable during operation.
Interactions of the liquid mixture with the vortex flow barrier (34) and the effluent barrier (36) facilitate conversion of rotational velocity to circulating radial flow paths that encroach upon the central region of the effluent separation chamber (30). These flow paths result in a fluid velocity directing denser effluent (e.g. particulate matter) toward the effluent opening (38). In a preferred embodiment, the ratio of the median distance (80) to the median diameter (82) of the effluent separation chamber (30) is between 0.1 and 0.8 and more preferably between 0.3 and 0.5. Depending upon the nature of the liquid mixture, smaller ratios may lack the preferred radial flow to encroach on the central region and larger ratios may generate asymmetric circulations.
The hydroclone (10) may include a sensor (84) for detecting and monitoring changes in the nature of the liquid passing through various locations of the hydroclone (10). Information collected by the sensor may be used to optimize the median distance (80) or other operating conditions, e.g. flow rates, recycle rates, etc. The sensor (84) may be located within the tank (12) or ports and may be used to evaluate liquid from a specific region (e.g. a region below the effluent opening (38) or the process fluid chamber (32)). In embodiments where the hydroclone (10) is incorporated into a system comprising a recirculation loop (A) (as shown in
As shown in
The subject hydroclone system (10) may further include a cleaning assembly (68) for removing debris from the membrane surface (64) of the filter assembly (26). A representative embodiment is illustrated in
The systems shown in
In another embodiment, the recirculation loop (A) is pressurizable.
When a system includes both a filter assembly (26) and an effluent separation chamber (30) in series along the fluid treatment pathway (28), the use of separate pumps (Y,Z) provides further advantages. As each pass along the fluid treatment pathway (28) results in only partial removal of effluent from the system, several passes are typically required. For cross-flow filtration to be effective within the vortex chamber (24), the initial applied feed liquid pressure must exceed the transmembrane pressure of the filter assembly. Uniform flux along the fluid treatment path (28) is more readily attained when systems are designed for a higher transmembrane pressure, so that the pressure drop between opposite ends of the cross-flow filter assembly (26) is a small fraction (e.g. less than 20%, 10%, or 1%) of that applied to the membrane. Since pressure drops associated with each operating zone and pass are cumulative, a system designed around a single pump can have substantial efficiency losses through re-pressurization of each pass. By contrast, if a feed pump (Y) is used to provide a pressurized liquid to a pressurized recirculation loop driven by a recirculation pump (Z), the energy losses on successive passes associated with re-pressurizing to a transmembrane pressure and any filtrate back-pressure are avoided. The recirculation pump (Z) needs only to supply energy to drive fluid through the recirculation loop, and, in some embodiments, create relative motion between the membrane surface (64) and a cleaning assembly (68). Using separate pumps to provide pressure and volume requirements is particularly advantaged when the recirculation pump (Z) drives a volume of liquid through the recirculation loop that is at least twice, more preferably at least four times, the volume of feed liquid introduced by the feed pump (Y) to the recirculation loop.
Experiments have demonstrated that removal of effluent (e.g. particles) in the effluent separation chamber (30) is strongly dependent on particle size. Removal efficiency can low be for particles having median particle size of less than 50 microns. During filtration, particles may be agglomerated and/or compacted and then removed by the cleaning assembly, increasing their removal rate in the effluent separation chamber (30). At the same time, removal of particulate by the effluent separation chamber (30) helps maintain high flux in filtration.
In another embodiment, the system may include a plurality of effluent separation chambers (30) and/or filter assemblies (26) ganged together in parallel to a common recirculation pump (Z). The recirculation pump (Z) may simultaneously drive flow through two or more parallel filter assemblies (26) within the recirculation loop. Similarly, the recirculation pump (Z) may drive flow through two or more effluent separation chambers (30) within the recirculation loop (A). Preferably, the recirculation pump (Z) drives flow through parallel pressurizable tanks (12) comprising both a filter assembly (26) and an effluent separation chamber (30). The pressurized recirculation loop (A) may be fed by a common feed pump (Y).
The filter assembly (26) is preferably operated with recoveries less than 50%, 25%, or even 10%, allowing both a high cross-flow velocity and high cleaning rates. (Although cleaning is continuously performed, short times exist between discrete engagements of the rotatable cleaning assembly (68) with any given location on the membrane (64). Particles within a given pass through the effluent separation chamber (30) also have a relatively low probability of removal. For example, the probability that a 200 micron plastic sphere (density 1.09) being removed in a given pass may be less than 30%, or even less than 10%. However, due to multiple passes through the recirculation loop (A), the effluent separation chamber (30) has a significant impact in effluent removal.
As previously described, pressure losses from successive passes are minimized by use of the combined feed pump (Y) and recirculation pump (Z). In embodiments using a filter assembly (26), the pressure drop across the membrane (from fluid treatment pathway (28) to the filtrate chamber (66)) can then be a small fraction of the pressure provided by the feed pump (Y), less than 50%, 25%, or even 10%. In a preferred embodiment, at least 50%, more preferably 80%, of the pressure provided by the feed pump (Y) is used to drive a downstream operation (e.g. microfiltration, ultrafiltration, nanofiltration, or reverse osmosis). The pressure drop between locations on the fluid treatment pathway (28) at opposite ends of the cross-flow filter assembly (26) is also preferably small, e.g. less than 20%, 10%, or 1% of pressure supplied by the feed pump (Y).
The inventive hydroclone system (10) may best be combined with a filtration assembly (26). Due to the continuous cleaning, high recirculation, removal and concentration of particles by the effluent separation chamber, and relatively low recoveries in the filtration and effluent separation chambers, the system can operate well with high solids. In operation, the system is preferably operated with an average volumetric recovery of at least 85%, 90%, 95%, or even 99% (i.e. the fraction of liquid that leaves the system through the membrane as filtrate). Preferred particular removal systems may operate with liquid mixtures having solids content greater than 0.2, 0.5, or 1% by mass.
The entire subject matter of each of the US patents mentioned herein references are fully incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/063960 | 10/9/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/066036 | 5/1/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
431448 | Dixon | Jul 1890 | A |
1107485 | Bowser | Aug 1914 | A |
1919653 | Hill | Jul 1933 | A |
2706045 | Large | Apr 1955 | A |
2788087 | Lenehan | Apr 1957 | A |
2917173 | Rakowsky | Dec 1959 | A |
3061098 | Brezinski | Oct 1962 | A |
3219186 | Polhemus et al. | Nov 1965 | A |
3285422 | Wiley | Nov 1966 | A |
3529544 | Masamitsu | Sep 1970 | A |
3529724 | Maciula et al. | Sep 1970 | A |
3822533 | Oranje | Jul 1974 | A |
3893914 | Bobo | Jul 1975 | A |
3947364 | Laval, Jr. | Mar 1976 | A |
4062766 | Duesling | Dec 1977 | A |
4120783 | Baummer | Oct 1978 | A |
4146468 | Wilson | Mar 1979 | A |
4159073 | Liller | Jun 1979 | A |
4178258 | Papay et al. | Dec 1979 | A |
4216095 | Ruff | Aug 1980 | A |
4298465 | Druffel | Nov 1981 | A |
4414112 | Simpson et al. | Nov 1983 | A |
4575406 | Slafer | Mar 1986 | A |
4596586 | Davies et al. | Jun 1986 | A |
4608169 | Arvanitakis | Aug 1986 | A |
4651540 | Morse | Mar 1987 | A |
4662909 | Durr | May 1987 | A |
4698156 | Bumpers | Oct 1987 | A |
4865751 | Smisson | Sep 1989 | A |
4931180 | Darchambeau | Jun 1990 | A |
5104520 | Maronde et al. | Apr 1992 | A |
5116516 | Smisson | May 1992 | A |
5188238 | Smisson et al. | Feb 1993 | A |
5227061 | Bedsole | Jul 1993 | A |
5277705 | Anderson et al. | Jan 1994 | A |
5407584 | Broussard, Sr. | Apr 1995 | A |
5466384 | Prevost et al. | Nov 1995 | A |
5478484 | Michaluk | Dec 1995 | A |
5593043 | Ozmerih | Jan 1997 | A |
5879545 | Antoun | Mar 1999 | A |
5972215 | Kammel | Oct 1999 | A |
6110242 | Young | Aug 2000 | A |
6117340 | Carstens | Sep 2000 | A |
6210457 | Siemers | Apr 2001 | B1 |
6238579 | Paxton et al. | May 2001 | B1 |
6251296 | Conrad et al. | Jun 2001 | B1 |
6511599 | Jaroszczyk et al. | Jan 2003 | B2 |
6531066 | Saunders et al. | Mar 2003 | B1 |
6613231 | Jitariouk | Sep 2003 | B1 |
6790346 | Caleffi | Sep 2004 | B2 |
6896720 | Arnold et al. | May 2005 | B1 |
7166230 | Nilsen et al. | Jan 2007 | B2 |
7316067 | Blakey | Jan 2008 | B2 |
7351269 | Yau | Apr 2008 | B2 |
7632416 | Levitt | Dec 2009 | B2 |
7651000 | Knol | Jan 2010 | B2 |
7785479 | Hosford | Aug 2010 | B1 |
7896169 | Levitt et al. | Mar 2011 | B2 |
7998251 | Pondelick et al. | Aug 2011 | B2 |
8201697 | Levitt et al. | Jun 2012 | B2 |
8663472 | Mallard et al. | Mar 2014 | B1 |
8701896 | Levitt et al. | Apr 2014 | B2 |
8882999 | Levitt et al. | Nov 2014 | B2 |
8960450 | Caffell et al. | Feb 2015 | B2 |
9101859 | Jons | Aug 2015 | B2 |
20030029790 | Templeton | Feb 2003 | A1 |
20030221996 | Svoronos et al. | Dec 2003 | A1 |
20040211734 | Moya | Oct 2004 | A1 |
20050109684 | DiBella et al. | May 2005 | A1 |
20070039900 | Levitt | Feb 2007 | A1 |
20070075001 | Knol | Apr 2007 | A1 |
20070187328 | Gordon | Aug 2007 | A1 |
20100044309 | Lee | Feb 2010 | A1 |
20100083832 | Pondelick et al. | Apr 2010 | A1 |
20100096310 | Yoshida | Apr 2010 | A1 |
20110120959 | Levitt et al. | May 2011 | A1 |
20110160087 | Zhao et al. | Jun 2011 | A1 |
20110220586 | Levitt | Sep 2011 | A1 |
20120010063 | Levitt et al. | Jan 2012 | A1 |
20120145609 | Caffell et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
8913709 | Apr 1990 | DE |
4420730 | May 1995 | DE |
19914674 | Dec 2000 | DE |
10001737 | Oct 2001 | DE |
102005027509 | Dec 2006 | DE |
0018168 | Oct 1980 | EP |
0375671 | Jun 1990 | EP |
0475252 | Mar 1992 | EP |
0380817 | Jan 1993 | EP |
0566792 | Oct 1993 | EP |
0429409 | Apr 1994 | EP |
2082793 | Jul 2009 | EP |
2791904 | Oct 2000 | FR |
2007118 | May 1979 | GB |
2309182 | Jul 1997 | GB |
2423264 | Aug 2006 | GB |
2006068690 | Mar 2006 | JP |
2004105165 | Dec 2004 | KR |
899416 | May 2009 | KR |
0218056 | Mar 2002 | WO |
03026832 | Apr 2003 | WO |
2004064978 | Aug 2004 | WO |
2011160087 | Dec 2011 | WO |
2012154448 | Nov 2012 | WO |
2014066036 | Oct 2013 | WO |
2013173115 | Nov 2013 | WO |
2013181028 | Dec 2013 | WO |
2013181029 | Dec 2013 | WO |
Entry |
---|
DOW Water & Process Solutions, G. Onifer, Oct. 2010, Executive Summary: Clean Filtration Technologies, Inc Turboclone Filter. |
Clean Filtration Technologies, Inc. CFT Turboclone Demo System, 2010. |
Clean Filtration Technologies, Inc. CFT Turboclone TC-201 Technical Datasheet, 2010. |
Number | Date | Country | |
---|---|---|---|
20150224517 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61718751 | Oct 2012 | US |