This invention relates to systems for generating hydrogen-gas for use in industrial and fuel cell applications.
Hydrogen gas is used in many industrial applications such as the hydrogenation of oils to make hydrogenated fats or the hydrogenation of phenol to cyclohexanol or the hydrogenation of nitrogen to ammonia or the hydrogenation of carbon-monoxide to methanol. In most cases, hydrogen is produced by the electrolysis of water. The hydrogen produced by such a method is then stored in tanks under high pressure. These tanks are shipped by rail or road transportation to the end user.
Since hydrogen is a highly flammable gas, its storage and transportation creates a public hazard. Therefore, more and more end-users are opting to produce hydrogen in-situ using alternate production methods such as the under-oxidation of readily available hydrocarbons such as methane, propane, etc. Another method of producing hydrocarbon in-situ is catalytic partial oxidation of hydrocarbons such as methane, propane, etc. Yet another method of producing hydrogen, which is well known, is the steam-methane reforming process wherein a light hydrocarbon such as methane is converted to hydrogen and carbon-monoxide.
A commercially available system for generating hydrogen at the end-user's site is marketed as the UOB™ system by Phoenix Gas Systems of Long Beach, Calif. A flow diagram of the UOB™ system is shown in
The commercially available system described above operates at a high temperature and pressure. Further the under-oxidation process is quite parasitic in the consumption of the hydrocarbon fuel because a large quantity of hydrocarbon fuel must be used to raise the hydrocarbon-air mixture to a high temperature for the partial oxidation of the hydrocarbon to take place. The parasitic consumption of hydrocarbon fuel adds substantially to the cost of operation of the hydrogen generation plant. Further, the high operating temperature within the reactor necessitates the use of expensive materials of construction such as high temperature metal alloys and special refractories. These materials add substantially to the capital cost of the reactor.
The partial oxidation process has the disadvantage is that the hydrogen yield is lower than that of other hydrogen generation processes such as SMR and ATR processes. Approximately 1.5 moles per mole of methane are produced in the UOB™ partial oxidation process. It is possible to produce approximately 70 to 100 percent more hydrogen from a catalytic reforming system such as an SMR system or an ATR system.
However, one disadvantage of current catalytic reforming systems is that steam is required to be added to the process for the shift reaction to occur. This disadvantage is particularly significant in large capacity systems wherein a large quantity of steam is required for the shift reaction. In such cases, a fuel-fired boiler is generally used to provide the steam. However, the operation of large boilers is regulated by government agencies, which may mandate that the operation of steam boilers with capacities greater than a pre-set amount be supervised by a licensed operator. The use of an licensed boiler operator adds greatly to the cost of operation of partial oxidation systems and makes them relatively uneconomical to use compared to systems which do not need licensed operators. There is therefore a need for an improved hydrogen generation system, which operates at a lower temperature, consumes less parasitic fuel, does not require boiler generated steam, and can be operated without the use of skilled personnel.
According to one aspect of the invention, there is provided a hydrogen production apparatus for generating hydrogen, the hydrogen production apparatus comprising: a first means for mixing a stream of liquid water with a stream of feed gas to produce a feed gas-water mixture stream; means for heating the feed gas-water mixture stream to a temperature sufficient to evaporate the water in the feed gas-water mixture stream to steam to produce a humidified feed-gas stream; and steam-methane reforming means for reacting the hydrocarbon fuel and the steam in the reformer reactant mixture in a steam-methane reforming reaction to reform the hydrocarbon fuel in the reformer reactant mixture and produce a hydrogen enriched reformer product gas. There may be a second means for mixing the humidified feed-gas stream with a hydrocarbon fuel to produce a reformer reactant mixture of fuel, oxidant, and steam.
According to another aspect of the invention, there is provided a hydrogen production apparatus for generating hydrogen comprising: a first means for mixing a stream of liquid water with a stream of oxidant to produce an oxidant-water mixture stream; means for heating the oxidant-water mixture stream to a temperature sufficient to evaporate the liquid water in the oxidant-water mixture stream to steam to produce a humidified oxidant stream; a second means for mixing the steam-oxidant mixture stream with a hydrocarbon fuel to produce a reformer reactant mixture of fuel, oxidant, and steam; and reforming means for allowing the oxidant to partially oxidize the hydrocarbon fuel in the reformer reactant mixture and allowing the steam to reform the hydrocarbon fuel in the reformer reactant mixture to produce a hydrogen enriched reformer product gas.
In yet another aspect, the invention is for a hydrogen production apparatus for generating hydrogen comprising: a first means for mixing a stream of liquid water with a hydrocarbon fuel stream to produce a fuel-water mixture stream; means for heating the fuel-water mixture stream to a temperature sufficient to evaporate the water into steam to produce a humidified fuel stream; a second means for mixing the humidified fuel stream with an oxidant to produce a reformer reactant mixture of fuel, oxidant, and steam; and reforming means for allowing the oxidant to partially oxidize the hydrocarbon fuel in the reformer reactant mixture and allowing the steam to reform the hydrocarbon fuel in the reformer reactant mixture to produce a hydrogen enriched reformer product gas.
According to another aspect of the invention, there is provided a hydrogen production apparatus for generating hydrogen comprising: a first means for mixing a first stream of liquid water with a stream of oxidant to produce an oxidant-water mixture stream; means for heating the oxidant-water mixture stream to a temperature sufficient to evaporate the liquid water into steam to produce a humidified oxidant stream; a second means for mixing a second stream of liquid water with a hydrocarbon fuel stream to produce a fuel-liquid water mixture stream; means for heating the fuel-liquid water stream to a temperature sufficient to evaporate the liquid water into steam to produce a humidified fuel stream; a third means for mixing the humidified fuel stream with the humidified oxidant stream to produce a reformer reactant mixture of fuel, oxidant, and steam; and reforming means for allowing the oxidant to partially oxidize the hydrocarbon fuel in the reformer reactant mixture and allowing the steam to reform the hydrocarbon fuel in the reformer reactant mixture to produce a hydrogen enriched reformer product gas.
Referring now to
Referring now to the fuel conditioning system 12, a fuel 10 such as methane, propane, butane or other such suitable light hydrocarbon is introduced into fuel processing system 12. Fuel-processing system 12 may include components (not shown) such as a gas-filter, a compressor, a de-sulfurization system, or any devices that may be required to condition fuel 10 for use in the subsequent processing stages. If fuel 10 is a liquid hydrocarbon fuel such as kerosene, gasoline, methanol, etc, then FCS 12 could also include a means (not shown) to convert the liquid fuel to a gaseous state. Such means could include process equipment such as an evaporator or a spray mist or a sparger or a fired vaporizer. The conditioned fuel designated as 11 in
Referring now to Oxidant Supply System (OSS) 22, an oxygen containing gas-stream 20 such as air is introduced into OSS 22. OSS 22 may include components (not shown) such as an air-filter, a compressor, or any other devices that may be required to condition oxygen containing gas-stream 20 for use in the subsequent processing stages. The conditioned oxygen containing gas-stream designated as 21 in
In HS 83, a water stream 17 is introduced through pipe 82 for humidification of the conditioned oxygen containing gas-stream 21. Water stream 17 is contacted with gas-stream 21 in a mixing device 85 located within HS 83. Mixing device 85 can be any device which enables a liquid stream and a gas stream to make intimate contact to produce a gas stream that is saturated with the liquid. For example mixing device 85 could be a spray nozzle, a sparger, a humidification tower, etc. The humidified conditioned oxidant stream is shown as 19 in
In PSA tail-gas combuster 80, the humidified conditioned oxygen containing gas-stream is passed through a heat transfer passage 66 wherein it is indirectly heated to about 75 to 300 degrees C. by a hot flue gas stream 62. A further description of the process of generating hot flue gas stream 62 and of the operation of the PSA tail-gas combuster is provided subsequent sections of this description.
The heated humidified oxygen containing stream, now designated as 84 in
As defined herein, an Autothermal Reformer (ATR) is a device for the conversion of a mixture of hydrocarbon, steam, and oxygen to a hydrogen-rich gas, which may or may not also contain carbon-monoxide as a byproduct.
An ATR may or may not utilize catalysts for carrying out the above conversion. However, the use of catalysts in the ATR reduces the average operating temperature of the conversion reaction and is therefore preferred in commercial ATR applications.
In an ATR, the primary reactions, which facilitate the conversion of the hydrocarbon to a hydrogen-rich gas, are a partial oxidation reaction and a steam methane reforming (SMR) reaction. If catalysts are used for the conversion, the partial oxidation reaction is generally referred to as a Catalytic Partial Oxidation (CPO) reaction. The partial oxidation reaction for the conversion of methane is as shown below:
CH4+0.5(O2)→CO+2(H2).
The CPO reaction is exothermic and therefore has the advantage of very fast response to a change in the hydrogen demand from the fuel-cell. The partial oxidation reaction can be catalytically or non-catalytically driven. The catalytically driven partial oxidation reaction generally uses a monolithic catalyst containing precious metals such as Platinum, Palladium, and Rhodium. The catalytically driven partial oxidation reaction occurs at around 600 to 900 degrees C. The non-catalytically driven Partial Oxidation reaction generally occurs around 1,000 to 1,500 degrees C. Thus more of the fuel is parasitically consumed to achieve the higher temperature of the non-catalytic CPO reaction than is consumed in the catalytic CPO reaction.
The second reaction that takes place in an ATR is the SMR reaction, which is described by the following chemical reaction:
CH4+H2O→CO+3H2
The above reaction is highly endothermic and may take place without a catalyst. However, a catalyst such as SMR-5 supplied by Engelhard Corporation can also be used to enable the reaction to take place at a lower temperature with a lower input of heat energy. Yet other nickel containing catalyst such as those supplied by United Catalysts or Haldor Topsoe could also be used to enable the reaction to take place at a lower temperature with a lower input of heat energy. The use of such catalysts generally enable the SMR reaction to take place at around 600 to 900 degrees C. The endothermic nature of the reaction increases the response time for the SMR reaction to provide higher quantity of hydrogen in response to fuel-cell hydrogen-load demand. Heat energy for the endothermic SMR reaction can be provided either through external heating means such as heat transfer coils embedded within the catalyst mass or internally generated by the partial oxidation of the hydrocarbon in the CPO reaction described previously. Therefore in an ATR, the exothermic reaction from the CPO reaction is balanced by the endothermic heat of the SMR reaction.
The combination of the CPO and the SMR reactions in an ATR provides a gas-stream with a higher concentration of hydrogen than that produced by the CPO reaction alone. Further, this combination also provides a faster response to fuel-cell hydrogen load demands than is possible with a SMR reaction alone.
While the ATR consists predominantly of the CPO and SMR reactions, some Water Gas Shift (WGS) reactions may also occur within the ATR as described by the following chemical equation:
CO+H2O→CO2+H2
The WGS reaction reacts some of the CO generated during the CPO reaction with some of the steam to produce additional hydrogen.
Separate catalysts can be used for the CPO reaction and the SMR reactions. Thus a Platinum-Palladium catalyst could be used to effect the CPO reaction while a Platinum-Rhodium catalyst could be used for the SMR reaction. Alternatively, an advanced catalyst that contains the Platinum-Palladium as well as the Platinum-Rhodium combinations to carry out the CPO and the SMR reactions could also be used.
The ATR product gases are designated as 72 in
The cooled reformed product gases are shown in
As defined herein, a Shift Reactor is a device wherein a gas-stream containing carbon-monoxide and steam is converted to a product gas-stream containing carbon-dioxide and hydrogen through the Water Gas Shift reaction described above. The conversion is generally effected by passing the carbon-monoxide and steam mixture over an iron-oxide catalyst. However other catalysts could also be used to effect the chemical reaction described above.
A shift reactor can be a single stage or a multiple stage device. Generally, the shift reaction is carried out in two stages. The first stage is generally referred to as a High Temperature Shift (HTS) reaction wherein the mixture of carbon-monoxide and steam is passed over a catalyst which is maintained at 300 to 400 degrees C. At such high temperatures, the reaction rate for the WGS reaction is relatively high but the amounts of carbon-monoxide and water that are converted to carbon-dioxide and hydrogen are relatively low. This is because the WGS reaction is slightly exothermic; therefore, heat is produced which tends to reduce the conversion of the steam to hydrogen. To increase the conversion in the WGS reaction, the partially converted products from the High Temperature Shift reaction are generally cooled to about 170 to 200 degrees C. in an intercooler (not shown) and introduced into a second stage, which is conventionally referred to as a Low Temperature Shift (LTS) Reactor. In the LTS reactor, the partially converted products of reaction from the HTS reactor are passed over a copper-zinc oxide catalyst, which is maintained at about 170 to 200 degrees C. Essentially equilibrium conversion of the carbon-monoxide takes place in the LTS catalyst to produce a hot gas-stream (designated as 73 in
For purposes of simplicity, the shift reactor is represented by a single block in
The hot shift reactor product gas-stream 73 is transported by pipe 76 from shift reactor 30 to HRSG 90. The hot shift reactor product gas stream 73 is at around 600 degrees and is cooled further before being directed to the PSA for separation of the hydrogen. The cooling is effected in HRSG 90 and a intercooler 34. A water saturated fuel gas stream, shown in
Intercooler 34 can be any heat-exchange device whose function is to further cool shift reactor product gas 100 to a temperature, which is below the dew-point of gas-stream 100 so that the excess steam in gas-stream 100 can be condensed out in a subsequent condensation step which will be described below. For example, intercooler 34 could be a shell- and tube heat exchanger wherein cooling water 36 is passed over a heat-transfer surface of a heat-transfer passage 35 to cool hot gas stream 100 which is flowed over the other heat transfer surface of the heat transfer passage 35. Alternatively, intercooler 34 could be an air-cooled heat exchanger wherein heat-transfer passage 35 is a set of finned tubes through which hot shift reactor product gas stream 100 is flowed while cold ambient air is flowed over the finned surfaces of the finned tubes to effect the cooling of hot gas stream 100. Alternatively, intercooler 34 could be a shell and tube heat exchanger wherein a cold process stream is used to cool hot shift reactor product gas stream 100 while being preheated to conserve energy. Any of these devices could be used as intercooler 34 to convert single phase gas-stream 100 to a two-phase gas-stream which is designated as 104 in
Condensate knock-out tank 40 can be any expanded volume wherein two-phase gas stream 104 can be adiabatically expanded. Further, the configuration of condensate knock-out tank 40 can be seleced so that the velocity of two-phase gas-stream 104 is reduced so that the water, which was condensed out of the gas-phase in the two-phase gas-stream 104, coalesces and gravitationally or centrifugally separates out of two-phase gas stream 104. However, condensate blow down tank 40 could also include other means of removing drops of liquid from a gas stream. Such means could include devices such as as de-misters, and packed towers. The condensate 42 is removed from condensate blow-down tank 40 by means of condensate removal pipe 43. Liquid level maintenance and control means (not shown) can be used within condensate blow-down tank 40 to maintain a constant level of liquid within the tank to prevent any inadvertent loss of product gas from the system through condensate removal pipe 42. Gas-stream 104, after removal of the excess water, is designated as 44 in
PSA 50 is any device wherein the Pressure Swing Adsorption principle is used to adsorb and desorb the hydrogen in gas stream 44. Such pressure swing adsorption cycles are well known and consist of an adsorption cycle wherein the hydrogen in gas-stream 44 is adsorbed under high pressure on a suitable adsorption material while the other components of the gas-stream 44 are allowed to pass through. The second phase of the PSA cycle is a desorption cycle wherein the pressure within the PSA system is reduced to enable the adsorbed hydrogen to desorb from the adsorbent. Typically two beds containing the adsorption material are used so that one bed can operate in adsorption mode while the second bed is operated in a desorption mode. After a period of time, the bed that was previously operated in an adsorption mode is then switched to a desorption mode and the bed that was previously operated in a desorption mode is then switched to an adsorption mode. Such an arrangement enables the process gas which needs purification to be continuously treated without any interruption in flow. An example of a commercially available PSA system that can be used for producing a highly concentrated hydrogen gas stream from de-humidified gas stream 44 is the PSA system sold by Questor Corporation of Vancouver, Canada.
While a pressure swing adsorption system is described herein, other types of concentrating devices could also be used as hydrogen concentrators. For example, a temperature swing adsorption device could also be used to produce a concentrated stream of hydrogen from de-humidified gas-stream 44. Other non-adsorption based hydrogen concentration devices could also be used. For example, the hydrogen concentration device could be a molecular sieve or a hydrogen separation membrane. Such devices are commercially available from various manufacturers.
As shown in
In PSA tail-gas oxidizer 80, waste gas-stream 56 is passed through a fuel-burner, shown as 89. Fuel burner 89 can be any suitable combustible gas burner such as a duct burner or a pre-mixed gas burner such as those available from U.S. manufacturers such as Maxon, North American, Coen, Eclipse etc. Fuel burner 89 could also be a metal-fiber burner such as that available from U.S. manufacturers such as, for example, Acotech. Oxygen for combustion of PSA tail gas stream 56 is provided to burner 89 by pipe 81 which feeds an oxygen containing gas stream 20 to burner 89. Thus waste gas 56 is mixed with oxygen containing gas stream 20 before combustion of the combustibles in waste gas 56 takes place in burner 89. However, it is not necessary that the two streams be mixed. If a duct burner is used, only waste gas stream 56 can be passed through burner 89 while the oxygen containing gas stream 20 is passed over the burner to provide the oxygen for combustion of the combustibles in waste gas stream 56. Yet further a source of natural gas 10 is connected to burner 89 through pipe 75. This natural gas 10 is combusted during the start-up of the equipment and is used to bring the PSA combuster up to temperature prior to receiving PSA tail-gas 56. Thus complete combustion of PSA tail-gas 56 is ensured. Further, the combustion of natural gas 10 in burner 89 provides heat during start-up of the equipment to mixture 19 of oxygen-containing gas and water that is flowed through heat transfer passage 66 as previously described and indirectly assists in heating the ATR at start-up.
During the passage of waste-gas stream 56 through the fuel-burner 89, the hydrogen as well as the other hydrocarbons in waste stream 56 combine with the oxygen in oxygen containing gas stream 20 to produce hot gaseous products of combustion (designated as 62 in
Yet another embodiment of an improved hydrogen generation system that can be used with a fuel-cell system is shown in
Fuel 10 is conditioned by passing through fuel conditioning system 12 before being passed into the reactor inlet zone 68 through pipe 13. A part of the conditioned fuel 11 is diverted to mixer 95 wherein it is mixed with water 17 to provide a water-saturated fuel stream 93, which is passed first through heat transfer passage 97 of HRSG 90 and then through heat transfer coil 91 of superheater 60. The water 17 in water-saturated fuel stream 93 is evaporated in heat transfer passages 97 and 91 and a superheated humidified fuel stream 99 is passed to reactor inlet zone 68 through pipe 98 or 195. As will be described below, a humidified air stream 115 is also passed into ATR inlet zone 68 and is mixed with conditioned fuel 11, and super-humidified fuel stream 196 to produce an ATR reactant mixture 169 which includes fuel, steam, and oxygen.
The amount of water 17 that is introduced into mixers 85 and 95 is varied depending on the mode of operation of ATR 70. During the start-up of the system, essentially all of the water that is required for ATR 70 is introduced into mixer 85 and no water is introduced into mixer 95. After the ATR 70 has reached a normal operating mode, the water that is introduced to mixer 85 is reduced to about 66 percent of the total water requirements for ATR 70. The balance 33 percent of the water that is required for ATR 70 is now introduced through mixer 95. Thus the total water requirements for ATR 70 are now introduced in 2:1 proportions in mixers 85 and 95 respectively.
ATR reactant mixture 169 is passed into ATR 70 wherein predominantly CPO and SMR reactions take place to provide a hydrogen rich gas stream 72. ATR 70 is equipped with a heating coil 166 which is embedded within the catalyst mass of the ATR. As will be described below, hot products of combustion 163 from Anode Gas Oxidizer (AGO) 180 are passed over the heat transfer surfaces of heating coil 166 to provide heat for the endothermic SMR reaction occurring within the catalyst mass of ATR 70. Thus a relatively higher yield of hydrogen is obtained from ATR 70 compared to ATR 70 of
The hydrogen rich gas stream 72 is then passed through a secondary HRSG 160 wherein the hot hydrogen rich stream 72 is partially cooled by passing it on the cooling side of a heat transfer passage 91 which contains a liquid water-humidified fuel mixture 193 on its heat-receiving side. The method of generating and transporting liquid water-humidified fuel mixture 193 to heat transfer passage 91 in secondary HRSG 160 is described below. The partially cooled hot hydrogen rich stream exiting secondary HRSG 60 is shown in
Liquid water-humidified fuel stream 193 is created by mixing liquid water stream 17 with HRSG 90 generated humidified fuel stream 94 in mixer 190. The production of humidified fuel stream 94 in HRSG 90 is described below. Humidified fuel stream 94 is conveyed from HRSG 90 to mixer 190 through pipe 96 while liquid water 17 is conveyed to mixer 190 through pipe 192. Mixer 190 can be any of the different kinds of mixers described previously. The mixture of liquid water and humidified fuel stream which is produced by mixer 190 is shown in
The partially cooled hot hydrogen enriched gas 77 is conveyed by pipe 79 from secondary HRSG 160 to shift reactor 30. In shift reactor 30, the shift reactions described above take place to react the steam and carbon-monoxide in hydrogen rich gas stream 72 to exothermically produce more hydrogen. The hot hydrogen enriched gas stream 73 is then removed from shift reactor 30 through pipe 76, which conveys it to HRSG 90.
In HRSG 90, the hot hydrogen enriched gas stream 73 is passed over the heat transfer surface of heat transfer passage 97 to heat up the humidified fuel stream 93 that is flowed over the other side of the heat transfer surface of heat transfer passage 97. The hot hydrogen enriched gas stream is partially cooled by the relative cooler humidified fuel stream 93 in heat transfer passage 97. The partially cooled hydrogen enriched gas stream 100 is removed from HRSG 90 by pipe 102 and is conveyed to a gas mixer 110.
In gas mixer 110, the partially cooled hydrogen enriched gas stream 100 is mixed with an oxygen containing gas stream 20 that is introduced to mixer 110 through pipe 112. The mixture of hydrogen enriched gas 100 and oxygen containing gas 20 is shown as 114 in
As described herein, a PROX reactor is a reactor which contains catalyst which facilitates the oxidation of carbon-monoxide in preference to the oxidation of other oxidizable components in a gas-stream. Thus in PROX 120, the catalyst facilitates the reaction of carbon-monoxide with oxygen to produce carbon-dioxide while hindering the reaction of hydrogen with oxygen to water. The selectivity of the catalyst for one reaction versus another reaction is dependent on temperature. Thus at lower temperatures, the catalyst is more selective to the oxidation of carbon-monoxide according to the following reaction
CO+O2→CO2
and less selective to the oxidation of hydrogen according to the following reaction:
H2+O2→H2O.
Thus hydrogen loss due to oxidation is lower at reduced temperatures. In practice, operation of the PROX reactor at low temperatures is limited by the lower reaction rate that exists at low temperatures for exothermic reactions. Thus in practice, PROX reactors are operated in multiple stages with intercooling heat exchangers to remove heat generated in each exothermic reaction stage.
Inter-stage cooling of the PROX reactor 120 is carried out by means of coil 132. While a single continuous coil is shown in
The heated humidified air is shown in
As described previously with respect to the system of
The use of humidified air stream 134 in the cooling coil of PROX reactor 120 allows the PROX catalyst to operate at a lower temperature than PROX reactors of the prior art which utilize water as the coolant. The use of lower operating temperature for the PROX reactions provides greater selectivity of the PROX reaction with respect to carbon-monoxide versus hydrogen. While the above description details the use of a humidified gas stream 134 as a coolant in the PROX reactor, other gas mixtures could also be used. For example, gas stream 134 could be a humidified natural gas stream (mixture of natural gas and water-vapor).
The PROX product gas is a reformer gas that is low in carbon-monoxide which is generally in the range of 10-50 ppm. The PROX product gas produced by the PROX reactor 120 is shown as reformed gas 144 in
An oxygen containing gas 20 is also introduced to burner 89 through pipe 81. Further, fuel 10 is also introduced to burner 89 through pipe 75. Fuel 10 can be used during start-up of the equipment when AOG 156 is not available. Oxygen containing gas stream 20 can also be the cathode off-gas, which contains approximately 15% oxygen, from the cathode side of FC 150.
The hydrogen and other combustibles in AGO 180 is combusted in burner 89 to produce a hot flue gas 162, which is passed over a heat-transfer surface of heat transfer passage 66 which is located within AGO 180. A humidified oxygen containing stream 19 is passed on the other side of the heat transfer surface of heat transfer passage 66 to cool the hot flue gas 162. The partially cooled hot flue gas is shown as 163 in
As previously described, humidified oxygen containing gas stream 19 is passed over the heat transfer surface of heat-transfer passage 66 to cool flue gas 162 which was created by the combustion of the anode off gas 156 in burner 89 of AGO 180. The humidified oxygen containing gas stream 19 is generated by intimately contacting a conditioned oxygen containing gas stream 21 with a stream of water 17 in a gas mixer 85 in humidification system 83. The humidified oxygen containing gas stream 19 is passed to heat transfer passage 66 by connecting pipe 87. The heated humidified oxygen containing gas stream which exits heat transfer passage 66 is shown as 184 in
Yet other embodiments of an improved hydrogen generation system according to the present invention are also possible. For example,
Yet another example of an improved hydrogen generation system is shown in
This application is a continuation and claims the benefit of U.S. patent application Ser. No. 10/137, 641, filed on 2 May 2002, and claims priority from U.S. Provisional Patent Application No. 60/288,016, filed on 2 May 2001. The co-pending parent application is hereby incorporated by reference herein in its entirety and is made a part hereof, including but not limited to those portions which specifically appear hereinafter.
Number | Date | Country | |
---|---|---|---|
60288016 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10137641 | May 2002 | US |
Child | 11438166 | May 2006 | US |