The present invention relates generally to a hydrogen sensor for detecting hydrogen and/or isotopes deuterium and tritium.
Hydrogen is a colorless, odorless gas used in petroleum reforming, semiconductor manufacturing, cryogenic cooling, chemical synthesis, fuel cells, rocket engines, hydrogen storage, fuel cells, automobiles, fire warning systems, leakage detection, nuclear reactors, sensing environmental contamination, and in biomedical procedures. Hydrogen has also been recognized as an alternative, clean, and renewable energy source. Hydrogen can penetrate into metals and affect their strength and durability. There are also risks of explosion in systems employing hydrogen. For these and other reasons, hydrogen sensors such as electrochemical sensors, metal-oxide resistive sensors, optical fiber sensors, and mass spectrometric sensors have been developed over the years that can monitor the concentration of hydrogen.
Electrochemical hydrogen sensors use a liquid electrolyte and a gas permeable membrane for hydrogen to reach the electrolyte. These sensors can operate from 0.02% to 100% by volume. Exposure of the membrane to cryogenic or time-varying temperatures can affect gas diffusion and make the sensor unreliable.
Metal oxide-resistive sensors rely on a change in electrical conductivity due to an interaction between surface species such as oxide, protons, and hydroxide and hydrogen. In many cases, these types of sensors need to operate at elevated temperatures for effective detection of hydrogen.
Optical fiber sensors utilize the absorption change of an evanescent field in the clad region near the surface of the core of the fiber. In most of these sensors, a thin palladium or palladium alloy layer is usually employed as the transducer, because palladium allows the selective detection of hydrogen. The refractive index of a thin palladium layer changes when it is exposed to hydrogen. By monitoring the optical power transmission of a Pd/Pt-coated optical fiber, one can detect the refractive index changes in the Pd layer, and from this, the hydrogen concentration. This type of sensor has limited sensitivity and reliability.
Mass spectrometers are sensitive and have good linearity over a wide dynamic range. However, the complexity and high cost of mass spectrometers requires skilled operators and special sampling systems for effective hydrogen monitoring. Memory effect can also be a problem in mass spectrometric technology because a vacuum system is used for detection.
In accordance with the purposes of the present invention, as embodied and broadly described herein, an aspect of the present invention relates to a hydrogen sensor including: a sampling line for receiving a gas sample and sending the gas sample to a microplasma generator; a microplasma generator for receiving the gas sample from the sampling line and providing energy to the gas sample sufficient to produce light emission from hydrogen in the gas sample; a power supply for supplying power to the microplasma generator; a spectrometer in communication with the microplasma generator for obtaining a light emission spectrum from the gas sample; and a programmable computer in communication with said spectrometer and adapted for analyzing the light emission spectrum to determine whether or not hydrogen is present in the gas sample.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
a-b shows sketches of an embodiment microplasma generator of the hydrogen sensor of
The invention is concerned with hydrogen detection and quantitation. Hydrogen detection means detection of hydrogen atoms and/or its isotopes (deuterium, tritium) in a gas sample. Hydrogen quantitation means: (i) determining how much hydrogen is in the gas sample, or (ii) determining how much of at least one hydrogen isotope is in the gas sample, or (iii) determining how much hydrogen and at least one of its isotopes is in the gas sample.
Reference will now be made in detail to embodiments of the invention. Similar or identical structure is identified using identical callouts. A schematic diagram of an embodiment hydrogen sensor of the invention is shown in
a and 2b show a side view sketch and an end view sketch, respectively, of embodiment microplasma generator 20.
Preferably, discharge electrodes 36 are mechanically fixed on the discharge chamber wall. In a preferred embodiment, discharge electrodes 36 are two small flat electrodes oriented face to face. The total discharge produced using these electrodes is preferably at about the microliter level. The microplasma can be maintained at atmospheric pressure with just a small amount of plasma gas (argon or helium, for example). The microplasma is sustained in a very small volume for efficient collection of the optical emission beam.
In a preferred embodiment, microplasma generator 20 was designed and built within a narrow discharge chamber in which two metal plate electrodes were bonded to the chamber walls. The electrodes were placed face to face. Discharge chamber was measured at about 500 micrometers (“μm”) in height×500 μm in width×600 μm in depth for a volume of about 150 nanoliters (“nL”). A DC voltage was applied to the electrodes for atmospheric pressure plasma generation. A collimate lens was used to collect the light emitted from the rectangular plasma chamber and focus the beam into an optical fiber. The optical emission was guided to an OCEAN OPTICS USB2000 spectrometer system (Ocean Optics, Dunedin, Fla.) including a linear CCD-array detector that was used for simultaneous detection of the whole spectrum from about 200 nanometers (“nm”) to about 1100 nm. A notebook computer was connected to the spectrometer with a USB cable for display and data processing. All the experiments were performed at room temperature and atmospheric pressure. Unless otherwise noted, the following description relates to testing performing using this embodiment.
Hydrogen and its isotopes produce the following three major emission lines: α (656.3 nm, red), β (486.1 nm, blue), and γ (434.1 nm, violet). These lines have been used in the past for quantitative detection of hydrogen.
In a typical set of test conditions, hydrogen sensor 10 operates at atmospheric pressure at a current of about 16 milliamperes (“mA”) with an argon flow rate of 1000 cubic centimeters per minute (“cc/min”). A background emission of the argon plasma in the wavelength region between 300 and 900 nm is collected first (see
The stability of the plasma source for the preferred embodiment hydrogen sensor was also tested. The relative standard deviation (“RSD”) was about 3.5% for the hydrogen α emission line. The detection limits were also estimated for the hydrogen α emission line. Based on the RSD and the signal intensity, a detection limit of about 5 ppm was estimated for the preferred embodiment hydrogen sensor. This limit could be improved using an even higher resolution spectrometer and better control of the microplasma generator. The hydrogen detection limit of about 5 ppm of the preferred embodiment hydrogen sensor is comparable to the reported detection limits using a mass spectrometer. The preferred embodiment sensor, however, is portable, can be used in the field, and much less expensive.
In another embodiment, one employing a low-resolution spectrometer, the emission intensities of the hydrogen α and β lines with different concentrations of hydrogen and deuterium were measured.
In summary, a hydrogen sensor employing a microplasma that excites hydrogen and produces detectable light emission from the hydrogen in a gas sample allows for hydrogen detection and quantitation. The detection limit of 5 ppm is comparable to that reported using other more complex and expensive sensors. The sensor may be integrated into a handheld device for daily and routine monitoring of hydrogen.
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. Although the invention has been disclosed with reference to its preferred embodiments, from reading this description those of skill in the art can appreciate changes and modifications that may be made which do not depart from the scope and spirit of the invention as described above and claimed hereafter. It is intended that the scope of the invention be defined by the claims appended hereto.
This invention was made with government support under Contract No. DE-AC52-06NA25396 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5414324 | Roth et al. | May 1995 | A |
6620247 | Ebe et al. | Sep 2003 | B2 |
20020098713 | Henley et al. | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20090201500 A1 | Aug 2009 | US |