This application claims priority to German Application DE 102012104923.8 filed on Jun. 6, 2012, which is herein incorporated by reference in its entirety.
Field of the Invention
This invention relates to a hydrostatic positive displacement machine with a cylinder drum positioned so that it can rotate around an axis of rotation and which is provided with at least one piston bore in which a piston is positioned so that it can be displaced longitudinally. During the rotation of the cylinder drum, the piston bore is placed in communication alternately with an inlet side and an outlet side. The inlet side and the outlet side comprise connections to a control plate and, located in the reversal area between the connections to the control plate, is a reversal device which damps the pressure adjustment between the displacement chamber and the pressure present in the connection by means of a volume flow into or out of the displacement chamber formed by the piston and the piston bore.
Description of Related Art
On hydrostatic positive displacement machines of this type, when the cylinder drum rotates around the axis of rotation, the piston bores, which form corresponding displacement chambers filled with hydraulic fluid, reverse from the inlet side to the outlet side. The inlet side and the outlet side are in communication via corresponding connections with a control plate with which the cylinder drum is in contact. The piston bores are each provided with a corresponding connection opening, by means of which the piston bore actuates the connections in the control plate.
Because in the operation of the positive displacement machine different pressures are present on the inlet side and the outlet side, when there is a pressure reversal in the piston bore, high volume flows occur when the displacement chamber comes into communication with the corresponding connection on account of the elasticity of the hydraulic fluid and the pressure difference between the displacement chamber and the corresponding connection in the control plate. To prevent high pressure peaks in the communication of the displacement chamber with the connection, it is known that a reversing device can be located in the reversing area between the connections of the control plate, by means of which, when a pressure increase in the displacement chamber is required, hydraulic fluid under pressure is transported to the displacement chamber, or when a pressure decrease in the displacement chamber is required, hydraulic fluid under pressure is removed from the displacement chamber. Reversal devices of this type thereby make it possible, by means of a volume flow into the displacement chamber or out of the displacement chamber, to adjust the pressure between the displacement chamber formed by the piston bore and the connection, so that as a result of the pressure adjustment between the displacement chamber and the pressure that is present in the connection, the existing pressure differences can be damped during the reversal of the displacement chamber into the connection.
A hydrostatic positive displacement machine is described in DE 197 06 114 C2. The reversing device is formed by a hydraulic buffer which comes into communication with the displacement chamber by means of one or more connecting borings which are located on the control plate in the reversing area between the two connections. The connecting borings make it possible to add and remove hydraulic fluid to and from the displacement chamber by means of an appropriately sized cross section that damps the volume flow, so that by means of a damped pressure decrease or pressure increase in the displacement chamber, high pressure peaks can be prevented when the displacement chamber comes into communication with the corresponding connection.
In DE 197 06 114 C2, a plurality of connecting borings in the reversal area—viewed in the direction of movement of the cylinder drum—can be arranged behind one another and therefore sequentially are opened in a chronological sequence one after another during a rotation of the cylinder drum along the reversal area of the connection opening of the piston bore. The plurality of connecting openings makes possible a controlled enlargement of the opening cross section formed by the individual connection openings.
As a rule, the volume flows through these connecting borings of the reversing device are high, such that the pressure of the hydraulic fluid in the damping cross sections of the connecting borings decreases so that cavitation occurs and corresponding cavitation bubbles are formed in the hydraulic fluid. When there is a subsequent pressure increase in the direction of flow of the connecting borings, these cavitation bubbles re-form implosively with a corresponding generation of noise. In the vicinity of material surfaces, for example on the control plate or the cylinder drum, the material surfaces can be damaged by the implosion pressures such that an erosion of material occurs which reduces the service life of the positive displacement machine. The amount of this material erosion caused by the cavitating flows in the connecting borings of the reversing device is proportional to the square of the cross section of the connecting boring and therefore to the fourth power of the diameter of the connecting boring.
Because the cross sectional area of the connecting boring of the reversing device must be designed so that the desired pressure adjustment of the pressure in the displacement chamber is achieved by means of a corresponding volume flow, in known reversing devices with individual connecting borings arranged one behind another in the direction of movement of the cylinder drum, a high degree of material erosion occurs on account of the necessary diameter of the individual connecting borings as a result of the jet cavitation in the connecting borings.
An object of this invention is to provide a hydrostatic displacement unit of the general type described above but in which the material erosion caused by the cavitating flows of the reversing device and the noises caused by the cavitating flows are reduced.
This object can be accomplished by a reversing device that has at least two flow connections which are actuated simultaneously by the displacement chamber as it moves along the reversing area. The invention takes advantage of the fact that the material erosion is a function of the cross sectional area of the reversing device. If a defined cross sectional area of the reversing device is required for a damped flow of hydraulic fluid and volume flow to control the pressure of the displacement chamber, the invention teaches that it is advantageous to divide this required cross sectional area into at least two and therefore a plurality of flow connections which are actuated simultaneously by the displacement chamber as it moves along the reversing area. The invention therefore teaches that the plurality of flow connections can be provided with smaller opening cross sections, whereby the necessary total cross sectional area of the reversing device is determined by the number of flow connections opened simultaneously. The material erosion is thereby significantly reduced because the amount of the material erosion, given a constant total cross sectional area, is inversely proportional to the number of flow connections actuated simultaneously. Therefore, with a constant total cross sectional area, the material erosion can be reduced by increasing the number of flow connections that are actuated simultaneously with correspondingly smaller individual opening cross sections. By dividing the required total cross sectional area of the reversing device to control the pressure of the displacement chamber into a plurality of flow connections, each with a reduced cross sectional area, which are simultaneously actuated and opened by the displacement chamber, the cavitation erosion and the noise generated by the cavitation and thus the noise emitted by the positive displacement machine can be reduced.
In one advantageous embodiment of the invention, the flow connections to the control plate are located on a contour line which corresponds to the leading edge of a connecting opening of the displacement chamber. With an arrangement of the plurality of flow connections of this type, it is easily possible for the flow connections, as the displacement chamber moves along the reversing area toward the connection, to be actuated and thus opened simultaneously by the leading-edge of the displacement chamber.
An arrangement of this type can be achieved easily if, as in one advantageous configuration of the invention, the flow connections are located on different reference diameters on the control plate in the radial direction, so that the displacement chamber, as it moves along the control plate, opens the flow connections simultaneously with the leading-edge of the connecting opening. With an arrangement of the flow connections on different reference diameters, it is easily possible for the displacement chamber to simultaneously actuate and this open a plurality of flow connections simultaneously with the leading edge of the connecting opening, as it rotates along the reversing area toward the connection.
In one development of the invention, the reversing device has at least one additional flow connection and the flow connections are located one behind another in the direction of movement of the displacement chamber. The reversing device therefore also has flow connections which are actuated and opened one after another by the displacement chamber as it rotates and thus moves along the reversing area. It is consequently possible to achieve a controlled enlargement of the opening cross section of the reversing device.
It is particularly advantageous if the flow connections are distributed on the control plate in the peripheral direction and in the radial direction such that the displacement chamber, as it moves along the control plate, opens at least two flow connections simultaneously and at least one additional flow connection with some delay. This achieves a reversing device of the invention in which the individual opening cross section is formed by the flow connections simultaneously actuated one after another as the displacement chamber moves along the reversing area with the connection.
With the invention, the configuration of the individual opening cross sections and thus the configuration of the flow connections can be any desired shape.
In one advantageous realization of the invention, the flow connections are each in the form of a nozzle bore. Nozzle bores of this type can be created easily.
In an alternative realization of the invention, the flow connections are each in the form of a nozzle notch.
The nozzle bores or the nozzle notches are advantageously realized in the control plate. In this manner, a reversing device which is active in the reversing area between the connections can be formed easily.
In one advantageous realization of the invention, the reversing device is in the form of a screen-like or grid-like structure with a plurality of pores, wherein the pores each form a flow connection. With a screen-like or grid-like structure of the reversing device, a further reduction of the material erosion can be achieved, because with the structure of this type the number of individual flow connections formed by the pores can be significantly increased in a simple manner.
In one configuration of the invention, the screen-like or grid-like structure can be in the form of a fabric, in particular a mesh fabric.
In an additional embodiment of the invention, the screen-like or grid-like structure can consist of a sheet or plate that is provided with perforations. A grid of this type in the form of a screen-like or grid-like structure can easily be manufactured from a sheet or plate in which the perforations can be produced using a laser process, for example.
The reversing device can in this case comprise a single screen-like or grid-like structure, or a plurality of screen-like or grid-like structures can be arranged one after another in the direction of flow of the reversing device and therefore a plurality of screen-like or grid-like structures can be stacked in the direction of flow.
In an additional advantageous embodiment of the invention, the reversing device is formed from a high-porosity material with a plurality of pores, whereby each of the pores forms a flow connection. With a high-porosity material of this type, a significant reduction of material erosion can be achieved because with a high-porosity material it is easily possible to significantly increase the number of flow connections formed by the pores. With a high-porosity material of this type, the pores are formed by corresponding spaces in the foam-like material, which act like small individual flow connections and therefore opening cross sections.
In one advantageous embodiment of the invention, the high-porosity material is in the form of an open-pore metal foam, in particular high-porosity sinter material. With a metal foam of this type, it is easily possible to create a reversing device of the invention with a high number of individual small flow connections.
In one advantageous embodiment of the invention, the screen-like or grid-like structure or the high-porosity material are in the form of an insert which is located in a boring of the control plate. An insert of this type can be easily located and fastened in a boring of the control plate to form the reversing device of the invention.
The flow connections of the reversing device of the invention can be in communication with that connection in which the displacement chamber reverses as it moves along the reversing area and thus with the inlet side or the outlet side of the positive displacement machine.
Alternatively, the flow connections of the reversing device of the invention can be in communication with a hydraulic fluid buffer.
The positive displacement machine is advantageously in the form of an axial piston machine. The positive displacement machine can be in the form of a pump or motor.
Additional advantages and details of the invention are explained in greater detail below with reference to the exemplary embodiments illustrated in the accompanying schematic figures, in which like reference numbers identify like parts throughout.
The axial piston machine 1 has a drive assembly 3 which is positioned so that it can rotate around an axis of rotation 2 and comprises a cylinder drum 4 which is provided with a plurality of piston bores 5 which are arranged concentrically with respect to the axis of rotation 2, which are preferably formed by cylinder bores and in each of which a piston 6 is mounted so that it can be displaced longitudinally.
The pistons 6 are each supported in the area in which they project out of the cylinder drum 4 by means of a support element 7, which can be in the form of a sliding shoe, for example, on a track 8 which is formed by a swashplate. The track 8 is inclined with respect to the axis of rotation and can be molded onto a housing 9 or non-rotationally fastened to it, whereby the axial piston machine 1 has a fixed displacement volume. It is also possible, however, to make the swashplate adjustable in its inclination with respect to the axis of rotation 2, as a result of which the axial piston machine 1 has a variable displacement volume. The support elements 7 formed by the sliding shoes are prevented from lifting up from the track 8 by a hold-down plate 10 which is in the shape of an annular disc and rotates together with the cylinder drum 4. The cylinder drum 4 is supported in the axial direction on a control surface 11 which is affixed to the housing. In the illustrated embodiment, the control surface 11 is on a control plate 12 which is non-rotationally fastened to a housing 9 or a corresponding housing cover 9a.
The cylinder drum 4 is penetrated by a central boring, through which a drive shaft 13, which is positioned concentrically in relation to the axis of rotation of the drive assembly 3, is guided through the cylinder drum 4. The drive shaft 13 is rotationally mounted in the housing 9 by means of bearings 15, 16. To provide a seal against the environment, a sealing element 17 such as a shaft gasket, for example, is located in the vicinity of the bearing 15. The cylinder drum 4 is connected so that it is rotationally synchronized but axially movable with respect to the drive shaft 13, for example by means of a drive gearing 18. The drive assembly 3 further comprises a spring 19 which keeps the cylinder drum 4 in contact against the control surface 11.
The axial piston machine 1 has an inlet side E which is formed, for example, by a suction channel in the housing 9, and an outlet side A, which is formed, for example, by a pressure channel in the housing 9. During a rotation of the cylinder drum 4 around the axis of rotation 2, the displacement chambers V formed by the piston bores 4 and the corresponding pistons 6 located in the piston bores 4 come alternately into communication with the inlet side E and the outlet side A.
The piston bores 5 of the cylinder drum 4 are each provided with a connecting opening 20 for the connection with the inlet side E and the outlet side A—as illustrated in further detail in
The control plate 12 is provided with kidney-shaped connections 21, 22 for the connection to the inlet side E or to the outlet side A, which connections form control nodules with which the connecting openings 20 in the cylinder drum 4 interact.
As shown in
To achieve an adaptation of the pressure in a displacement chamber V, which as the cylinder drum 4 rotates in the direction indicated by the arrow N and thus as it moves along the reversing area 26 from the inlet side E formed by the suction channel to the outlet side A formed by the pressure channel, to the pressure in the outlet side A, in the reversing area 26 between the connections 21, 22 there is a reversing device 30 on the control surface 11 of the control plate 12. Accordingly, in the reversing area 25 between the connections 21, 22 there is a reversing device 30 on the control surface 11 of the control plate 12, by means of which an adjustment of the pressure in a displacement chamber V to the pressure in the inlet side E can be achieved as the displacement chamber V moves along the reversing area from the outlet side A that forms the pressure channel to the inlet side E that forms the suction channel.
In
The reversing device 30 has two connecting borings 31, 32 in the form of throttling or nozzle bores which—as is apparent by comparison with
By means of the connecting borings 31, 32 in the reversing area 26, which form the corresponding circular nozzle cross sections, there is a volume flow out of the outlet side A or out of the hydraulic buffer 33 into the displacement chamber V, to achieve a damped pressure increase in the displacement chamber V. The volume flow via the connecting borings 31, 32 into the displacement chamber V is identified in
The reversing device 30, in the vicinity of the reversing area 25, has corresponding connecting borings 31, 32 in the form of throttling or nozzle bores, which—as illustrated in
By means of the connecting borings 31, 32 in the reversing area 25, which form corresponding throttle cross sections, there is a volume flow from the displacement chamber V into the inlet side E or into the hydraulic buffer 33, to achieve a damped pressure decrease in the displacement chamber V. As a result of the pressure decrease by means of the reversing device 30 in the reversing area 25, high pressure peaks as the displacement chamber V subsequently comes into communication with the inlet side E can be prevented, when the connecting opening 20 of the cylinder drum 4, as it continues to move in the direction indicated by the arrow N, comes into communication with the kidney-shaped connection 21 and thus with the suction channel.
A defined cross sectional area of the connecting borings 31, 32 is necessary for the desired pressure control, i.e., the decrease or increase of the pressure in the displacement chamber V, by means of the damped volume flow via the connecting borings 31, 32. Because in the known art as illustrated in
Since, however, on account of the high volume flows through the connecting borings 31, 32 of the reversing device 30, high volume flows occur which lead to cavitation and cavitation erosion, with the connecting borings 30, 31 of a reversing device 30 of the known art high amounts of material erosion occur on account of the large diameter and cross sectional areas of the connecting borings 30, 31, which are proportional to the square of the cross sectional area of the connecting borings 30, 31 and thus to the fourth power of the diameter of the connecting borings 30, 31, which are in the form of nozzle bores.
a to 4d illustrate a reversing device 30 of the invention. Elements which are identical to those illustrated in
The reversing device 30 of the invention has a plurality of relatively small flow connections 40 which are located on different reference diameters and each of which forms an opening cross section for the damped volume flow into the displacement chamber V or out of the displacement chamber V. In addition, the flow connections 40 are also located one behind another in the peripheral direction.
On account of the arrangement of the flow connections 40 on different reference diameters, at least two flow connections 40 lie on a contour line L which corresponds to the leading edge K of the connecting opening 20 of the cylinder drum 4 in the direction of movement indicated by the arrow N, so that during the movement of the connecting opening 20 along the reversing area 25 or 26, at least two flow connections 40 are actuated and opened simultaneously, i.e., in the same angular position of the cylinder drum, by the leading edge K of the connecting opening 20.
In the invention, therefore the cross sectional area of the reversing device 30 necessary for a damped volume flow via the reversing device 30 and therefore for a desired pressure control, i.e. pressure increase or pressure decrease, in the displacement chamber V is divided into a plurality of flow connections 40, each of which has a relatively small opening cross section and, as a function of the number of the plurality of flow connections, presents a total cross sectional area which equals the required cross sectional area for the desired pressure control.
On account of the increase in the number of flow connections 40 actuated simultaneously, the cross sectional area of the individual flow connections 40 can therefore be reduced. Because the material erosion caused by cavitation is inversely proportional to the number of flow connections 40, the reversing device 30 of the invention achieves a reduction of cavitation erosion and a reduction of cavitation noise.
a to 4d show the individual flow connections 40 of the reversing device 30, each in the form of nozzle bores 41, which are realized in the control plate 12 and empty into the control surface 11.
As shown in the exemplary embodiment illustrated in
In the exemplary embodiment illustrated in
During the movement of the connecting opening 20 over the reversing area 25, 26, the opening cross sections formed by the individual flow connections 40 are therefore opened simultaneously as the connecting opening 20 moves over the reversing area 25, 26, and sequentially and therefore with a delay in the direction of movement of the cylinder drum 4.
The high-porosity material 50 is in the form of an insert, such as a cylindrical insert, which is located and fastened in a boring 52 in the control plate 12.
The screen-like or grid-like structure 60 can be formed by a fabric, such as a mesh fabric for example. The screen-like or grid-like structure 60 can also be formed by a flat plate provided with perforations. The perforations can be introduced into the plate by means of a laser process.
The screen-like or grid-like structure 60, analogous to
With the high-porosity material 50 in
In the embodiments illustrated in
The reversing device 30 of the invention with a plurality of flow connections 40 as illustrated in
The positive displacement machine can be in the form of a pump in which the inlet connection E is in the form of a suction channel and the outlet connection A is in the form of a pressure channel. The displacement machine can also be in the form of a motor, in which the inlet connection E is in the form of a pressure channel and the outlet connection A is in the form of a suction channel.
It will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed in the foregoing description. Accordingly, the particular embodiments described in detail herein are illustrative only and are not limiting to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 104 923 | Jun 2012 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3063470 | Forster | Nov 1962 | A |
3120814 | Mueller | Feb 1964 | A |
6086336 | Welschof | Jul 2000 | A |
6442934 | Okuda | Sep 2002 | B1 |
20100000401 | Beck | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
101949373 | Jan 2011 | CN |
19706114 | Aug 1998 | DE |
102012202038 | Aug 2013 | DE |
1182290 | Mar 1999 | JP |
200365215 | Mar 2003 | JP |
2011236847 | Nov 2011 | JP |
Entry |
---|
DE102012202038A1—English Translation. |
Number | Date | Country | |
---|---|---|---|
20140150640 A1 | Jun 2014 | US |