Herman J. C. Berendsen, A Glimpse of the Holy Grail?, Science vol. 282, Oct. 23, 1998, pp. 642-643. |
Michael Y. Galperin et al., Who's your neighbor? New computational approaches for functional genomics, Nature Biotechnology, vol. 18, Jun. 2000, pp. 609-613. |
Teresa K. Attwood, The Babel of Bioinformatics, Science vol. 290, Oct. 20, 2000, pp. 471-473. |
Agrawal, “Antisense oligonucleotides: toward clinical trials”, Trends Biotechnol. 14(10):376-387 (1996). |
Akhter et al, “Interactions of antisense DNA oligonucleotide analogs with phospholipid membranes (liposomes)”, Nuc. Res. 19:5551-5559 (1991). |
Alon et al., “Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity”, Nat. Med. 1(10):1024-1028 (1995). |
Benjamin et al, “Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal”, Proc. Natl. Acad. Sci. USA 94(16):8761-8766 (1997). |
Blaesse, Gene Therapy for Cancer, Sci. Am. 276(6):111-115 (1997). |
Bouck et al, “How tumors become angiogenic” Adv. Cancer Res. 69:135-174 (1996). |
Bunn et al, “Oxygen sensing and molecular adaptation in hypoxia”, Phgysiol. Rev. 76:839-885 (1996). |
Burke et al, “Preparation of Clone Libraries in Yeast Artificial-Chromosome Vectors”, in Methods in Enzymology, vol. 194, “Guide to Yeast Genetics and Molecular Biology”, eds. Guthrie et al, Academic Press, Inc. Chap. 17, pp. 251-270 (1991). |
Calabretta et al, “Antisense strategies in the treatment of leukemias”, Semin. Oncol. 23:78 (1996). |
Capecchi, “Altering the genome by homologous recombination”, Science 244:1288-1292 (1989). |
Carmeliet et al, “Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis”, Nature 349(66923):485-490 (1998). |
Crooke, “Progress in antisense therapeutics”, Hematol. Pathol. 2:59 (1995). |
Davies Et al, “Targeted alterations in yeast artificial chromosomes for inter-species gene transfer”, Nucleic Acids Research 20(11):2693-2698 (1992). |
de Gruyter, Concise Encyclopedia Biology, p. 32. |
Dickinson et al, “High frequency gene targeting using insertional vectors”, Human Molecular Genetics 2(8):1299-1302 (1993). |
Duff et al, “Insertion of a pathogenic mutation into a yeast artificial chromosome containing the human APP gene and expression in ES cells”, Research Advances in Alzheimer's Disease and Related Disorders (1995). |
Duke et al, “Cell Suicide in Health and Disease”, Sci. Am., pp. 80-87 (1996). |
Eckstein, “Nucleotide Phosphorothioates”, Ann. Rev. Biochme. 54:367-402 (1985). |
Felgner, “Nonviral Strategies for Gene Therapy”, Sci. Am., pp. 102-106 (1997). |
Fyodorov et al, et-1, a novel ETS domain factor that can activate neuronal nAchR gene transcription, J. Neurobiol. 34(2):151-163 (1998). |
Gallagher et al, “Identification of p53 Genetic Suppressor Elements which Confer Resistance to Cisplatin”, Oncogene 14:185-193 (1997). |
Gewritz, “Oligodeoxynucleotide-based therapeutics for human leukemias”, Stem Cells Dayt. 11:96 (1993). |
Gordon, Transgenic Animals, Int. Rev. Cytol. 115:171-229 (1989). |
Hanahan et al, “Patterns and Emerging Mechanisms of Angiogenic Switch During Tumorigenesis” Cell 86:353-364 (1996). |
Hanania et al, “Recent advances in the application of gene therapy to human disease”, Am. J. Med. 99:537 (1995). |
Herskowitz, “Functional Inactivation of Genes by Dominant Negative Mutations”, Nature 329(6136):219-222 (1987). |
Holzmayer et al, “Isolation of Dominant Negative Mutants and Inhibitory Antisense RNA Sequences by Expression Selection of Random DNA Fragments”, Nucleic Acids Res. 20(4):711-717 (1992). |
Huxley et al, “The human HPRT gene on a yeast artificial chromosome is functional when transferred to mouse cells by cell fusion”, Genomics 9:742-750 (1991). |
Iyer et al, J. Org. Chem. 55:4693-4699 (1990). |
Jakobovits et al, “Germ-line transmission and expression of a human-derived yeast artificial chromosome”, Nature 362:255-261 (1993). |
Lamb et al, “Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice”, Nature Genetics 5:22-29 (1993). |
Lavitrano et al, “Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice”, Cell 57:717-723 (1989). |
Lefebvre-d'Hellencourt et al, “Immunomodulation by cytokine antisense oligonucleotides” Eur. Cytokine Netw. 6:7 (1995). |
Lev-Lehman et al, “Antisense Oligomers in vitro and in vivo”, in Antisense Therapeutics, Cohen et al, ed., Plenum Press (New York, 1997)s. |
Lo, Mol. Cell. Biol. 3:1803-1814 (1983). |
Loke et al, “Characterization of oligonucleotide transport into living cells”, Proc. Natl. Acad. Sci. USA 86:3474 (1989). |
Mansour, “Gene targeting in murine embryonic stem cells: Introduction of specific alterations into the mammalian genome”, GATA 7(8):219-227 (1990). |
Morrison, “Suppression of basic fibroblast growth factor expression by antisense oligonucleotides inhibits the growth of transformed human astrocytes”, J. biol. Chem. 266:728 (1991). |
Niinaka et al, “Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells”, Cancer Res. 58(12):2667-2674 (1998). |
Pearson et al, “Expression of the human β-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice”, Proc. Nat. Acad. Sci. USA 90:10578-10582 (1993). |
Rosolen et al, “Antisense inhibition of single copy N-myc expression results in decreased cell growth without reduction of c-myc protein in a neuroepithelioma cell line”, Cancer Res. 50:6316-6322 (1990). |
Rothstein, “Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast”, in Methods in Enzymology, vol. 194, “Guide to Yeast Genetics and Molecular Biology”, Guthrie et al, eds., Academic Press, Inc. (1991), Chapt. 19, pp. 281-301. |
Scanlon et al, “Oligonucleotides-mediated modulation of mammalian gene expression”, FASEB J. 9:1288 (1995). |
Schedl et al, “A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice”, Nature 362:258-261 (1993). |
Shaw et al, “Modified deoxyoligonucleotides stable to exonuclease degradation in serum”, Nucleic Acids Res. 19:747-750 (1991). |
Spitzer et al, “Inhibition of deoxynucleases by phosphorothioate groups in oligodeoxyribonucleotides”, Nucleic Acids Res. 18:11691-11704 (1988). |
Strauss et al, “Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus”, Science 259:1904-1907 (1993). |
Thompson et al, “Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells”, Cell 56:313-321 (1989). |
Uhlmann et al, “Antisense Oligonucleotides: A New Therapeutic Principle”, Chem. Rev. 90(4):543-584 (1990). |
Van der Putten et al, “Efficient insertion of genes into the mouse germ line via retroviral vectors”, Proc Natl Acad Sci U S A. 82(18):6148-6152 (1985). |
Wagner et al, “Potent and selective inhibition of gene expression by an antisense heptanucleotide”, Nature Biotechnology 14:840-844 (1996). |
Wagner, “Gene inhibition using antisense oligodeoxynucleotides”, Nature 372:333 (1994). |
Watanabe et al, “Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide”, Cancer Res. 56(13):2960-2963 (1996). |
Whitesell et al, “Episome-generated N-myc antisense RNA restricts the differentiation potential of primitive neuroectodermal cell liens”, Mol. Cell. Biol. 11:1360 (1991). |
Wright et al, “Antisense Molecules and Their Potential for the Treatment of Cancer and AIDs”, Cancer J. 8:185-189 (1995). |
Woolf et al, “The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos”, Nucleic Acids Res. 18:1763-1769 (1989). |
Yakubov et al, “Mechanism of oligonucleotide uptake by cells: involvement of specific receptors?”, Proc Natl Acad Sci U S A 86(17):6454-6458 (1989). |