Identification of essential genes in prokaryotes

Abstract
The sequences of antisense nucleic acids which inhibit the proliferation of prokaryotes are disclosed. Cell-based assays which employ the antisense nucleic acids to identify and develop antibiotics are also disclosed. The antisense nucleic acids can also be used to identify proteins required for proliferation, express these proteins or portions thereof, obtain antibodies capable of specifically binding to the expressed proteins, and to use those expressed proteins as a screen to isolate candidate molecules for rational drug discovery programs. The nucleic acids can also be used to screen for homologous nucleic acids that are required for proliferation in cells other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nucleic acids of the present invention can also be used in various assay systems to screen for proliferation required genes in other organisms.
Description


SEQUENCE LISTING

[0002] The present application is being filed along with duplicate copies of a CD-ROM marked “Copy 1” and “Copy 2” containing a Sequence Listing in electronic format. The duplicate copies of the CD-ROM each contain a file entitled SEQLIST_FINAL9PM created on Mar. 20, 2001 which is 37,487,912 bytes in size. The information on these duplicate CD-ROMs is incorporated herein by reference in its entirety.



BACKGROUND OF THE INVENTION

[0003] Since the discovery of penicillin, the use of antibiotics to treat the ravages of bacterial infections has saved millions of lives. With the advent of these “miracle drugs,” for a time it was popularly believed that humanity might, once and for all, be saved from the scourge of bacterial infections. In fact, during the 1980s and early 1990s, many large pharmaceutical companies cut back or eliminated antibiotics research and development. They believed that infectious disease caused by bacteria finally had been conquered and that markets for new drugs were limited. Unfortunately, this belief was overly optimistic.


[0004] The tide is beginning to turn in favor of the bacteria as reports of drug resistant bacteria become more frequent. The United States Centers for Disease Control announced that one of the most powerful known antibiotics, vancomycin, was unable to treat an infection of the common Staphylococcus aureus (staph). This organism is commonly found in our environment and is responsible for many nosocomial infections. The import of this announcement becomes clear when one considers that vancomycin was used for years to treat infections caused by Staphylococcus species as well as other stubborn strains of bacteria. In short, bacteria are becoming resistant to our most powerful antibiotics. If this trend continues, it is conceivable that we will return to a time when what are presently considered minor bacterial infections are fatal diseases.


[0005] Over-prescription and improper prescription habits by some physicians have caused an indiscriminate increase in the availability of antibiotics to the public. The patients are also partly responsible, since they will often improperly use the drug, thereby generating yet another population of bacteria that is resistant, in whole or in part, to traditional antibiotics.


[0006] The bacterial pathogens that have haunted humanity remain, in spite of the development of modern scientific practices to deal with the diseases that they cause. Drug resistant bacteria are now an increasing threat to the health of humanity. A new generation of antibiotics is needed to once again deal with the pending health threat that bacteria present.



Discovery of New Antibiotics

[0007] As more and more bacterial strains become resistant to the panel of available antibiotics, new antibiotics are required to treat infections. In the past, practitioners of pharmacology would have to rely upon traditional methods of drug discovery to generate novel, safe and efficacious compounds for the treatment of disease. Traditional drug discovery methods involve blindly testing potential drug candidate-molecules, often selected at random, in the hope that one might prove to be an effective treatment for some disease. The process is painstaking and laborious, with no guarantee of success. Today, the average cost to discover and develop a new drug exceeds US $500 million, and the average time from laboratory to patient is 15 years. Improving this process, even incrementally, would represent a huge advance in the generation of novel antimicrobial agents.


[0008] Newly emerging practices in drug discovery utilize a number of biochemical techniques to provide for directed approaches to creating new drugs, rather than discovering them at random. For example, gene sequences and proteins encoded thereby that are required for the proliferation of a cell or microorganism make excellent targets since exposure of bacteria to compounds active against these targets would result in the inactivation of the cell or microorganism. Once a target is identified, biochemical analysis of that target can be used to discover or to design molecules that interact with and alter the functions of the target. Use of physical and computational techniques to analyze structural and biochemical properties of targets in order to derive compounds that interact with such targets is called rational drug design and offers great potential. Thus, emerging drug discovery practices use molecular modeling techniques, combinatorial chemistry approaches, and other means to produce and screen and/or design large numbers of candidate compounds.


[0009] Nevertheless, while this approach to drug discovery is clearly the way of the future, problems remain. For example, the initial step of identifying molecular targets for investigation can be an extremely time consuming task. It may also be difficult to design molecules that interact with the target by using computer modeling techniques. Furthermore, in cases where the function of the target is not known or is poorly understood, it may be difficult to design assays to detect molecules that interact with and alter the functions of the target. To improve the rate of novel drug discovery and development, methods of identifying important molecular targets in pathogenic cells or microorganisms and methods for identifying molecules that interact with and alter the functions of such molecular targets are urgently required.


[0010]

Staphylococcus aureus
is a Gram positive microorganism which is the causative agent of many infectious diseases. Local infection by Staphylococcus aureus can cause abscesses on skin and cellulitis in subcutaneous tissues and can lead to toxin-related diseases such as toxic shock and scalded skin syndromes. Staphylococcus aureus can cause serious systemic infections such as osteomyelitis, endocarditis, pneumonia, and septicemia. Staphylococcus aureus is also a common cause of food poisoning, often arising from contact between prepared food and infected food industry workers. Antibiotic resistant strains of Staphylococcus aureus have recently been identified, including those that are now resistant to all available antibiotics, thereby severely limiting the options of care available to physicians.


[0011]

Pseudomonas aerginosa
is an important Gram-negative opportunistic pathogen. It is the most common Gram-negative found in nosocomial infections. P. aeruginosa is responsible for 16% of nosocomial pneumonia cases, 12% of hospital-acquired urinary tract infections, 8% of surgical wound infections, and 10% of bloodstream infections. Immunocompromised patients, such as neutropenic cancer and bone marrow transplant patients, are particular susceptible to opportunistic infections. In this group of patients, P. aeruginosa is responsible for pneumonia and septicemia with attributable deaths reaching 30%. P. aeruginosa is also one of the most common and lethal pathogens responsible for ventilator-associated pneumonia in intubated patients, with directly attributable death rates reaching 38%. Although P. aeruginosa outbreaks in bum patients are rare, it is associated with 60% death rates. In the AIDS population, P. aerginosa is associated with 50% of deaths. Cystic fibrosis patients are characteristically susceptible to chronic infection by P. aeruginosa, which is responsible for high rates of illness and death. Current antibiotics work poorly for CF infections (Van Delden & Igelwski. 1998. Emerging Infectious Diseases 4:551-560; references therein).


[0012] The gram-negative enteric bacterial genus, Salmonella, encompasses at least 2 species. One of these, S. enterica, is divided into multiple subspecies and thousands of serotypes or serovars (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467). The S. enterica human pathogens include serovars Typhi, Paratyphi, Typhimurium, Cholerasuis, and many others deemed so closely related that they are variants of a widespread species. Worldwide, disease in humans caused by Salmonella is a very serious problem. In many developing countries, S. enterica ser. Typhi still causes often-fatal typhoid fever. This problem has been reduced or eliminated in wealthy industrial states. However, enteritis induced by Salmonella is widespread and is the second most common disease caused by contaminated food in the United States (Edwards, B H 1999 “Salmonella and Shigella species” Clin. Lab Med. 19(3):469-487). Though usually self-limiting in healthy individuals, others such as children, seniors, and those with compromising illnesses can be at much greater risk of serious illness and death.


[0013] Some S. enterica serovars (e.g. Typhimurium) cause a localized infection in the gastrointestinal tract. Other serovars (i.e. Typhi and Paratyphi) cause a much more serious systemic infection. In animal models, these roles can be reversed which has allowed the use of the relatively safe S. enterica ser. Typhimurium as a surrogate in mice for the typhoid fever agent, S. enterica ser. Typhi. In mice, S. enterica ser Typhimurium causes a systemic infection similar in outcome to typhoid fever. Years of study of the Salmonella have led to the identification of many determinants of virulence in animals and humans. Salmonella is interesting in its ability to localize to and invade the intestinal epithelium, induce morphologic changes in target cells via injection of certain cell-remodeling proteins, and to reside intracellularly in membrane-bound vesicles (Wallis, T S and Galyov, EE 2000 “Molecular basis of Salmonella-induced enteritis.” Molec. Microb. 36:997-1005; Falkow, S “The evolution of pathogenicity in Escherichia, Shigella, and Salmonella,” Chap. 149 in Neidhardt, et al. eds pp 2723-2729; Gulig, P A “Pathogenesis of Systemic Disease,” Chap. 152 in Neidhardt, et al. ppp 2774-2787). The immediate infection often results in a severe watery diarrhea but Salmonella also can establish and maintain a subclinical carrier state in some individuals. Spread is via food contaminated with sewage.


[0014] The gene products implicated in Salmonella pathogenesis include type three secretion systems (TTSS), proteins affecting cytoplasmic structure of the target cells, many proteins carrying out functions necessary for survival and proliferation of Salmonella in the host, as well as “traditional” factors such as endotoxin and secreted exotoxins. Additionally, there must be factors mediating species-specific illnesses. Despite this most of the genomes of S. enterica ser. Typhi (see http://www.sanger.ac.uk/Proiects/S_typhi/ for the genome database) and S. enterica ser. Typhimurium (see http://genome.wustl.edu/gsc/bacterial/salmonella.shtml for the genome database) are highly conserved and are mutually useful for gene identification in multiple serovars. The Salmonella are a complex group of enteric bacteria causing disease similar to but distinct from other gram-negative enterics such as E. coli and have been a focus of biomedical research for the last century.


[0015]

Enterococcus faecalis
, a Gram-positive bacterium, is by far the most common member of the enterococci to cause infections in humans. Enterococcus faecium generally accounts for less than 20% of clinical isolates. Enterococci infections are mostly hospital-acquired though they are also associated with some community-acquired infections. Of nosocomial infections enterococci account for 12% of bacteremia, 15% of surgical wound infections, 14% of urinary tract infections, and 5 to 15% of endocarditis cases (Huycke, M. M., D. F., Sahm and M. S. Gilmore. 1998. Emerging Infectious Diseases 4:239-249). Additionally enterococci are frequently associated with intraabdominal and pelvic infections. Enterococci infections are often hard to treat because they are resistant to a vast array of antimicrobial drugs, including aminoglycosides, penicillin, ampicillin and vancomycin. The development of multiple-drug resistant (MDR) enterococci has made this bacteria a major concern for treating nosocomial infections.


[0016] These reasons underscore the urgency of developing new antibiotics that are effective against Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis. Accordingly, there is an urgent need for more novel methods to identify and characterize bacterial genomic sequences that encode gene products involved in proliferation, and are thereby potential new targets for antibiotic development. Prior to the present invention, the discovery of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, and Pseudomonas aerginosa and Enterococcus faecalis genes required for proliferation of the microorganism was a painstaking and slow process. While the detection of new cellular drug targets within a Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis cell is key for novel antibiotic development, the current methods of drug target discovery available prior to this invention have required painstaking processes requiring years of effort.



SUMMARY OF THE INVENTION

[0017] Some aspects of the present invention are described in the numbered paragraphs below.


[0018] 1. A purified or isolated nucleic acid sequence comprising a nucleotide sequence consisting essentially of one of SEQ ID NOs: 8-3795, wherein expression of said nucleic acid inhibits proliferation of a cell.


[0019] 2. The nucleic acid sequence of Paragraph 1, wherein said nucleotide sequence is complementary to at least a portion of a coding sequence of a gene whose expression is required for proliferation of a cell.


[0020] 3. The nucleic acid of Paragraph 1, wherein said nucleic acid sequence is complementary to at least a portion of a nucleotide sequence of an RNA required for proliferation of a cell.


[0021] 4. The nucleic acid of Paragraph 3, wherein said RNA is an RNA comprising a sequence of nucleotides encoding more than one gene product.


[0022] 5. A purified or isolated nucleic acid comprising a fragment of one of SEQ ID NOs.: 8-3795, said fragment selected from the group consisting of fragments comprising at least 10, at least 20, at least 25, at least 30, at least 50 and more than 50 consecutive nucleotides of one of SEQ ID NOs: 8-3795.


[0023] 6. The fragment of Paragraph 5, wherein said fragment is included in a nucleic acid obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0024] 7. The fragment of Paragraph 5, wherein said fragment is included in a nucleic acid obtained from an organism other than Escherichia coli.


[0025] 8. A vector comprising a promoter operably linked to the nucleic acid of any one of Paragraphs 1-7.


[0026] 9. The vector of Paragraph 8, wherein said promoter is active in a microorganism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0027] 10. A host cell containing the vector of Paragraph 8 or Paragraph 9.


[0028] 11. A purified or isolated antisense nucleic acid comprising a nucleotide sequence complementary to at least a portion of an intragenic sequence, intergenic sequence, sequences spanning at least a portion of two or more genes, 5′ noncoding region, or 3′ noncoding region within an operon comprising a proliferation-required gene whose activity or expression is inhibited by an antisense nucleic acid comprising the nucleotide sequence of one of SEQ ID NOs.: 8-3795.


[0029] 12. The purified or isolated antisense nucleic acid of Paragraph 11, wherein said antisense nucleic acid is complementary to a nucleic acid from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0030] 13. The purified or isolated antisense nucleic acid of Paragraph 11, wherein said nucleotide sequence is complementary to a nucleotide sequence of a nucleic acid from an organism other than E. coli.


[0031] 14. The purified or isolated antisense nucleic acid of Paragraph 11, wherein said proliferation-required gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0032] 15. A purified or isolated nucleic acid comprising a nucleotide sequence having at least 70% identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795, the nucleotide sequences complementary to SEQ ID NOs.: 8-3795 and the sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795 as determined using BLASTN version 2.0 with the default parameters.


[0033] 16. The purified or isolated nucleic acid of Paragraph 15, wherein said nucleic acid is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0034] 17. The nucleic acid of Paragraph 15, wherein said nucleic acid is obtained from an organism other than E. coli.


[0035] 18. A vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795.


[0036] 19. The vector of Paragraph 18, wherein said nucleic acid encoding said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0037] 20. The vector of Paragraph 18, wherein said nucleotide sequence encoding said polypeptide is obtained from an organism other than E. coli.


[0038] 21. A host cell containing the vector of Paragraph 18.


[0039] 22. The vector of Paragraph 18, wherein said polypeptide comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0040] 23. The vector of Paragraph 18, wherein said promoter is operably linked to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0041] 24. A purified or isolated polypeptide comprising a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795, or a fragment selected from the group consisting of fragments comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of one of the said polypeptides.


[0042] 25. The polypeptide of Paragraph 24, wherein said polypeptide comprises an amino acid sequence of any one of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 or a fragment comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0043] 26. The polypeptide of Paragraph 24, wherein said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0044] 27. The polypeptide of Paragraph 24, wherein said polypeptide is obtained from an organism other than E. coli.


[0045] 28. A purified or isolated polypeptide comprising a polypeptide having at least 25% amino acid identity to a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or at least 25% amino acid identity to a fragment comprising at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 as determined using FASTA version 3.0t78 with the default parameters.


[0046] 29. The polypeptide of Paragraph 28, wherein said polypeptide has at least 25% identity to a polypeptide comprising one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 or at least 25% identity to a fragment comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide comprising one of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 as determined using FASTA version 3.0t78 with the default parameters.


[0047] 30. The polypeptide of Paragraph 28, wherein said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0048] 31. The polypeptide of Paragraph 28, wherein said polypeptide is obtained from an organism other than E. coli.


[0049] 32. An antibody capable of specifically binding the polypeptide of one of Paragraphs 28-31.


[0050] 33. A method of producing a polypeptide, comprising introducing a vector comprising a promoter operably linked to a nucleic acid comprising a nucleotide sequence encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising one of SEQ ID NOs.: 8-3795 into a cell.


[0051] 34. The method of Paragraph 33, further comprising the step of isolating said polypeptide.


[0052] 35. The method of Paragraph 33, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0053] 36. The method of Paragraph 33, wherein said nucleic acid encoding said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0054] 37. The method of Paragraph 33, wherein said nucleic acid encoding said polypeptide is obtained from an organism other than E. coli.


[0055] 38. The method of Paragraph 33, wherein said promoter is operably linked to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0056] 39. A method of inhibiting proliferation of a cell in an individual comprising inhibiting the activity or reducing the amount of a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product.


[0057] 40. The method of Paragraph 39, wherein said method comprises inhibiting said activity or reducing said amount of a gene product in an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnet, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0058] 41. The method of Paragraph 39, wherein said method comprises inhibiting said activity or reducing said amount of a gene product in an organism other than E. coli.


[0059] 42. The method of Paragraph 39, wherein said gene product is present in an organism other than E. coli.


[0060] 43. The method of Paragraph 39, wherein said gene product comprises a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0061] 44. A method for identifying a compound which influences the activity of a gene product required for proliferation, said gene product comprising a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:


[0062] contacting said gene product with a candidate compound; and


[0063] determining whether said compound influences the activity of said gene product.


[0064] 45. The method of Paragraph 44, wherein said gene product is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0065] 46. The method of Paragraph 44, wherein said gene product is from an organism other than E coli.


[0066] 47. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is an enzymatic activity.


[0067] 48. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a carbon compound catabolism activity.


[0068] 49. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a biosynthetic activity.


[0069] 50. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a transporter activity.


[0070] 51. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a transcriptional activity.


[0071] 52. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a DNA replication activity.


[0072] 53. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a cell division activity.


[0073] 54. The method of Paragraph 44, wherein said gene product is an RNA.


[0074] 55. The method of Paragraph 44, wherein said gene product is a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0075] 56. A compound identified using the method of Paragraph 44.


[0076] 57. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:


[0077] (a) contacting a target gene or RNA encoding said gene product with a candidate compound or nucleic acid; and


[0078] (b) measuring an activity of said target.


[0079] 58. The method of Paragraph 57, wherein said target gene or RNA is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0080] 59. The method of Paragraph 57, wherein said target gene or RNA is from an organism other than E. coli.


[0081] 60. The method of Paragraph 57, wherein said gene product is from an organism other than E. coli.


[0082] 61. The method of Paragraph 57, wherein said target is a messenger RNA molecule and said activity is translation of said messenger RNA.


[0083] 62. The method of Paragraph 57, wherein said target is a messenger RNA molecule and said activity is transcription of a gene encoding said messenger RNA.


[0084] 63. The method of Paragraph 57, wherein said target is a gene and said activity is transcription of said gene.


[0085] 64. The method of Paragraph 57, wherein said target is a nontranslated RNA and said activity is processing or folding of said nontranslated RNA or assembly of said nontranslated RNA into a protein/RNA complex.


[0086] 65. The method of Paragraph 57, wherein said target is a messenger RNA molecule encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0087] 66. The method of Paragraph 57, wherein said target comprises a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0088] 67. A compound or nucleic acid identified using the method of Paragraph 57.


[0089] 68. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising the steps of:


[0090] (a) providing a sublethal level of an antisense nucleic acid comprising a nucleotide sequence complementary to a nucleic acid comprising a nucleotide sequence encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell;


[0091] (b) contacting said sensitized cell with a compound; and


[0092] (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.


[0093] 69. The method of Paragraph 68, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.


[0094] 70. The method of Paragraph 68, wherein said cell is a Gram positive bacterium.


[0095] 71. The method of Paragraph 68, wherein said Gram positive bacterium is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0096] 72. The method of Paragraph 68, wherein said bacterium is Staphylococcus aureus.


[0097] 73. The method of Paragraph 72, wherein said Staphylococcus species is coagulase negative.


[0098] 74. The method of Paragraph 72, wherein said bacterium is selected from the group consisting of Staphylococcus aureus RN450 and Staphylococcus aureus RN4220.


[0099] 75. The method of Paragraph 68, wherein said cell is an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0100] 76. The method of Paragraph 68, wherein said cell is not an E. coli cell.


[0101] 77. The method of Paragraph 68, wherein said gene product is from an organism other than E. coli.


[0102] 78. The method of Paragraph 68, wherein said antisense nucleic acid is transcribed from an inducible promoter.


[0103] 79. The method of Paragraph 68, further comprising the step of contacting said cell with a concentration of inducer which induces transcription of said antisense nucleic acid to a sublethal level.


[0104] 80. The method of Paragraph 68, wherein growth inhibition is measured by monitoring optical density of a culture growth solution.


[0105] 81. The method of Paragraph 68, wherein said gene product is a polypeptide.


[0106] 82. The method of Paragraph 81, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0107] 83. The method of Paragraph 68, wherein said gene product is an RNA.


[0108] 84. The method of Paragraph 68, wherein nucleic acid encoding said gene product comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0109] 85. A compound identified using the method of Paragraph 68.


[0110] 86. A method for inhibiting cellular proliferation comprising introducing an effective amount of a compound with activity against a gene whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a compound with activity against the product of said gene into a population of cells expressing said gene.


[0111] 87. The method of Paragraph 86, wherein said compound is an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof.


[0112] 88. The method of Paragraph 86, wherein said proliferation inhibiting portion of one of SEQ ID NOs.: 8-3795 is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 51 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.


[0113] 89. The method of Paragraph 86, wherein said population is a population of Gram positive bacteria.


[0114] 90. The method of Paragraph 89, wherein said population of Gram positive bacteria is selected from the group consisting of a population of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0115] 91. The method of Paragraph 86, wherein said population is a population of Staphylococcus aureus.


[0116] 92. The method of Paragraph 91, wherein said population is a population of a bacterium selected from the group consisting of Staphylococcus aureus RN450 and Staphylococcus aureus RN4220.


[0117] 93. The method of Paragraph 86, wherein said population is a population of a bacterium selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0118] 94. The method of Paragraph 86, wherein said population is a population of an organism other than E. coli.


[0119] 95. The method of Paragraph 86, wherein said product of said gene is from an organism other than E. coli.


[0120] 96. The method of Paragraph 86, wherein said gene encodes a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805,4861-5915, 10013-14110.


[0121] 97. The method of Paragraph 86, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0122] 98. A composition comprising an effective concentration of an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof in a pharmaceutically acceptable carrier.


[0123] 99. The composition of Paragraph 98, wherein said proliferation-inhibiting portion of one of SEQ ID NOs.: 8-3795 comprises at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.


[0124] 100. A method for inhibiting the activity or expression of a gene in an operon required for proliferation wherein the activity or expression of at least one gene in said operon is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising contacting a cell in a cell population with an antisense nucleic acid complementary to at least a portion of said operon.


[0125] 101. The method of Paragraph 100, wherein said antisense nucleic acid comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof.


[0126] 102. The method of Paragraph 100, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0127] 103. The method of Paragraph 100, wherein said cell is not an E. coli cell.


[0128] 104. The method of Paragraph 100, wherein said gene is from an organism other than E. coli.


[0129] 105. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a plasmid which expresses said antisense nucleic acid into said cell population.


[0130] 106. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a phage which encodes said antisense nucleic acid into said cell population.


[0131] 107. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by expressing said antisense nucleic acid from the chromosome of cells in said cell population.


[0132] 108. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a promoter adjacent to a chromosomal copy of said antisense nucleic acid such that said promoter directs the transcription of said antisense nucleic acid.


[0133] 109. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a retron which expresses said antisense nucleic acid into said cell population.


[0134] 110. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a ribozyme into said cell-population, wherein a binding portion of said ribozyme comprises said antisense nucleic acid.


[0135] 111. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a liposome comprising said antisense nucleic acid into said cell.


[0136] 112. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by electroporation of said antisense nucleic acid into said cell.


[0137] 113. The method of Paragraph 100, wherein said antisense nucleic acid is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.


[0138] 114. The method of Paragraph 100 wherein said antisense nucleic acid is a synthetic oligonucleotide.


[0139] 115. The method of Paragraph 100, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0140] 116. A method for identifying a gene which is required for proliferation of a cell comprising:


[0141] (a) contacting a cell with an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, wherein said cell is a cell other than the organism from which said nucleic acid was obtained;


[0142] (b) determining whether said nucleic acid inhibits proliferation of said cell; and


[0143] (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.


[0144] 117. The method of Paragraph 116, wherein said cell is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0145] 118. The method of Paragraph 116 wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0146] 119. The method of Paragraph 116, wherein said cell is not E. coli.


[0147] 120. The method of Paragraph 116, further comprising operably linking said antisense nucleic acid to a promoter which is functional in said cell, said promoter being included in a vector, and introducing said vector into said cell.


[0148] 121. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising:


[0149] (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 in a test cell, wherein said test cell is not the cell from which said nucleic acid was obtained;


[0150] (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell;


[0151] (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell;


[0152] (d) contacting the sensitized cell of step (c) with a compound; and


[0153] (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said inhibitory nucleic acid.


[0154] 122. The method of Paragraph 121, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.


[0155] 123. The method of Paragraph 121, wherein step (a) comprises identifying a nucleic acid homologous to a gene or gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 or a nucleic acid encoding a homologous polypeptide to a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 by using an algorithm selected from the group consisting of BLASTN version 2.0 with the default parameters and FASTA version 3.0t78 algorithm with the default parameters to identify said homologous nucleic acid or said nucleic acid encoding a homologous polypeptide in a database.


[0156] 124. The method of Paragraph 121 wherein said step (a) comprises identifying a homologous nucleic acid or a nucleic acid comprising a sequence of nucleotides encoding a homologous polypeptide by identifying nucleic acids which hybridize to said nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 or the complement of said nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795.


[0157] 125. The method of Paragraph 121 wherein step (a) comprises expressing a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 in said test cell.


[0158] 126. The method of Paragraph 121, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a test cell selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0159] 127. The method of Paragraph 121, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a test cell other than E coli.


[0160] 128. The method of Paragraph 121, wherein said inhibitory nucleic acid is an antisense nucleic acid.


[0161] 129. The method of Paragraph 121, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of said homolog.


[0162] 130. The method of Paragraph 121, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of the operon encoding said homolog.


[0163] 131. The method of Paragraph 121, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises directly contacting the surface of said cell with said inhibitory nucleic acid.


[0164] 132. The method of Paragraph 121, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises transcribing an antisense nucleic acid complementary to at least a portion of the RNA transcribed from said homolog in said cell.


[0165] 133. The method of Paragraph 121, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0166] 134. The method of Paragraph 121, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0167] 135. A compound identified using the method of Paragraph 121.


[0168] 136. A method of identifying a compound having the ability to inhibit proliferation comprising:


[0169] (a) contacting a test cell with a sublethal level of a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, thus sensitizing said test cell;


[0170] (b) contacting the sensitized test cell of step (a) with a compound; and


[0171] (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said nucleic acid.


[0172] 137. The method of Paragraph 136, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.


[0173] 138. A compound identified using the method of Paragraph 136.


[0174] 139. The method of Paragraph 136, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0175] 140. The method of Paragraph 136, wherein the test cell is not E. coli.


[0176] 141. A method for identifying a compound having activity against a biological pathway required for proliferation comprising:


[0177] (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, in said cell to reduce the activity or amount of said gene product;


[0178] (b) contacting the sensitized cell with a compound; and


[0179] (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.


[0180] 142. The method of Paragraph 141, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.


[0181] 143. The method of Paragraph 141, wherein said cell is selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells.


[0182] 144. The method of Paragraph 141, wherein said cell is a Gram positive bacterium.


[0183] 145. The method of Paragraph 144, wherein said Gram positive bacterium is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0184] 146. The method of Paragraph 145, wherein said Gram positive bacterium is Staphylococcus aureus.


[0185] 147. The method of Paragraph 146, wherein said Gram positive bacterium is selected from the group consisting of Staphylococcus aureus RN450 and Staphylococcus aureus RN4220.


[0186] 148. The method of Paragraph 141, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnet, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0187] 149. The method of Paragraph 141, wherein said cell is not an E. coli cell.


[0188] 150. The method of Paragraph 141, wherein said gene product is from an organism other than E. coli.


[0189] 151. The method of Paragraph 141, wherein said antisense nucleic acid is transcribed from an inducible promoter.


[0190] 152. The method of Paragraph 141, further comprising contacting the cell with an agent which induces transcription of said antisense nucleic acid from said inducible promoter, wherein said antisense nucleic acid is transcribed at a sublethal level.


[0191] 153. The method of Paragraph 141, wherein inhibition of proliferation is measured by monitoring the optical density of a liquid culture.


[0192] 154. The method of Paragraph 141, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0193] 155. The method of Paragraph 141, wherein said nucleic acid encoding said gene product comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0194] 156. A compound identified using the method of Paragraph 141.


[0195] 157. A method for identifying a compound having the ability to inhibit cellular proliferation comprising:


[0196] (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795;


[0197] (b) contacting said cell with a compound; and


[0198] (c) determining whether said compound reduces proliferation of said contacted cell by acting on said gene product.


[0199] 158. The method of Paragraph 157, wherein said determining step comprises determining whether said compound reduces proliferation of said contacted cell to a greater extent than said compound reduces proliferation of cells which have not been contacted with said agent.


[0200] 159. The method of Paragraph 157, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0201] 160. The method of Paragraph 157, wherein said cell is not an E. coli cell.


[0202] 161. The method of Paragraph 157, wherein said gene product is from an organism other than E. coli.


[0203] 162. The method of Paragraph 157, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises an antisense nucleic acid to a gene or operon required for proliferation.


[0204] 163. The method of Paragraph 157, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises a compound known to inhibit growth or proliferation of a cell.


[0205] 164. The method of Paragraph 157, wherein said cell contains a mutation which reduces the activity or level of said gene product required for proliferation of said cell.


[0206] 165. The method of Paragraph 157, wherein said mutation is a temperature sensitive mutation.


[0207] 166. The method of Paragraph 157, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0208] 167. A compound identified using the method of Paragraph 157.


[0209] 168. A method for identifying the biological pathway in which a proliferation-required gene or its gene product lies, wherein said gene or gene product comprises a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:


[0210] (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity of said proliferation-required gene or gene product in a test cell;


[0211] (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and


[0212] (c) determining the degree to which said proliferation of said test cell is inhibited relative to a cell which was not contacted with said compound.


[0213] 169. The method of Paragraph 168, wherein said determining step comprises determining whether said test cell has a substantially greater sensitivity to said compound than a cell which does not express said sublethal level of said antisense nucleic acid.


[0214] 170. The method of Paragraph 168, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0215] 171. The method of Paragraph 168, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0216] 172. The method of Paragraph 168, wherein said test cell is not an E. coli cell.


[0217] 173. The method of Paragraph 168, wherein said gene product is from an organism other than E. coli.


[0218] 174. A method for determining the biological pathway on which a test compound acts comprising:


[0219] (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a first cell, wherein the activity or expression of said proliferation-required nucleic acid is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795 and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required nucleic acid lies is known,


[0220] (b) contacting said first cell with said test compound; and


[0221] (c) determining the degree to which said test compound inhibits proliferation of said first cell relative to a cell which does not contain said antisense nucleic acid.


[0222] 175. The method of Paragraph 174, wherein said determining step comprises determining whether said first cell has a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said antisense nucleic acid.


[0223] 176. The method of Paragraph 174, further comprising:


[0224] (d) providing a sublethal level of a second antisense nucleic acid complementary to a second proliferation-required nucleic acid in a second cell, wherein said second proliferation-required nucleic acid is in a different biological pathway than said proliferation-required nucleic acid in step (a); and


[0225] (e) determining whether said second cell does not have a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said second antisense nucleic acid, wherein said test compound is specific for the biological pathway against which the antisense nucleic acid of step (a) acts if said first cell has a substantially greater sensitivity to said test compound than said second cell.


[0226] 177. The method of Paragraph 174, wherein said first cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0227] 178. The method of Paragraph 174, wherein said first cell is not an E. coli cell.


[0228] 179. The method of Paragraph 174, wherein said proliferation-required nucleic acid is from an organism other than E. coli.


[0229] 180. A purified or isolated nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795.


[0230] 181. A compound which interacts with a gene eorgene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.


[0231] 182. The compound of Paragraph 181, wherein said gene product is a polypeptide comprising one of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0232] 183. The compound of Paragraph 181, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0233] 184. A compound which interacts with a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.


[0234] 185. A method for manufacturing an antibiotic comprising the steps of:


[0235] screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795; and


[0236] manufacturing the compound so identified.


[0237] 186. The method of Paragraph 185, wherein said screening step comprises performing any one of the methods of Paragraphs 44, 68, 121, 136, 141, and 157.


[0238] 187. The method of Paragraph 185, wherein said gene product is a polypeptide comprising one of SEQ ID NOs:3801-3805, 4861-5915, 10013-14110.


[0239] 188. A method for inhibiting proliferation of a cell in a subject comprising administering an effective amount of a compound that reduces the activity or level of a gene product required for proliferation of said cell, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 to said subject.


[0240] 189. The method of Paragraph 188 wherein said subject is selected from the group consisting of vertebrates, mammals, avians, and human beings.


[0241] 190. The method of Paragraph 188, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0242] 191. The method of Paragraph 188, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0243] 192. The method of Paragraph 188, wherein said cell is not E. coli.


[0244] 193. The method of Paragraph 188, wherein said gene product is from an organism other than E. coli.


[0245] 194. A purified or isolated nucleic acid consisting essentially of the coding sequence of one of SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012.


[0246] 195. A fragment of the nucleic acid of Paragraph 8, said fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012.


[0247] 196. A purified or isolated nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the nucleotide sequences complementary to SEQ ID NOs.:3796-3800, 3806-4860, 5916-10012, and the nucleotide sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 as determined using BLASTN version 2.0 with the default parameters.


[0248] 197. The nucleic acid of Paragraph 196, wherein said nucleic acid is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0249] 198. The nucleic acid of Paragraph 196, wherein said nucleic acid is from an organism other than E. coli.


[0250] 199. A method of inhibiting proliferation of a cell comprising inhibiting the activity or reducing the amount of a gene product in said cell or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in said cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the croup consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795.


[0251] 200. The method of Paragraph 199, wherein said method comprises inhibiting said activity or reducing said amount of said gene product or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0252] 201. The method of Paragraph 199, wherein said method comprises inhibiting said activity or reducing said amount of said gene product or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in an organism other than E. coli.


[0253] 202. The method of Paragraph 199, wherein said gene product is from an organism other than E. coli.


[0254] 203. The method of Paragraph 199, wherein said gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0255] 204. The method of Paragraph 199, wherein said gene product is encoded by a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucloetide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0256] 205. A method for identifying a compound which influences the activity of a gene product required for proliferation comprising:


[0257] contacting a candidate compound with a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent ,conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and


[0258] determining whether said candidate compound influences the activity of said gene product.


[0259] 206. The method of Paragraph 205, wherein said gene product is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0260] 207. The method of Paragraph 205, wherein said gene product is from an organism other than E. coli.


[0261] 208. The method of Paragraph 205, wherein said gene product is a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0262] 209. The method of Paragraph 205, wherein said gene product is encoded by a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0263] 210. A compound identified using the method of Paragraph 205.


[0264] 211. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation comprising:


[0265] (a) providing a target that is a gene or RNA, wherein said target comprises a nucleic acid that encodes a gene product selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;


[0266] (b) contacting said target with a candidate compound or nucleic acid; and


[0267] (c) measuring an activity of said target.


[0268] 212. The method of Paragraph 211, wherein said target gene or RNA is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0269] 213. The method of Paragraph 211, wherein said target gene or RNA is from an organism other than E. coli.


[0270] 214. The method of Paragraph 211, wherein said gene product is from an organism other than E. coli.


[0271] 215. The method of Paragraph 211, wherein said target is a messenger RNA molecule and said activity is translation of said messenger RNA.


[0272] 216. The method of Paragraph 211, wherein said compound is a nucleic acid and said activity is translation of said gene product.


[0273] 217. The method of Paragraph 211, wherein said target is a gene and said activity is transcription of said gene.


[0274] 218. The method of Paragraph 211, wherein said target is a nontranslated RNA and said activity is processing or folding of said nontranslated RNA or assembly of said nontranslated RNA into a protein/RNA complex.


[0275] 219. The method of Paragraph 211, wherein said target gene is a messenger RNA molecule encoding a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0276] 220. The method of Paragraph 11, wherein said target gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0277] 221. A compound or nucleic acid identified using the method of Paragraph 211.


[0278] 222. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell comprising:


[0279] (a) providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;


[0280] (b) contacting said sensitized cell with a compound; and


[0281] (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.


[0282] 223. The method of Paragraph 222, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.


[0283] 224. The method of Paragraph 222, wherein said sensitized cell is a Gram positive bacterium.


[0284] 225. The method of Paragraph 224, wherein said Gram positive bacterium is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0285] 226. The method of Paragraph 225, wherein said bacterium is Staphylococcus aureus.


[0286] 227. The method of Paragraph 224, wherein said Staphylococcus species is coagulase negative.


[0287] 228. The method of Paragraph 226, wherein said bacterium is selected from the group consisting of Staphylococcus aureus RN450 and Staphylococcus aureus RN4220.


[0288] 229. The method of Paragraph 222, wherein said sensitized cell is an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0289] 230. The method of Paragraph 222, wherein said cell is an organism other than E. coli.


[0290] 231. The method of Paragraph 222, wherein said gene product is from an organism other than E. coli.


[0291] 232. The method of Paragraph 222, wherein said antisense nucleic acid is transcribed from an inducible promoter.


[0292] 233. The method of Paragraph 222, further comprising the step of contacting said cell with a concentration of inducer which induces transcription of said antisense nucleic acid to a sublethal level.


[0293] 234. The method of Paragraph 222, wherein growth inhibition is measured by monitoring optical density of a culture medium.


[0294] 235. The method of Paragraph 222, wherein said gene product is a polypeptide.


[0295] 236. The method of Paragraph 235, wherein said polypeptide comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0296] 237. The method of Paragraph 222, wherein said gene product is an RNA.


[0297] 238. The method of Paragraph 222, wherein said nucleic acid encoding said gene product comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0298] 239. A compound identified using the method of Paragraph 222.


[0299] 240. A method for inhibiting cellular proliferation comprising introducing a compound with activity against a gene product or a compound with activity against a gene encoding said gene product into a population of cells expressing said gene product, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.


[0300] 241. The method of Paragraph 240, wherein said compound is an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof.


[0301] 242. The method of Paragraph 240, wherein said proliferation inhibiting portion of one of SEQ ID NOs.: 8-3795 is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 51 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.


[0302] 243. The method of Paragraph 240, wherein said population is a population of Gram positive bacteria.


[0303] 244. The method of Paragraph 243, wherein said population of Gram positive bacteria is selected from the group consisting of a population of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0304] 245. The method of Paragraph 243, wherein said population is a population of Staphylococcus aureus.


[0305] 246. The method of Paragraph 245, wherein said population is a population of a bacterium selected from the group consisting of Staphylococcus aureus RN450 and Staphylococcus aureus RN4220.


[0306] 247. The method of Paragraph 240, wherein said population is a population of a bacterium selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnet, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0307] 248. The method of Paragraph 240, wherein said population is a population of an organism other than E. coli.


[0308] 249. The method of Paragraph 240, wherein said product of said gene is from an organism other than E. coli.


[0309] 250. The method of Paragraph 240, wherein said gene product is selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0310] 251. The method of Paragraph 240, wherein said gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0311] 252. A preparation comprising an effective concentration of an antisense nucleic acid in a pharmaceutically acceptable carrier wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid comprising a sequence having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions.


[0312] 253. The preparation of Paragraph 252, wherein said proliferation-inhibiting portion of one of SEQ ID NOs.: 8-3795 comprises at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.


[0313] 254. A method for inhibiting the activity or expression of a gene in an operon which encodes a gene product required for proliferation comprising contacting a cell in a cell population with an antisense nucleic acid comprising at least a proliferation-inhibiting portion of said operon in an antisense orientation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.


[0314] 255. The method of Paragraph 254, wherein said antisense nucleic acid comprises a nucleotide sequence having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide seqence selected from the group consisting of SEQ ID NOs.: 8-3795, a proliferation inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid which comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions.


[0315] 256. The method of Paragraph 254, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnet, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0316] 257. The method of Paragraph 254, wherein said cell is not an E. coli cell.


[0317] 258. The method of Paragraph 254, wherein said gene is from an organism other than E. coli.


[0318] 259. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a plasmid which transcribes said antisense nucleic acid into said cell population.


[0319] 260. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a phage which transcribes said antisense nucleic acid into said cell population.


[0320] 261. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by transcribing said antisense nucleic acid from the chromosome of cells in said cell population.


[0321] 262. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a promoter adjacent to a chromosomal copy of said antisense nucleic acid such that said promoter directs the synthesis of said antisense nucleic acid.


[0322] 263. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a retron which expresses said antisense nucleic acid into said cell population.


[0323] 264. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a ribozyme into said cell-population, wherein a binding portion of said ribozyme is complementary to said antisense oligonucleotide.


[0324] 265. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a liposome comprising said antisense oligonucleotide into said cell.


[0325] 266. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by electroporation of said antisense nucleic acid into said cell.


[0326] 267. The method of Paragraph 254, wherein said antisense nucleic acid has at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.


[0327] 268. The method of Paragraph 254 wherein said antisense nucleic acid is a synthetic oligonucleotide.


[0328] 269. The method of Paragraph 254, wherein said gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid -comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0329] 270. A method for identifying a gene which is required for proliferation of a cell comprising:


[0330] (a) contacting a cell with an antisense nucleic acid selected from the group consisting of a nucleic acid at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, wherein said cell is a cell other than the organism from which said nucleic acid was obtained;


[0331] (b) determining whether said nucleic acid inhibits proliferation of said cell; and


[0332] (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.


[0333] 271. The method of Paragraph 270, wherein said cell is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0334] 272. The method of Paragraph 270 wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0335] 273. The method of Paragraph 270, wherein said cell is not E. coli.


[0336] 274. The method of Paragraph 270, further comprising operably linking said antisense nucleic acid to a promoter which is functional in said cell, said promoter being included in a vector, and introducing said vector into said cell.


[0337] 275. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising:


[0338] (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by an antisense nucleic acid in a test cell, wherein said test cell is not the microorgaism from which the antisense nucleic acid was obtained, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions;


[0339] (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell;


[0340] (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell;


[0341] (d) contacting the sensitized cell of step (c) with a compound; and


[0342] (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not express said inhibitory nucleic acid.


[0343] 276. The method of Paragraph 275, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.


[0344] 277. The method of Paragraph 275, wherein step (a) comprises identifying a homologous nucleic acid to a gene or gene product whose activity or level is inhibited by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a nucleic acid encoding a homologous polypeptide to a polypeptide whose activity or level is inhibited by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 by using an algorithm selected from the group consisting of BLASTN version 2.0 with the default parameters and FASTA version 3.0t78 algorithm with the default parameters to identify said homologous nucleic acid or said nucleic acid encoding a homologous polypeptide in a database.


[0345] 278. The method of Paragraph 275 wherein said step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide by identifying nucleic acids comprising nucleotide sequences which hybridize to said nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or the complement of the nucleotide sequence of said nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795.


[0346] 279. The method of Paragraph 275 wherein step (a) comprises expressing a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a sequence selected from the group consisting of SEQ ID NOs. 8-3795 in said test cell.


[0347] 280. The method of Paragraph 275, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in an test cell selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0348] 281. The method of Paragraph 275, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a test cell other than E. coli.


[0349] 282. The method of Paragraph 275, wherein said inhibitory nucleic acid is an antisense nucleic acid.


[0350] 283. The method of Paragraph 275, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of said homolog.


[0351] 284. The method of Paragraph 275, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of the operon encoding said homolog.


[0352] 285. The method of Paragraph 275, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises directly contacting said cell with said inhibitory nucleic acid.


[0353] 286. The method of Paragraph 275, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises expressing an antisense nucleic acid to said homolog in said cell.


[0354] 287. The method of Paragraph 275, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0355] 288. The method of Paragraph 275, wherein said gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0356] 289. A compound identified using the method of Paragraph 275.


[0357] 290. A method of identifying a compound having the ability to inhibit proliferation comprising:


[0358] (a) sensitizing a test cell by contacting said test cell with a sublethal level of an antisense nucleic acid, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditionst;


[0359] (b) contacting the sensitized test cell of step (a) with a compound; and


[0360] (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said antisense nucleic acid.


[0361] 291. The method of Paragraph 290, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.


[0362] 292. A compound identified using the method of Paragraph 290.


[0363] 293. The method of Paragraph 290, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0364] 294. The method of Paragraph 290, wherein the test cell is not E. coli.


[0365] 295. A method for identifying a compound having activity against a biological pathway required for proliferation comprising:


[0366] (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;


[0367] (b) contacting the sensitized cell with a compound; and


[0368] (c) determining the extent to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.


[0369] 296. The method of Paragraph 295, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.


[0370] 297. The method of Paragraph 295, wherein said cell is selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells.


[0371] 298. The method of Paragraph 295, wherein said cell is a Gram positive bacterium.


[0372] 299. The method of Paragraph 298, wherein said Gram positive bacterium is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.


[0373] 300. The method of Paragraph 299, wherein said Gram positive bacterium is Staphylococcus aureus.


[0374] 301. The method of Paragraph 298, wherein said Gram positive bacterium is selected from the group consisting of Staphylococcus aureus RN450 and Staphylococcus aureus RN4220.


[0375] 302. The method of Paragraph 295, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0376] 303. The method of Paragraph 295, wherein said cell is not an E. coli cell.


[0377] 304. The method of Paragraph 295, wherein said gene product is from an organism other than E. coli.


[0378] 305. The method of Paragraph 295, wherein said antisense nucleic acid is transcribed from an inducible promoter.


[0379] 306. The method of Paragraph 305, further comprising contacting the cell with an agent which induces expression of said antisense nucleic acid from said inducible promoter, wherein said antisense nucleic acid is expressed at a sublethal level.


[0380] 307. The method of Paragraph 295, wherein inhibition of proliferation is measured by monitoring the optical density of a liquid culture.


[0381] 308. The method of Paragraph 295, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0382] 309. The method of Paragraph 295, wherein said nucleic acid encoding said gene product comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0383] 310. A compound identified using the method of Paragraph 295.


[0384] 311. A method for identifying a compound having the ability to inhibit cellular proliferation comprising:


[0385] (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;


[0386] (b) contacting said cell with a compound; and


[0387] (c) determining the degree to which said compound reduces proliferation of said contacted cell relative to a cell which was not contacted with said agent.


[0388] 312. The method of Paragraph 311, wherein said determining step comprises determining whether said compound reduces proliferation of said contacted cell to a greater extent than said compound reduces proliferation of cells which have not been contacted with said agent.


[0389] 313. The method of Paragraph 311, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0390] 314. The method of Paragraph 311, wherein said cell is not an E. coli cell.


[0391] 315. The method of Paragraph 311, wherein said gene product is from an organism other than E. coli.


[0392] 316. The method of Paragraph 311, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises an antisense nucleic acid to a gene or operon required for proliferation.


[0393] 317. The method of Paragraph 311, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises a compound known to inhibit growth or proliferation of a cell.


[0394] 318. The method of Paragraph 311, wherein said cell contains a mutation which reduces the activity or level of said gene product required for proliferation of said cell.


[0395] 319. The method of Paragraph 311, wherein said mutation is a temperature sensitive mutation.


[0396] 320. The method of Paragraph 311, wherein said gene product comprises a gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0397] 321. A compound identified using the method of Paragraph 311.


[0398] 322. A method for identifying the biological pathway in which a proliferation-required gene product or a gene encoding a proliferation-required gene product lies comprising:


[0399] (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity or reduces the level of said gene encoding a proliferation-required gene product or said said proliferation-required gene product in a test cell, wherein said proliferation-required gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;


[0400] (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and


[0401] (c) determining the degree to which said compound inhibits proliferation of said test cell relative to a cell which does not contain said antisense nucleic acid.


[0402] 323. The method of Paragraph 322, wherein said determining step comprises determining whether said test cell has a substantially greater sensitivity to said compound than a cell which does not express said sublethal level of said antisense nucleic acid.


[0403] 324. The method of Paragraph 322, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0404] 325. The method of Paragraph 322, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0405] 326. The method of Paragraph 322, wherein said test cell is not an E. coli cell.


[0406] 327. The method of Paragraph 322, wherein said gene product is from an organism other than E. coli.


[0407] 328. A method for determining the biological pathway on which a test compound acts comprising:


[0408] (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a cell, thereby producing a sensitized cell, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795 or a proliferation-inhibiting portion thereof a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required polypeptide lies is known,


[0409] (b) contacting said cell with said test compound; and


[0410] (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.


[0411] 329. The method of Paragraph 328, wherein said determining step comprises determining whether said sensitized cell has a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said antisense nucleic acid.


[0412] 330. The method of Paragraph 328, further comprising:


[0413] (d) providing a sublethal level of a second antisense nucleic acid complementary to a second proliferation-required nucleic acid in a second cell, wherein said second proliferation-required nucleic acid is in a different biological pathway than said proliferation-required nucleic acid in step (a); and


[0414] (e) determining whether said second cell does not have a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said second antisense nucleic acid, wherein said test compound is specific for the biological pathway against which the antisense nucleic acid of step (a) acts if said sensitized cell has substantially greater sensitivity to said test compound than said second cell.


[0415] 331. The method of Paragraph 328, wherein said sensitized cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0416] 332. The method of Paragraph 328, wherein said sensitized cell is not an E. coli cell.


[0417] 333. The method of Paragraph 328, wherein said proliferation-required nucleic acid is from an organism other than E. coli.


[0418] 334. A compound which inhibits proliferation by interacting with a gene encoding a gene product required for proliferation or with a gene product required for proliferation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.


[0419] 335. The compound of Paragraph 334, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0420] 336. The compound of Paragraph 334, wherein said gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.


[0421] 337. A method for manufacturing an antibiotic comprising the steps of:


[0422] screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and


[0423] manufacturing the compound so identified.


[0424] 338. The method of Paragraph 337, wherein said screening step comprises performing any one of the methods of Paragraphs 205, 211, 222, 275, 290, 295, 311.


[0425] 339. The method of Paragraph 337, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0426] 340. A method for inhibiting proliferation of a cell in a subject comprising administering an effective amount of a compound that reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.


[0427] 341. The method of Paragraph 340 wherein said subject is selected from the group consisting of vertebrates, mammals, avians, and human beings.


[0428] 342. The method of Paragraph 340, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.


[0429] 343. The method of Paragraph 340, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.


[0430] 344. The method of Paragraph 340, wherein said cell is not E. coli.


[0431] 345. The method of Paragraph 340, wherein said gene product is from an organism other than E. coli.



Definitions

[0432] By “biological pathway” is meant any discrete cell function or process that is carried out by a gene product or a subset of gene products. Biological pathways include anabolic, catabolic, enzymatic, biochemical and metabolic pathways as well as pathways involved in the production of cellular structures such as cell walls. Biological pathways that are usually required for proliferation of cells or microorganisms include, but are not limited to, cell division, DNA synthesis and replication, RNA synthesis (transcription), protein synthesis (translation), protein processing, protein transport, fatty acid biosynthesis, electron transport chains, cell wall synthesis, cell membrane production, synthesis and maintenance, and the like.


[0433] By “inhibit activity of a gene or gene product” is meant having the ability to interfere with the function of a gene or gene product in such a way as to decrease expression of the gene, in such a way as to reduce the level or activity of a product of .the gene or in such a way as to inhibit the interaction of the gene or gene product with other biological molecules required for its activity. Agents which inhibit the activity of a gene include agents that inhibit transcription of the gene, agents that inhibit processing of the transcript of the gene, agents that reduce the stability of the transcript of the gene, and agents that inhibit translation of the mRNA transcribed from the gene. In microorganisms, agents which inhibit the activity of a gene can act to decrease expression of the operon in which the gene resides or alter the folding or processing of operon RNA so as to reduce the level or activity of the gene product. The gene product can be a non-translated RNA such as ribosomal RNA, a translated RNA (mRNA) or the protein product resulting from translation of the gene mRNA. Of particular utility to the present invention are antisense RNAs that have activities against the operons or genes to which they specifically hybridze.


[0434] By “activity against a gene product” is meant having the ability to inhibit the function or to reduce the level or activity of the gene product in a cell. This includes, but is not limited to, inhibiting the enzymatic activity of the gene product or the ability of the gene product to interact with other biological molecules required for its activity, including inhibiting the gene product's assembly into a multimeric structure.


[0435] By “activity against a protein” is meant having the ability to inhibit the function or to reduce the level or activity of the protein in a cell. This includes, but is not limited to, inhibiting the enzymatic activity of the protein or the ability of the protein to interact with other biological molecules required for its activity, including inhibiting the protein's assembly into a multimeric structure.


[0436] By “activity against a nucleic acid” is meant having the ability to inhibit the function or to reduce the level or activity of the nucleic acid in a cell. This includes, but is not limited to, inhibiting the ability of the nucleic acid interact with other biological molecules required for its activity, including inhibiting the nucleic acid's assembly into a multimeric structure.


[0437] By “activity against a gene” is meant having the ability to inhibit the function or expression of the gene in a cell. This includes, but is not limited to, inhibiting the ability of the gene to interact with other biological molecules required for its activity.


[0438] By “activity against an operon” is meant having the ability to inhibit the function or reduce the level of one or more products of the operon in a cell. This includes, but is not limited to, inhibiting the enzymatic activity of one or more products of the operon or the ability of one or more products of the operon to interact with other biological molecules required for its activity.


[0439] By “antibiotic” is meant an agent which inhibits the proliferation of a cell or microorganism.


[0440] By “E. coli or Escherichia coli” is meant Escherichia coli or any organism previously categorized as a species of Shigella including Shigella boydii, Shigella flexneri, Shigella dysenteriae, Shigella sonnei, Shigella 2A.


[0441] By “homologous coding nucleic acid” is meant a nucleic acid homologous to a nucleic acid encoding a gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 or a portion thereof. In some embodiments, the homologous coding nucleic acid may have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. In other embodiments the homologous coding nucleic acids may have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequences complementary to one of SEQ ID NOs.: 8-3795 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Identity may be measured using BLASTN version 2.0 with the default parameters or tBLASTX with the default parameters. (Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety) Alternatively a “homologuous coding nucleic acid” could be identified by membership of the gene of interest to a functional orthologue cluster. All other members of that orthologue cluster would be considered homologues. Such a library of functional orthologue clusters can be found at http://www.ncbi.nlm.nih.gov/COG. A gene can be classified into a cluster of orthologous groups or COG by using the COGNITOR program available at the above web site, or by direct BLASTP comparison of the gene of interest to the members of the COGs and analysis of these results as described by Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research v. 28 n. 1, pp33-36.


[0442] The term “homologous coding nucleic acid” also includes nucleic acids comprising nucleotide sequences which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% maino acid identity or similarity to a polypeptide comprising the amino acid sequence of one of SEQ IDNOs: 3801-3805, 4861-5915, 10013-14110 or to a polypeptpide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs: 8-3795 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, TBLASTN with the default parameters, or tBLASTX with the default parameters. (Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res.


[0443] 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).


[0444] The term “homologous coding nucleic acid” also includes coding nucleic acids which hybridize under stringent conditions to a nucleic acid selected from the group consisting of the nucleotide sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and coding nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 As used herein, “stringent conditions” means hybridization to filter-bound nucleic acid in 6× SSC at about 45° C. followed by one or more washes in 0.1× SSC/0.2% SDS at about 68° C. Other exemplary stringent conditions may refer, e.g., to washing in 6× SSC/0.05% sodium pyrophosphate at 37° C., 48° C., 55° C., and 60° C. as appropriate for the particular probe being used.


[0445] The term “homologous coding nucleic acid” also includes coding nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence selected from the group consisting of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and coding nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012. As used herein, “moderate conditions” means hybridization to filter-bound DNA in 6× sodium chloride/sodium citrate (SSC) at about 45° C. followed by one or more washes in 0.2× SSC/0.1% SDS at about 42-65° C.


[0446] The term “homologous coding nucleic acids” also includes nucleic acids comprising nucleotide sequences which encode a gene product whose activity may be complemented by a gene encoding a gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795. In some embodiments, the homologous coding nucleic acids may encode a gene product whose activity is complemented by the gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012. In other embodiments, the homologous coding nucleic acids may comprise a nucleotide sequence encode a gene product whose activity is complemented by one of the polypeptides of SEQ ID NOs. 3745-4773.


[0447] The term “homologous antisense nucleic acid” includes nucleic acids comprising a nucleotide sequence having at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 8-3795 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Homologous antisense nucleic acids may also comprising nucleotide sequences which have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of the sequences complementary to one of sequences of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Nucleic acid identity may be determined as described above.


[0448] The term “homologous antisense nucleic acid” also includes antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleotide sequence complementary to one of SEQ ID NOs.: 8-3795 and antisens nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795. Homologous antisense nucleic acids also include antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20,25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0449] The term “homologous antisense nucleic acid” also includes antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence complementary to one of SEQ ID NOs.: 8-3795 and antisens nucleic acids comprising nucleotide seuqences which hybridize under moderate conditions to a fragment comprising at least 10, 15,20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795. Homologous antisense nucleic acids also include antisense nucleic acids comprising nucleotide seuqences which hybridize under moderate conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and antisense nucleic acids which comprising nucleotide sequences hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0450] By “homologous polypeptide” is meant a polypeptide homologous to a polypeptide whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or by a homologous antisense nucleic acid. The term “homologous polypeptide” includes polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795 or by a homologous antisense nucleic acid, or polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide to a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 or by a homologous antisense nucleic acid. Identity or similarity may be determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default parameters. (Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).


[0451] The term homologous polypeptide also includes polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.


[0452] The invention also includes polynucleotides, preferably DNA molecules, that hybridize to one of the nucleic acids of SEQ ID NOs.: 8-3795, SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 or the complements of any of the preceding nucleic acids. Such hybridization may be under stringent or moderate conditions as defined above or under other conditions which permit specific hybridization. The nucleic acid molecules of the invention that hybridize to these DNA sequences include oligodeoxynucleotides (“oligos”) which hybridize to the target gene under highly stringent or stringent conditions. In general, for oligos between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula:


Tm(° C.)=81.5+16.6(log[monovalent cations (molar)]+0.41 (% G+C)−(500/N)


[0453] where N is the length of the probe. If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation:


Tm(° C.)=81.5+16.6(log[monovalent cations (molar)]+0.41(% G+C)−(0.61) (% formamide)−(500/N)


[0454] where N is the length of the probe. In general, hybridization is carried out at about 20-25 degrees below Tm (for DNA-DNA hybrids) or about 10-15 degrees below Tm (for RNA-DNA hybrids).


[0455] Other hybridization conditions are apparent to those of skill in the art (see, for example, Ausubel, F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc. and John Wiley & Sons, Inc., New York, at pp. 6.3.1-6.3.6 and 2.10.3, the disclosure of which is incorporated herein by reference in its entirety).


[0456] The term, Salmonella, is the generic name for a large group of gram-negative enteric bacteria that are closely related to Escherichia coli. The diseases caused by Salmonella are often due to contamination of foodstuffs or the water supply and affect millions of people each year. Traditional methods of Salmonella taxonomy were based on assigning a separate species name to each serologically distinguishable strain (Kauffmann, F 1966 The bacteriology of the Enterobacteriaceae. Munksgaard, Copenhagen). Serology of Salmonella is based on surface antigens (O [somatic] and H [flagellar]). Over 2,400 serotypes or serovars of Salmonella are known (Popoff, et al. 2000 Res. Microbiol. 151:63-65). Therefore, each serotype was considered to be a separate species and often given names, accordingly (e.g. S. paratyphi, S. typhimurium, S. typhi, S. enteriditis, etc.).


[0457] However, by the 1970s and 1980s it was recognized that this system was not only cumbersome, but also inaccurate. Then, many Salmonella species were lumped into a single species (all serotypes and subgenera I, II, and IV and all serotypes of Arizona) with a second subspecies, S. bongorii also recognized (Crosa, et al., 1973, J. Bacteriol. 115:307-315). Though species designations are based on the highly variable surface antigens, the Salmonella are very similar otherwise with a major exception being pathogenicity determinants.


[0458] There has been some debate on the correct name for the Salmonella species. Currently (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467), the accepted name is Salmonella enterica. S. enterica is divided into six subspecies (I, S. enterica subsp. enterica; II, S. enterica, subsp. salamae; IIIa, S. enterica subsp. arizonae; IIIb, S. enterica subsp. diarizonae; IV, S. enterica subsp. houtenae; and VI, S. enterica subsp. indica). Within subspecies I, serotypes are used to distinguish each of the serotypes or serovars (e.g. S. enterica serotype Enteriditis, S. enterica serotype Typhimurium, S. enterica serotype Typhi, and S. enterica serotype Choleraesuis, etc.). Current convention is to spell this out on first usage (Salmonella enterica ser. Typhimurium) and then use an abbreviated form (Salmonella Typhimurium or S. Typhimurium). Note, the genus and species names (Salmonella enterica) are italicized but not the serotype/serovar name (Typhimurium). Because the taxonomic committees have yet to officially approve of the actual species name, this latter system is what is employed by the CDC (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467). Due to the concerns of both taxonomic priority and medical importance, some of these serotypes might ultimately receive full species designations (S. typhi would be the most notable).


[0459] Therefore, as used herein “Salmonella enterica or S. enterica” includes serovars Typhi, Typhimurium, Paratyphi, Choleraesuis, etc.” However, appeals of the “official” name are in process and the taxonomic designations may change (S. choleraesuis is the species name that could replace S. enterica based solely on priority).


[0460] By “identifying a compound” is meant to screen one or more compounds in a collection of compounds such as a combinatorial chemical library or other library of chemical compounds or to characterize a single compound by testing the compound in a given assay and determining whether it exhibits the desired activity.


[0461] By “inducer” is meant an agent or solution which, when placed in contact with a cell or microorganism, increases transcription, or inhibitor and/or promoter clearance/fidelity, from a desired promoter.


[0462] As used herein, “nucleic acid” means DNA, RNA, or modified nucleic acids. Thus, the terminology “the nucleic acid of SEQ ID NO: X” or “the nucleic acid comprising the nucleotide sequence” includes both the DNA sequence of SEQ ID NO: X and an RNA sequence in which the thymidines in the DNA sequence have been substituted with uridines in the RNA sequence and in which the deoxyribose backbone of the DNA sequence has been substituted with a ribose backbone in the RNA sequence. Modified nucleic acids are nucleic acids having nucleotides or structures which do not occur in nature, such as nucleic acids in which the internucleotide phosphate residues with methylphosphonates, phosphorothioates, phosphoramidates, and phosphate esters. Nonphosphate internucleotide analogs such as siloxane bridges, carbonate brides, thioester bridges, as well as many others known in the art may also be used in modified nucleic acids. Modified nucleic acids may also comprise, (x-anomeric nucleotide units and modified nucleotides such as 1,2-dideoxy-d-ribofuranose, 1,2-dideoxy-1-phenylribofuranose, and N4, N4-ethano-5-methyl-cytosine are contemplated for use in the present invention. Modified nucleic acids may also be peptide nucleic acids in which the entire deoxyribose-phosphate backbone has been exchanged with a chemically completely different, but structurally homologous, polyamide (peptide) backbone containing 2-aminoethyl glycine units.


[0463] As used herein, “sub-lethal” means a concentration of an agent below the concentration required to inhibit all cell growth.







BRIEF DESCRIPTION OF THE DRAWINGS

[0464]
FIG. 1 is an IPTG dose response curve in E. coli transformed with an IPTG-inducible plasmid containing either an antisense clone to the E. coli ribosomal protein rplW (AS-rplW) which is required for protein synthesis and essential for cell proliferation, or an antisense clone to the elaD (AS-elaD) gene which is not known to be involved in protein synthesis and which is also essential for proliferation.


[0465]
FIG. 2A is a tetracycline dose response curve in E. coli transformed with an IPTG-inducible plasmid containing antisense to rplW (AS-rplW) in the absence (0) or presence of IPTG at concentrations that result in 20% and 50% growth inhibition.


[0466]
FIG. 2B is a tetracycline dose response curve in E. coli transformed with an IPTG-inducible plasmid containing antisense to elaD (AS-elaD)in the absence (0) or presence of IPTG at concentrations that result in 20% and 50% growth inhibition.


[0467]
FIG. 3 is a graph showing the fold increase in tetracycline sensitivity of E. coli transfected with antisense clones to essential ribosomal proteins L23 (AS-rplW) and L7/L12 and L10 (AS-rplLrplJ). Antisense clones to genes known to not be directly involved in protein synthesis, atpB/E (AS-atpB/E), visC (AS-visC), elaD (AS-elaD), yohH (AS-yohH), are much less sensitive to tetracycline.


[0468]
FIG. 4 illustrates the results of an assay in which Staphylococcus aureus cells transcribing an antisense nucleic acid complementary to the gyrB gene encoding the β subunit of gyrase were contacted with several antibiotics whose targets were known.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0469] The present invention describes a group of prokaryotic genes and gene families required for cellular proliferation. Exemplary genes and gene families from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi are provided. A proliferation-required gene or gene family is one where, in the absence or substantial reduction of a gene transcript and/or gene product, growth or viability of the cell or microorganism is reduced or eliminated. Thus, as used herein, the terminology “proliferation-required” or “required for proliferation” encompasses instances where the absence or substantial reduction of a gene transcript and/or gene product completely eliminates cell growth as well as instances where the absence of a gene transcript and/or gene product merely reduces cell growth. These proliferation-required genes can be used as potential targets for the generation of new antimicrobial agents. To achieve that goal, the present invention also encompasses assays for analyzing proliferation-required genes and for identifying compounds which interact with the gene and/or gene products of the proliferation-required genes. In addition, the present invention contemplates the expression of genes and the purification of the proteins encoded by the nucleic acid sequences identified as required proliferation genes and reported herein. The purified proteins can be used to generate reagents and screen small molecule libraries or other candidate compound libraries for compounds that can be further developed to yield novel antimicrobial compounds.


[0470] The present invention also describes methods for identification of nucleotide sequences homologous to these genes and polypeptides described herein, including nucleic acids comprising nucleotide sequences homologous to the nucleic acids of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and polypeptides homologous to the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110. For example, these sequences may be used to identify homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides in microorganisms such as Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments, the homologous coding nucleic acids, homologus antisense nucleic acids, or homologous polypeptides are identified in an organism other than E. coli.


[0471] The homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides, may then be used in each of the methods described herein, including methods to identify compounds which inhibit the proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods of inhibiting the growth of the organism containing the homologous coding nucleic acid, homologus antisense nucleic acid or homologous polypeptide, methods of identifying compounds which influence the activity or level of a gene product required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for identifying compounds or nucleic acids having the ability to reduce the level or activity of a gene product required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods of inhibiting the activity or expression of a gene in an operon required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for identifying a gene required proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for identifying the biological pathway in which a gene or gene product required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide lies, methods for identifying compounds having activity against biological pathway required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for determining the biological pathway on which a test compound acts, and methods of inhibiting the proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide in a subject. In some embodiments of the present invention, the methods are performed using an organism, other than E. coli or a gene or gene product from an organism other than E. coli.


[0472] The present invention utilizes a novel method to identify proliferation-required sequences. Generally, a library of nucleic acid sequences from a given source are subcloned or otherwise inserted immediately downstream of an inducible promoter on an appropriate vector, such as a Staphylococcus aureus/E. coli or Pseudomonas aeruginosa/E. coli shuttle vector, or a vector which will replicate in both Salmonella typhimurium and Klebsiella pneumoniae, or other vector or shuttle vector capable of functioning in the intended organism., thus forming an expression library. It is generally preferred that expression is directed by a regulatable promoter sequence such that expression level can be adjusted by addition of variable concentrations of an inducer molecule or of an inhibitor molecule to the medium. Temperature activated promoters, such as promoters regulated by temperature sensitive repressors, such as the lambda C1857 repressor, are also envisioned. Although the insert nucleic acids may be derived from the chromosome of the cell or microorganism into which the expression vector is to be introduced, because the insert is not in its natural chromosomal location, the insert nucleic acid is an exogenous nucleic acid for the purposes of the discussion herein. The term “expression” is defined as the production of a sense or antisense RNA molecule from a gene, gene fragment, genomic fragment, chromosome, operon or portion thereof. Expression can also be used to refer to the process of peptide or polypeptide synthesis. An expression vector is defined as a vehicle by which a ribonucleic acid (RNA) sequence is transcribed from a nucleic acid sequence carried within the expression vehicle. The expression vector can also contain features that permit translation of a protein product from the transcribed RNA message expressed from the exogenous nucleic acid sequence carried by the expression vector. Accordingly, an expression vector can produce an RNA molecule as its sole product or the expression vector can produce a RNA molecule that is ultimately translated into a protein product.


[0473] Once generated, the expression library containing the exogenous nucleic acid sequences is introduced into a population of cells (such as the organism from which the exogenous nucleic acid sequences were obtained) to search for genes that are required for bacterial proliferation. Because the library molecules are foreign, in context, to the population of cells, the expression vectors and the nucleic acid segments contained therein are considered exogenous nucleic acid.


[0474] Expression of the exogenous nucleic acid fragments in the test population of cells containing the expression library is then activated. Activation of the expression vectors consists of subjecting the cells containing the vectors to conditions that result in the expression of the exogenous nucleic acid sequences carried by the expression library. The test population of cells is then assayed to determine the effect of expressing the exogenous nucleic acid fragments on the test population of cells. Those expression vectors that negatively impacted the growth of the cells upon induction of expression of the random sequences contained therein were identified, isolated, and purified for further study.


[0475] A variety of assays are contemplated to identify nucleic acid sequences that negatively impact growth upon expression. In one embodiment, growth in cultures expressing exogenous nucleic acid sequences and growth in cultures not expressing these sequences is compared. Growth measurements are assayed by examining the extent of growth by measuring optical densities. Alternatively, enzymatic assays can be used to measure bacterial growth rates to identify exogenous nucleic acid sequences of interest. Colony size, colony morphology, and cell morphology are additional factors used to evaluate growth of the host cells. Those cultures that fail to grow or grow at a reduced rate under expression conditions are identified as containing an expression vector encoding a nucleic acid fragment that negatively affects a proliferation-required gene.


[0476] Once exogenous nucleic acids of interest are identified, they are analyzed. The first step of the analysis is to acquire the nucleotide sequence of the nucleic acid fragment of interest. To achieve this end, the insert in those expression vectors identified as containing a nucleotide sequence of interest is sequenced, using standard techniques well known in the art. The next step of the process is to determine the source of the nucleotide sequence. As used herein “source” means the genomic region containing the cloned fragment.


[0477] Determination of the gene(s) corresponding to the nucleotide sequence was achieved by comparing the obtained sequence data with databases containing known protein and nucleotide sequences from various microorganisms. Thus, initial gene identification was made on the basis of significant sequence similarity or identity to either characterized or predicted Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genes or their encoded proteins and/or homologues in other species.


[0478] The number of nucleotide and protein sequences available in database systems has been growing exponentially for years. For example, the complete nucleotide sequences of Caenorhabditis elegans and several bacterial genomes, including E. coli, Aeropyrum pernix, Aquifex aeolicus, Archaeoglobus fulgidus, Bacillus subtilis, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium tetani, Corynebacterium diptheria, Deinococcus radiodurans, Haemophilus influenzae, Helicobacter pylori 26695, Helicobacter pylori J99, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycobacterium tuberculosis, Mycoplasma genitalium, Mycoplasma pneumoniae, Pseudomonas aeruginosa, Pyrococcus abyssi, Pyrococcus horikoshii, Rickettsia prowazekii, Synechocystis PCC6803, Thermotoga maritima, Treponema pallidum, Bordetella pertussis, Campylobacter jejuni, Clostridium acetobutylicum, Mycobacterium tuberculosis CSU#93, Neisseria gonorrhoeae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrobaculum aerophilum, Pyrococcus furiosus, Rhodobacter capsulatus, Salmonella typhimurium, Streptococcus mutans, Streptococcus pyogenes, Ureaplasma urealyticum and Vibrio cholera are available. This nucleotide sequence information is stored in a number of databanks, such as GenBank, the National Center for Biotechnology Information (NCBI), the Genome Sequencing Center (http:Hlgenome.wustl.edu/gsc/salmonella.shtml), and the Sanger Centre (http://www.sanger.ac.uk/projects/S_typhi) which are publicly available for searching.


[0479] A variety of computer programs are available to assist in the analysis of the sequences stored within these databases. FASTA, (W. R. Pearson (1990) “Rapid and Sensitive Sequence Comparison with FASTP and FASTA” Methods in Enzymology 183:63-98), Sequence Retrieval System (SRS), (Etzold & Argos, SRS an indexing and retrieval tool for flat file data libraries. Comput. Appl. Biosci. 9:49-57, 1993) are two examples of computer programs that can be used to analyze sequences of interest. In one embodiment of the present invention, the BLAST family of computer programs, which includes BLASTN version 2.0 with the default parameters, or BLASTX version 2.0 with the default parameters, is used to analyze nucleotide sequences.


[0480] BLAST, an acronym for “Basic Local Alignment Search Tool,” is a family of programs for database similarity searching. The BLAST family of programs includes: BLASTN, a nucleotide sequence database searching program, BLASTX, a protein database searching program where the input is a nucleic acid sequence; and BLASTP, a protein database searching program. BLAST programs embody a fast algorithm for sequence matching, rigorous statistical methods for judging the significance of matches, and various options for tailoring the program for special situations. Assistance in using the program can be obtained by e-mail at blastincbi.nlm.nih.gov. tBLASTX can be used to translate a nucleotide sequence in all three potential reading frames into an amino acid sequence.


[0481] Bacterial genes are often transcribed in polycistronic groups. These groups comprise operons, which are a collection of genes and intergenic sequences under common regulation. The genes of an operon are transcribed on the same MRNA and are often related functionally. Given the nature of the screening protocol, it is possible that the identified exogenous nucleic acid corresponds to a gene or portion thereof with or without adjacent noncoding sequences, an intragenic sequence (i.e. a sequence within a gene), an intergenic sequence (i.e. a sequence between genes), a nucleotide sequence spanning at least a portion of two or more genes, a 5′ noncoding region or a 3′ noncoding region located upstream or downstream from the actual nucleotide sequence that is required for bacterial proliferation. Accordingly, it is often desirable to determine which gene(s) that is encoded within the operon is individually required for proliferation.


[0482] In one embodiment of the present invention, an operon is identified and then dissected to determine which gene or genes are required for proliferation. Operons can be identified by a variety of means known to those in the art. For example, the RegulonDB DataBase described by Huerta et al. (Nucl. Acids Res. 26:55-59, 1998), which may also be found on the website http://www.cifn.unam.mx/Computational_Biology/regulondb/, the disclosures of which are incorporated herein by reference in their entireties, provides information about operons in Escherichia coli. The Subtilist database (http://bioweb.pasteur.fr/GenoList/SubtiList), (Moszer, I., Glaser, P. and Danchin, A. (1995) Microbiology 141: 261-268 and Moszer, 1 (1998) FEBS Letters 430: 28-36, the disclosures of which are incorporated herein in their entireties), may also be used to predict operons. This database lists genes from the fully sequenced, Gram-positive bacteria, Bacillus subtilis, together with predicted promoters and terminator sites. This information can be used in conjunction with the Staphylococcus aureus genomic sequence data to predict operons and thus produce a list of the genes affected by the antisense nucleic acids of the present invention. The Pseudomonas aerginosa web site (http://www.pseudomonas.com) can be used to help predict operon organization in this bacterium. The databases available from the Genome Sequencing Center (http:/Hgenome.wustl.edu/gsc/salmonella.shtml), and the Sanger Centre (http:/Hwww.sanger.ac.uk/projects/S typhi) may be used to predict operons in Salmonella typhimurium. The TIGR microbial database has an incomplete version of the E. faecalis genome http://www.tigr.org/cgi-bin/BlastSearch/blast.cai?organism=_e faecalis. One can take a nucleotide sequence and BLAST it for homologs.


[0483] A number of techniques that are well known in the art can be used to dissect the operon. Analysis of RNA transcripts by Northern blot or primer extension techniques are commonly used to analyze operon transcripts. In one aspect of this embodiment, gene disruption by homologous recombination is used to individually inactivate the genes of an operon that is thought to contain a gene required for proliferation.


[0484] Several gene disruption techniques have been described for the replacement of a functional gene with a mutated, non-functional (null) allele. These techniques generally involve the use of homologous recombination. One technique using homologous recombination in Staphylococcus aureus is described in Xia et a. 1999, Plasmid 42: 144-149, the disclosure of which is incorporated herein by reference in its entirety. This technique uses crossover PCR to create a null allele with an in-frame deletion of the coding region of a target gene. The null allele is constructed in such a way that nucleotide sequences adjacent to the wild type gene are retained. These homologous sequences surrounding the deletion null allele provide targets for homologous recombination so that the wild type gene on the Staphylococcus aureus chromosome can be replaced by the constructed null allele. This method can be used with other bacteria as well, including Salmonella and Klebsiella species. Similar gene disruption methods that employ the counter selectable marker sacb (Schweizer, H. P., Klassen, T. and Hoang, T. (1996) Mol. Biol. of Pseudomonas. ASM press, 229-237, the disclosure of which is incorporated herein by reference in its entirety) are available for Pseudomonas, Salmonella and Klebsiella species. E. faecalis genes can be disrupted by recombining in a non-replicating plasmid that contains an internal fragment to that gene (Leboeuf, C., L. Leblanc, Y. Auffray and A. Hartke. 2000. J. Bacteriol. 182:5799-5806, the disclosure of which is incorporated herein by reference in its entirety).


[0485] The crossover PCR amplification product is subcloned into a suitable vector having a selectable marker, such as a drug resistance marker. In some embodiments the vector may have an origin of replication which is functional in E. coli or another organism distinct from the organism in which homologous recombination is to occur, allowing the plasmid to be grown in E. coli or the organism other than that in which homologous recombination is to occur, but may lack an origin of replication functional in Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi such that selection of the selectable marker requires integration of the vector into the homologous region of the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi chromosome. Usually a single crossover event is responsible for this integration event such that the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi chromosome now contains a tandem duplication of the target gene consisting of one wild type allele and one deletion null allele separated by vector sequence. Subsequent resolution of the duplication results in both removal of the vector sequence and either restoration of the wild type gene or replacement by the in-frame deletion. The latter outcome will not occur if the gene should prove essential. A more detailed description of this method is provided in Example 5 below. It will be appreciated that this method may be practiced with any of the nucleic acids or organisms described herein.


[0486] Recombinant DNA techniques can be used to express the entire coding sequences of the gene identified as required for proliferation, or portions thereof. The over-expressed proteins can be used as reagents for further study. The identified exogenous sequences are isolated, purified, and cloned into a suitable expression vector using methods well known in the art. If desired, the nucleic acids can contain the nucleotide sequences encoding a signal peptide to facilitate secretion of the expressed protein.


[0487] Expression of fragments of the bacterial genes identified as required for proliferation is also contemplated by the present invention. The fragments of the identified genes can encode a polypeptide comprising at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, at least 65, at least 75, or more than 75 consecutive amino acids of a gene complementary to one of the identified sequences of the present invention. The nucleic acids inserted into the expression vectors can also contain endogenous sequences upstream and downstream of the coding sequence.


[0488] When expressing the encoded protien of the idnetified required for bacterial proliferation or a fragment thereof, the nucleotide sequence to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector can be any of the bacterial, insect, yeast, or mammalian expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, Mass.), Stratagene (La Jolla, Calif.), Promega (Madison, Wis.), and Invitrogen (San Diego, Calif.). If desired, to enhance expression and facilitate proper protein folding, the codon usage and codon bias of the sequence can be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Pat. No. 5,082,767, incorporated herein by this reference. Fusion protein expression systems are also contemplated by the present invention.


[0489] Following expression of the protein encoded by the identified exogenous nucleic acid, the protein may be purified. Protein purification techniques are well known in the art. Proteins encoded and expressed from identified exogenous nucleic acids can be partially purified using precipitation techniques, such as precipitation with polyethylene glycol. Alternatively, epitope tagging of the protein can be used to allow simple one step purification of the protein. In addition, chromatographic methods such as ion-exchange chromatography, gel filtration, use of hydroxyapaptite columns, immobilized reactive dyes, chromatofocusing, and use of high-performance liquid chromatography, may also be used to purify the protein. Electrophoretic methods such as one-dimensional gel electrophoresis, high-resolution two-dimensional polyacrylamide electrophoresis, isoelectric focusing, and others are contemplated as purification methods. Also, affinity chromatographic methods, comprising antibody columns, ligand presenting columns and other affinity chromatographic matrices are contemplated as purification methods in the present invention.


[0490] The purified proteins produced from the gene coding sequences identified as required for proliferation can be used in a variety of protocols to generate useful antimicrobial reagents. In one embodiment of the present invention, antibodies are generated against the proteins expressed from the identified exogenous nucleic acids. Both monoclonal and polyclonal antibodies can be generated against the expressed proteins. Methods for generating monoclonal and polyclonal antibodies are well known in the art. Also, antibody fragment preparations prepared from the produced antibodies discussed above are contemplated.


[0491] In addition, the purified protein, fragments thereof, or derivatives thereof may be administered to an individual in a pharmaceutically acceptable carrier to induce an immune response against the protein. Preferably, the immune response is a protective immune response which protects the individual. Methods for determining appropriate dosages of the protein and pharmaceutically acceptable carriers may be determined empiracally and are familiar to those skilled in the art.


[0492] Another application for the purified proteins of the present invention is to screen small molecule libraries for candidate compounds active against the various target proteins of the present invention. Advances in the field of combinatorial chemistry provide methods, well known in the art, to produce large numbers of candidate compounds that can have a binding, or otherwise inhibitory effect on a target protein. Accordingly, the screening of small molecule libraries for compounds with binding affinity or inhibitory activity for a target protein produced from an identified gene is contemplated by the present invention.


[0493] The present invention further contemplates utility against a variety of other pathogenic microorganisms in addition to Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi. For example, homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from other pathogenic microorganisms (including nucleic acids homologous to the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, nucleic acids homologous to the antisense nucleic acids of SEQ ID NOs.: 8-3795, and polypeptides homologous to the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) may be identified using methods such as those described herein. The homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides may be used to identify compounds which inhibit the proliferation of these other pathogenic microorganisms using methods such as those described herein.


[0494] For example, the proliferation-required nucleic acids, antisense nucleic acids, and polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi described herein (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the antisense nucleic acids of SEQ ID NOs: 8-3795, and the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) may be used to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides required for proliferation in prokaryotes and eukaryotes. For example, nucleic acids or polypeptides required for the proliferation of protists, such as Plasmodium spp.; plants; animals, such as Entamoeba spp. and Contracaecum spp; and fungi including Candida spp., (e.g., Candida albicans), Cryptococcus neoformans, and Aspergillus fumigatus may be identified. In one embodiment of the present invention, monera, specifically bacteria, including both Gram positive and Gram negative bacteria, are probed in search of novel gene sequences required for proliferation. Likewise, homologous antisense nucleic acids which may be used to inhibit growth of these organisms or to identify antibiotics may also be identified. These embodiments are particularly important given the rise of drug resistant bacteria.


[0495] The number of bacterial species that are becoming resistant to existing antibiotics is growing. A partial list of these microorganisms includes: Escherichia spp., such as E. coli, Enterococcus spp, such as E. faecalis; Pseudomonas spp., such as P. aeruginosa, Clostridium spp., such as C. botulinum, Haemophilus spp., such as H. influenzae, Enterobacter spp., such as E. cloacae, Vibrio spp., such as V. cholera; Moraxala spp., such as M. catarrhalis; Streptococcus spp., such as S. pneumoniae, Neisseria spp., such as N. gonorrhoeae; Mycoplasma spp., such as Mycoplasma pneumoniae; Salmonella typhimurium; Helicobacter pylori; Escherichia coli; and Mycobacterium tuberculosis. The genes and polypeptides identified as required for the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the sequences complementary to the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) can be used to identify homologous coding nucleic acids or homologous polypeptides required for proliferation from these and other organisms using methods such as nucleic acid hybridization and computer database analysis. Likewise, the antisense nucleic acids which inhibit proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the antisense nucleic acids of SEQ ID NOs.: 8-3795 or the sequences complementary thereto) may also be used to identify antisense nucleic acids which inhibit proliferation of these and other microorganisms or cells using nucleic acid hybridization or computer database analysis.


[0496] In one embodiment of the present invention, the nucleic acid sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhii (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 and the antisense nucleic acids of SEQ ID NOs. 8-3795) are used to screen genomic libraries generated from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi and other bacterial species of interest. For example, the genomic library may be from Gram positive bacteria, Gram negative bacteria or other organisms including Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative species of Staphylococcus. In some embodiments, the genomic library may be from an organism other than E. coli. Standard molecular biology techniques are used to generate genomic libraries from various cells or microorganisms. In one aspect, the libraries are generated and bound to nitrocellulose paper. The identified exogenous nucleic acid sequences of the present invention can then be used as probes to screen the libraries for homologous sequences.


[0497] For example, the libraries may be screened to identify homologous coding nucleic acids or homologous antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200,300, 400, or 500 consecutive nucleotides of one of SEQ ID .NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300,400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0498] The libraries may also be screened to identify homologous nucleic coding nucleic acids or homologous antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleic acid sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150,200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20,25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.


[0499] The homologous nucleic coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides identified as above can then be used as targets or tools for the identification of new, antimicrobial compounds using methods such as those described herein. In some embodiments, the homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides may be used to identify compounds with activity against more than one microorganism.


[0500] For example, the preceding methods may be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 8-3795, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. The preceding methods may also be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the nucleotide sequences of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. In some embodiments, the preceding methods may be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleic acid sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 10, 15, 20,25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. Identity may be measured using BLASTN version 2.0 with the default parameters. (Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety). For example, the homologous polynucleotides may comprise a coding sequence which is a naturally occurring allelic variant of one of the coding sequences described herein. Such allelic variants may have a substitution, deletion or addition of one or more nucleotides when compared to the nucleic acids of SEQ ID NOs: 8-3795, SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 or the nucleotide sequences complementary thereto.


[0501] Additionally, the above procedures may be used to isolate homologous coding nucleic acids which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide comprising the sequence of one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 or to a polypeptpide whose expression is inhibited by a nucleic acid of one of SEQ ID NOs: 8-3795 or fragments comprising at least 5, 10, 15, 20,25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default parameters. (Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997), the disclosure of which is incorporated herein by reference in its entirety).


[0502] Alternatively, homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides may be identified by searching a database to identify sequences having a desired level of nucleotide or amino acid sequence homology to a nucleic acid or polypeptide involved in proliferation or an antisense nucleic acid to a nucleic acid involved in microbial proliferation. A variety of such databases are available to those skilled in the art, including GenBank and GenSeq. In some embodiments, the databases are screened to identify nucleic acids with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleic acid required for proliferation, an antisense nucleic acid which inhibits proliferation, or a portion of a nucleic acid required for proliferation or a portion of an antisense nucleic acid which inhibits proliferation. For example, homologous coding sequences may be identified by using a database to identify nucleic acids homologous to one of SEQ ID Nos. 8-3795, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, nucleic acids homologous to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35,40, 50, 75, 100, 150, 200, 300,400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids homologous to one of SEQ ID Nos. 8-3795, homologous to fragments comprising at least 10, 15, 20,25,30, 35, 40, 50, 75, 100, 150,200, 300, 400, or 500 consecutive nucleotides thereof or nucleic acids homologous to the sequences complementary to any of the preceding nucleic acids. In other embodiments, the databases are screened to identify polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid sequence identity or similarity to a polypeptide involved in proliferation or a portion thereof. For example, the database may be screened to identify polypeptides homologous to a polypeptide comprising one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110, a polypeptide whose expression is inhibited by a nucleic acid of one of SEQ ID NOs: 8-3795 or homologous to fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of any of the preceding polypeptides. In some embodiments, the database may be screened to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from cells or microorganisms other than the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi species from which they were obtained. For example the database may be screened to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from microorganisms such as Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative Staphylococcus. In some embodiments, the homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides are from an organism other than E. coli.


[0503] In another embodiment, gene expression arrays and microarrays can be employed. Gene expression arrays are high density arrays of DNA samples deposited at specific locations on a glass chip, nylon membrane, or the like. Such arrays can be used by researchers to quantify relative gene expression under different conditions. Gene expression arrays are used by researchers to help identify optimal drug targets, profile new compounds, and determine disease pathways. An example of this technology is found in U.S. Pat. No. 5,807,522, which is hereby incorporated by reference.


[0504] It is possible to study the expression of all genes in the genome of a particular microbial organism using a single array. For example, the arrays may consist of 12×24 cm nylon filters containing PCR products corresponding to ORFs from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012). 10 ngs of each PCR product are spotted every 1.5 mm on the filter. Single stranded labeled cDNAs are prepared for hybridization to the array (no second strand synthesis or amplification step is done) and placed in contact with the filter. Thus the labeled cDNAs are of “antisense” orientation. Quantitative analysis is done by phosphorimager.


[0505] Hybridization of cDNA made from a sample of total cell mRNA to such an array followed by detection of binding by one or more of various techniques known to those in the art results in a signal at each location on the array to which cDNA hybridized. The intensity of the hybridization signal obtained at each location in the array thus reflects the amount of mRNA for that specific gene that was present in the sample. Comparing the results obtained for mRNA isolated from cells grown under different conditions thus allows for a comparison of the relative amount of expression of each individual gene during growth under the different conditions.


[0506] Gene expression arrays may be used to analyze the total mRNA expression pattern at various time points after induction of an antisense nucleic acid complementary to a proliferation-required gene. Analysis of the expression pattern indicated by hybridization to the array provides information on other genes whose expression is influenced by antisense expression. For example, if the antisense is complementary to a gene for ribosomal protein L7/L12 in the 50S subunit, levels of other mRNAs may be observed to increase, decrease or stay the same following expression of antisense to the L7/L12 gene. If the antisense is complementary to a different 50S subunit ribosomal protein mRNA (e.g. L25), a different mRNA expression pattern may result. Thus, the mRNA expression pattern observed following expression of an antisense nucleic acid comprising a nucleotide sequence complementary to a proliferation required gene may identify other proliferation-required nucleic acids. In addition, the mRNA expression patterns observed when the bacteria are exposed to candidate drug compounds or known antibiotics may be compared to those observed with antisense nucleic acids comprising a nucleotide sequence complementary to a proliferation-required nucleic acid. If the mRNA expression pattern observed with the candidate drug compound is similar to that observed with the antisense nucleic acid, the drug compound may be a promising therapeutic candidate. Thus, the assay would be useful in assisting in the selection of promising candidate drug compounds for use in drug development.


[0507] In cases where the source of nucleic acid deposited on the array and the source of the nucleic acid being hybridized to the array are from two different cells or microorganisms, gene expression arrays can identify homologous nucleic acids in the two cells or microorganisms.


[0508] The present invention also contemplates additional methods for screening other microorganisms for proliferation-required genes. In one aspect of this embodiment, an antisense nucleic acid comprising a nucleotide sequence complementary to the proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or a portion thereof is transcribed in an antisense orientation in such a way as to alter the level or activity of a nucleic acid required for proliferation of an autologous or heterologous cell or microorganism. For example, the antisense nucleic acid may be a homologous antisense nucleic acid such as an antisense nucleic acid homologous to the nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, an antisense nucleic acid comprising a nucleotide sequence homologous to one of SEQ ID Nos.: 8-3795, or an antisense nucleic acid comprising a nucleotide sequence complementary to a portion of any of the preceding nucleic acids. The cell or microorganism transcribing the homologous antisense nucleic acid may be used in a cell-based assay, such as those described herein, to identify candidate antibiotic compounds. In another embodiment, the conserved portions of nucleotide sequences identified as proliferation-required can be used to generate degenerate primers for use in the polymerase chain reaction (PCR). The PCR technique is well known in the art. The successful production of a PCR product using degenerate probes generated from the nucleotide sequences identified herein indicates the presence of a homologous gene sequence in the species being screened. This homologous gene is then isolated, expressed, and used as a target for candidate antibiotic compounds. In another aspect of this embodiment, the homologous gene (for example a homologous coding nucleic acid )thus identified, or a portion thereof, is transcribed in an autologous cell or microorganism or in a heterologous cell or microorganism in an antisense orientation in such a way as to alter the level or activity of a homologous gene required for proliferation in the autologous or heterologous cell or microorganism. Alternatively, a homologous antisense nucleic acid may be transcribed in an autologous or heterologous cell or microorganism in such a way as to alter the level or activity of a gene product required for proliferation in the autologous or heterologous cell or microorganism.


[0509] The nucleic acids homologous to the genes required for the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or the sequences complementary thereto may be used to identify homologous coding nucleic acids or homologous antisense nucleic acids from cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi to inhibit the proliferation of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi by inhibiting the activity or reducing the amount of the identified homologous coding nucleic acid or homologous polypeptide in the cell or microorganism other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or to identify compounds which inhibit the growth of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi as described below. For example, the nucleic acids homologous to proliferation-required genes from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or the sequences complementary thereto may be used to identify compounds which inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species. In some embodiments of the present invention, the nucleic acids homologous to proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including nucleic acids homologous to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012) or the sequences complementary thereto (including nucleic acids homologous to one of SEQ ID NOs.: 8-3795) are used to identify proliferation-required sequences in an organism other than E. coli.


[0510] In another embodiment of the present invention, antisense nucleic acids complementary to the sequences identified as required for proliferation or portions thereof (including antisense nucleic acids comprising a nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 or portions thereof, such as the nucleic acids of SEQ ID NOs.: 8-3795) are transferred to vectors capable of function within a species other than the species from which the sequences were obtained. For example, the vector may be functional in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the vector may be functional in an organism other than E. coli. As would be appreciated by one of ordinary skill in the art, vectors may contain certain elements that are species specific. These elements can include promoter sequences, operator sequences, repressor genes, origins of replication, ribosomal binding sequences, termination sequences, and others. To use the antisense nucleic acids, one of ordinary skill in the art would know to use standard molecular biology techniques to isolate vectors containing the sequences of interest from cultured bacterial cells, isolate and purify those sequences, and subclone those sequences into a vector adapted for use in the species of bacteria to be screened.


[0511] Vectors for a variety of other species are known in the art. For example, numerous vectors which function in E. coli are known in the art. Also, Pla et al. have reported an expression vector that is functional in a number of relevant hosts including: Salmonella typhimurium, Pseudomonas putida, and Pseudomonas aeruginosa. J. Bacteriol. 172(8):4448-55 (1990). Brunschwig and Darzins (Gene (1992) 111:35-4, the disclosure of which is incorporated herein by reference in its entirety) described a shuttle expression vector for Pseudomonas aeruginosa. Similarly many examples exist of expression vectors that are freely transferable among various Gram-positive microorganisms. Expression vectors for Enterococcus faecalis may be engineered by incorporating suitable promoters into a pAK80 backbone (Israelsen, H., S. M. Madsen, A. Vrang, E. B. Hansen and E. Johansen. 1995. Appl. Environ. Microbiol. 61:2540-2547, the disclosure of which is incorporated herein by reference in its entirety).


[0512] Following the subcloning of the antisense nucleic acids complementary to proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or portions thereof into a vector functional in a second cell or microorganism of interest (i.e. a cell or microorganism other than the one from which the identified nucleic acids were obtained), the antisense nucleic acids are conditionally transcribed to test for bacterial growth inhibition. The nucleotide sequences of the nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi that, when transcribed, inhibit growth of the second cell or microorganism are compared to the known genomic sequence of the second cell or microorganism to identify the homologous gene from the second organism. If the homologous sequence from the second cell or microorganism is not known, it may be identified and isolated by hybridization to the proliferation-required Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi sequence of interest or by amplification using PCR primers based on the proliferation-required nucleotide sequence of interest as described above. In this way, sequences which may be required for the proliferation of the second cell or microorganism may be identified. For example, the second microorganism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the second microorganism is an organism other than E. coli.


[0513] The homologous nucleic acid sequences from the second cell or microorganism which are identified as described above may then be operably linked to a promoter, such as an inducible promoter, in an antisense orientation and introduced into the second cell or microorganism. The techniques described herein for identifying Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi genes required for proliferation may thus be employed to determine whether the identified nucleotide sequences from a second cell or microorganism inhibit the proliferation of the second cell or microorganism. For example, the second microorganism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the second microorganism may be an organism other than E. coli.


[0514] Antisense nucleic acids required for the proliferation of microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or the genes corresponding thereto, may also be hybridized to a microarray containing the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis ORFs, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, and Salmonella typhi (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012) to gauge the homology between the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi sequences and the proliferation-required nucleic acids from other cells or microorganisms. For example, the proliferation-required nucleic acid may be from Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the proliferation-required nucleotide sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or homologous nucleic acids are used to identify proliferation-required sequences in an organism other than E. coli. In some embodiments of the present invention, the proliferation-required sequences may be from an organism other than E. coli. The proliferation-required nucleic acids from a cell or microorganism other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi may be hybridized to the array under a variety of conditions which permit hybridization to occur when the probe has different levels of homology to the nucleotide sequence on the microarray. This would provide an indication of homology across the cells or microorganisms as well as clues to other possible essential genes in these cells or microorganisms.


[0515] In still another embodiment, the antisense nucleic acids of the present invention (including the antisense nucelic acids of SEQ ID NOs. 8-3795 or homologous antisense nucleic acids) that inhibit bacterial growth or proliferation can be used as antisense therapeutics for killing bacteria. The antisense sequences can be complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, homologous nucleic acids, or portions thereof. Alternatively, antisense therapeutics can be complementary to operons in which proliferation-required genes reside (i.e. the antisense nucleic acid may hybridize to a nucleotide sequence of any gene in the operon in which the proliferation-required genes reside). Further, antisense therapeutics can be complementary to a proliferation-required gene or portion thereof with or without adjacent noncoding sequences, an intragenic sequence (i.e. a sequence within a gene), an intergenic sequence (i.e. a sequence between genes), a sequence spanning at least a portion of two or more genes, a 5′ noncoding region or a 3′ noncoding region located upstream or downstream from the actual sequence that is required for bacterial proliferation or an operon containing a proliferation-required gene.


[0516] In addition to therapeutic applications, the present invention encompasses the use of nucleic acids complementary to nucleic acids required for proliferation as diagnostic tools. For example, nucleic acid probes comprising nucleotide sequences complementary to proliferation-required sequences that are specific for particular species of cells or microorganisms can be used as probes to identify particular microorganism species or cells in clinical specimens. This utility provides a rapid and dependable method by which to identify the causative agent or agents of a bacterial infection. This utility would provide clinicians the ability to accurately identify the species responsible for the infection and amdminister a compound effective against it. In an extension of this utility, antibodies generated against proteins translated from mRNA transcribed from proliferation-required sequences can also be used to screen for specific cells or microorganisms that produce such proteins in a species-specific manner.


[0517] Other embodiments of the present invention include methods of identifying compounds which inhibit the activity of gene products required for cellular proliferation using rational drug design. As discussed in more detail below, in such methods, the structure of the gene product is determined using techniques such as x-ray crystallography or computer modeling. Compounds are screened to identify those which have a structure which would allow them to interact with the gene product or a portion thereof to inhibit its activity. The compounds may be obtained using any of a variety of methods familiar to those skilled in the art, including combinatorial chemistry. In some embodiments, the compounds may be obtained from a natural product library. In some embodiments, compounds having a structure which allows them to interact with the active site of a gene product, such as the active site of an enzyme, or with a portion of the gene product which interacts with another biomolecule to form a complex are identified. If desired, lead compounds may be identified and further optimized to provide compounds which are highly effective against the gene product.


[0518] The following examples teach the genes of the present invention and a subset of uses for the genes identified as required for proliferation. These examples are illustrative only and are not intended to limit the scope of the present invention.



EXAMPLES

[0519] The following examples are directed to the identification and exploitation of genes required for proliferation. Methods of gene identification are discussed as well as a variety of methods to utilize the identified sequences. It will be appreciated that any of the antisense nucleic acids, proliferartion-required genes or proliferation-required gene products described herein, or portions thereof, may be used in the procedures described below, including the antisense nucleic acids of SEQ ID NOs.: 8-3795, the nucleic acids of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, or the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110. Likewise, homologous coding nucleic acids or portions thereof, may be used in any of the procedures described below.


[0520] Genes Identified as Required for Proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis


[0521] Genomic fragments were operably linked to an inducible promoter in a vector and assayed for growth inhibition activity. Example 1 describes the examination of a library of genomic fragments cloned into vectors comprising inducible promoters. Upon induction with xylose or IPTG, the vectors produced an RNA molecule corresponding to the subcloned genomic fragments. In those instances where the genomic fragments were in an antisense orientation with respect to the promoter, the transcript produced was complementary to at least a portion of an MRNA (messenger RNA) encoding a Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis gene product such that they interacted with sense mRNA produced from various Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genes and thereby decreased the translation efficiency or the level of the sense messenger RNA thus decreasing production of the protein encoded by these sense mRNA molecules. In cases where the sense mRNA encoded a protein required for proliferation, bacterial cells containing a vector from which transcription from the promoter had been induced failed to grow or grew at a substantially reduced rate. Additionally, in cases where the transcript produced was complementary to at least a portion of a non-translated RNA and where that non-translated RNA was required for proliferation, bacterial cells containing a vector from which transcription from the promoter had been induced also failed to grow or grew at a substantially reduced rate.



Example 1


Inhibition of Bacterial Proliferation after Induction of Antisense Expression

[0522] Nucleic acids involved in proliferation of Staphylococcus aureus, Salmonella typhimurium, and Klebsiella pneumoniae were identified as follows. Randomly generated fragments of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genomic DNA were transcribed from inducible promoters.


[0523] In the case of Staphylococcus aureus, a novel inducible promoter system, XylT5, comprising a modified T5 promoter fused to the xylO operater from the xyla promoter of Staphylococcus aureus was used. The promoter is described in U.S. Provisional Patent Application Ser. No. 60/259,434, the disclosure of which is incorporated herein by reference in its entirety. Transcription from this hybrid promoter is inducible by xylose.


[0524] Randomly generated fragments of Salmonella typhimurium genomic DNA were transcribed from an IPTG inducible promoter in pLEX5BA (Krause et al., J. Mol. Biol.


[0525] 274: 365 (1997) or a derivative thereof. Randomly generated fragements of Klebsiella pneumoniae genomic DNA were expressed from an IPTG inducible promoter in pLEX5BA-Kan. To construct pLEX5BA-kan, pLEX5BA was digested to completion with ClaI in order to remove the bla gene. Then the plasmid was treated with a partial NotI digestion and blunted with T4 DNA polymerase. A 3.2 kbp fragment was then gel purified and ligated to a blunted 1.3 kbp kan gene from pKant. Kan resistant transformants were selected on Kan plates. Orientation of the kan gene was checked by SmaI digestion. A clone, which had the kan gene in the same orientation as the bla gene, was used to identify genes required for proliferation of Klebsiella pneumoniae.


[0526] Randomly generated fragments of Pseudomonas aeruginosa genomic DNA were trancribed from a two-component inducible promoter system. Integrated on the chromosome was the T7 RNA polymerase gene regulated by lacUV5/lacO (Brunschwig, E. and Darzins, A. 1992. Gene 1 11:35-41, the disclosure of which is incorporated herein by reference in its entirety). On a separate plasmid, a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, was fused with a lacO operator followed by a multiple cloning site.


[0527] Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of an MRNA or a non-translated RNA encoding a gene product involved in proliferation, then induction of transcription from the promoter will result in detectable inhibition of proliferation.


[0528] In the case of Staphylococcus aureus, a shotgun library of Staphylococcus aureus genomic fragments was cloned into the vector pXyIT5-P15a, which harbors the Xy1T5 inducible promoter. The vector was linearized at a unique BamHI site immediately downstream of the XyIT5 promoter/operator. The linearized vector was treated with shrimp alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from Staphylococcus aureus strain RN450 was fully digested with the restriction enzyme Sau3A, or, alternatively, partially digested with DNase I and “blunt-ended” by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 0.1 to 1, and ligated to form a shotgun library.


[0529] The ligated products were transformed into electrocompetent E. coli strain XL1-Blue MRF (Stratagene) and plated on LB medium with supplemented with carbenicillin at 100 μg/ml. Resulting colonies numbering 5×105 or greater were scraped and combined, and were then subjected to plasmid purification.


[0530] The purified library was then transformed into electrocompetent Staphylococcus aureus RN4220. Resulting transformants were plated on agar containing LB+0.2% glucose (LBG medium)+chloramphenicol at 15 μg/ml (LBG+CM15 medium) in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 μl of LBG+CM15 liquid medium. Inoculated 384 well dishes were incubated 16 hours at 37° C., and each well was robotically gridded onto solid LBG+CM15 medium with or without 2% xylose. Gridded plates were incubated 16 hours at 37° C., and then manually scored for arrayed colonies that were growth-compromised in the presence of xylose.


[0531] Arrayed colonies that were growth-sensitive on medium containing 2% xylose, yet were able to grow on similar medium lacking xylose, were subjected to further growth sensitivity analysis as follows: Colonies from the plate lacking xylose were manually picked and inoculated into individual wells of a 96 well culture dish containing LBG+CM15, and were incubated for 16 hours at 37° C. These cultures were robotically diluted {fraction (1/100)} into fresh medium and allowed to incubate for 4 hours at 37° C., after which they were subjected to serial dilutions in a 384 well array and then gridded onto media containing 2% xylose or media lacking xylose. After growth for 16 hours at 37° C., the arrays that resulted on the two media were compared to each other. Clones that grew similarly at all dilutions on both media were scored as a negative and were no longer considered. Clones that grew on xylose medium but failed to grow at the same serial dilution on the non-xylose plate were given a score based on the differential, i.e. should the clone grow at a serial dilution of 104 or less on the xylose plate and grow at a serial dilution of 108 or less on the non-xylose plate, then the corresponding clone received a score of “4” representing the log difference in growth observed.


[0532] For Salmonella typhimurium and Klebsiella pneumoniae growth curves were carried out by back diluting cultures 1:200 into fresh media containing 1 mM IPTG or media lacking IPTG and measuring the OD450 every 30 minutes (min). To study the effects of transcriptional induction on solid medium, 102, 103, 104, 105, 106, 107 and 108 fold dilutions of overnight cultures were prepared. Aliquots of from 0.5 to 3 μl of these dilutions were spotted on selective agar plates with or without 1 mM IPTG. After overnight incubation, the plates were compared to assess the sensitivity of the clones to IPTG.


[0533] Nucleic acids involved in proliferation of Pseudomonas aeruginosa were identified as follows. Randomly generated fragments of Pseudomonas aeruginosa genomic DNA were transcribed from a two-component inducible promoter system. Integrated on the chromosome was the T7 RNA polymerase gene regulated by lacUV5/lacO (Brunschwig, E. and Darzins, A. 1992. Gene 111:35-41). On an expression plasmid there was a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, fused with a lacO operator followed by a multiple cloning site. Transcription from this hybrid promoter is inducible by IPTG. Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of an mRNA encoding a gene product involved in proliferation, then induction of expression from the promoter will result in detectable inhibition of proliferation.


[0534] A shotgun library of Pseudomonas aeruginosa genomic fragments was cloned into the vectors pEP5, pEP5S, or other similarly constructed vectors which harbor the T7lacO inducible promoter. The vector was linearized at a unique SmaI site immediately downstream of the T7lacO promoter/operator. The linearized vector was treated with shrimp alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from Pseudomonas aeruginosa strain PAO1 was partially digested with DNase I and “blunt-ended” by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 2 to 1, and ligated to form a shotgun library.


[0535] The ligated products were transformed into electrocompetent E. coli strain XL1-Blue MRF (Stratagene) and plated on LB medium with carbenicillin at 100 μg/ml or Streptomycin 100 μg/ml. Resulting colonies numbering 5×105 or greater were scraped and combined, and were then subjected to plasmid purification.


[0536] The purified library was then transformed into electrocompetent Pseudomonas aeruginosa strain PAO1. Resulting transformants were plated on LB agar with carbenicillin at 100 μg/ml or Streptomycin 40 μg/ml in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 μl of LB+CB 100 or Streptomycin 40 liquid medium. Inoculated 384 well dishes were incubated 16 hours at room temperature, and each well was robotically gridded onto solid LB+CB100 or Streptomycin 40 medium with or without 1 mM IPTG. Gridded plates were incubated 16 hours at 37° C., and then manually scored for arrayed colonies that were growth-compromised in the presence of IPTG.


[0537] Arrayed colonies that were growth-sensitive on medium containing 1 mM IPTG, yet were able to grow on similar medium lacking IPTG, were subjected to further growth sensitivity analysis as follows: Colonies from the plate lacking IPTG were manually picked and inoculated into individual wells of a 96 well culture dish containing LB+CB100 or Streptomycin 40, and were incubated for 16 hours at 30° C. These cultures were robotically diluted {fraction (1/100)} into fresh medium and allowed to incubate for 4 hours at 37° C., after which they were subjected to serial dilutions in a 384 well array and then gridded onto media with and without 1 mM IPTG. After growth for 16 hours at 37° C., the arrays of serially diluted spots that resulted were compared between the two media. Clones that grew similarly at all dilutions on both media were scored as a negative and were no longer considered. Clones that grew on IPTG medium but failed to grow at the same serial dilution on the non-IPTG plate were given a score based on the differential, i.e. should the clone grow at a serial dilution of 104 or less on the IPTG plate and grow at a serial dilution of 108 or less on the IPTG plate, then the corresponding clone received a score of “4” representing the log difference in growth observed.


[0538] Following the identification of those vectors that, upon induction, negatively impacted Pseudomonas aeruginosa growth or proliferation, the inserts or nucleic acid fragments contained in those vectors were isolated for subsequent characterization. Vectors of interest were subjected to nucleic acid sequence determination.


[0539] Nucleic acids involved in proliferation of E. faecalis were identified as follows. Randomly generated fragments of genomic DNA were expressed from the vectors pEPEF3 or pEPEF14, which contain the CP25 or P59 promoter, respectively, regulated by the xy1 operator/repressor. Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of a mRNA encoding a gene product involved in proliferation, then induction of expression from the promoter will result in detectable inhibition of proliferation.


[0540] A shotgun library of E. faecalis genomic fragments was cloned into the vector pEPEF3 or pEPEF14, which harbor xylose inducible promoters. The vector was linearized at a unique SmaI site immediately downstream of the promoter/operator. The linearized vector was treated with alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from E. faecalis strain OG1RF was partially digested with DNase I and “blunt-ended” by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 2 to 1, and ligated to form a shotgun library.


[0541] The ligated products were transformed into electrocompetent E. coli strain TOP10 cells (Invitrogen) and plated on LB medium with erythromycin (Erm) at 150 μg/ml. Resulting colonies numbering 5×105 or greater were scraped and combined, and were then subjected to plasmid purification.


[0542] The purified library was then transformed into electrocompetent E. faecalis strain OGIRF. Resulting transformants were plated on Todd-Hewitt (TH) agar with erythromycin at 10 μg/ml in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 μl of THB+Erm 10 μg/ml. Inoculated 384 well dishes were incubated 16 hours at room temperature, and each well was robotically gridded onto solid TH agar+Erm with or without 5% xylose. Gridded plates were incubated 16 hours at 37° C., and then manually scored for arrayed colonies that were growth-compromised in the presence of xylose.


[0543] Arrayed colonies that were growth-sensitive on medium containing 5% xylose, yet were able to grow on similar medium lacking xylose, were subjected to further growth sensitivity analysis. Colonies from the plate lacking xylose were manually picked and inoculated into individual wells of a 96 well culture dish containing THB+Erm 10, and were incubated for 16 hours at 30° C. These cultures were robotically diluted {fraction (1/100)} into fresh medium and allowed to incubate for 4 hours at 37° C., after which they were subjected to serial dilution on plates containing 5% xylose or plates lacking xylose. After growth for 16 hours at 37° C., the arrays of serially diluted spots that resulted were compared between the two media. Colonies that grew similarly on both media were scored as a negative and corresponding colonies were no longer considered. Colonies on xylose medium that failed to grow to the same serial dilution compared to those on the non-xylose plate were given a score based on the differential. For example, colonies on xylose medium that only grow to a serial dilution of −4 while they were able to grow to −8 on the non-xylose plate, then the corresponding transformant colony received a score of “4” representing the log difference in growth observed.


[0544] Following the identification of those vectors that, upon induction, negatively impacted E. faecalis growth or proliferation, the inserts or nucleic acid fragments contained in those expression vectors were isolated for subsequent characterization. The inserts in the vectors of interest were subjected to nucleotide sequence determination.


[0545] It will be appreciated that other restriction enzymes and other endonucleases or methodologies may be used to generate random genomic fragments. In addition, random genomic fragments may be generated by mechanical shearing. Sonication and nebulization are two such techniques commonly used for mechanical shearing of DNA.



Example 2


Nucleotide Sequence Determination of Identified Clones Transribing Nucleic Acid Fragments with Detrimental Effects on Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis Proliferation

[0546] Plasmids from clones that received a dilution plating score of “2” or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. Staphylococcus aureus were grown in standard laboratory media (LB or TB with 15 ug/ml Chloramphenicol to select for the plasmid). Growth was carried out at 37° C. overnight in culture tubes or 2 ml deep well microtiter plates.


[0547] Lysis of Staphylococcus aureus was performed as follows. Cultures (2-5 ml) were centrifuged and the cell pellets resuspended in 1.5 mg/ml solution of lysostaphin (20 μl/ml of original culture) followed by addition of 250 μl of resuspension buffer (Qiagen). Alternatively, cell pellets were resuspended directly in 250 μl of resuspension buffer (Qiagen) to which 5-20 μl of a 1 mg/ml lysostaphin solution were added.


[0548] DNA was isolated using Qiagen miniprep kits or Wizard (Qiagen) miniprep kits according to the instructions provided by the manufacturer.


[0549] The genomic DNA inserts were amplified from the purified plasmids by PCR as follows.


[0550] 1 μl of Qiagen purified plasmid was put into a total reaction volume of 25 μl Qiagen Hot Start PCR mix. For Staphylococcus aureus, the following primers were used in the PCR reaction:
1pXylT5F: CAGCAGTCTGAGTTATAAAATAG(SEQ ID NO: 1)LexL TGTTTTATCAGACCGCTT(SEQ ID NO: 2)


[0551] Similar methods were conducted for Salmonella typhimurium and Klebsiella pneumoniae. For Salmonella typhimurium and Klebsiella pneumoniae the following primers were used:
25′-TGTTTTATCAGACCGCTT-3′(SEQ ID NO: 2)and5′-ACAATTTCACACAGCCTC-3′(SEQ ID NO: 4)


[0552] PCR was carried out in a PE GenAmp with the following cycle times:


[0553] Step 1. 95° C. 15 min


[0554] Step 2. 94° C. 45sec


[0555] Step 3. 54° C. 45 sec


[0556] Step 4. 72° C. 1 minute


[0557] Step 5. Return to step 2, 29 times


[0558] Step 6. 72° C. 10 minutes


[0559] Step 7. 4° C. hold


[0560] The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.


[0561] For Pseudomonas aeruginosa, plasmids from transformant colonies that received a dilution plating score of “2” or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. Pseudomonas aeruginosa were grown in standard laboratory media (LB with carbenicillin at 100 μg/ml or Streptomycin 40 μg/ml to select for the plasmid). Growth was carried out at 30° C. overnight in 100 ul culture wells in microtiter plates. To amplify insert DNA 2 ul of culture were placed into 25 ul Qiagen Hot Start PCR mix. PCR reactions were in 96 well microtiter plates. For plasmid pEP5S the following primers were used in the PCR reaction:
3T7L1+: GTCGGCGATATAGGCGCCAGCAACCG(SEQ ID NO: 5)pStrA3: ATAATCGAGCATGAGTATCATACG(SEQ ID NO: 6)


[0562] PCR was carried out in a PE GenAmp with the following cycle times:


[0563] Step 1. 95° C. 15 min


[0564] Step 2. 94° C. 45 sec


[0565] Step 3. 54° C. 45 sec


[0566] Step 4. 72° C. 1 minute


[0567] Step 5. Return to step 2, 29 times


[0568] Step 6. 72° C. 10 minutes


[0569] Step 7. 4° C. hold


[0570] The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.


[0571] The purified PCR products were then directly cycle sequenced with Qiagen Hot Start PCR mix. The following primers were used in the sequencing reaction:
4T7/L2: ATGCGTCCGGCGTAGAGGAT(SEQ ID NO: 7)


[0572] PCR was carried out in a PE GenAmp with the following cycle times:


[0573] Step 1. 94° C. 15 min


[0574] Step 2. 96° C. 10 sec


[0575] Step 3. 50° C. 5 sec


[0576] Step 4. 60° C. 4 min


[0577] Step 5. Return to step 2, 24 times


[0578] Step 6. 4° C. hold


[0579] The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.


[0580] For E. faecalis, plasmids from transformant colonies that received a dilution plating score of “2” or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. E. faecalis were grown in THB 10 μg/ml Erm at 30° C. overnight in 100 ul culture wells in microtiter plates. To amplify insert DNA 2 ul of culture were placed into 25 μl Qiagen Hot Start PCR mix. PCR reactions were in 96 well microtiter plates. The following primers were used in the PCR reaction:
5pXylT5: CAGCAGTCTGAGTTATAAAATAG(SEQ ID NO: 1)and the


[0581] PCR was carried out in a PE GenAmp with the following cycle times:


[0582] Step 1. 95° C. 15 min


[0583] Step 2. 94° C. 45 sec


[0584] Step 3. 54° C. 45 sec


[0585] Step 4. 72° C. 1 minute


[0586] Step 5. Return to step 2, 29 times


[0587] Step 6. 72° C. 10 minutes


[0588] Step 7. 4° C. hold


[0589] The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.


[0590] The purified PCR products were then directly cycle sequenced with Qiagen Hot Start PCR mix. The following primers were used in the PCR reaction:
6pXylT5: CAGCAGTCTGAGTTATAAAATAG(SEQ ID NO: 1)


[0591] PCR was carried out in a PE GenAmp with the following cycle times:


[0592] Step 1. 94° C. 15 min


[0593] Step 2. 96° C. 10 sec


[0594] Step 3. 50° C. 5 sec


[0595] Step 4. 60° C. 4 min


[0596] Step 5. Return to step 2, 24 times


[0597] Step 6. 4° C. hold


[0598] The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.


[0599] The amplified genomic DNA inserts from each of the above procedures were subjected to automated sequencing. Sequence identification numbers (SEQ ID NOs) and clone names for the identified inserts are listed in Table IA and discussed below.



Example 3


Comparison of Isolated Nucleic Acids to Known Sequences

[0600] The nucleotide sequences of the subcloned fragments from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis obtained from the expression vectors discussed above were compared to known sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis and other microorganisms as follows. First, to confirm that each clone originated from one location on the chromosome and was not chimeric, the nucleotide sequences of the selected clones were compared against the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genomic sequences to align the clone to the correct position on the chromosome. The NCBI BLASTN v 2.0.9 program was used for this comparison, and the incomplete Staphylococcus aureus genomic sequences licensed from TIGR, as well as the NCBI nonredundant GenBank database were used as the source of genomic data. Salmonella typhimurium sequences were compared to sequences available from the Genome Sequencing Center (http://genome.wustl.edu/gsc/salmonella.shtml), and the Sanger Centre (http://www.sanger.ac.uk/projects/S_typhi). Pseudomonas aeruginosa sequences were compared to a proprietary database and the NCBI GenBank database. The E. faecalis sequences were compared to a proprietary database.


[0601] The BLASTN analysis was performed using the default parameters except that the filtering was turned off. No further analysis was performed on inserts which resulted from the ligation of multiple fragments.


[0602] In general, antisense molecules and their complementary genes are identified as follows. First, all possible full length open reading frames (ORFs) are extracted from available genomic databases. Such databases include the GenBank nonredundant (nr) database, the unfinished genome database available from TIGR and the PathoSeq database developed by Incyte Genomics. The latter database comprises over 40 annotated bacterial genomes including complete ORF analysis. If databases are incomplete with regard to the bacterial genome of interest, it is not necessary to extract all ORFs in the genome but only to extract the ORFs within the portions of the available genomic sequences which are complementary to the clones of interest. Computer algorithms for identifying ORFs, such as GeneMark, are available and well known to those in the art. Comparison of the clone DNA to the complementary ORF(s) allows determination of whether the clone is a sense or antisense clone. Furthermore, each ORF extracted from the database can be compared to sequences in well annotated databases including the GenBank (nr) protein database, SWISSPROT and the like. A description of the gene or of a closely related gene in a closely related microorganism is often available in these databases. Similar methods are used to identify antisense clones corresponding to genes encoding non-translated RNAs.


[0603] In order to generate the gene identification data compiled in Table IB, each of the cloned nucleic acid sequences discussed above corresponding to SEQ ID NO.s 8-3795 was used to identify the corresponding Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis ORFs in the PathoSeq v.4.1 (March 2000 release) database of microbial genomic sequences. For this purpose, the NCBI BLASTN 2.0.9 computer algorithm was used. The default parameters were used except that filtering was turned off. The default parameters for the BLASTN and BLASTX analyses were:


[0604] Expectation value (e)=10


[0605] Alignment view options: pairwise


[0606] Filter query sequence (DUST with BLASTN, SEG with others)=T


[0607] Cost to open a gap (zero invokes behavior)=0


[0608] Cost to extend a gap (zero invokes behavior)=0


[0609] X dropoff value for gapped alignment (in bits) (zero invokes behavior)=0


[0610] Show GI's in deflines=F


[0611] Penalty for a nucleotide mismatch (BLASTN only)=!3


[0612] Reward for a nucleotide match (BLASTN only)=1


[0613] Number of one-line descriptions (V)=500


[0614] Number of alignments to show (B)=250


[0615] Threshold for extending hits=default


[0616] Perform gapped alignment (not available with BLASTX)=T


[0617] Query Genetic code to use=1


[0618] DB Genetic code (for TBLAST[nx] only=1


[0619] Number of processors to use=1


[0620] SeqAlign file


[0621] Believe the query defline=F


[0622] Matrix=BLOSUM62


[0623] Word Size=default


[0624] Effective length of the database (use zero for the real size)=0


[0625] Number of best hits from a region to keep=100


[0626] Length of region used to judge hits=20


[0627] Effective length of the search space (use zero for the real size)=0


[0628] Query strands to search against database (for BLAST[nx] and TBLASTX), 3 is both, 1 is top, 2 is bottom=3


[0629] Produce HTML output=F


[0630] Alternatively, ORFs were identified and refined by conducting a survey of the public and private data sources. Full-length gene protein and nucleotide sequences for these organisms were assembled from various sources. For Pseudomonas aeruginosa, gene sequences were adopted from the Pseudomonas genome sequencing project (downloaded from http://www.pseudomonas.com). For Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi, genomic sequences from PathoSeq v 4.1 (Mar 2000 release) was reanalyzed for ORFs using the gene finding software GeneMark v 2.4a, which was purchased from GenePro Inc. 451 Bishop St., N. W., Suite B, Atlanta, Ga., 30318, USA.


[0631] Antisense clones were identified as those clones for which transcription from the inducible promoter would result in the expression of an RNA antisense to a complementary ORF, intergenic or intragenic sequence. Those clones containing single inserts and that caused growth sensitivity upon induction are listed in Table IA. ORFs complementary to the antisense nucleic acids, and their encoded polypeptides, are listed in Table IB.


[0632] The gene descriptions in the PathoSeq database derive from annotations available in the public sequence databases described above. Where a clone was found to share significant sequence identity to two or more adjacent ORFs, it was listed once for each ORF and the PathoSeq information for each ORF was compiled in Table IB.


[0633] Table IA lists the SEQ ID NOs. and clone names of the inserts which inhibited proliferation and the organism in which the clone was identified. This information was used to identify the ORFs (SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012) whose gene products (SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110) were inhibited by the nucleic acids comprising the nucleotide sequences of SEQ ID NOs. 8-3795. Table IB lists the clone name, the SEQ ID NO. of the antisense clone (in the column labelled Clone SEQ ID), the PathoSeq Locus containing the clone, the SEQ ID of the ORF identified in PathoSeq (in the column labelled Gene Seq ID (protein), the refined full length gene (column labelled genemarked gene), and the SEQ ID NO of the protein encoded by the refined full length gene (column labelled full length ORF protein SEQ ID).


[0634] Table IC provides a cross reference between PathoSeq Gene Locus listed in Table IB, the SEQ ID NOs. of the PathoSeq proteins and the SEQ ID NOs. of the nucleic acids which encode them.


[0635] It will be appreciated that ORFs may also be identified using databases other than PathoSeq. For example, the ORFs may be identified using the methods described in U.S. Provisional Patent Application Ser. No. 60/191,078, filed Mar. 21, 2000, the disclosure of which is incorporated herein by reference in its entirety.



Example 4


Identification of Genes and their Corresponding Operons Affected by Antisense Inhibition

[0636] Once the genes involved in Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis proliferation are identified as described above, the operons in which these genes lie may be identified by comparison with known microbial genomes. Since bacterial genes are transcribed in a polycistronic manner, the antisense inhibition of a single gene in an operon might affect the expression of all the other genes on the operon or the genes downstream from the single gene identified. Accordingly, each of the genes contained within an operon may be analyzed for their effect on proliferation.


[0637] Operons are predicted by looking for all adjacent genes in a genomic region that lie in the same orientation with no large noncoding gaps in between. First, full-length ORFs complementary to the antisense molecules are identified as described above. Adjacent ORFs are then identified and their relative orientation determined either by directly analyzing the genomic sequences surrounding the ORFs complementary to the antisense clones or by extracting adjacent ORFs from the collection obtained through whole genome ORF analysis described above followed by ORF alignment. Operons predicted in this way may be confirmed by comparison to the arrangement of the homologous nucleic acids in the Bacillus subtilis complete genome sequence, as reported by the genome database compiled at Institut Pasteur Subtilist Release RI 5.1 (Jun. 24, 1999) which can be found at htt ://bioweb.pasteur.fr/GenoList/SubtiList/. The Bacillus subtilis genome is the only fully sequenced and annotated genome from a Gram-positive microorganism, and appears to have a high level of similarity to Staphylococcus aureus both at the level of conservation of gene sequence and genomic organization including operon structure. Operons for Salmonella typhimurium and Klebsiella pneumoniae may be identified by comparison with E. coli, Haemophilus, or Pseudomonas sequences. The Pseudomonas aeruginosa web site (http://www.pseudomonas.com) can also be used to help predict operon organization in this bacterium.


[0638] Extensive DNA sequences of Salmonella typhimurium are available through the Salmonella Genome Center (Washington University, St. Louis, Mo.) the Sanger Centre (United Kingdom) and the PathoSeq database (Incyte ). Annotation of some of the DNA sequences in some of the aforementioned databases is lacking, but comparisons may be made to E. coli using tools such as BLASTX.


[0639] Public or proprietary databases may be used to analyzed E. faecalis sequences as well as sequences from the organisms listed above.


[0640] The results of such an analysis as applied to clone number S1M10000001A05 from Staphylococcus aureus are listed in Table II. Table II lists the SEQ ID NOs. of the Staphylococcus aureus genes involved in proliferation, the SEQ ID NOs. of the proteins encoded by these genes, and the clone name containing the nucleic acid which inhibits Staphylococcus aureus proliferation. In addition, Table II lists those other genes located on the operon included in the Staphylococcus aureus genomic sequence determined as described above. For each of the genes described in Table II, the microoganism containing the most closely related homolog, identified in one of the public databases, is also indicated in Table II.
7TABLE IIOrganismused forDNAProteinMoleculeidentificationSeq IDSeq IDnumberClone nameGeneof gene37963801SaXA001S1M10000001A05ytmIB. subtilis37973802nirRS. carnosus37983803nirBS. carnosus37993804nirDS. carnosus38003805sirBS. carnosus


[0641] The preceding analyses may be conducted for each of the sequences which are listed in Table IA which inhibit proliferation and the ORFs listed in Table IB and Table IC. Once the full length ORFs and/or the operons containing them have been identified using the methods described above, they can be obtained from a genomic library by performing a PCR amplification using primers at each end of the desired sequence. Those skilled in the art will appreciate that a comparison of the ORFs to homologous sequences in other cells or microorganisms will facilitate confirmation of the start and stop codons at the ends of the ORFs.


[0642] In some embodiments, the primers may contain restriction sites which facilitate the insertion of the gene or operon into a desired vector. For example, the gene may be inserted into an expression vector and used to produce the proliferation-required protein as described below. Other methods for obtaining the full length ORFs and/or operons are familiar to those skilled in the art. For exmaple, natural restriction sites may be employed to insert the full length ORFs and/or operons into a desired vector.



Example 5


Identification of Individual Genes within an Operon Required for Proliferation

[0643] The following example illustrates a method for determining if a targeted gene within an operon is required for cell proliferation by replacing the targeted allele in the chromosome with an in-frame deletion of the coding region of the targeted gene.


[0644] Deletion inactivation of a chromosomal copy of a gene in Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi can be accomplished by integrative gene replacement. The principles of this method were described in Xia, M., et al. 1999 Plasmid 42:144-149 and Hamilton, C. M., et al 1989. J Bacteriol. 171: 4617-4622, the disclosures of which are incorporated herein by reference in their entireties. A similar gene disruption method is available for Pseudomonas aeruginosa, except the counter selectable marker is sacB (Schweizer, H. P., Klassen, T. and Hoang, T. (1996) Mol. Biol. of Pseudomonas. ASM press, 229-237, the disclosure of which is incorporated herein by reference in its entirety). In this approach, a mutant allele of the targeted gene is constructed by way of an in-frame deletion and introduced into the chromosome using a suicide vector. This results in a tandem duplication comprising a deleted (null) allele and a wild type allele of the target gene. Cells in which the vector sequences have been deleted are isolated using a counter-selection technique. Removal of the vector sequence from the chromosomal insertion results in either restoration of the wild-type target sequence or replacement of the wild type sequence with the deletion (null) allele. E. faecalis genes can be disrupted using a suicide vector that contains an internal fragment to a gene of interest. With the appropriate selection this plasmid will homologously recombine into the chromosome (Nallapareddy, S. R., X. Qin, G. M. Weinstock, M. Hook, B. E. Murray. 2000. Infect. Immun. 68:5218-5224, the disclosure of which is incorporated herein by reference).


[0645] The resultant population of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi colonies can then be evaluated to determine whether the target sequence is required for proliferation by PCR amplification of the affected target sequence. If the targeted gene is not required for proliferation, then PCR analysis will show that roughly equal numbers of colonies have retained either the wild-type or the mutant allele. If the targeted gene is required for proliferation, then only wild-type alleles will be recovered in the PCR analysis.


[0646] The method of cross-over PCR is used to generate the mutant allele by amplification of nucleotide sequences flanking but not including the coding region of the gene of interest, using specifically designed primers such that overlap between the resulting two PCR amplification products allows them to hybridize. Further PCR amplification of this hybridization product using primers representing the extreme 5′ and 3′ ends can produce an amplification product containing an in-frame deletion of the coding region but retaining substantial flanking sequences.


[0647] For Staphylococcus aureus, this amplification product is subcloned into the suicide vector pSA3182 (Xia, M., et al. 1999 Plasmid 42:144-149, the disclosure of which is incorporated herein by reference in its entirety) which is host-dependent for autonomous replication. This vector includes a tetC tetracycline-resistance marker and the origin of replication of the well-known Staphylococcus aureus plasmid pT181 (Mojumdar, M and Kahn, S. A., Characterisation of the Tetracycline Resistance Gene of Plasmid pT181, J. Bacteriol. 170: 5522 (1988), the disclosure of which is incorporated herein by reference in its entirety). The vector lacks the repC gene which is required for autonomous replication of the vector at the pT181 origin. This vector can be propagated in a Staphylococcus aureus host strain such as SA3528, which expresses repC in trans. Once the amplified truncated target gene sequence is cloned and propagated in the pSA3182 vector, it can then be introduced into a repC minus strain such as RN4220 (Kreiswirth, B. N. et al., The Toxic Shock Syndrome Exotoxin Structural Gene is Not Detectably Transmitted by a Prophage, Nature 305:709-712 (1983), the disclosure of which is incorporated herein by reference in its entirety) by electroporation with selection for tetracycline resistance. In this strain, the vector must integrate by homologous recombination at the targeted gene in the chromosome to impart drug resistance. This results in a inserted truncated copy of the allele, followed by pSA3182 vector sequence, and finally an intact and functional allele of the targeted gene.


[0648] Once a tetracycline resistant Staphylococcus aureus strain is isolated using the above technique and shown to include truncated and wild-type alleles of the targeted gene as described above, a second plasmid, pSA7592 (Xia, M., et al. 1999 Plasmid 42:144-149, the disclosure of which is incorporated herein by reference in its entirety) is introduced into the strain by electroporation. This gene includes an erythromycin resistance gene and a repC gene that is expressed at high levels. Expression of repC in these transformants is toxic due to interference of normal chromosomal replication at the integrated pT181 origin of replication. This selects for strains that have removed the vector sequence by homologous recombination, resulting in either of two outcomes: The selected cells either possess a wild-type allele of the targeted gene or a gene in which the wild-type allele has been replaced by the engineered in-frame deletion of the truncated allele.


[0649] PCR amplification can be used to determine the genetic outcome of the above process in the resulting erythromycin resistant, tet sensitive transformant colonies. If the targeted gene is not required for cellular replication, then PCR evidence for both wild-type and mutant alleles will be found among the population of resultant transformants. However, if the targeted gene is required for cellular proliferation, then only the wild-type form of the gene will be evident among the resulting transformants.


[0650] Similarly, for Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi the PCR products containing the mutant allele of the target sequence may be introduced into an appropriate knockout vector and cells in which the wild type target has been disrupted are selected using the appropriate methodology.


[0651] The above methods have the advantage that insertion of an in-frame deletion mutation is far less likely to cause downstream polar effects on genes in the same operon as the targeted gene. However, it will be appreciated that other methods for disrupting Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi genes which are familiar to those skilled in the art may also be used.


[0652] Each gene in the operon may be disrupted using the methodology above to determine whether it is required for proliferation.



Example 6


Expression of the Proteins Encoded by Genes Identified as Required for Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi Proliferation

[0653] The following is provided as one exemplary method to express the proliferation-required proteins idenfied as described above. The proliferation-required proteins may be expressed using any of the bacterial, insect, yeast, or mammalian expression systems known in the art. In some embodiments, the proliferation-required proteins encoded by the identified nucleotide sequences described above (including the proteins of SEQ ID NOs.: 3801-3805,4861-5915, 10013-14110 encoded by the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 are expressed using expression systems designed either for E. coli or for Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. First, the initiation and termination codons for the gene are identified. If desired, methods for improving translation or expression of the protein are well known in the art. For example, if the nucleic acid encoding the polypeptide to be expressed lacks a methionine codon to serve as the initiation site, a strong Shine-Delgarno sequence, or a stop codon, these nucleotide sequences can be added. Similarly, if the identified nucleic acid lacks a transcription termination signal, this nucleotide sequence can be added to the construct by, for example, splicing out such a sequence from an appropriate donor sequence. In addition, the coding sequence may be operably linked to a strong constitutive promoter or an inducible promoter if desired. The identified nucleic acid or portion thereof encoding the polypeptide to be expressed is obtained by, for example, PCR from the bacterial expression vector or genome using oligonucleotide primers complementary to the identified nucleic acid or portion thereof and containing restriction endonuclease sequences appropriate for inserting the coding sequences into the vector such that the coding sequences can be expressed from the vector's promoter. Alternatively, other conventional cloning techniques may be used to place the coding sequence under the control of the promoter. In some embodiments, a termination signal may be located downstream of the coding sequence such that transcription of the coding sequence ends at an appropriate position.


[0654] Several expression vector systems for protein expression in E. coli are well known and available to those knowledgeable in the art. The coding sequence may be inserted into any of these vectors and placed under the control of the promoter. The expression vector may then be transformed into DH5α or some other E. coli strain suitable for the over expression of proteins.


[0655] Alternatively, an expression vector encoding a protein required for proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi may be introduced into Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. Protocols for introducing nucleic acids into these organisms are well known in the art. For example, the protocols described in J. C. Lee “Electroporation of Staphylococci” from Methods in Molecular Biology vol 47: Electroporation Protocols for Microorganisms Edited by: J. A. Nickoloff Humana Press Inc., Totowa, N.J. pp209-216, the disclosure of which is incorporated herein by reference in its entirety, may be used to introduce nucleic acids into Staphylococcus aureus. Nucleic acids may also be introduced into Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis using methods familiar to those skilled in the art. Positive transformants are selected after growing the transformed cells on plates containing an antibiotic to which the vector confers resistance. In one embodiment, Staphylococcus aureus is transformed with an expression vector in which the coding sequence is operably linked to the T5 promoter containing a xylose operator such that expression of the encoded protein is inducible with xylose.


[0656] In one embodiment, the protein is expressed and maintained in the cytoplasm as the native sequence. In an alternate embodiment, the expressed protein can be modified to include a protein tag that allows for differential cellular targeting, such as to the periplasmic space of Gram-negative or Gram-positive expression hosts or to the exterior of the cell (i.e., into the culture medium). In some embodiments, the osmotic shock cell lysis method described in Chapter 16 of Current Protocols in Molecular Biology, Vol. 2, (Ausubel, et al., Eds.) John Wiley & Sons, Inc. (1997) may be used to liberate the polypeptide from the cell. In still another embodiment, such a protein tag could also facilitate purification of the protein from either fractionated cells or from the culture medium by affinity chromatography. Each of these procedures can be used to express a proliferation-required protein.


[0657] Expressed proteins, whether in the culture medium or liberated from the periplasmic space or the cytoplasm, are then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, standard chromatography, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange chromatography, and HPLC. Alternatively, the polypeptide may be secreted from the host cell in a sufficiently enriched or pure state in the supernatant or growth media of the host cell to permit it to be used for its intended purpose without further enrichment. The purity of the protein product obtained can be assessed using techniques such as SDS PAGE, which is a protein resolving technique well known to those skilled in the art. Coomassie, silver staining or staining with an antibody are typical methods used to visualize the protein of interest.


[0658] Antibodies capable of specifically recognizing the protein of interest can be generated using synthetic peptides using methods well known in the art. See, Antibodies: A Laboratory Manual, (Harlow and Lane, Eds.) Cold Spring Harbor Laboratory (1988). For example, 15-mer peptides having an amino acid sequence encoded by the appropriate identified gene sequence of interest or portion thereof can be chemically synthesized. The synthetic peptides are injected into mice to generate antibodies to the polypeptide encoded by the identified nucleic acid sequence of interest or portion thereof. Alternatively, samples of the protein expressed from the expression vectors discussed above can be purified and subjected to amino acid sequencing analysis to confirm the identity of the recombinantly expressed protein and subsequently used to raise antibodies. An Example describing in detail the generation of monoclonal and polyclonal antibodies appears in Example 7.


[0659] The protein encoded by the identified nucleic acid of interest or portion thereof can be purified using standard immunochromatography techniques. In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically-bound secreted protein is then released from the column and recovered using standard techniques. These procedures are well known in the art.


[0660] In an alternative protein purification scheme, the identified nucleic acid of interest or portion thereof can be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the coding sequence of the identified nucleic acid of interest or portion thereof is inserted in-frame with the gene encoding the other half of the chimera. The other half of the chimera can be maltose binding protein (MBP) or a nickel binding polypeptide encoding sequence. A chromatography matrix having maltose or nickel attached thereto is then used to purify the chimeric protein. Protease cleavage sites can be engineered between the MBP gene or the nickel binding polypeptide and the identified expected gene of interest, or portion thereof. Thus, the two polypeptides of the chimera can be separated from one another by protease digestion.


[0661] One useful expression vector for generating maltose binding protein fuision proteins is pMAL (New England Biolabs), which encodes the malE gene. In the pMa1 protein fusion system, the cloned gene is inserted into a pMa1 vector downstream from the malE gene. This results in the expression of an MBP-fusion protein. The fusion protein is purified by affinity chromatography. These techniques as described are well known to those skilled in the art of molecular biology.



Example 7


Production of an Antibody to an Isolated Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi Protein

[0662] Substantially pure protein or polypeptide (including one of the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) is isolated from the transformed cells as described in Example 6. The concentration of protein in the final preparation is adjusted, for example, by concentration on a 10,000 molecular weight cut off AMICON filter device (Millipore, Bedford, Mass.), to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:


[0663] Monoclonal Antibody Production by Hybridoma Fusion


[0664] Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or any of the well-known derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody-producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells are destroyed by growth of the system on selective medium comprising aminopterin (HAT medium). The successfully-fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as described by Engvall, E., “Enzyme immunoassay ELISA and EMIT,” Meth. Enzymol. 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.


[0665] Polyclonal Antibody Production by Immunization


[0666] Polyclonal antiserum containing antibodies to heterogeneous epitopes of a single protein or a peptide can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than larger molecules and can require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol. Metab. 33:988-991 (1971).


[0667] Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 EM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).


[0668] Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies can also be used in therapeutic compositions for killing bacterial cells expressing the protein.



Example 8


Screening Chemical Libraries

[0669] A. Protein-based Assays


[0670] Having isolated and expressed bacterial proteins shown to be required for bacterial proliferation, the present invention further contemplates the use of these expressed target proteins in assays to screen libraries of compounds for potential drug candidates. The generation of chemical libraries is well known in the art. For example, combinatorial chemistry can be used to generate a library of compounds to be screened in the assays described herein. A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical “building block” reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining amino acids in every possible combination to yield peptides of a given length. Millions of chemical compounds theoretically can be synthesized through such combinatorial mixings of chemical building blocks. For example, one commentator observed that the systematic, combinatorial mixing of 100 interchangeable chemical building blocks results in the theoretical synthesis of 100 million tetrameric compounds or 10 billion pentameric compounds. (Gallop et al., “Applications of Combinatorial Technologies to Drug Discovery, Background and Peptide Combinatorial Libraries,” Journal of Medicinal Chemistry, Vol. 37, No. 9, 1233-1250 (1994). Other chemical libraries known to those in the art may also be used, including natural product libraries.


[0671] Once generated, combinatorial libraries can be screened for compounds that possess desirable biological properties. For example, compounds which may be useful as drugs or to develop drugs would likely have the ability to bind to the target protein identified, expressed and purified as discussed above. Further, if the identified target protein is an enzyme, candidate compounds would likely interfere with the enzymatic properties of the target protein. For example, the enzymatic function of a target protein may be to serve as a protease, nuclease, phosphatase, dehydrogenase, transporter protein, transcriptional enzyme, and any other type of enzyme known or unknown. Thus, the present invention contemplates using the protein products described above to screen combinatorial chemical libraries.


[0672] In one example, the target protein is a serine protease and the substrate of the enzyme is known. The present example is directed towards the analysis of libraries of compounds to identify compounds that function as inhibitors of the target enzyme. First, a library of small molecules is generated using methods of combinatorial library formation well known in the art. U.S. Pat. Nos. 5,463,564 and 5,574,656, to Agrafiotis, et al., entitled “System and Method of Automatically Generating Chemical Compounds with Desired Properties,” the disclosures of which are incorporated herein by reference in their entireties, are two such teachings. Then the library compounds are screened to identify those compounds that possess desired structural and functional properties. U.S. Pat. No. 5,684,711, the disclosure of which is incorporated herein by reference in its entirety, also discusses a method for screening libraries.


[0673] To illustrate the screening process, the target polypeptide and chemical compounds of the library are combined with one another and permitted to interact with one another. A labeled substrate is added to the incubation. The label on the substrate is such that a detectable signal is emitted from the products of the substrate molecules that result from the activity of the target polypeptide. The emission of this signal permits one to measure the effect of the combinatorial library compounds on the enzymatic activity of target enzymes by comparing it to the signal emitted in the absence of combinatorial library compounds. The characteristics of each library compound are encoded so that compounds demonstrating activity against the enzyme can be analyzed and features common to the various compounds identified can be isolated and combined into future iterations of libraries.


[0674] Once a library of compounds is screened, subsequent libraries are generated using those chemical building blocks that possess the features shown in the first round of screen to have activity against the target enzyme. Using this method, subsequent iterations of candidate compounds will possess more and more of those structural and functional features required to inhibit the function of the target enzyme, until a group of enzyme inhibitors with high specificity for the enzyme can be found. These compounds can then be further tested for their safety and efficacy as antibiotics for use in manmmals.


[0675] It will be readily appreciated that this particular screening methodology is exemplary only. Other methods are well known to those skilled in the art. For example, a wide variety of screening techniques are known for a large number of naturally-occurring targets when the biochemical function of the target protein is known. For example, some techniques involve the generation and use of small peptides to probe and analyze target proteins both biochemically and genetically in order to identify and develop drug leads. Such techniques include the methods described in PCT publications No. WO9935494, WO9819162, WO9954728, the disclosures of which are incorporated herein by reference in their entireties. Other techniques utilize natural product libraries or libraries of larger molecules such as proteins.


[0676] It will be appreciated that the above protein-based assays may be performed with any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) or portions thereof. In addition, the above protein-based assays may be performed with homologous polypeptides or portions thereof.


[0677] B. Cell-based Assays


[0678] Current cell-based assays used to identify or to characterize compounds for drug discovery and development frequently depend on detecting the ability of a test compound to modulate the activity of a target molecule located within a cell or located on the surface of a cell. An advantage of cell-based assays is that they allow the effect of a compound on a target molecule's activity to be detected within the physiologically relevant environment of the cell as opposed to an in vitro environment. Most often such target molecules are proteins such as enzymes, receptors and the like. However, target molecules may also include other molecules such as DNAs, lipids, carbohydrates and RNAs including messenger RNAs, ribosomal RNAs, tRNAs, regulatory RNAs and the like. A number of highly sensitive cell-based assay methods are available to those of skill in the art to detect binding and interaction of test compounds with specific target molecules. However, these methods are generally not highly effective when the test compound binds to or otherwise interacts with its target molecule with moderate or low affinity. In addition, the target molecule may not be readily accessible to a test compound in solution, such as when the target molecule is located inside the cell or within a cellular compartment. Thus, current cell-based assay methods are limited in that they are not effective in identifying or characterizing compounds that interact with their targets with moderate to low affinity or compounds that interact with targets that are not readily accessible.


[0679] The cell-based assay methods of the present invention have substantial advantages over current cell-based assays. These advantages derive from the use of sensitized cells in which the level or activity of at least one proliferation-required gene product (the target molecule) has been specifically reduced to the point where the presence or absence of its function becomes a rate-determining step for cellular proliferation. Bacterial, fungal, plant, or animal cells can all be used with the present method. Such sensitized cells become much more sensitive to compounds that are active against the affected target molecule. Thus, cell-based assays of the present invention are capable of detecting compounds exhibiting low or moderate potency against the target molecule of interest because such compounds are substantially more potent on sensitized cells than on non-sensitized cells. The effect may be such that a test compound may be two to several times more potent, at least 10 times more potent, at least 20 times more potent, at least 50 times more potent, at least 100 times more potent, at least 1000 times more potent, or even more than 1000 times more potent when tested on the sensitized cells as compared to the non-sensitized cells. The proliferation-required nucleic acids or polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, may be employed in any of the cell-based assays described herein. Similarly, homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides or portions of the homologous nucleic acids or homologous polypeptides, may be employed in any of the cell-based assays described herein.


[0680] Due in part to the increased appearance of antibiotic resistance in pathogenic microorganisms and to the significant side-effects associated with some currently used antibiotics, novel antibiotics acting at new targets are highly sought after in the art. Yet, another limitation in the current art related to cell-based assays is the problem of repeatedly identifying hits against the same kinds of target molecules in the same limited set of biological pathways. This may occur when compounds acting at such new targets are discarded, ignored or fail to be detected because compounds acting at the “old” targets are encountered more frequently and are more potent than compounds acting at the new targets. As a result, the majority of antibiotics in use currently interact with a relatively small number of target molecules within an even more limited set of biological pathways.


[0681] The use of sensitized cells of the current invention provides a solution to the above problem in two ways. First, desired compounds acting at a target of interest, whether a new target or a previously known but poorly exploited target, can now be detected above the “noise” of compounds acting at the “old” targets due to the specific and substantial increase in potency of such desired compounds when tested on the sensitized cells of the current invention. Second, the methods used to sensitize cells to compounds acting at a target of interest may also sensitize these cells to compounds acting at other target molecules within the same biological pathway. For example, expression of an antisense molecule to a gene encoding a ribosomal protein is expected to sensitize the cell to compounds acting at that ribosomal protein and may also sensitize the cells to compounds acting at any of the ribosomal components (proteins or rRNA) or even to compounds acting at any target which is part of the protein synthesis pathway. Thus an important advantage of the present invention is the ability to reveal new targets and pathways that were previously not readily accessible to drug discovery methods.


[0682] Sensitized cells of the present invention are prepared by reducing the activity or level of a target molecule. The target molecule may be a gene product, such as an RNA or polypeptide produced from the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including a gene product produced from the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) or from homologous nucleic acids. For example, the target molecule may be one of the polypeptides of SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110 or a homologous polypeptide. Alternatively, the target may be a gene product such as an RNA or polypeptide which is produced from a sequence within the same operon as the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or from homologous nucleic acids. In addition, the target may be an RNA or polypeptide in the same biological pathway as the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or from homologous nucleic acids. Such biological pathways include, but are not limited to, enzymatic, biochemical and metabolic pathways as well as pathways involved in the production of cellular structures such the cell wall.


[0683] Current methods employed in the arts of medicinal and combinatorial chemistries are able to make use of structure-activity relationship information derived from testing compounds in various biological assays including direct binding assays and cell-based assays. Occasionally compounds are directly identified in such assays that are sufficiently potent to be developed as drugs. More often, initial hit compounds exhibit moderate or low potency. Once a hit compound is identified with low or moderate potency, directed libraries of compounds are synthesized and tested in order to identify more potent leads. Generally these directed libraries are combinatorial chemical libraries consisting of compounds with structures related to the hit compound but containing systematic variations including additions, subtractions and substitutions of various structural features. When tested for activity against the target molecule, structural features are identified that either alone or in combination with other features enhance or reduce activity. This information is used to design subsequent directed libraries containing compounds with enhanced activity against the target molecule. After one or several iterations of this process, compounds with substantially increased activity against the target molecule are identified and may be further developed as drugs. This process is facilitated by use of the sensitized cells of the present invention since compounds acting at the selected targets exhibit increased potency in such cell-based assays, thus; more compounds can now be characterized providing more useful information than would be obtained otherwise.


[0684] Thus, it is now possible using cell-based assays of the present invention to identify or characterize compounds that previously would not have been readily identified or characterized including compounds that act at targets that previously were not readily exploited using cell-based assays. The process of evolving potent drug leads from initial hit compounds is also substantially improved by the cell-based assays of the present invention because, for the same number of test compounds, more structure-function relationship information is likely to be revealed.


[0685] The method of sensitizing a cell entails selecting a suitable gene or operon. A suitable gene or operon is one whose transcription and/or expression is required for the proliferation of the cell to be sensitized. The next step is to introduce into the cells to be sensitized, an antisense RNA capable of hybridizing to the suitable gene or operon or to the RNA encoded by the suitable gene or operon. Introduction of the antisense RNA can be in the form of a vector in which antisense RNA is produced under the control of an inducible promoter. The amount of antisense RNA produced is modulated by varying an inducer concentration to which the cell is exposed and thereby varying the activity of the promoter driving transcription of the antisense RNA. Thus, cells are sensitized by exposing them to an inducer concentration that results in a sub-lethal level of antisense RNA expression. The requisite maount of inducer may be derived empiracally by one of skill in the art.


[0686] In one embodiment of the cell-based assays, antisense nucleic acids complementary to the identified Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi nucleotide sequences or portions thereof (including antisense nucleic acids comprising a nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and the antisense nucleic acids of SEQ ID NOs.: 8-3795 or antisense nucleic acids comprising a nucleotide sequence complementary to portions of the foregoing nucleic acids thereof), antisense nucleic complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids are used to inhibit the production of a proliferation-required protein. Vectors producing antisense RNA complementary to identified genes required for proliferation, or portions thereof, are used to limit the concentration of a proliferation-required protein without severely inhibiting growth. The proliferation-required protein may be one of the proteins of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 or a homologous polypeptide. To achieve that goal, a growth inhibition dose curve of inducer is calculated by plotting various doses of inducer against the corresponding growth inhibition caused by the antisense expression. From this curve, the concentration of inducer needed to achieve various percentages of antisense induced growth inhibition, from 1 to 100% can be determined.


[0687] A variety of different regulatable promoters may be used to produce the antisense nucleic acid. Transcription from the regulatable promoters may be modulated by controlling the activity of a transcription factor repressor which acts at the regulatable promoter. For example, if transcription is modulated by affecting the activity of a repressor, the choice of inducer to be used depends on the repressor/operator responsible for regulating transcription of the antisense nucleic acid. If the regulatable promoter comprises a T5 promoter fused to a xylO (xylose operator; e.g. derived from Staphylococcus xylosis (Schnappinger, D. et al., FEMS Microbiol. Let. 129: 121-128 (1995), the disclosure of which is incorporated herein by reference in its entirety) then transcription of the antisense nucleic acid may be regulated by a xylose repressor. The xylose repressor may be provided by ectoptic expression within an S. aureus cell of an exogenous xylose repressor gene, e.g. derived from S. xylosis DNA. In such cases transcription of antisense RNA from the promoter is inducible by adding xylose to the medium and the promoter is thus “xylose inducible.” Similarly, IPTG inducible promoters may be used. For example, the highest concentration of the inducer that does not reduce the growth rate significantly can be estimated from the curve. Cellular proliferation can be monitored by growth medium turbidity via OD measurements. In another example, the concentration of inducer that reduces growth by 25% can be predicted from the curve. In still another example, a concentration of inducer that reduces growth by 50% can be calculated. Additional parameters such as colony forming units (cfu) can be used to measure cellular viability.


[0688] Cells to be assayed are exposed to the above-determined concentrations of inducer. The presence of the inducer at this sub-lethal concentration reduces the amount of the proliferation required gene product to a sub-optimal amount in the cell that will still support growth. Cells grown in the presence of this concentration of inducer are therefore specifically more sensitive to inhibitors of the proliferation-required protein or RNA of interest or to inhibitors of proteins or RNAs in the same biological pathway as the proliferation-required protein or RNA of interest but not to inhibitors of unrelated proteins or RNAs.


[0689] Cells pretreated with sub-inhibitory concentrations of inducer and thus containing a reduced amount of proliferation-required target gene product are then used to screen for compounds that reduce cell growth. The sub-lethal concentration of inducer may be any concentration consistent with the intended use of the assay to identify candidate compounds to which the cells are more sensitive. For example, the sub-lethal concentration of the inducer may be such that growth inhibition is at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% at least about 75%, or more. Cells which are pre-sensitized using the preceding method are more sensitive to inhibitors of the target protein because these cells contain less target protein to inhibit than do wild-type cells.


[0690] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids comprising a nucleotide sequence complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides.


[0691] In another embodiment of the cell-based assays of the present invention, the level or activity of a proliferation required gene product is reduced using a mutation, such as a temperature sensitive mutation, in the gene encoding a gene product required for proliferation and an antisense nucleic acid comprising a nucleotide sequence complementary to the gene encoding the gene product required for proliferation or a portion thereof. Growing the cells at an intermediate temperature between the permissive and restrictive temperatures of the temperature sensitive mutant where the mutation is in a proliferation-required gene produces cells with reduced activity of the proliferation-required gene product. The antisense RNA complementary to the proliferation-required sequence further reduces the activity of the proliferation required gene product. Drugs that may not have been found using either the temperature sensitive mutation or the antisense nucleic acid alone may be identified by determining whether cells in which transcription of the antisense nucleic acid has been induced and which are grown at a temperature between the permissive temperature and the restrictive temperature are substantially more sensitive to a test compound than cells in which expression of the antisense nucleic acid has not been induced and which are grown at a permissive temperature. Also drugs found previously from either the antisense nucleic acid alone or the temperature sensitive mutation alone may have a different sensitivity profile when used in cells combining the two approaches, and that sensitivity profile may indicate a more specific action of the drug in inhibiting one or more activities of the gene product.


[0692] Temperature sensitive mutations may be located at different sites within the gene and correspond to different domains of the protein. For example, the dnaB gene of Escherichia coli encodes the replication fork DNA helicase. DnaB has several domains, including domains for oligomerization, ATP hydrolysis, DNA binding, interaction with primase, interaction with DnaC, and interaction with DnaA [(Biswas, E. E. and Biswas, S. B. 1999. Mechanism and DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochem. 38:10919-10928; Hiasa, H. and Marians, K. J. 1999. Initiation of bidirectional replication at the chromosomal origin is directed by the interaction between helicase and primase. J. Biol. Chem. 274:27244-27248; San Martin, C., Radermacher, M., Wolpensinger, B., Engel, A., Miles, C. S., Dixon, N. E., and Carazo, J. M. 1998. Three-dimensional reconstructions from cryoelectron microscopy images reveal an intimate complex between helicase DnaB and its loading partner DnaC. Structure 6:501-9; Sutton, M. D., Carr, K. M., Vicente, M., and Kaguni, J. M. 1998. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J. Biol. Chem. 273:34255-62.), the disclosures of which are incorporated herein by reference in their entireties]. Temperature sensitive mutations in different domains of DnaB confer different phenotypes at the restrictive temperature, which include either an abrupt stop or slow stop in DNA replication with or without DNA breakdown (Wechsler, J. A. and Gross, J. D. 1971. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol. Gen. Genetics 113:273-284, the disclosure of which is incorporated herein by reference in its entirety) and termination of growth or cell death. Combining the use of temperature sensitive mutations in the dnaB gene that cause cell death at the restrictive temperature with an antisense to the dnaB gene could lead to the discovery of very specific and effective inhibitors of one or a subset of activities exhibited by DnaB.


[0693] It will be appreciated that the above method may be performed with any mutation which reduces but does not eliminate the activity or level of the gene product which is required for proliferation.


[0694] It will be appreciated that the above cell-based assays may be performed using mutations in, such as temperature sensitive mutations, and antisense nucleic acids comprising a nucleotide sequence complementary to any of the genes encoding proliferation-required gene products from from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012), mutations in and antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.


[0695] When screening for antimicrobial agents against a gene product required for proliferation, growth inhibition of cells containing a limiting amount of that proliferation-required gene product can be assayed. Growth inhibition can be measured by directly comparing the amount of growth, measured by the optical density of the growth medium, between an experimental sample and a control sample. Alternative methods for assaying cell proliferation include measuring green fluorescent protein (GFP) reporter construct emissions, various enzymatic activity assays, and other methods well known in the art.


[0696] It will be appreciated that the above method may be performed in solid phase, liquid phase or a combination of the two. For example, cells grown on nutrient agar containing the inducer of the antisense construct may be exposed to compounds spotted onto the agar surface. If desired, the cells may be grown on agar containing varying concentrations of the inducer. A compound's effect may be judged from the diameter of the resulting killing zone, the area around the compound application point in which cells do not grow. Multiple compounds may be transferred to agar plates and simultaneously tested using automated and semi-automated equipment including but not restricted to multi-channel pipettes (for example the Beckman Multimek) and multi-channel spotters (for example the Genomic Solutions Flexys). In this way multiple plates and thousands to millions of compounds may be tested per day.


[0697] The compounds may also be tested entirely in liquid phase using microtiter plates as described below. Liquid phase screening may be performed in microtiter plates containing 96, 384, 1536 or more wells per microtiter plate to screen multiple plates and thousands to millions of compounds per day. Automated and semi-automated equipment may be used for addition of reagents (for example cells and compounds) and determination of cell density.



Example 9


Cell-based Assay Using Antisense Complementary to Genes Encoding Ribosomal Proteins

[0698] The effectiveness of the above cell-based assay was validated using constructs transribing antisense RNA to the proliferation required E. coli genes rplL, rplJ, and rplW encoding ribosomal proteins L7/L12, L10 and L23 respectively. These proteins are essential components of the protein synthesis apparatus of the cell and as such are required for proliferation. These constructs were used to test the effect of antisense transcription on cell sensitivity to antibiotics known to bind to the ribosome and thereby inhibit protein synthesis. Constructs transcribing antisense RNA to several other genes (elaD, visC, yohH, and atpE/B), the products of which are not involved in protein synthesis were used for comparison.


[0699] First, pLex5BA (Krause et al., J. Mol. Biol. 274: 365 (1997), the disclosure of which is incorporated herein by reference in its entirety) vectors containing antisense constructs to either rplW or to elaD were introduced into separate E. coli cell populations. Vector introduction is a technique well known to those of ordinary skill in the art. The vectors of this example contain IPTG inducible promoters that drive the transcription of the antisense RNA in the presence of the inducer. However, those skilled in the art will appreciate that other inducible promoters may also be used. Suitable vectors are also well known in the art. Antisense clones to genes encoding different ribosomal proteins or to genes encoding proteins that are not involved in protein synthesis were utilized to test the effect of antisense transcription on cell sensitivity to the antibiotics known to bind to ribosomal proteins and inhibit protein synthesis. Antisense nucleic acids comprising a nucleotide sequence complementarty to the elaD, atpB&atpE, visC and yohH genes are referred to as AS-elaD, AS-atpB/E, AS-visC, AS-yohH respectively. These genes are not known to be involved in protein synthesis. Antisense nucleic acids to the rplL, rplL&rplJ and rplW genes are referred to as AS-rplL, AS-rplL/J, and AS-rplW respectively. These genes encode ribosomal proteins L7/L12 (rplL) L10 (rplJ) and L23 (rplW). Vectors containing these antisense nucleic acids were introduced into separate E. coli cell populations.


[0700] The cell populations containing vectors producing AS-elaD or AS-rplW were exposed to a range of IPTG concentrations in liquid medium to obtain the growth inhibitory dose curve for each clone (FIG. 1). First, seed cultures were grown to a particular turbidity measured by the optical density (OD) of the growth solution. The OD of the solution is directly related to the number of bacterial cells contained therein. Subsequently, sixteen 200 μl liquid medium cultures were grown in a 96 well microtiter plate at 37° C. with a range of IPTG concentrations in duplicate two-fold serial dilutions from 1600 uM to 12.5 μM (final concentration). Additionally, control cells were grown in duplicate without IPTG. These cultures were started from an inoculum of equal amounts of cells derived from the same initial seed culture of a clone of interest. The cells were grown for up to 15 hours and the extent of growth was determined by measuring the optical density of the cultures at 600 nm. When the control culture reached mid-log phase the percent growth (relative to the control culture) for each of the IPTG containing cultures was plotted against the log concentrations of IPTG to produce a growth inhibitory dose response curve for the IPTG. The concentration of IPTG that inhibits cell growth to 50% (IC50) as compared to the 0 mM IPTG control (0% growth inhibition) was then calculated from the curve. Under these conditions, an amount of antisense RNA was produced that reduced the expression levels of rplW or elaD to a degree such that growth of cells containing their respective antisense vectors was inhibited by 50%.


[0701] Alternative methods of measuring growth are also contemplated. Examples of these methods include measurements of proteins, the expression of which is engineered into the cells being tested and can readily be measured. Examples of such proteins include green fluorescent protein (GFP), luciferase, and various enzymes.


[0702] Cells were pretreated with the selected concentration of IPTG and then used to test the sensitivity of cell populations to tetracycline, erythromycin and other known protein synthesis inhibitors. FIG. 1 is an IPTG dose response curve in E. coli transformed with an IPTG-inducible plasmid containing either an antisense clone to the E. coli rplW gene (AS-rplW) which encodes ribosomal protein L23 which is required for protein synthesis and essential for cell proliferation, or an antisense clone to the elaD (AS-elaD) gene which is not known to be involved in protein synthesis.


[0703] An example of a tetracycline dose response curve is shown in FIGS. 2A and 2B for the rplW and elaD genes, respectively. Cells were grown to log phase and then diluted into medium alone or medium containing IPTG at concentrations which give 20% and 50% growth inhibition as determined by IPTG dose response curves. After 2.5 hours, the cells were diluted to a final OD600 of 0.002 into 96 well plates containing (1) +/−IPTG at the same concentrations used for the 2.5 hour pre-incubation; and (2) serial two-fold dilutions of tetracycline such that the final concentrations of tetracycline range from 1 μg/ml to 15.6 ng/ml and 0 μg/ml. The 96 well plates were incubated at 37° C. and the OD600 was read by a plate reader every 5 minutes for up to 15 hours. For each IPTG concentration and the no IPTG control, tetracycline dose response curves were determined when the control (absence of tetracycline) reached 0.1 OD600.


[0704] To compare tetracycline sensitivity with and without IPTG, tetracycline IC50, were determined from the dose response curves (FIGS. 3A-B). Cells transcribing antisense nucleic acids AS-rplL or AS-rplW to genes encoding ribosomal proteins L7/L 12 and L23 respectively showed increased sensitivity to tetracycline (FIG. 2A) as compared to cells with reduced levels of the elaD gene product (AS-elaD) (FIG. 2B). FIG. 3 shows a summary bar chart in which the ratios of tetracycline IC50s determined in the presence of IPTG which gives 50% growth inhibition versus tetracycline IC50S determined without IPTG (fold increase in tetracycline sensitivity) were plotted. Cells with reduced levels of either L7/L 12 (encoded by genes rplL, rplJ) or L23 (encoded by the rplW gene) showed increased sensitivity to tetracycline (FIG. 3). Cells expressing antisense to genes not known to be involved in protein synthesis (AS-atpB/E, AS-visC, AS-elaD, AS-yohH) did not show the same increased sensitivity to tetracycline, validating the specificity of this assay (FIG. 3).


[0705] In addition to the above, it has been observed in initial experiments that clones transcribing antisense RNA to genes involved in protein synthesis (including genes encoding ribosomal proteins L7/L12 & L10, L7/L12 alone, L22, and L18, as well as genes encoding rRNA and Elongation Factor G) have increased sensitivity to the macrolide, erythromycin, whereas clones transcribing antisense to the non-protein synthesis genes elaD, atpB/E and visC do not. Furthermore, the clone transcribing antisense to rplL and rplJ (AS-rplL/J) does not show increased sensitivity to nalidixic acid and ofloxacin, antibiotics which do not inhibit protein synthesis.


[0706] The results with the ribosomal protein genes rplL, rplJ, and rplW as well as the initial results using various other antisense clones and antibiotics show that limiting the concentration of an antibiotic target makes cells more sensitive to the antimicrobial agents that specifically interact with that protein. The results also show that these cells are sensitized to antimicrobial agents that inhibit the overall function in which the protein target is involved but are not sensitized to antimicrobial agents that inhibit other functions. It will be appreciated that the cell-based assays described above may be implemented using the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi antisense nucleotide sequences which inhibit the activity of genes required for proliferation described herein (including the antisense nucleic acids of SEQ ID NOs.: 8-3795) or antisense nucleic acids comprising nucleotide sequences which are complementary to the sequences of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 or portions thereof.


[0707] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides may be reduced.


[0708] The cell-based assay described above may also be used to identify the biological pathway in which a proliferation-required nucleic acid or its gene product lies. In such methods, cells transcribing a sub-lethal level of antisense to a target proliferation-required nucleic acid and control cells in which transcription of the antisense has not been induced are contacted with a panel of antibiotics known to act in various pathways. If the antibiotic acts in the pathway in which the target proliferation-required nucleic acid or its gene product lies, cells in which transcription of the antisense has been induced will be more sensitive to the antibiotic than cells in which expression of the antisense has not been induced.


[0709] As a control, the results of the assay may be confirmed by contacting a panel of cells transcribing antisense nucleic acids to many different proliferation-required genes including the target proliferation-required gene. If the antibiotic is acting specifically, heightened sensitivity to the antibiotic will be observed only in the cells transcribing antisense to a target proliferation-required gene (or cells expressing antisense to other proliferation-required genes in the same pathway as the target proliferation-required gene) but will not be observed generally in all cells expressing antisense to proliferation-required genes.


[0710] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi , (including antisense nucleic acids complementary to SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, or the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids comprising nucleotide sequences complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.


[0711] Similarly, the above method may be used to determine the pathway on which a test compound, such as a test antibiotic acts. A panel of cells, each of which transcribes an antisense to a proliferation-required nucleic acid in a known pathway, is contacted with a compound for which it is desired to determine the pathway on which it acts. The sensitivity of the panel of cells to the test compound is determined in cells in which transcription of the antisense has been induced and in control cells in which expression of the antisense has not been induced. If the test compound acts on the pathway on which an antisense nucleic acid acts, cells in which expression of the antisense has been induced will be more sensitive to the compound than cells in which expression of the antisense has not been induced. In addition, control cells in which expression of antisense to proliferation-required genes in other pathways has been induced will not exhibit heightened sensitivity to the compound. In this way, the pathway on which the test compound acts may be determined.


[0712] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids comprising nucleotide sequences complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) or homologous polypeptides may be reduced.


[0713] The Example below provides one method for performing such assays.



Example 10


Identification of the Pathway in which a Proliferation-Required Gene Lies or the Pathway on which an Antibiotic Acts

[0714] A. Preparation of Bacterial Stocks for Assay


[0715] To provide a consistent source of cells to screen, frozen stocks of host bacteria containing the desired antisense construct are prepared using standard microbiological techniques. For example, a single clone of the microorganism can be isolated by streaking out a sample of the original stock onto an agar plate containing nutrients for cell growth and an antibiotic for which the antisense construct contains a selectable marker which confers resistance. After overnight growth an isolated colony is picked from the plate with a sterile needle and transferred to an appropriate liquid growth medium containing the antibiotic required for maintenance of the plasmid. The cells are incubated at 30° C. to 37° C. with vigorous shaking for 4 to 6 hours to yield a culture in exponential growth. Sterile glycerol is added to 15% (volume to volume) and 100 μL to 500 μL aliquots are distributed into sterile cryotubes, snap frozen in liquid nitrogen, and stored at −80° C. for future assays.


[0716] B. Growth of Bacteria for Use in the Assay


[0717] A day prior to an assay, a stock vial is removed from the freezer, rapidly thawed (37° C. water bath) and a loop of culture is streaked out on an agar plate containing nutrients for cell growth and an antibiotic to which the selectable marker of the antisense construct confers resistance. After overnight growth at 37° C., ten randomly chosen, isolated colonies are transferred from the plate (sterile inoculum loop) to a sterile tube containing 5 mL of LB medium containing the antibiotic to which the antisense vector confers resistance. After vigorous mixing to form a homogeneous cell suspension, the optical density of the suspension is measured at 600 rm (OD600) and if necessary an aliquot of the suspension is diluted into a second tube of 5 mL, sterile, LB medium plus antibiotic to achieve an OD600≦0.02 absorbance units. The culture is then incubated at 37° C. for 1-2 hrs with shaking until the OD600 reaches OD 0.2-0.3. At this point the cells are ready to be used in the assay.


[0718] C. Selection of Media to be Used in Assay


[0719] Two-fold dilution series of the inducer are generated in culture media containing the appropriate antibiotic for maintenance of the antisense construct. Several media are tested side by side and three to four wells are used to evaluate the effects of the inducer at each concentration in each media. For example, LB broth, TBD broth and Muller-Hinton media may be tested with the inducer xylose at the following concentrations, 5 mM, 10 mM, 20 mM, 40 mM, 80 mM, 120 mM and 160 mM. Equal volumes of test media-inducer and cells are added to the wells of a 384 well microtiter plate and mixed. The cells are prepared as described above and diluted 1:100 in the appropriate media containing the test antibiotic immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells of each media that do not contain inducer, for example 0 mM xylose. Cell growth is monitored continuously by incubation at 37° C. in a microtiter plate reader monitoring the OD600 of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of inducer is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without inducer. The medium yielding greatest sensitivity to inducer is selected for use in the assays described below.


[0720] D. Measurement of Test Antibiotic Sensitivity in the Absence of Antisense Construct Induction


[0721] Two-fold dilution series of antibiotics of known mechanism of action are generated in the culture medium selected for further assay development that has been supplemented with the antibiotic used to maintain the construct. A panel of test antibiotics known to act on different pathways is tested side by side with three to four wells being used to evaluate the effect of a test antibiotic on cell growth at each concentration. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the medium selected for assay development supplemented with the antibiotic required to maintain the antisense construct and are diluted 1:100 in identical medium immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells that lack antibiotic, but contain the solvent used to dissolve the antibiotics. Cell growth is monitored continuously by incubation at 37° C. in a microtiter plate reader monitoring the OD600 of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without antibiotic. A plot of percent inhibition against log[antibiotic concentration] allows extrapolation of an IC50 value for each antibiotic.


[0722] E. Measurement of Test Antibiotic Sensitivity in the Presence of Antisense Construct Inducer


[0723] The culture medium selected for use in the assay is supplemented with inducer at concentrations shown to inhibit cell growth by 50% and 80% as described above, as well as the antibiotic used to maintain the construct. Two-fold dilution series of the panel of test antibiotics used above are generated in each of these media. Several antibiotics are tested side by side in each medium with three to four wells being used to evaluate the effects of an antibiotic on cell growth at each concentration. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the medium selected for use in the assay supplemented with the antibiotic required to maintain the antisense construct. The cells are diluted 1:100 into two 50 mL aliquots of identical medium containing concentrations of inducer that have been shown to inhibit cell growth by 50% and 80% respectively and incubated at 37° C. with shaking for 2.5 hours. Immediately prior to addition to the microtiter plate wells, the cultures are adjusted to an appropriate OD600 (typically 0.002) by dilution into warm (37° C.) sterile medium supplemented with identical concentrations of the inducer and antibiotic used to maintain the antisense construct. For a control, cells are also added to several wells that contain solvent used to dissolve test antibiotics but which contain no antibiotic. Cell growth is monitored continuously by incubation at 37° C. in a microtiter plate reader monitoring the OD600 of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without antibiotic. A plot of percent inhibition against log[antibiotic concentration] allows extrapolation of an IC50 value for each antibiotic.


[0724] F. Determining the Specificity of the Test Antibiotics


[0725] A comparison of the IC50s generated by antibiotics of known mechanism of action under antisense induced and non-induced conditions allows the pathway in which a proliferation-required nucleic acid lies to be identified. If cells expressing an antisense nucleic acid comprising a nucleotide sequence complementary to a proliferation-required gene are selectively sensitive to an antibiotic acting via a particular pathway, then the gene against which the antisense acts is involved in the pathway on which the antibiotic acts.


[0726] G. Identification of Pathway in which a Test Antibiotic Acts


[0727] As discussed above, the cell-based assay may also be used to determine the pathway against which a test antibiotic acts. In such an analysis, the pathways against which each member of a panel of antisense nucleic acids acts are identified as described above. A panel of cells, each containing an inducible vector which transcribes an antisense nucleic acid comprising a nucleotide sequence complementary to a gene in a known proliferation-required pathway, is contacted with a test antibiotic for which it is desired to determine the pathway on which it acts under inducing and non-inducing conditions. If heightened sensitivity is observed in induced cells transcribing antisense complementary to a gene in a particular pathway but not in induced cells transcribing antisense nucleic acids comprising nucleotide sequences complementary to genes in other pathways, then the test antibiotic acts against the pathway for which heightened sensitivity was observed.


[0728] One skilled in the art will appreciate that further optimization of the assay conditions, such as the concentration of inducer used to induce antisense transcription and/or the growth conditions used for the assay (for example incubation temperature and medium components) may further increase the selectivity and/or magnitude of the antibiotic sensitization exhibited.


[0729] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids comprising nucleotide sequences complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, (including antisense nucleic acids comprising nucleotide sequences complemenatary to SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.


[0730] The following example confirms the effectiveness of the methods described above.



Example 11


Identification of the Biological Pathway in which a Proliferation-Required Gene Lies

[0731] The effectiveness of the above assays was validated using proliferation-required genes from E. coli which were identified using procedures similar to those described above. Antibiotics of various chemical classes and modes of action were purchased from Sigma Chemicals (St. Louis, Mo.). Stock solutions were prepared by dissolving each antibiotic in an appropriate aqueous solution based on information provided by the manufacturer. The final working solution of each antibiotic contained no more than 0.2% (w/v) of any organic solvent. To determine their potency against a bacterial strain engineered for transcription of an antisense comprising a nucleotide sequence complementary to a proliferation-required 50S ribosomal protein, each antibiotic was serially diluted two- or three- fold in growth medium supplemented with the appropriate antibiotic for maintenance of the antisense construct. At least ten dilutions were prepared for each antibiotic. 25 μL aliquots of each dilution were transferred to discrete wells of a 384-well microplate (the assay plate) using a multi-channel pipette. Quadruplicate wells were used for each dilution of an antibiotic under each treatment condition (plus and minus inducer). Each assay plate contained twenty wells for cell growth controls (growth medium replacing antibiotic), ten wells for each treatment (plus and minus inducer, in this example IPTG). Assay plates were usually divided into the two treatments: half the plate containing induced cells and an appropriate concentrations of inducer (in this example IPTG) to maintain the state of induction, the other half containing non-induced cells in the absence of IPTG.


[0732] Cells for the assay were prepared as follows. Bacterial cells containing a construct, from which transcription of antisense nucleic acid comprising a nucleotide sequence complementary to rplL and rplJ (AS-rplL/J), which encode proliferation-required 50S ribosomal subunit proteins, is inducible in the presence of IPTG, were grown into exponential growth (OD600 0.2 to 0.3) and then diluted 1:100 into fresh medium containing either 400 μM or 0 μM inducer (IPTG). These cultures were incubated at 37° C. for 2.5 hr. After a 2.5 hr incubation, induced and non-induced cells were respectively diluted into an assay medium at a final OD600 value of 0.0004. The medium contained an appropriate concentration of the antibiotic for the maintenance of the antisense construct. In addition, the medium used to dilute induced cells was supplemented with 800 μM IPTG so that addition to the assay plate would result in a final IPTG concentration of 400 μM. Induced and non-induced cell suspensions were dispensed (25 μl/well) into the appropriate wells of the assay plate as discussed previously. The plate was then loaded into a plate reader, incubated at constant temperature, and cell growth was monitored in each well by the measurement of light scattering at 595 nm. Growth was monitored every 5 minutes until the cell culture attained a stationary growth phase. For each concentration of antibiotic, a percentage inhibition of growth was calculated at the time point corresponding to mid-exponential growth for the associated control wells (no antibiotic, plus or minus IPTG). For each antibiotic and condition (plus or minus IPTG), a plot of percent inhibition versus log of antibiotic concentration was generated and the IC50 determined. A comparison of the IC50 for each antibiotic in the presence and absence of IPTG revealed whether induction of the antisense construct sensitized the cell to the mechanism of action exhibited by the antibiotic. Cells which exhibited a statistically significant decrease in the IC50 value in the presence of inducer were considered to have an increased sensitivity to the test antibiotic.


[0733] The results are provided in the table below, which lists the classes and names of the antibiotics used in the analysis, the targets of the antibiotics, the IC50 in the absence of IPTG, the IC50 in the presence of IPTG, the concentration units for the IC50s, the fold increase in IC50 in the presence of IPTG, and whether increased sensitivity was observed in the presence of IPTG.
8TABLE IIIEffect of Expression of Antisense RINA to rylL and rplJ on Antibiotic SensitivityFoldIC50IC50Conc.Increase inSensitivityANTIBIOTIC CLASS /NamesTARGET(−IPTG)(+IPTG)UnitSensitivityIncreased?PROTEIN SYNTHESIS INHIBITORAMINOGLYCOSIDESGentamicin30S ribosome function271519.19ng/ml141YesStreptomycin30S ribosome function11280161ng/ml70YesSpectinomycin30S ribosome function18050<156ng/mlYesTobramycin30S ribosome function359470.58ng/ml51YesMACROLIDES50S ribosome function7467187ng/ml40YesErythromycinAROMATIC POYKETIDESTetracycline30S ribosome function199.71.83ng/ml109YesMinocycline30S ribosome function668.43.897ng/ml172YesDoxycycline30S ribosome function413.127.81ng/ml15YesOTHER PROTEIN SYNTHESISINHIBITORSFusidic acidElongation Factor G function59990641ng/ml94YesChloramphenicol30S ribosome function465.41.516ng/ml307YesLincomycin50S ribosome function47150324.2ng/ml145YesOTHER ANTIBIOTIC MECHANISMSB-LACTAMSCefoxitinCell wall biosynthesis27822484ng/ml1NoCefotaximeCell wall biosynthesis24.324.16ng/ml1NoDNA SYNTHESIS INHIBITORSNalidixic acidDNA Gyrase activity69736025ng/ml1NoOfloxacinDNA Gyrase activity49.6145.89ng/ml1NoOTHERBacitracinCell membrane function40774677mg/ml1NoDihydrofolate ReductaseTrimethoprimactivity128.9181.97ng/ml1NoVancomycinCell wall biosynthesis14540072550ng/ml2No


[0734] The above results demonstrate that induction of an antisense RNA complementary to genes encoding 50S ribosomal subunit proteins results in a selective and highly significant sensitization of cells to antibiotics that inhibit ribosomal function and protein synthesis. The above results further demonstrate that induction of an antisense to an essential gene sensitizes a cell or microorganism to compounds that interfere with that gene product's biological role. This sensitization is restricted to compounds that interfere with pathways associated with the targeted gene and its product.


[0735] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs. 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.


[0736] Example 11A below describes an analysis performed in Staphylococcus aureus.



Example 11A


Identification of the Biological Pathway in which a Gene Required for Proliferation of Staphylococcus aureus Lies

[0737] Antibiotics of various chemical classes and modes of action were purchased from chemical suppliers, for example Sigma Chemicals (St. Louis, Mo.). Stock solutions were prepared by dissolving each antibiotic in an appropriate aqueous solution based on information provided by the manufacturer. The final working solution of each antibiotic contained no more than 0.2% (w/v) of any organic solvent.


[0738] To determine its potency against a bacterial strain containing an antisense nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence encoding the Beta subunit of DNA gyrase (which is required for proliferation) under the control of a xylose inducible promoter, each antibiotic was serially diluted two- or three- fold in growth medium supplemented with the appropriate antibiotic for maintenance of the antisense construct. At least ten dilutions were prepared for each antibiotic.


[0739] Aliquots (25 μL) of each dilution were transferred to discrete wells of a 384-well microplate (the assay plate) using a multi-channel pipette. Quadruplicate wells were used for each dilution of an antibiotic under each treatment condition (plus and minus inducer). Each assay plate contained twenty wells for cell growth controls (growth medium, no antibiotic), ten wells for each treatment (plus and minus inducer, xylose, in this example). Half the assay plate contained induced cells (in this example Staphylococcus aureus cells) and appropriate concentrations of inducer (xylose, in this example) to maintain the state of induction while the other half of the assay plate contained non-induced cells maintained in the absence of inducer.


[0740] Preparation of Bacterial Cells


[0741] Cells of a bacterial clone containing a construct in which transcription of antisense comprising a nucleotide sequence complementary to the sequence encoding the Beta subunit of DNA gyrase under the control of the xylose inducible promoter (S1M10000001F08) were grown into exponential growth (OD600 0.2 to 0.3) and then diluted 1:100 into fresh medium containing either 12 mM or 0 mM inducer (xylose). These cultures were incubated at 37° C. for 2.5 hr. The presence of inducer (xylose) in the medium initiates and maintains production of antisense RNA from the antisense construct. After a 2.5 hr incubation, induced and non-induced cells were respectively diluted into an assay medium containing an appropriate concentration of the antibiotic for the maintenance of the antisense construct. In addition, medium used to dilute induced cells was supplemented with 24 mM xylose so that addition to the assay plate would result in a final xylose concentration of 12 mM. The cells were diluted to a final OD600 value of 0.0004.


[0742] Induced and non-induced cell suspensions were dispensed (25 μl/well) into the appropriate wells of the assay plate as discussed previously. The plate was then loaded into a plate reader and incubated at constant temperature while cell growth was monitored in each well by the measurement of light scattering at 595 nm. Growth was monitored every 5 minutes until the cell culture attained a stationary growth phase. For each concentration of antibiotic, a percentage inhibition of growth was calculated at the time point corresponding to mid-exponential growth for the associated control wells (no antibiotic, plus or minus xylose). For each antibiotic and condition (plus or minus xylose), plots of percent inhibition versus Log of antibiotic concentration were generated and IC50s determined.


[0743] A comparison of each antibiotic's IC50 in the presence and absence of inducer ( xylose, in this example) reveals whether induction of the antisense construct sensitized the cell to the antibiotic's mechanism of action. If the antibiotic acts against the β subunit of DNA gyrase, the IC50 of induced cells will be significantly lower than the IC50 of uninduced cells.


[0744]
FIG. 4 lists the antibiotics tested, their targets, and their fold increase in potency between induced cells and uninduced cells. As illustrated in FIG. 4, the potency of cefotaxime, cefoxitin, fusidic acid, lincomycin, tobramycin, trimethoprim and vancomycin, each of which act on targets other than the β subunit of gyrase, was not significantly different in induced cells as compared to uninduced cells. However, the potency of novobiocin, which is known to act against the Beta subunit of DNA gyrase, was significantly different between induced cells and uninduced cells.


[0745] Thus, induction of an antisense nucleic acid comprising a nucleotide sequence complementary to the sequence encoding the β subunit of gyrase results in a selective and significant sensitization of Staphylococcus aureus cells to an antibiotic which inhibits the activity of this protein. Furthermore, the results demonstrate that induction of an antisense construct to an essential gene sensitizes a cell or microorganism to compounds that interfere with that gene product's biological role. This sensitization is apparently restricted to compounds that interfere with the targeted gene and its product.


[0746] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs. 8-3795), or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides may be reduced.


[0747] Assays utilizing antisense constructs to essential genes or portions thereof can be used to identify compounds that interfere with the activity of those gene products. Such assays could be used to identify drug leads, for example antibiotics.


[0748] Panels of cells transcribing different antisense nucleic acids can be used to characterize the point of intervention of a compound affecting an essential biochemical pathway including antibiotics with no known mechanism of action.


[0749] Assays utilizing antisense constructs to essential genes can be used to identify compounds that specifically interfere with the activity of multiple targets in a pathway. Such constructs can be used to simultaneously screen a sample against multiple targets in one pathway in one reaction (Combinatorial HTS).


[0750] Furthermore, as discussed above, panels of antisense construct-containing cells may be used to characterize the point of intervention of any compound affecting an essential biological pathway including antibiotics with no known mechanism of action.


[0751] It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids comprising nucleotide sequences complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs. 8-3795), or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or homologous polypeptides may be reduced.


[0752] Another embodiment of the present invention is a method for determining the pathway against which a test antibiotic compound is active, in which the activity of target proteins or nucleic acids involved in proliferation-required pathways is reduced by contacting cells with a sub-lethal concentration of a known antibiotic which acts against the target protein or nucleic acid. In one embodiment, the target protein or nucleic acid corresponds to a proliferation-required nucleic acid identified using the methods described above, such as the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110, or homologous polypeptides. The method is similar to those described above for determining which pathway a test antibiotic acts against, except that rather than reducing the activity or level of a proliferation-required gene product using a sub-lethal level of antisense to a proliferation-required nucleic acid, the sensitized cell is generated by reducing the activity or level of the proliferation-required gene product using a sub-lethal level of a known antibiotic which acts against the proliferation required gene product. Heightened sensitivity determines the pathway on which the test compound is active.


[0753] Interactions between drugs which affect the same biological pathway have been described in the literature. For example, Mecillinam (Amdinocillin) binds to and inactivates the penicillin binding protein 2 (PBP2, product of the mrdA in E. coli). This antibiotic interacts with other antibiotics that inhibit PBP2 as well as antibiotics that inhibit other penicillin binding proteins such as PBP3 [(Gutmann, L., Vincent, S., Billot-Klein, D., Acar, J. F., Mrena, E., and Williamson, R. (1986) Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some beta-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrobial Agents & Chemotherapy, 30:906-912), the disclosure of which is incorporated herein by reference in its entirety]. Interactions between drugs could, therefore, involve two drugs that inhibit the same target protein or nucleic acid or inhibit different proteins or nucleic acids in the same pathway [(Fukuoka, T., Domon, H., Kakuta, M., Ishii, C., Hirasawa, A., Utsui, Y., Ohya, S., and Yasuda, H. (1997) Combination effect between panipenem and vancomycin on highly methicillin-resistant Staphylococcus aureus. Japan. J. Antibio. 50:411-419; Smith, C. E., Foleno, B. E., Barrett, J. F., and Frosc, M. B. (1997) Assessment of the synergistic interactions of levofloxacin and ampicillin against Enterococcus faecium by the checkerboard agar dilution and time-kill methods. Diagnos. Microbiol. Infect. Disease 27:85-92; den Hollander, J. G., Horrevorts, A. M., van Goor, M. L., Verbrugh, H. A., and Mouton, J. W. (1997) Synergism between tobramycin and ceftazidime against a resistant Pseudomonas aeruginosa strain, tested in an in vitro pharmacokinetic model. Antimicrobial Agents & Chemotherapy. 41:95-110), the disclosure of all of which are incorporated herein by reference in their entireties].


[0754] Two drugs may interact even though they inhibit different targets. For example, the proton pump inhibitor, Omeprazole, and the antibiotic, Amoxycillin, two synergistic compounds acting together, can cure Helicobacter pylori infection [(Gabryelewicz, A., Laszewicz, W., Dzieniszewski, J., Ciok, J., Marlicz, K., Bielecki, D., Popiela, T., Legutko, J., Knapik, Z., Poniewierka, E. (1997) Multicenter evaluation of dual-therapy (omeprazol and amoxycillin) for Helicobacter pylori-associated duodenal and gastric ulcer (two years of the observation). J. Physiol. Pharmacol. 48 Suppl 4:93-105), the disclosure of which is incorporated herein by reference in its entirety].


[0755] The growth inhibition from the sub-lethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.


[0756] Alternatively, the sub-lethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.


[0757] Cells are contacted with a combination of each member of a panel of known antibiotics at a sub-lethal level and varying concentrations of the test antibiotic. As a control, the cells are contacted with varying concentrations of the test antibiotic alone. The IC50 of the test antibiotic in the presence and absence of the known antibiotic is determined. If the IC50s in the presence and absence of the known drug are substantially similar, then the test drug and the known drug act on different pathways. If the IC50s are substantially different, then the test drug and the known drug act on the same pathway.


[0758] It will be appreciated that the above cell-based assays may be performed using a sub-lethal concentration of a known antibiotic which acts against the product of any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the products of SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, or portions thereof, or the products of homologous coding nucleic acids or portions thereof . In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.


[0759] Another embodiment of the present invention is a method for identifying a candidate compound for use as an antibiotic in which the activity of target proteins or nucleic acids involved in proliferation-required pathways is reduced by contacting cells with a sub-lethal concentration of a known antibiotic which acts against the target protein or nucleic acid. In one embodiment, the target protein or nucleic acid is a target protein or nucleic acid corresponding to a proliferation-required nucleic acid identified using the methods described above. The method is similar to those described previously herein for identifying candidate compounds for use as antibiotics except that rather than reducing the activity or level of a proliferation-required gene product using a sub-lethal level of antisense to a proliferation-required nucleic acid, the activity or level of the proliferation-required gene product is reduced using a sub-lethal level of a known antibiotic which acts against the proliferation required gene product.


[0760] The growth inhibition from the sub-lethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.


[0761] Alternatively, the sub-lethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.


[0762] In order to characterize test compounds of interest, cells are contacted with a panel of known antibiotics at a sub-lethal level and one or more concentrations of the test compound. As a control, the cells are contacted with the same concentrations of the test compound alone. The IC50 of the test compound in the presence and absence of the known antibiotic is determined. If the IC50 of the test compound is substantially different in the presence and absence of the known drug then the test compound is a good candidate for use as an antibiotic. As discussed above, once a candidate compound is identified using the above methods its structure may be optimized using standard techniques such as combinatorial chemistry.


[0763] Representative known antibiotics which may be used in each of the above methods are provided in Table IV below. However, it will be appreciated that other antibiotics may also be used.
9TABLE IVAntibiotics and Their TargetsRESISTANTANTIBIOTICINHIBITS/TARGETMUTANTSInhibitors of TranscriptionRifamycin, RifampicinInhibits initiation of transcription/β-rpoB, crp, cyaARifabutin Rifaximinsubunit RNA polymerase, rpoBStreptolydiginAccelerates transcription chainrpoBtermination/β-subunit RNApolymeraseStreptovaricinan acyclic ansamycin, inhibits RNArpoBpolymeraseActinomycin D + EDTAIntercalates between 2 successive G-pldAC pairs, rpoB, inhibits RNAsynthesisInhibitors of NucleicAcid MetabolismQuinolones,α subunit gyrase and/orgyrAorB, icd, sloBNalidixic acidtopoisomerase IV, gyrAOxolinic acidFluoroquinolonesα subunit gyrase, gyrA and/orgyrACiprofloxacin,topoisomerase IV (probable target innorA (efflux inNorfloxacinStaph)Staph)hipQCoumerinsInhibits ATPase activity of β-subunitNovobiocingyrase, gyrBgyrB, cysB, cysE,nov, ompACoumermycinInhibits ATPase activity of β-subunitgyrB, hisWgyrase, gyrBAlbicidinDNA synthesistsx (nucleosidechannel)MetronidazoleCauses single-strand breaks in DNAnarInhibitors of MetabolicPathwaysSulfonamides,blocks synthesis offolP, gpt, pabA,Sulfanilamidedihydrofolate,dihydro-pteroatepabB, pabCsynthesis, folPTrimethoprim,Inhibits dihydrofolate reductase,folA, thyAfolAShowdomycinNucleoside analogue capable ofnupC, pnpalkylating sulfhydryl groups, inhibitoof thymidylate synthetaseThiolactomycintype II fatty acid synthase inhibitoremrBfadB, emrB due togene dosagePsicofuranineAdenosine glycoside antibiotic,guaA,Btarget is GMP synthetaseTriclosanInhibits fatty acid synthesisfabI (envM)Diazoborines Isoniazid,heterocyclic, contain boron, inhibitfabI (envM)Ethionamidefatty acid synthesis, enoyl-ACPreductase, fabIInhibitors of TranslationPhenylpropanoidsBinds to ribosomal peptidyl transferChloramphenicol,center preventing peptiderrn, cm/A, marA,translocation/binds to S6, L3, L6,ompF, ompRL14, L16, L25, L26, L27, butpreferentially to L16Tetracyclines, type IIBinding to 305 ribosomal subunit, “AclmA (cmr), mar,polyketidessiteompFMinocyclineon 30S subunit, blocks peptideDoxycyclineelongation, strongest binding to S7Macrolides (type IBinding to 50 S ribosomal subunit,polyketides)23S rRNA, blocks peptideErythromycin,translocation, L15, L4, L12rrn, rplC, rplD,Carbomycin,rplV, macSpiramycin etcAminoglycosidesIrreversible binding to 30SStreptomycin,ribosomal subunit, preventsrpsL, strC,M, ubiFtranslation or causes mistranslationatpA-E, ecfB,Neomycinof mRNA/16S rRNAhemAC,D,E,G,topA,rpsC,D,E, rrn, speBSpectinomycinatpA-atpE, cpxA,KanamycinecfB, hemA,B,L,topAKasugamycinksgA,B,C,D,rplB,K,Gentamicin,rpsI,N,M,RAmikacinrplF, ubiFParomycincpxArpsLLincosamidesBinding to 50 S ribosomal subunit,Lincomycin,blocks peptide translocationlinB, rplN,O, rpsGClindamycinStreptogramins2 components, StreptograminsVirginiamycin,A&B, bind to the 50S ribosomalPristinamycinsubunit blocking peptideSynercid: quinupristin/translocation and peptide bonddalfopristinformationFusidanesInhibition of elongation factor GfusAFusidic Acid(EF-G) prevents peptidetranslocationKirromycin (Mocimycin)Inhibition of elongation factor TUtufA,B(EF-Tu), prevents peptide bondformationPulvomycinBinds to and inhibits EF-TUThiopeptinSulfur-containing antibiotic, inhibitsrplEprotein synthesis,EF-GTiamulinInhibits protein synthesisrplC, rplDNegamycinInhibits termination process ofprfBprotein synthesisOxazolidinones Linezolid23S rRNAIsoniazidpdxNitrofurantoinInhibits protein synthesis,nfnA, Bnitroreductases convertnitrofurantoin to highly reactiveelectrophilic intermediates whichattack bacterial ribosomalproteins non-specificallyPseudomonic AcidsInhibition of isoleucyl tRNAileSMupirocin (Bactroban)synthetase-used for Staph, topicalcream, nasal sprayIndolmycinInhibits tryptophanyl-tRNAtrpSsynthetaseViomycinrrmA (23S rRNAmethyltransferase;mutant has slowgrowth rate, slowchain elongationrate, andviomycinresistance)ThiopeptidesBinds to L11-23S RNA complexThiostreptonInhibits GTP hydrolysis by EF-GStimulates GTP hydrolysis by EF-GMicrococcinInhibitors ofCell Walls/Membranesβ-lactamsInhibition of one or more cell wallPenicillin, Ampicillintranspeptidases, endopeptidases,and glycosidases (PBPs), of the 12ampC, ampD,Methicillin,PBPs only 2 are essential: mrdAampE, envZ,(PBP2) and ftsI (pbpB, PBP3)galU, hipA,hipQ, ompC,ompF, ompR,Cephalosporins,ptsI, rfa, tolD,MecillinamBinds to and inactivates PBP2tolE(amdinocillin)(mrdA)tonBInactivates PBP3 (ftsl)alaS, argS, crp,AztreonamcyaA, envB,(Furazlocillin)mrdA,B,mreB, C,DBacilysin, TetaineDipeptide, inhib glucosaminedppAsynthaseGlycopeptides Vancomycin,Inhib G+ cell wall syn, binds toterminal D-ala-D-ala ofpentapeptide,Polypeptides BacitracinPrevents dephosphorylation andregeneration of lipid carrierrfaCyclic lipopeptideDisrupts multiple aspects ofDaptomycin,membrane function, includingpeptidoglycan synthesis,lipoteichoic acid synthesis, and thebacterial membrane potentialCyclic polypeptidesSurfactant action disrupts cellpmrAPolymixin,membrane lipids, binds lipid Amioety of LPSFosfomycin,Analogue of P-enolpyruvate,murA, crp, cyaAinhibits 1st step in peptidoglycanglpT, hipA, ptsI,synthesis - UDP-N-uhpTacetyiglucosamine enolpyruvyltransferase, murA. Also acts asImmunosuppressantCycloserinePrevents formation of D-ala dimer,hipA, cycAinhibits D-ala ligase, ddlA, BAlafosfalinphosphonodipeptide, cell wallpepA, tppsynthesis inhibitor, potentiator ofβ-lactamsInhibitors of ProteinProcessing/TransportGlobomycinInhibits signal peptidase IIlpp, dnaE(cleaves prolipoproteinssubsequent to lipid modification,lspA


[0764] It will be appreciated that the above cell-based assays may be performed using a sub-lethal concentration of a known antibiotic which acts against the product of any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, or homologous nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides may be reduced.



Example 12


Transfer of Exogenous Nucleic Acid Sequences to other Bacterial Species

[0765] The ability of an antisense molecule identified in a first organism to inhibit the proliferation of a second organism (thereby confirming that a gene in the second organism which is homologous to the gene from the first organism is required for proliferation of the second organism) was validated using antisense nucleic acids which inhibit the growth of E. coli which were identified using methods similar to those described above. Expression vectors which inhibited growth of E. coli upon induction of antisense RNA expression with IPTG were transformed directly into Enterobacter cloacae, Klebsiella pneumonia or Salmonella typhimurium. The transformed cells were then assayed for growth inhibition according to the method of Example 1. After growth in liquid culture, cells were plated at various serial dilutions and a score determined by calculating the log difference in growth for INDUCED vs. UNINDUCED antisense RNA expression as determined by the maximum 10 fold dilution at which a colony was observed. The results of these experiments are listed below in Table V. If there was no effect of antisense RNA expression in a microorganism, the clone is minus in Table V. In contrast, a positive in Table V means that at least 10 fold more cells were required to observe a colony on the induced plate than on the non-induced plate under the conditions used and in that microorganism.
10TABLE VSensitivity of Other Microorganisms to Antisense Nucleic AcidsThat Inhibit Proliferation in E. coliMol. No.S. typhimuriumE. cloacaeK. pneumoniaeEcXA001++EcXA004+EcXA005+++EcXA006EcXA007+EcXA008++EcXA009EcXA010+++EcXA011+EcXA012+EcXA013+++EcXA014++EcXA015+++EcXA016+++EcXA017+++EcXA018+++EcXA019+++EcXA020+++EcXA021+++EcXA023+++EcXA024++EcXA025EcXA026++EcXA027++EcXA028+EcXA029EcXA030+++EcXA031+EcXA032++EcXA033+++EcXA034+++EcXA035EcXA036++EcXA037++EcXA038+++EcXA039+EcXA041+++EcXA042++EcXA043EcXA044EcXA045+++EcXA046EcXA047++EcXA048EcXA049+EcXA050EcXA051+EcXA052+EcXA053+++EcXA054+EcXA055+EcXA056++EcXA057++EcXA058EcXA059+++EcXA060EcXA061EcXA062EcXA063++EcXA064EcXA065++EcXA066EcXA067+EcXA068EcXA069+EcXA070EcXA071+EcXA072++EcXA073+++EcXA074+++EcXA075+EcXA076+EcXA077++EcXA079+++EcXA080+EcXA082+EcXA083EcXA084+EcXA086EcXA087EcXA088EcXA089EcXA090EcXA091EcXA092EcXA093EcXA094+++EcXA095++EcXA096EcXA097+EcXA098+EcXA099EcXA100EcXA101EcXA102EcXA103+EcXA104+++EcXA106++EcXA107EcXA108EcXA109EcXA110++EcXA111EcXA112+EcXA113+++EcXA114+EcXA115+EcXA116++EcXA117+EcXA118EcXA119++EcXA120EcXA121EcXA122++EcXA123+EcXA124EcXA125EcXA126EcXA127++EcXA128EcXA129+EcXA130++EcXA132EcXA133EcXA136EcXA137EcXA138+EcXA139EcXA140+EcXA141+EcXA142EcXA143+EcXA144++EcXA145EcXA146EcXA147EcXA148EcXA149+++EcXA150EcXA151+EcXA152EcXA153++ExXA154EcXA155NDEcXA156+EcXA157EcXA158EcXA159+EcXA160+EcXA162EcXA163EcXA164EcXA165EcXA166EcXA167EcXA168EcXA169+EcXA171EcXA172EcXA173EcXA174EcXA175EcXA176EcXA178EcXA179EcXA180+EcXA181EcXA182EcXA183EcXA184EcXA185EcXA186EcXA187+++EcXA189+EcXA190+++EcXA191++EcXA192+


[0766] Thus, the ability of an antisense nucleic acid which inhibits the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi to inhibit the growth of other organims may be evaluated by transforming the antisense nucleic acid directly into species other than the organism from which they were obtained. In particular, the ability of the antisense nucleic acid to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. may be evaluated. In some embodiments of the present invention, the ability of the antisense nucleic acid to inhibit the growth of an organism other than E. coli may be evaluated. In such embodiments, the antisense nucleic acids are inserted into expression vectors functional in the organisms in which the antisense nucleic acids are evaluated.


[0767] It will be appreciated that the above methods for evaluating the ability of an antisense nucleic acid to inhibit the proliferation of a heterologous organism may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids.


[0768] Those skilled in the art will appreciate that a negative result in a heterologous cell or microorganism does not mean that that cell or microorganism is missing that gene nor does it mean that the gene is unessential. However, a positive result means that the heterologous cell or microorganism contains a homologous gene which is required for proliferation of that cell or microorganism. The homologous gene may be obtained using the methods described herein. Those cells that are inhibited by antisense may be used in cell-based assays as described herein for the identification and characterization of compounds in order to develop antibiotics effective in these cells or microorganisms. Those skilled in the art will appreciate that an antisense molecule which works in the microorganism from which it was obtained will not always work in a heterologous cell or microorganism.



Example 12A


Transfer of Exogenous Nucleic Acid Sequences to other Bacterial Species Using the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi Expression Vectors or Expression Vectors Functional in Bacterial Species other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi.

[0769] The antisense nucleic acids that inhibit the growth of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, may also be evaluated for their ability to inhibit the growth of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. For example, the antisense nucleic acids that inhibit the growth of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi may be evaluated for their ability to inhibit the growth of other organisms. In particular, the ability of the antisense nucleic acid to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species may be evaluated. In some embodiments of the present invention, the ability of the antisense nucleic acid to inhibit the growth of an organism other than E. coli may be evaluated.


[0770] In such methods, expression vectors in which the expression of an antisense nucleic acid that inhibits the growth of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi is under the control of an inducible promoter are introduced into the cells or microorganisms in which they are to be evaluated. In some embodiments, the antisense nucleic acids may be evaluated in cells or microorganisms which are closely related to Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. The ability of these antisense nucleic acids to inhibit the growth of the related cells or microorganisms in the presence of the inducer is then measured.


[0771] For example, thirty-nine antisense nucleic acids which inhibited the growth of Staphylococcus aureus were identified using methods such as those described herein and were inserted into an expression vector such that their expression was under the control of a xylose-inducible Xyl-T5 promoter. A vector with Green Fluorescent Protein (GFP) under control of the Xyl-T5 promoter was used to show that expression from the Xyl-T5 promoter in Staphylococcus epidermidis was comparable to that in Staphylococcus aureus.


[0772] The vectors were introduced into Staphylococcus epidermidis by electroporation as follows: Staphylococcus epidermidis was grown in liquid culture to mid-log phase and then harvested by centrifugation. The cell pellet was resuspended in 1/3 culture volume of ice-cold EP buffer (0.625 M sucrose, 1 mM MgCl2, pH=4.0), and then harvested again by centrifugation. The cell pellet was then resuspended with {fraction (1/40)} volume EP buffer and allowed to incubate on ice for 1 hour. The cells were then frozen for storage at −80° C. For electroporation, 50 μl of thawed electrocompetent cells were combined with 0.5 μg plasmid DNA and then subjected to an electrical pulse of 10 kV/cm, 25 uFarads, 200 ohm using a biorad gene pulser electroporation device. The cells were immediately resuspended with 200 μl outgrowth medium and incubated for 2 hours prior to plating on solid growth medium with drug selection to maintain the plasmid vector. Colonies resulting from overnight growth of these platings were selected, cultured in liquid medium with drug selection, and then subjected to dilution plating analysis as described for Staphylococcus aureus in Example 10 above to test growth sensitivity in the presence of the inducer xylose.


[0773] The results are shown in Table VI below. The first column indicates the Molecule Number of the Staphylococcus aureus antisense nucleic acid which was introduced into Staphylococcus epidermidis. The second column indicates whether the antisense nucleic acid inhibited the growth of Staphylococcus epidermidis, with a indicating that growth was inhibited. Of the 39 Staphylococcus aureus antisense nucleic acids evaluated, 20 inhibited the growth of Staphylococcus epidermidis.
11TABLE VISensitivity of Other Microorganisms to Antisense Nucleic AcidsThat Inhibit Proliferation of Staphylococcus aureusMol. No.S. epidermidisSaXA005+SaXA007+SaXA008+SaXA009+SaXA010SaXA011SaXA012SaXA013SaXA015+SaXA017SaXA022+SaXA023SaXA024SaXA025+SaXA026+SaXA027SaXA027bSaXA02cSaXA028SaXA029+SaXA030SaXA032+SaXA033+SaXA034SaXA035+SaXA037SaXA039SaXA042SaXA043SaXA044SaXA045+SaXA051+SaXA053SaXA056bSaXA059a+SaXA060SaXA061+SaXA062+SaXA063SaXA065


[0774] Although the results shown above were obtained using a subset of the nucleic acids of the present invention, it will be appreciated that similar analyses may be performed using the other nucleic acids of the present invention to determine whether they inhibit the proliferation of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi.


[0775] Thus, it will be appreciated that the above methods for evaluating the ability of an antisense nucleic acid to inhibit the proliferation of a heterologous organism may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids.



Example 12C

[0776] As a demonstration of the methodology required to find homologues to an essential gene, nine prokaryotic organisms were analyzed and compared in detail. First, the most reliable source of gene sequences for each organism was assessed by conducting a survey of the public and private data sources. The nine organisms studied are Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi. Full-length gene protein and nucleotide sequences for these organisms were assembled from various sources. For Escherichia coli, Haemophilus influenzae and Helicobacter pylori, gene sequences were adopted from the public sequencing projects, and derived from the GenPept 115 database (available from NCBI). For Pseudomonas aeruginosa, gene sequences were adopted from the Pseudomonas genome sequencing project (downloaded from http://www.pseudomonas.com). For Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi, genomic sequences from PathoSeq v 4.1 (Mar 2000 release) was reanalyzed for ORFs using the gene finding software GeneMark v 2.4a, which was purchased from GenePro Inc. 451 Bishop St., N.W., Suite B, Atlanta, Ga., 30318, USA.


[0777] Subsequently, the essential genes found by the antisense methodology were compared to the derived proteomes of interest, in order to find all the homologous genes to a given gene. This comparison was done using the FASTA program v3.3. Genes were considered homologues if they were greater than 25% identical and the alignment between the two genes covered more than 70% of the length of one of the genes. The best homologue for each of the nine organisms, defined as the most significantly scoring match which also fulfilled the above criteria, was reported in Table VIIA. Table VIIA lists the best ORF identified as described above (column labelled LOCUSID), the SEQ ID, % identity, and the amount of the protein which aligns well with the query sequence (coverage) for the gene identified in each of the nine organisms evaluated as described above.


[0778] Table VIIB lists the PathoSeq cluster ID for genes identified as being required for proliferation in Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the methods described herein. As indicated in the column labelled PathoSeq cluster ID, these sequences share homology to one another and were consequently grouped within the same PathoSeq cluster. Thus, the methods described herein identified genes required for proliferation in several species which share homology.
12TABLE VIIAEscherichiaEnterococcusHaemophilusHelicobacterKlebsiellaPseudomonasStaphylococcusStreptococcusSalmonellaLOCUSIDDatacolifaecalisinfluenzaepyloripneumoniaeaeruginosaaureuspneumoniaetyphiEFA100001SeqID1043010618109981160311739123091352414040IDENTITY27%100% 28% 28%29%52%55%28%COVERAGE99%100% 101% 79%77%98%98%98%EFA100023SeqID105051286013392IDENTITY100% 27%39%COVERAGE100% 95%101% EFA100065SeqID1032210813111771135112018128201318613733IDENTITY49%100% 49%44%48%59%65%48%COVERAGE96%100% 95%96%97%97% 98%96%EFA100151SeqID10128105161124711340118911252913362IDENTITY50%100% 37%46%49%54%51%COVERAGE99%100% 100% 100% 100% 99%100% EFA100157SeqID10673114481235213176IDENTITY100% 39%64%74%COVERAGE100% 98%98%99%EFA100165SeqID1003110637111891156412009126141339914078IDENTITY31%100% 33%28%32%29%27%29%COVERAGE97%100% 98%100% 96%90%96%97%EFA100190SeqID103641048011061114081165911996124441323213966IDENTITY54%100% 57%55%55%54%78%80%54%COVERAGE100% 101% 100% 99%90%100% 101% 101% 101% EFA100194SeqID1033610540111201142611989122301322214096IDENTITY60%100% 62%62%60%85%86%61%COVERAGE100% 101% 100% 102% 100% 101% 92%101% EFA100200SeqID10323107981119312020125271356113731IDENTITY39%100% 38%40%50%59%39%COVERAGE85%100% 87%85%85%88%85%EFA100210SeqID103521056011104114395171122601320413968IDENTITY53%100% 53%53%54%74%93%53%COVERAGE95%101% 95%94%95%101% 94%95%EFA100211SeqID10351105231110511438119921221413205IDENTITY46%100% 46%39%43%69%63%COVERAGE87%101% 87%81%87%97%81%_______EFA100289SeqID10284108101182713245IDENTITY30%100% 31%25%COVERAGE85%100% 90%84%EFA100295SeqID1004510517111741160111937123901361613911IDENTITY43%100% 41%41%45%44%45%43%COVERAGE92%101% 95%97%97%99%94%72%EFA100312SeqID1064112178IDENTITY100% 33%COVERAGE100% 88%EFA100329SeqID10782IDENTITY100% COVERAGE100% EFA100394SeqID1046510675112381156311961130031368413853IDENTITY43%100% 43%42%44%66%72%44%COVERAGE108% 100% 109% 101% 108% 99%100% 108% EFA100397SeqID10027107731118512012123961347814074IDENTITY31%100% 29%29%43%46%31%COVERAGE96%100% 98%93%91%97%93%EFA100399SeqID1029510766111961148311791122811341313739IDENTITY63%100% 59%59%58%72%76%63%COVERAGE98%100% 98%99%101% 99%100% 98%EFA100426SeqID102241070211638121391334813957IDENTITY28%100% 29%42%41%28%COVERAGE99%101% 99%91%109% 99%EFA100478SeqID1048611135113381298613184IDENTITY100% 29%31%44%43%COVERAGE100% 72%70%99%98%EFA100615SeqID1050111139120281264113331IDENTITY100% 44%47%61%78%COVERAGE100% 82%81%100% 100% EFA100617SeqID103141076411216113915198123221338113765IDENTITY43%100% 43%44%51%63%69%44%COVERAGE95%100% 96%78%73%84%82%93%EFA100641SeqID1020510793118961286213334IDENTITY28%100% 31%50%32%COVERAGE79%100% 74%85%82%EFA100642SeqID1079211520120231249313367IDENTITY100% 46%46%73%69%COVERAGE100% 100% 101% 100% 100% EFA100668SeqID1002610679111841161312013128911350514073IDENTITY28%100% 28%29%28%29%50%27%COVERAGE83%100% 76%78%92%82%99%95%EFA100689SeqID107171252313698IDENTITY100% 33%33%COVERAGE100% 100% 100% EFA100704SeqID1036210482110591141511995124421317113964IDENTITY 78%100% 78%77%75%90%78%77%COVERAGE100% 100% 100% 101% 101% 100% 101% 100% EFA100739SeqID101111053711052114291165111876122281322014010IDENTITY 71%100% 69%63%70%71%84%84%70%COVERAGE83%101% 83%86%87%83%87%87%87%EFA100740SeqID100751053611008113481163311942122271321913717IDENTITY 45%100% 47%30%45%48%64%60%44%COVERAGE94%100% 94%93%94%82%94%93%94%EFA100741SeqID1033910535111181143011991122261321814098IDENTITY 40%100% 37%34%39%48%60%40%COVERAGE103% 100% 102% 101% 102% 101% 100% 103% EFA100742SeqID103401053411116114315160122251321714099IDENTITY 52%100% 52%39%46%79%88%52%COVERAGE99%101% 99%92%99%101% 101% 99%EFA100748SeqID1028710483110041152311690119441259513868IDENTITY 41%100% 39%29%42%44%52%41%COVERAGE99%100% 99%94%98%100% 100% 100% EFA100756SeqID10112105751139611875123271334314009IDENTITY 49%100% 43%45%64%62%47%COVERAGE75%102% 75%81%94%94%75%EFA100757SeqID1015510897IDENTITY27%100% COVERAGE85%100% EFA100783SeqID1003510811109861154311953127381326113914IDENTITY32%100% 34%86%37%77%75%31%COVERAGE104% 100% 83%100% 78%100% 99%99%EFA100795SeqID1086313416IDENTITY100% 50%COVERAGE101% 101% EFA100798SeqID103821081811153115501177513641IDENTITY62%100% 61%56%63%85%COVERAGE95%100% 95%89%92%96%EFA100811SeqID105461223613439IDENTITY100% 48%58%COVERAGE101% 98%99%EFA100870SeqID104391062711036114105179124461364614042IDENTITY47%100% 46%52%46%72%78%46%COVERAGE114%100% 117%79%116%99%98%114%EFA100914SeqID103991057911018116171175812111123681323014065IDENTITY40%100% 40%34%40%40%59%63%40%COVERAGE102% 100% 102% 101% 102% 102% 101% 95%102% EFA100919SeqID1026910491111271141911809125561359413874IDENTITY44%100% 45%40%46%55%63%45%COVERAGE101% 100% 101% 99%101% 101% 100% 101% EFA100955SeqID10333105421112311582116275158122321322414093IDENTITY48%100% 48%42%49%43%65%76%48%COVERAGE98%101% 98%98%79%98%99%101% 98%EFA100970SeqID10906IDENTITY100% COVERAGE100% EFA100978SeqID1033410541111221158311987122311322314094IDENTITY46%100% 46%35%45%71%70%46%COVERAGE100% 100% 99%98%102% 101% 100% 100% EFA100991SeqID102211068111210116071166811801122891319114027IDENTITY42%100% 40%29%42%39%49%56%30%COVERAGE91%100% 93%98%94%91%93%92%93%EFA101022SeqID1026010875109821140111945127151325114086IDENTITY59%100% 58%50%61%76%86%56%COVERAGE85%101% 85%88%85%85%89%89%EFA101060SeqID107221157511646119571250413554IDENTITY100% 35%37%34%71%67%COVERAGE101% 83%77%97%100% 101% EFA101086SeqID103151076311215114541171612052129531366213764IDENTITY37%100% 37%27%38%35%57%55%36%COVERAGE91%100% 89%98%91%92%98%95%93%EFA101120SeqID1001710687112191133112057125051349814012IDENTITY30%100% 31%27%29%26%64%29%COVERAGE102% 100% 102% 74%103% 99%98%103% EFA101121SeqID106861260613600IDENTITY100% 38%50%COVERAGE100% 98%99%EFA101123SeqID104201074811131114781162911820126741326513783IDENTITY43%100% 39%33%43%40%70%70%42%COVERAGE98%100% 97%97%94%96%99%100% 98%EFA101141SeqID104361061411071115735181124501324614045IDENTITY35%100% 40%35%40%60%70%31%COVERAGE94%101% 96%95%95%98%101% 96%EFA101150eqID1017410719112211155611880129851338513943IDENTITY35%100% 36%26%33%45%58%36%COVERAGE100% 100% 100% 102% 100% 100% 100% 73%EFA101159SeqID103591054311097114425176122351319713974IDENTITY55%100% 52%48%49%58%89%53%COVERAGE100% 101% 100% 81%101% 99%99%100% EFA101160SeqID103581054911098115955175122401319813973IDENTITY43%100% 43%33%45%62%74%43%COVERAGE92%100% 92%96%92%100% 100% 93%EFA101161SeqID10357105511109911994122421319913972IDENTITY39%100% 35%37%69%66%36%COVERAGE86%101% 99%96%93%103% 100% EFA101162SeqID103561055511100114411167911993122491320013971IDENTITY58%100% 58%59%59%57%78%84%58%COVERAGE100% 100% 100% 100% 100% 99%100% 100% 100% EFA101163SeqID1035510557111011159451741225513201IDENTITY66%100% 68%60%70%84%90%COVERAGE100% 101% 99%97%100% 101% 100% EFA101164SeqID103541055811102115935173122581320213970IDENTITY55%100% 58%47%57%66%81%55%COVERAGE91%101% 91%91%85%91%97%91%EFA101165SeqID1035310559111031159251721225913203 13969IDENTITY59%100% 60%52%61%78%88%59%COVERAGE95%100% 95%99%95%100% 100% 95%EFA101169SeqID101331057411091120251251613849IDENTITY27%100% 28%26%41%27%COVERAGE93%100% 97%94%100% 93%EFA101253SeqID10389108521106511551118381307213457IDENTITY43%100% 42%31%39%54%67%COVERAGE97%100% 97%96%99%97%99%EFA101257SeqID1012410917109761148411914125281335714037IDENTITY40%100% 39%39%37%39%58%38%COVERAGE99%100% 99%101% 97%97%100% 101% EFA101258SeqID1012710918109731151311892128021335813871IDENTITY40%100% 40%39%36%41%66%29%COVERAGE97%101% 96%95%96%92%95%92%EFA101322SeqID106201253413328IDENTITY100% 66%65%COVERAGE100% 86%86%EFA101339SeqID10743114481232613391IDENTITY100% 33%46%60%COVERAGE100% 97%98%98%EFA101340SeqID10745IDENTITY100% COVERAGE102% EFA101354SeqID100471064811089116081193512617 1334513913IDENTITY33%100% 33%32%34%38%36%32%COVERAGE101% 100% 104% 101% 104% 97%100% 101% EFA101370SeqID1073813126IDENTITY100% 31%COVERAGE101% 98%EFA101403SeqID1066212941IDENTITY100% 34%COVERAGE100% 100% EFA101404SeqID102101066311214115541192112135 1341813925IDENTITY29%100% 28%39%27%59%64%30%COVERAGE99%100% 102% 98%100% 99%99%99%EFA101409SeqID1035010524111061143751701221513207IDENTITY54%100% 58%44%53%81%87%COVERAGE83%101% 80%86%91%91%91%_______EFA101410SeqID103491052511107114365169122161320814108IDENTITY62%100% 64%63%66%90%90%62%COVERAGE101% 101% 101% 100% 100% 101% 101% 102% EFA101411SeqID1034810526111085168122171320914107IDENTITY50%100% 43%49%66%71%46%COVERAGE97%101% 97%93%96%99%97%EFA101412SeqID10347105271110911589116545167122181321014106IDENTITY60%100% 59%52%61%58%85%83%60%COVERAGE100% 101% 100% 98%101% 99%92%100% 101% EFA101414SeqID103451052811111114355165122191321214104IDENTITY49%100% 47%42%46%79%81%49%COVERAGE99%101% 99%99%100% 101% 101% 101% EFA101415SeqID103441052911112114345164122201321314103IDENTITY47%100% 50%39%49%63%74%47%COVERAGE98%101% 98%100% 98%101% 101% 98%EFA101416SeqID103431053011113114335163122211321414102IDENTITY50%100% 48%42%52%68%82%51%COVERAGE97%101% 97%91%94%99%101% 98%EFA101417SeqID103421053111114114325162122221321514101IDENTITY55%100% 56%61%52%72%85%55%COVERAGE100% 101% 95%84%92%95%94%100% EFA101424SeqID1022010784112761176511950123501328013934IDENTITY44%100% 38%34%36%65%79%41%COVERAGE99%101% 97%73%78%101% 99%99%EFA101425SeqID1024010785112751192512351 1328113863IDENTITY49%100% 50%39%63%78%47%COVERAGE99%100% 99%99%100% 100% 84%EFA101477SeqID1026310861109651156211948130661352514089IDENTITY52%100% 50%41%49%59%72%50%COVERAGE91%100% 95%91%95%94%91%91%EFA101536SeqID1028110823IDENTITY30%100% COVERAGE86%100% EFA101540SeqID1004110487111491145611941123141343813907IDENTITY51%100% 50%50%49%73%76%51%COVERAGE92%100% 90%86%92%92%99%92%EFA101541SeqID1004210488111501162011940127421343713908IDENTITY41%100% 45%35%44%63%44%41%COVERAGE100% 100% 98%121%101% 100% 116%100% EFA101583SeqID10593IDENTITY100% COVERAGE100% EFA101670SeqID10511IDENTITY100% COVERAGE100% EFA101682SeqID1023810789111781151711829128111367313864IDENTITY45%100% 45%40%44%57%57%45%COVERAGE97%100% 98%95%91%96%95%97%EFA101685SeqID1079111369120221249213368IDENTITY100% 47%51%62%69%COVERAGE100% 92%98%97%99%EFA101686SeqID1023710940109991132511901124561345513956IDENTITY39%100% 37%37%36%64%63%38%COVERAGE99%100% 99%99%99%99%99%99%EFA101695SeqID102041062911017114791171512106125601328413928IDENTITY34%100% 32%34%31%35%51%75%34%COVERAGE104% 100% 106% 76%93%101% 100% 99%105% EFA101736SeqID10219107751102411924123001334013976IDENTITY33%100% 29%27%35%32%28%COVERAGE100% 100% 100% 99%98%99%100% EFA101737SeqID10218107781102311923123011334113774IDENTITY39%100% 37%42%43%43%58%COVERAGE98%100% 98%98%100% 103% 96%EFA101753SeqID10134105521121111895121511369313826IDENTITY36%100% 37%36%50%50%37%COVERAGE91%100% 89%90%94%99%91%EFA101765SeqID105871301013353IDENTITY100% 28%35%COVERAGE100% 98%97%EFA101790SeqID104141080311085119151230613747IDENTITY42%100% 41%39%46%41%COVERAGE101% 100% 101% 101% 101% 101% EFA101791SeqID1080412359IDENTITY100% 37%COVERAGE101% 77%EFA101792SeqID100301080511188114585187123601333314077IDENTITY31%100% 32%27%33%34%47%31%COVERAGE98%100% 96%98%99%101% 100% 98%EFA101795SeqID1032910922111591132212062125811336313886IDENTITY34%100% 36%36%37%36%47%32%COVERAGE98%101% 98%99%98%98%99%97%EFA101797SeqID1033010924111601132112063131271336413885IDENTITY53%100% 52%49%55%59%74%53%COVERAGE98%100% 98%98%98%98%99%98%EFA101799SeqID1004810926110141133911934129081336613897IDENTITY53%100% 55%49%55%54%66%54%COVERAGE97%100% 97%94%97%97%97%97%EFA101833SeqID10429107201133512039123401345114072IDENTITY31%100% 36%35%51%59%31%COVERAGE79%100% 92%89%92%91%79%EFA101868SeqID10829IDENTITY100% COVERAGE100% EFA101872SeqID103051081511044113431163911797125681328813779IDENTITY62%100% 62%38%61%60%93%92%62%COVERAGE86%102% 86%86%79%95%97%102% 86%EFA101873SeqID1081611796IDENTITY100% 36%COVERAGE101% 94%EFA101892SeqID1045410506110481128112005121421319014021IDENTITY47%100% 47%41%53%49%46%47%COVERAGE100% 101% 100% 97%100% 101% 100% 100% EFA101924SeqID10891115321233113463IDENTITY100% 36%65%65%COVERAGE100% 101% 100% 94%EFA101925SeqID1089312332IDENTITY100% 59%COVERAGE100% 99%EFA101963SeqID1003410848111481153612006125521364813901IDENTITY48%100% 47%49%47%57%69%48%COVERAGE105% 100% 105% 99%108% 101% 100% 105% EFA102006SeqID10580118301280413315IDENTITY100% 33%42%43%COVERAGE100% 84%99%95%EFA102022SeqID103131088111224115021175412051123241348513767IDENTITY53%100% 53%51%54%55%78%78%52%COVERAGE88%101% 88%87%89%88%89%89%89%EFA102023SeqID103121088210989115761175512050123251369913768IDENTITY51%100% 50%38%50%50%63%70%50%COVERAGE98%100% 99%99%84%97%99%99%97%EFA102091SeqID1036310481110601156811858124431323313965IDENTITY60%100% 61%63%62%75%86%59%COVERAGE101% 100% 101% 100% 101% 100% 100% 101% EFA102110SeqID101931084111255120821343013752IDENTITY32%100% 34%34%62%32%COVERAGE103% 100% 94%100% 100% 99%EFA102183SeqID1039310952110571133011774126951342013920IDENTITY55%100% 54%50%54%67%78%55%COVERAGE84%100% 86%85%86%98%100% 84%EFA102185SeqID104581095011051114211163212075124131350113858IDENTITY27%100% 29%29%28%29%63%73%27%COVERAGE93%101% 90%94%93%91%91%96%93%EFA102186SeqID10448109491099511579124121354313817IDENTITY29%100% 29%27%53%60%30%COVERAGE92%101% 90%94%101% 92%90%EFA102205SeqID101081076910985113751337513997IDENTITY46%100% 38%56%55%37%COVERAGE71%102% 82%73%96%104% EFA102253SeqID1027510727111751132011933123721337613865IDENTITY53%100% 55%48%53%67%80%54%COVERAGE100% 100% 101% 101% 101% 100% 99%96%EFA102282SeqID107291260713424IDENTITY100% 40%46%COVERAGE101% 81%76%EFA102338SeqID1025010651110121148811954129401327213705IDENTITY39%100% 38%35%39%42%50%38%COVERAGE95%100% 92%86%98%99%99%99%EFA102350SeqID10632IDENTITY100% COVERAGE101% EFA102351SeqID106341279513406IDENTITY100% 33%38%COVERAGE100% 97%101% EFA102352SeqID100281063511186113281169112011123471340914075IDENTITY40%100% 39%35%40%39%51%55%40%COVERAGE101% 100% 101% 101% 101% 101% 99%100% 101% EFA102353SeqID1002910636111871132912010123481339814076IDENTITY32%100% 34%28%32%50%61%31%COVERAGE99%100% 99%83%98%98%99%99%EFA102389SeqID103781090411094117811212613263IDENTITY41%100% 42%40%54%52%COVERAGE97%100% 83%98%82%100% EFA102453SeqID10931109951157911762124121350213819IDENTITY100% 29%33%33%54%54%29%COVERAGE101% 101% 88%105% 101% 101% 96%EFA102501SeqID1043810626110371141011997124471318714043IDENTITY45%100% 44%40%44%75%76%45%COVERAGE112%100% 111%114%113%93%96%112%EFA102502SeqID104391062711036114105179124461364614042IDENTITY47%100% 46%52%46%72%78%46%COVERAGE114%100% 117%79%116%99%98%114%EFA102503SeqID10016106431144612027129951348113947IDENTITY45%100% 37%43%61%65%41%COVERAGE99%100% 101% 101% 98%100% 85%EFA102518SeqID102881064711681122481322913881IDENTITY33%100% 50%34%54%32%COVERAGE105% 100% 71%102% 100% 105% EFA102541SeqID103271060211241114715188122371335613729IDENTITY59%100% 59%49%59%69%82%56%COVERAGE77%101% 77%73%77%77%81%77%EFA102542SeqID1032610603112401128812016122381336113732IDENTITY75%100% 70%67%75%77%100% 76%COVERAGE95%105% 95%100% 95%105% 100% 100% EFA102549SeqID103381053811117114285159IDENTITY63%100% 63%71%68%COVERAGE100% 103% 100% 100% 100% EFA102551SeqID103371053911119114271168811990122291322114097IDENTITY59%100% 61%58%30%62%75%81%58%COVERAGE96%101% 91%99%74%96%101% 101% 96%EFA102554SeqID10341105321111551611222313216IDENTITY45%100% 40%42%62%63%COVERAGE93%102% 93%97%102% 100% EFA102655SeqID1004910733110861130511813129521322813898IDENTITY47%100% 47%42%48%57%60%47%COVERAGE97%100% 99%99%99%98%108% 97%EFA102656SeqID107341232113668IDENTITY100% 55%55%COVERAGE100% 100% 100% EFA102698SeqID1008210909109561180714011IDENTITY56%100% 60%31%55%COVERAGE96%100% 96%96%96%EFA102728SeqID1045910948110501142012074124111350313859IDENTITY51%100% 53%52%54%76%81%52%COVERAGE89%101% 89%73%82%96%100% 90%EFA102736SeqID102851055611205113001194313401IDENTITY53%100% 52%44%51%71%COVERAGE98%100% 100% 98%100% 99%EFA102764SeqID102011047811054125901342513822IDENTITY72%100% 56%68%80%71%COVERAGE99%100% 99%99%100% 99%EFA102774SeqID1014210896112611136212040121501323513978IDENTITY50%100% 52%52%51%68%74%50%COVERAGE96%100% 96%94%95%98%97%96%EFA102780SeqID10395109081116711616117721270113552IDENTITY49%100% 46%37%51%51%46%COVERAGE77%100% 76%77%75%101% 98%EFA102788SeqID1017610661112231129711882126301330313941IDENTITY59%100% 61%54%63%70%81%59%COVERAGE94%101% 93%97%94%93%96%94%EFA102802SeqID1027410854111541129811932131281331313866IDENTITY66%100% 64%58%64%74%83%65%COVERAGE99%100% 100% 96%100% 100% 100% 99%EFA102813SeqID1019110878110051134711815128161349213754IDENTITY54%100% 53%51%52%64%65%53%COVERAGE100% 100% 100% 99%99%99%99%100% EFA102915SeqID1029710640109641132311783130901366413737IDENTITY27%100% 32%30%31%50%52%28%COVERAGE100% 100% 100% 90%100% 98%99%100% EFA103021SeqID10434106121103911413119991245113517IDENTITY65%100% 66%60%62%86%86%COVERAGE101% 101% 101% 99%101% 101% 99%EFA103033SeqID102211068111210116071166811801122891319114027IDENTITY42%100% 40%29%42%39%49%56%30%COVERAGE91%100% 93%98%94%91%93%92%93%EFA103038SeqID1043510613110381141211998127841339714046IDENTITY54%100% 52%56%51%73%73%53%COVERAGE99%100% 100% 99%100% 100% 100% 99%EFA103039SeqID102931085011041114821172811793125411337713741IDENTITY45%100% 46%44%40%46%73%69%45%COVERAGE99%100% 101% 98%99%99%102% 101% 99%EFA103062SeqID104371061511072115725180124491324714044IDENTITY59%100% 64%54%65%64%68%59%COVERAGE101% 101% 102% 102% 101% 99%101% 102% EFA103081SeqID10262108621098411403119471341514090IDENTITY41%100% 41%40%41%74%40%COVERAGE85%101% 83%82%80%95%85%EFA103174SeqID1025110689109691137011955126001351813703IDENTITY32%100% 32%37%33%63%77%33%COVERAGE93%100% 94%95%96%100% 100% 92%EFA103210SeqID1007110688110191137111850126011331913945IDENTITY56%100% 63%39%57%79%76%57%COVERAGE97%101% 98%99%97%99%101% 99%EFA103268SeqID103651047911062114095178124451323113967IDENTITY69%100% 70%68%70%83%93%70%COVERAGE100% 101% 100% 100% 99%101% 101% 101% EFA103295SeqID1031910633111401149312029126401332013771IDENTITY66%100% 58%58%70%79%86%60%COVERAGE77%101% 85%85%77%100% 96%92%EFA103348SeqID10873109831140211946IDENTITY100% 39%59%39%COVERAGE103% 82%85%82%EFA103365SeqID10360105331109611443116435177122241319613975IDENTITY57%100% 58%53%58%58%82%82%58%COVERAGE100% 101% 100% 97%100% 100% 88%101% 100% EFA103375SeqID1017710660112221129651201262813302IDENTITY50%100% 52%36%50%66%78%COVERAGE82%102% 82%97%94%102% 102% EFA103504SeqID1032010671111411149212030126381332213766IDENTITY42%100% 45%41%48%63%81%41%COVERAGE97%101% 97%96%97%98%100% 100% EFA103508SeqID1067213321IDENTITY100% 30%COVERAGE100% 80%EFA103571SeqID1033510879111211142511988125781324014095IDENTITY45%100% 47%48%47%67%68%45%COVERAGE102% 100% 102% 103% 102% 99%100% 102% EFA103786SeqID1080612361IDENTITY100% 59%COVERAGE100% 94%SAU100040SeqID12533IDENTITY100% COVERAGE101% SAU100053SeqID103661050411075113761172311855121431331813814IDENTITY32%46%30%32%33%33%100% 48%32%COVERAGE97%100% 99%81%84%81%100% 100% 97%SAU100056SeqID109301257713477IDENTITY39%100% 33%COVERAGE98%100% 100% SAU100059SeqID102131059811161115281175012064126521343313929IDENTITY28%70%26%26%27%28%100% 25%28%COVERAGE71%97%95%95%71%96%100% 95%71%SAU100062SeqID1043010618109981160311739123091329414040IDENTITY27%52%29%29%31%100% 53%28%COVERAGE103% 96%103% 77%76%100% 97%102% SAU100077SeqID105651252013464IDENTITY64%100% 62%COVERAGE102% 100% 102% SAU100112SeqID100591147711702120961263413895IDENTITY49%52%53%46%100% 49%COVERAGE97%100% 77%100% 100% 97%SAU100114SeqID1015210515112791130211851125351338713824IDENTITY44%51%43%45%43%100% 25%43%COVERAGE98%98%98%98%98%100% 102% 98%SAU100118SeqID10903118281212513262IDENTITY41%27%100% 37%COVERAGE101% 100% 100% 101% SAU100123SeqID102581062811134114895192125261342114088IDENTITY52%43%53%47%52%100% 45%52%COVERAGE98%100% 97%96%98%100% 82%98%SAU100131SeqID1046611274119601251713854IDENTITY35%33%40%100% 35%COVERAGE71%97%70%100% 71%SAU100133SeqID103111049310990113081170311885125741341213769IDENTITY34%44%34%33%30%31%100% 43%34%COVERAGE79%99%80%78%82%79%100% 99%79%SAU100139SeqID1035510557111011159451741225513201IDENTITY65%84%66%64%63%100% 86%COVERAGE85%86%81%83%84%101% 85%SAU100140SeqID103541055811102114405173122581320213970IDENTITY54%66%54%40%48%100% 63%54%COVERAGE93%91%93%94%93%101% 91%93%SAU100141SeqID103531055911103115925172122591320313969IDENTITY55%78%58%54%57%100% 74%55%COVERAGE96%101% 96%96%96%100% 100% 96%SAU100157SeqID103641048011061114081165911996124441323213966IDENTITY60%78%60%55%62%57%100% 77%60%COVERAGE100% 101% 100% 99%88%100% 101% 101% 101% SAU100158SeqID1036310481110601156811858124431323313965IDENTITY60%75%59%63%59%100% 77%58%COVERAGE98%97%98%97%98%100% 97%99%SAU100162SeqID1006910630112391138211971125831359714084IDENTITY43%49%44%37%43%100% 46%43%COVERAGE92%89%88%80%83%100% 89%93%SAU100175SeqID10250106511101211954125821327213705IDENTITY34%42%38%34%100% 42%35%COVERAGE98%100% 93%93%100% 102% 99%SAU100182SeqID12362IDENTITY100% COVERAGE101% SAU100186SeqID1004310489111241142311939123171335513909IDENTITY46%61%44%46%45%100% 54%45%COVERAGE99%99%99%98%100% 101% 99%101% SAU100198SeqID114451212013414IDENTITY29%100% 29%COVERAGE78%101% 79%SAU100227SeqID1076512525IDENTITY36%100% COVERAGE100% 100% SAU100242SeqID1009711201118361233614056IDENTITY65%62%65%100% 65%COVERAGE94%96%95%100% 94%SAU100246SeqID108211249613490IDENTITY35%100% 38%COVERAGE101% 101% 93%SAU100251SeqID12363IDENTITY100% COVERAGE100% SAU100265SeqID1046912122IDENTITY37%100% COVERAGE88%100% SAU100266SeqID12256IDENTITY100% COVERAGE101% SAU100272SeqID1061712141IDENTITY26%100% COVERAGE104% 100% SAU100275SeqID1004110487111491162111941123141343813907IDENTITY52%73%47%51%51%100% 65%51%COVERAGE88%94%93%98%90%100% 98%88%SAU100300SeqID10434106121103911413119991245113517IDENTITY67%86%68%63%65%100% 82%COVERAGE99%99%99%97%99%101% 97%SAU100301SeqID10433106241108311414120001245213168IDENTITY41%58%41%35%42%100% 51%COVERAGE99%98%102% 96%98%101% 97%SAU100302SeqID10432110821200112453IDENTITY25%34%31%100% COVERAGE92%93%103% 102% SAU100305SeqID10311107741099011885123971349113769IDENTITY40%50%38%40%100% 49%40%COVERAGE94%99%94%92%100% 101% 94%SAU100307SeqID10392107251095411685123131325213919IDENTITY28%32%29%28%100% 29%28%COVERAGE99%100% 99%99%100% 99%99%SAU100308SeqID100131081410963123121324413711IDENTITY26%44%30%100% 40%27%COVERAGE90%86%86%100% 92%90%SAU100313SeqID107571266113293IDENTITY46%100% 43%COVERAGE99%100% 100% SAU100315SeqID104191080211136113261172712087123581352113791IDENTITY54%73%53%53%55%53%100% 74%54%COVERAGE96%96%96%96%82%97%100% 91%96%SAU100323SeqID10216108551257513933IDENTITY32%71%100% 34%COVERAGE88%99%100% 88%SAU100347SeqID1089510961120771233413206IDENTITY44%30%30%100% 42%COVERAGE106% 84%100% 100% 100% SAU100355SeqID106831215513300IDENTITY42%100% 31%COVERAGE93%_100% 109% SAU100359SeqID107571223913293IDENTITY52%100% 43%COVERAGE97%100% 99%SAU100381SeqID1041110674119031227614031IDENTITY28%29%33%100% 28%COVERAGE101% 99%92%100% 101% SAU100389SeqID1047310737113741227913344IDENTITY27%50%41%100% 27%COVERAGE75%95%99%100% 71%SAU100401SeqID100901070610980116411257614053IDENTITY31%30%27%33%100% 31%COVERAGE95%99%95%95%101% 99%SAU100412SeqID1010210563111941136051501219713468IDENTITY31%42%30%33%35%100% 40%COVERAGE74%100% 80%74%73%100% 97%SAU100414SeqID1045310556112051130011943121481340113872IDENTITY60%80%61%60%67%100% 76%60%COVERAGE96%99%98%99%91%101% 96%96%SAU100432SeqID104361061411071114115181124501324614045IDENTITY34%60%33%31%39%100% 55%31%COVERAGE98%98%100% 95%99%101% 98%98%SAU100433SeqID104371061511072115725180124491324714044IDENTITY58%64%63%57%58%100% 69%58%COVERAGE97%99%98%99%98%101% 99%98%SAU100436SeqID105691215413393IDENTITY27%100% 27%COVERAGE100% 100% 100% SAU100443SeqID10272108941108111930123331351513869IDENTITY40%52%39%38%100% 45%40%COVERAGE92%100% 96%92%100% 100% 92%SAU100444SeqID1044010583110161154011967123921340314041IDENTITY29%30%41%41%28%100% 52%29%COVERAGE75%88%94%90%81%100% 91%75%SAU100475SeqID109271191112337IDENTITY33%30%100% COVERAGE101% 101% 100% SAU100478SeqID1127312605IDENTITY25%100% COVERAGE96%100% SAU100489SeqID103321068511074115801172911778125661329814100IDENTITY33%33%31%34%34%29%100% 34%33%COVERAGE101% 102% 99%94%101% 99%100% 97%94%SAU100496SeqID1074412484IDENTITY40%100% COVERAGE80%100% SAU100497SeqID10245107091117111395117921214013740IDENTITY46%59%49%44%48%100% 45%COVERAGE99%101% 99%100% 99%100% 100% SAU100514SeqID1021511388120361262613932IDENTITY52%34%51%100% 51%COVERAGE93%95%98%100% 95%SAU100521SeqID102511096911370119551260013703IDENTITY43%39%34%39%100% 42%COVERAGE104% 108% 103% 103% 100% 104% SAU100522SeqID101141120611680119041259914007IDENTITY36%34%30%36%100% 35%COVERAGE91%89%80%90%100% 91%SAU100527SeqID10298107211099611782123411345213736IDENTITY44%48%42%41%100% 43%45%COVERAGE98%97%99%98%101% 98%97%SAU100528SeqID105211250713470IDENTITY30%100% 33%COVERAGE83%101% 71%SAU100532SeqID10235106451112811389125801319313744IDENTITY39%47%29%34%100% 40%31%COVERAGE101% 100% 72%90%100% 97%72%SAU100542SeqID10371110701142212017125321344413806IDENTITY52%51%46%31%100% 35%52%COVERAGE100% 98%98%102% 100% 102% 100% SAU100546SeqID1035911097115965176122351319713974IDENTITY43%46%34%47%100% 66%46%COVERAGE97%97%90%99%100% 99%91%SAU100547SeqID103581054911098115955175122401319813973IDENTITY41%62%39%40%46%100% 63%41%COVERAGE92%100% 97%96%97%100% 100% 93%SAU100557SeqID109281256513651IDENTITY50%100% 49%COVERAGE99%100% 99%SAU100582SeqID12503IDENTITY100% COVERAGE100% SAU100590SeqID12121IDENTITY100% COVERAGE100% SAU100595SeqID10051108321146412109125471317413722IDENTITY47%66%42%50%100% 46%42%COVERAGE88%89%89%93%100% 90%91%SAU100596SeqID100501083311067116241165612110125481317313720IDENTITY36%50%31%41%38%42%100% 30%32%COVERAGE99%99%100% 92%89%95%100% 106% 95%SAU100601SeqID12616IDENTITY100% COVERAGE100% SAU100608SeqID1003210870111901134912008122931350714079IDENTITY30%61%29%29%34%100% 50%28%COVERAGE102% 96%100% 98%87%100% 96%104% SAU100610SeqID12294IDENTITY100% COVERAGE100% SAU100613SeqID103781090411094117811212613589IDENTITY44%54%43%46%100% 49%COVERAGE91%88%93%73%100% 89%SAU100617SeqID105021229513314IDENTITY26%100% 25%COVERAGE91%100% 91%SAU100633SeqID1007910589116985107125151364413724IDENTITY27%42%25%29%100% 35%26%COVERAGE92%103% 89%101% 100% 105% 103% SAU100646SeqID10051105701146412109121681317414109IDENTITY50%48%46%49%100% 42%50%COVERAGE95%94%97%95%100% 95%96%SAU100658SeqID1032210813111771135112018123881318613733IDENTITY49%59%49%46%48%100% 58%49%COVERAGE100% 100% 100% 100% 100% 100% 100% 100% SAU100659SeqID1004510923111741160111937123901361613911IDENTITY47%54%45%40%46%100% 56%44%COVERAGE92%92%95%103% 97%101% 95%81%SAU100679SeqID1030310997114531171311799121371332913757IDENTITY32%31%32%33%35%100% 42%35%COVERAGE96%99%106% 96%97%100% 104% 96%SAU100684SeqID1041211486120971263213749IDENTITY46%40%46%100% 46%COVERAGE97%99%99%100% 97%SAU100685SeqID12633IDENTITY100% COVERAGE100% SAU100689SeqID106941232313311IDENTITY55%100% 46%COVERAGE98%100% 96%SAU100702SeqID106551219613671IDENTITY46%100% 41%COVERAGE97%100% 91%SAU100710SeqID1190812546IDENTITY27%100% COVERAGE73%101% SAU100714SeqID1046510675112381156311961126351338213853IDENTITY48%66%41%41%44%100% 60%48%COVERAGE108% 100% 110%102% 108% 103% 101% 108% SAU100731SeqID1007110688110191137111850126011331913945IDENTITY62%79%67%40%63%100% 76%60%COVERAGE99%100% 100% 101% 99%101% 100% 101% SAU100733SeqID104151161111636120841260213746IDENTITY41%33%42%42%100% 39%COVERAGE95%92%74%95%100% 95%SAU100734SeqID1032110573111421130612031126031327313734IDENTITY28%36%29%27%28%100% 31%29%COVERAGE98%95%97%90%93%100% 72%101% SAU100736SeqID105851239113404IDENTITY27%100% 26%COVERAGE97%100% 97%SAU100738SeqID101881084710953116001163411907126241316913981IDENTITY48%45%46%42%48%51%100% 45%49%COVERAGE97%98%98%97%94%97%100% 97%97%SAU100741SeqID100811059111459117761240913714IDENTITY65%50%35%54%100% 66%COVERAGE100% 101% 82%100% 101% 101% SAU100745SeqID104421048411202116071173311906125961345313847IDENTITY34%53%35%31%35%34%100% 49%35%COVERAGE98%97%100% 99%101% 98%100% 98%101% SAU100747SeqID107491259713266IDENTITY32%100% 31%COVERAGE74%100% 73%SAU100751SeqID1042510866110801174711927123351343113788IDENTITY62%64%59%62%62%100% 63%61%COVERAGE99%99%98%87%99%100% 99%99%SAU100752SeqID10140119761252414022IDENTITY31%35%100% 38%COVERAGE71%82%100% 72%SAU100767SeqID10290120941257913875IDENTITY43%42%100% 42%COVERAGE100% 90%100% 100% SAU100771SeqID1008411821125451330613710IDENTITY30%29%100% 28%26%COVERAGE88%80%101% 90%94%SAU100773SeqID1005510758110931133611763119281237713250IDENTITY47%70%41%41%46%51%100% 70%COVERAGE94%100% 98%96%94%93%101% 96%SAU100776SeqID12482IDENTITY100% COVERAGE100% SAU100778SeqID1008310957119701251414062IDENTITY52%52%45%100% 47%COVERAGE89%89%88%100% 89%SAU100793SeqID1218813392IDENTITY100% 27%COVERAGE100% 103% SAU100794SeqID1020312189IDENTITY25%100% COVERAGE101% 100% SAU100799SeqID12682IDENTITY100% COVERAGE100% SAU100808SeqID1234514081IDENTITY100% 35%COVERAGE100% 70%SAU100810SeqID10070118241234314080IDENTITY51%49%100% 50%COVERAGE94%96%100% 96%SAU100813SeqID103141076411216115015198123221338113765IDENTITY47%63%47%45%48%100% 58%50%COVERAGE98%94%100% 91%92%100% 95%92%SAU100831SeqID10376107411105812093124031334913811IDENTITY42%58%42%42%100% 51%42%COVERAGE97%98%102% 98%100% 98%101% SAU100836SeqID12212IDENTITY100% COVERAGE100% SAU100838SeqID12211IDENTITY100% COVERAGE100% SAU100839SeqID107941221013183IDENTITY42%100% 44%COVERAGE100% 100% 100% SAU100843SeqID10126109211097411342123281360114092IDENTITY26%28%28%28%100% 26%26%COVERAGE101% 73%101% 102% 100% 100% 104% SAU100845SeqID12329IDENTITY100% COVERAGE100% SAU100858SeqID10256107761136711719124011347213796IDENTITY37%48%35%37%100% 39%39%COVERAGE106% 98%103% 106% 101% 100% 106% SAU100859SeqID1044610777112541154812071124021347314026IDENTITY33%38%33%35%34%100% 38%32%COVERAGE94%94%95%96%94%100% 92%95%SAU100865SeqID1025210877110101140611956126481350613704IDENTITY39%49%41%28%44%100% 48%38%COVERAGE100% 99%100% 101% 99%100% 99%100% SAU100866SeqID1019110878110051134711815125531349213754IDENTITY54%64%51%51%53%100% 57%55%COVERAGE100% 100% 100% 100% 100% 100% SAU100879SeqID12483IDENTITY100% COVERAGE100% SAU100880SeqID10429107201133512039123401345114072IDENTITY31%51%35%36%100% 45%32%COVERAGE81%95%97%81%100% 99%85%SAU100882SeqID1032210750111771135112018123741333013733IDENTITY43%54%42%40%45%100% 52%43%COVERAGE98%98%98%99%98%100% 98%98%SAU100885SeqID10410107541100111509120951237614032IDENTITY52%67%53%52%53%100% 52%COVERAGE93%74%94%96%92%100% 93%SAU100886SeqID1022410701112131135711905121391334813957IDENTITY38%60%38%36%36%100% 52%38%COVERAGE97%83%93%99%104% 100% 102% 98%SAU100887SeqID1039310952110571133011774121381334213920IDENTITY50%51%50%49%48%100% 70%50%COVERAGE85%96%82%83%83%100% 96%85%SAU100899SeqID12277IDENTITY100% COVERAGE100% SAU100901SeqID12278IDENTITY100% COVERAGE100% SAU100916SeqID10209108871239413876IDENTITY32%34%100% 32%COVERAGE75%72%101% 75%SAU100920SeqID1006010772111911153011756119831239513896IDENTITY43%48%31%28%40%30%100% 43%COVERAGE91%86%87%91%86%90%100% 91%SAU100921SeqID10027107731118512012123961347814074IDENTITY32%43%33%33%100% 34%32%COVERAGE101% 96%96%96%100% 98%101% SAU100932SeqID1009511271118341261514055IDENTITY39%36%39%100% 39%COVERAGE101% 101% 102% 100% 101% SAU100944SeqID1001710687112191150612057125051349814012IDENTITY37%26%36%36%39%100% 27%39%COVERAGE80%108% 79%79%83%100% 83%80%SAU100952SeqID107171252313312IDENTITY33%100% 31%COVERAGE104% 100% 102% SAU100959SeqID107041248513504IDENTITY58%100% 49%COVERAGE99%100% 101% SAU100961SeqID1032010671111411131212030126381332213766IDENTITY42%63%47%40%50%100% 57%42%COVERAGE98%99%98%97%98%101% 101% 99%SAU100962SeqID112991263913577IDENTITY28%100% 26%COVERAGE80%101% 92%SAU100963SeqID1031910633111401149312029126401332013771IDENTITY60%79%59%61%63%100% 81%60%COVERAGE84%96%81%81%84%101% 92%88%SAU100964SeqID1050111139120281264113331IDENTITY61%45%47%100% 60%COVERAGE101% 76%77%100% 101% SAU100965SeqID12642IDENTITY100% COVERAGE101% SAU100970SeqID10128105161124711512118911252913362IDENTITY52%54%39%47%52%100% 46%COVERAGE99%99%100% 100% 99%100% 99%SAU100996SeqID10686113501260613600IDENTITY38%34%100% 39%COVERAGE97%73%100% 96%SAU101006SeqID1018510572110221147351221219013820IDENTITY29%40%31%26%26%100% 30%COVERAGE84%98%87%94%79%100% 91%SAU101020SeqID12710IDENTITY100% COVERAGE100% SAU101024SeqID12711IDENTITY100% COVERAGE101% SAU101028SeqID1003410848111481136412006125521347113901IDENTITY46%57%43%46%46%100% 55%45%COVERAGE106% 101% 107% 100% 108% 100% 100% 106% SAU101034SeqID105781260813654IDENTITY36%100% 37%COVERAGE80%100% 71%SAU101038SeqID10716118221252113428IDENTITY42%35%100% 36%COVERAGE96%78%101% 103% SAU101039SeqID12522IDENTITY100% COVERAGE100% SAU101065SeqID102211068111210116071166811801122891319114027IDENTITY37%49%40%28%38%36%100% 46%31%COVERAGE98%103% 100% 108% 97%98%100% 102% 98%SAU101067SeqID106821229013394IDENTITY41%100% 40%COVERAGE100% 100% 99%SAU101070SeqID107701229113380IDENTITY40%100% 32%COVERAGE89%100% 82%SAU101084SeqID10066111561197412283IDENTITY36%34%35%100% COVERAGE90%102% 92%100% SAU101085SeqID10170112631146211973122841322513993IDENTITY37%34%37%38%100% 47%32%COVERAGE89%88%94%94%100% 101% 88%SAU101086SeqID11366119721228513666IDENTITY42%34%100% 49%COVERAGE74%94%100% 101% SAU101090SeqID107551219113188IDENTITY36%100% 31%COVERAGE97%100% 97%SAU101092SeqID10450105671184712192IDENTITY35%33%30%100% COVERAGE71%96%72%100% SAU101104SeqID101351076811248114041173211869121951348213827IDENTITY38%45%39%37%37%42%100% 38%37%COVERAGE98%100% 100% 92%99%99%100% 96%99%SAU101143SeqID100401115711315119681250213906IDENTITY47%27%43%44%100% 47%COVERAGE99%82%98%100% 100% 99%SAU101145SeqID105481207012299IDENTITY42%43%100% COVERAGE98%96%101% SAU101155SeqID102871069711077113521169011944123101354913868IDENTITY43%49%40%30%42%42%100% 37%43%COVERAGE95%95%95%86%95%94%100% 76%95%SAU101156SeqID10426106981103211333120831231113790IDENTITY56%63%60%52%58%100% 55%COVERAGE96%101% 96%97%96%101% 96%SAU101159SeqID10891115321233113463IDENTITY65%36%100% 54%COVERAGE100% 100% 100% 104% SAU101175SeqID12213IDENTITY100% COVERAGE101% SAU101180SeqID10061108881191012656IDENTITY38%50%37%100% COVERAGE72%89%70%100% SAU101183SeqID1084312304IDENTITY42%100% COVERAGE102% 100% SAU101184SeqID104771071111218113761173512033123051349913709IDENTITY37%46%36%30%38%35%100% 44%38%COVERAGE86%100% 102% 85%82%85%100% 98%82%SAU101189SeqID12264IDENTITY100% COVERAGE100% SAU101197SeqID10180107871102411924123001334013976IDENTITY31%44%31%27%100% 46%30%COVERAGE98%98%101% 100% 100% 98%98%SAU101198SeqID102181078611023119231230113341IDENTITY43%50%43%41%100% 46%COVERAGE74%98%73%75%100% 102% SAU101199SeqID10088107421097011949123021317814052IDENTITY29%40%31%36%100% 37%30%COVERAGE97%86%94%97%100% 87%98%SAU101220SeqID1028610864126451339013870IDENTITY32%37%100% 39%31%COVERAGE74%81%100% 99%74%SAU101224SeqID1153312647IDENTITY28%100% COVERAGE77%100% SAU101226SeqID108371165811825122981329613721IDENTITY52%28%37%100% 27%27%COVERAGE96%75%90%100% 77%77%SAU101231SeqID1030110513120791230313759IDENTITY32%61%32%100% 31%COVERAGE101% 100% 73%101% 106% SAU101235SeqID10616110871256113486IDENTITY37%27%100% 35%COVERAGE84%90%100% 97%SAU101236SeqID100891050011673119511256413474IDENTITY42%55%29%39%100% 35%COVERAGE101% 77%108% 100% 100% 103% SAU101239SeqID1136112570IDENTITY33%100% COVERAGE98%100% SAU101240SeqID12573IDENTITY100% COVERAGE101% SAU101242SeqID1033510879111211142511988125781324014095IDENTITY48%67%47%48%47%100% 55%47%COVERAGE104% 101% 104% 105% 104% 101% 101% 105% SAU101247SeqID10919119841251213359IDENTITY32%36%100% 33%COVERAGE91%90%100% 85%SAU101262SeqID10137107351139911922124881323813837IDENTITY28%70%47%33%100% 67%28%COVERAGE73%100% 101% 97%100% 100% 73%SAU101266SeqID1023810789111781151711829124901331713864IDENTITY45%57%46%41%43%100% 51%44%COVERAGE100% 99%100% 98%89%100% 98%100% SAU101267SeqID12364IDENTITY100% COVERAGE100% SAU101270SeqID1017510718112201132411881123651338313942IDENTITY50%62%47%45%52%100% 61%50%COVERAGE96%99%97%93%97%100% 98%96%SAU101271SeqID1017410719112211155611880123661338513943IDENTITY37%46%36%25%35%100% 46%37%COVERAGE100% 102% 100% 100% 100% 100% 101% 75%SAU101275SeqID102321068410981115211170811845126041329913954IDENTITY35%57%38%33%34%34%100% 57%35%COVERAGE95%101% 93%98%96%94%100% 101% 95%SAU101286SeqID108841229213189IDENTITY47%100% 40%COVERAGE100% 101% 99%SAU101293SeqID12631IDENTITY100% COVERAGE101% SAU101300SeqID107511255713194IDENTITY57%100% 54%COVERAGE93%101% 90%SAU101301SeqID10752117851255813195IDENTITY57%27%100% 54%COVERAGE96%94%101% 99%SAU101302SeqID10753113171255913611IDENTITY49%33%100% 26%COVERAGE101% 86%101% 72%SAU101310SeqID1033010924111601132112063125621336413885IDENTITY47%52%48%43%47%100% 51%47%COVERAGE98%98%98%98%98%100% 98%98%SAU101311SeqID1009411278118591256313891IDENTITY46%46%42%100% 46%COVERAGE98%98%96%100% 95%SAU101320SeqID1026310861109651156211948121281325414089IDENTITY50%59%49%39%51%100% 56%49%COVERAGE100% 99%99%100% 99%100% 97%100% SAU101327SeqID10018107101114711779126121349514014IDENTITY35%46%43%34%100% 35%35%COVERAGE100% 97%101% 92%101% 99%100% SAU101339SeqID10093105201136511839123991340513888IDENTITY55%30%26%54%100% 27%45%COVERAGE99%74%74%97%100% 76%99%SAU101340SeqID10092118401240013889IDENTITY37%35%100% 39%COVERAGE106% 101% 101% 104% SAU101341SeqID1023010925112121138511898126181336513952IDENTITY47%55%48%48%45%100% 48%47%COVERAGE93%92%92%98%92%100% 100% 93%SAU101343SeqID10422106491116211721126191334613785IDENTITY50%55%49%50%100% 58%51%COVERAGE99%100% 99%99%100% 92%99%SAU101344SeqID10171106501125211826126201334713755IDENTITY48%62%40%37%100% 44%38%COVERAGE81%88%79%82%100% 79%81%SAU101346SeqID1005811282118031262113894IDENTITY36%35%43%100% 36%COVERAGE99%103% 99%100% 99%SAU101347SeqID10139111631128311877126221325913839IDENTITY63%29%62%62%100% 30%62%COVERAGE100% 96%101% 100% 100% 91%100% SAU101350SeqID10184105081131812069124871328613982IDENTITY61%56%32%46%100% 55%60%COVERAGE95%98%81%100% 100% 97%97%SAU101351SeqID105071248613285IDENTITY60%100% 59%COVERAGE96%100% 96%SAU101360SeqID101381057110977115981168411878125551317513838IDENTITY56%70%54%35%55%58%100% 71%56%COVERAGE98%101% 98%97%88%98%100% 101% 98%SAU101365SeqID1026910491111271157711809125561329513874IDENTITY45%55%44%40%45%100% 50%45%COVERAGE101% 101% 101% 99%101% 100% 100% 101% SAU101366SeqID1014710654122661317913843IDENTITY49%73%100% 56%48%COVERAGE99%98%100% 99%99%SAU101369SeqID12274IDENTITY100% COVERAGE100% SAU101371SeqID11372119021227513243IDENTITY40%32%100% 34%COVERAGE86%79%100% 77%SAU101381SeqID103731214513432IDENTITY26%100% 41%COVERAGE98%100% 99%SAU101382SeqID102391070711179112921163511879121461365713862IDENTITY53%60%50%42%39%53%100% 63%52%COVERAGE98%99%97%97%79%98%100% 96%98%SAU101383SeqID1031710625112261141812055121471342213761IDENTITY37%39%36%26%38%100% 37%39%COVERAGE102% 90%97%98%94%100% 112%94%SAU101385SeqID104031083011030113681164012115123851350814067IDENTITY33%52%31%27%32%29%100% 38%32%COVERAGE99%90%92%89%96%98%100% 92%99%SAU101387SeqID10402108391154912114123861350914068IDENTITY27%35%27%27%100% 32%27%COVERAGE87%88%71%87%101% 90%87%SAU101389SeqID1040110801110291140012113123871351014069IDENTITY55%72%57%60%57%100% 74%55%COVERAGE98%99%99%100% 98%100% 94%98%SAU101398SeqID103131088111224115021175412051123241348513767IDENTITY55%78%54%51%57%56%100% 68%54%COVERAGE100% 101% 100% 99%101% 100% 101% 101% 101% SAU101399SeqID103121088210989114161175512050123251369913768IDENTITY50%63%48%38%51%51%100% 58%49%COVERAGE99%100% 98%97%85%97%100% 99%99%SAU101400SeqID10743114481232613391IDENTITY46%32%100% 41%COVERAGE96%95%100% 96%SAU101408SeqID1026710509123081327814050IDENTITY37%43%100% 42%39%COVERAGE100% 99%100% 101% 100% SAU101421SeqID1067612498IDENTITY38%100% COVERAGE93%100% SAU101427SeqID1250013234IDENTITY100% 48%COVERAGE100% 100% SAU101432SeqID110461128611744120651218413538IDENTITY57%60%63%68%100% 26%COVERAGE99%100% 101% 99%101% 73%SAU101436SeqID102711104511285120671218313873IDENTITY27%62%61%59%100% 27%COVERAGE90%99%97%98%100% 90%SAU101438SeqID101461082511042123791333713842IDENTITY30%29%29%100% 27%30%COVERAGE88%94%89%100% 94%88%SAU101444SeqID1025410827111441130112034123811333513792IDENTITY60%66%57%54%60%100% 61%59%COVERAGE100% 101% 100% 100% 100% 100% 99%100% SAU101445SeqID10248108281120712037123821340813949IDENTITY52%70%52%54%100% 72%51%COVERAGE99%100% 96%99%100% 100% 100% SAU101446SeqID1041110674119031238314031IDENTITY50%59%33%100% 50%COVERAGE98%100% 97%100% 99%SAU101447SeqID12683IDENTITY100% COVERAGE101% SAU101452SeqID12684IDENTITY100% COVERAGE100% SAU101455SeqID12686IDENTITY100% COVERAGE100% SAU101461SeqID107051179012680IDENTITY54%26%100% COVERAGE93%86%101% SAU101463SeqID102681070811919126791358414051IDENTITY29%45%26%100% 26%29%COVERAGE77%98%91%101% 88%77%SAU101476SeqID1046910905122541345413905IDENTITY38%29%100% 25%26%COVERAGE84%94%100% 95%73%SAU101481SeqID10125109201097511290118941213013580IDENTITY40%39%40%32%39%100% 41%COVERAGE93%95%96%93%96%100% 96%SAU101482SeqID101261092110974113421173811893121231336014092IDENTITY55%51%52%44%36%52%100% 48%37%COVERAGE98%100% 98%98%77%98%100% 99%101% SAU101483SeqID1012710918109731134111892121241367413871IDENTITY65%41%59%58%61%100% 51%31%COVERAGE88%90%90%90%87%101% 92%94%SAU101488SeqID1073011868121641345013799IDENTITY28%25%100% 33%28%COVERAGE95%74%100% 98%73%SAU101491SeqID105801216513315IDENTITY42%100% 42%COVERAGE104% 100% 95%SAU101492SeqID1007310581110201128411831121661332313715IDENTITY38%52%37%29%37%100% 43%38%COVERAGE98%101% 98%78%94%101% 85%98%SAU101493SeqID10074110211138111832121671356413716IDENTITY42%41%30%43%100% 64%44%COVERAGE96%97%94%98%101% 91%96%SAU101495SeqID100301080511188114585187123601333314077IDENTITY32%34%36%29%33%100% 32%32%COVERAGE92%92%90%86%90%100% 94%92%SAU101497SeqID1080612361IDENTITY59%100% COVERAGE100% 100% SAU101509SeqID10121117121241813249IDENTITY34%36%100% 49%COVERAGE104% 104% 100% 83%SAU101526SeqID109011217913465IDENTITY38%100% 34%COVERAGE88%100% 89%SAU101529SeqID12544IDENTITY100% COVERAGE100% SAU101541SeqID1002410631111821152612014123441364714019IDENTITY41%63%42%38%42%100% 59%40%COVERAGE101% 100% 101% 98%101% 100% 101% 100% SAU101543SeqID10025106341118311867123461340614091IDENTITY26%33%27%27%100% 32%28%COVERAGE78%97%78%73%100% 96%76%SAU101545SeqID1002910636111871132912010123481363314076IDENTITY31%50%32%27%28%100% 47%30%COVERAGE98%99%97%83%97%100% 97%98%SAU101546SeqID1063812349IDENTITY27%100% COVERAGE80%100% SAU101549SeqID1044310762112281176712049125491346014030IDENTITY40%38%30%38%29%100% 39%38%COVERAGE70%95%88%70%92%102% 92%70%SAU101551SeqID1017210490111941136012019125501332613939IDENTITY52%77%26%27%26%100% 76%52%COVERAGE97%98%98%89%96%100% 98%97%SAU101554SeqID10485114851255113672IDENTITY48%26%100% 46%COVERAGE83%81%101% 91%SAU101561SeqID104001093711073113551175912112121491330714064IDENTITY44%57%44%38%42%44%100% 49%43%COVERAGE99%99%99%100% 99%100% 100% 99%99%SAU101565SeqID10134105521121111895121511344813826IDENTITY37%50%35%36%100% 44%36%COVERAGE93%96%94%92%100% 99%92%SAU101567SeqID12144IDENTITY100% COVERAGE100% SAU101570SeqID1003710690112081170011835125841356313900IDENTITY32%48%31%34%33%100% 37%30%COVERAGE100% 100% 99%95%102% 100% 100% 100% SAU101571SeqID10691119171258513308IDENTITY45%33%100% 31%COVERAGE98%94%100% 97%SAU101572SeqID10068106921168911864125861330914083IDENTITY26%56%46%43%100% 45%25%COVERAGE75%101% 89%96%100% 98%75%SAU101573SeqID100961069311270118651258714054IDENTITY31%49%35%30%100% 31%COVERAGE98%103% 98%101% 100% 98%SAU101574SeqID12588IDENTITY100% COVERAGE101% SAU101575SeqID108691258913638IDENTITY31%100% 27%COVERAGE98%100% 96%SAU101576SeqID10762120491255413460IDENTITY32%29%100% 39%COVERAGE93%98%102% 98%SAU101586SeqID1259813487IDENTITY100% 34%COVERAGE101% 78%SAU101592SeqID102491060510987115551174111952124061328313950IDENTITY51%74%53%53%51%52%100% 70%51%COVERAGE101% 100% 100% 100% 101% 101% 100% 100% 101% SAU101599SeqID12478IDENTITY100% COVERAGE100% SAU101610SeqID1044911390120481262913816IDENTITY38%38%40%100% 38%COVERAGE105% 101% 99%100% 105% SAU101612SeqID12637IDENTITY100% COVERAGE100% SAU101614SeqID1016710678112621153411978126491346213851IDENTITY49%55%29%29%39%100% 53%48%COVERAGE100% 98%93%94%95%100% 99%100% SAU101616SeqID10186106671140711695118721243213903IDENTITY33%28%32%29%34%100% 33%COVERAGE102% 99%88%104% 96%100% 100% SAU101622SeqID101621161911710121041243013832IDENTITY69%29%67%43%100% 70%COVERAGE100% 104% 78%101% 100% 100% SAU101624SeqID101931125511316124291343013752IDENTITY26%27%38%100% 26%26%COVERAGE101% 106% 97%100% 103% 107% SAU101630SeqID12410IDENTITY100% COVERAGE100% SAU101632SeqID12407IDENTITY100% COVERAGE100% SAU101637SeqID108861220113384IDENTITY44%100% 38%COVERAGE99%101% 98%SAU101641SeqID102231191812193IDENTITY51%53%100% COVERAGE92%95%100% SAU101651SeqID1079011552120211249113369IDENTITY38%28%34%100% 42%COVERAGE97%89%90%101% 100% SAU101652SeqID1079111369120221249213368IDENTITY62%49%50%100% 56%COVERAGE97%91%95%100% 98%SAU101653SeqID1079211520120231249313367IDENTITY73%46%49%100% 63%COVERAGE100% 100% 100% 100% 100% SAU101655SeqID1020510793118961249413334IDENTITY31%50%30%100% 33%COVERAGE84%97%83%100% 93%SAU101663SeqID12261IDENTITY100% COVERAGE100% SAU101664SeqID10202105121113811863122621368513823IDENTITY37%41%36%38%100% 38%36%COVERAGE98%97%108% 106% 101% 105% 98%SAU101674SeqID10067118461259414082IDENTITY27%27%100% 27%COVERAGE103% 101% 100% 103% SAU101679SeqID1019010644110551139812105125931326413756IDENTITY41%53%42%36%45%100% 45%40%COVERAGE90%100% 99%86%90%100% 98%90%SAU101681SeqID104641074611861125921341913987IDENTITY39%46%31%100% 44%40%COVERAGE100% 102% 95%100% 102% 97%SAU101682SeqID101561067011265125911348813884IDENTITY28%30%28%100% 34%26%COVERAGE94%96%102% 100% 80%94%SAU101685SeqID10590119201215213396IDENTITY26%37%100% 56%COVERAGE88%97%100% 100% SAU101717SeqID1012910586110271161011890121311335214070IDENTITY33%51%35%31%38%100% 49%34%COVERAGE101% 100% 93%70%99%100% 93%101% SAU101724SeqID1030910588112681133712015121361367813772IDENTITY44%44%41%36%43%100% 45%43%COVERAGE97%99%97%87%80%100% 98%97%SAU101726SeqID1013010664110261146111889121341355014071IDENTITY37%50%42%36%40%100% 48%41%COVERAGE101% 100% 101% 101% 100% 100% 100% 77%SAU101727SeqID106651213313551IDENTITY50%100% 49%COVERAGE101% 101% 101% SAU101728SeqID1001910666110531173411800121321318214015IDENTITY34%54%35%35%34%100% 53%34%COVERAGE86%95%88%85%90%100% 94%86%SAU101736SeqID10225118171251913958IDENTITY28%38%100% 29%COVERAGE72%99%100% 72%SAU101737SeqID114051181712518IDENTITY32%30%100% COVERAGE78%96%101% SAU101744SeqID1056212367IDENTITY44%100% COVERAGE101% 100% SAU101751SeqID104741060611671124481316513706IDENTITY30%46%30%100% 45%31%COVERAGE85%100% 82%100% 99%79%SAU101752SeqID1043810626110371141011997124471318714043IDENTITY46%75%47%40%45%100% 69%46%COVERAGE115%99%114%120%116%100% 99%115%SAU101754SeqID104391062711036115715179124461364614042IDENTITY46%72%46%53%46%100% 68%46%COVERAGE116%100% 117%80%118%100% 101% 116%SAU101756SeqID103651047911062114095178124451323113967IDENTITY65%83%66%65%68%100% 82%65%COVERAGE91%93%91%91%91%101% 93%93%SAU101771SeqID1022010784112761176511950123501328013934IDENTITY43%65%37%35%36%100% 67%41%COVERAGE91%101% 77%82%80%101% 98%91%SAU101772SeqID1024010785112751129411925123511328113863IDENTITY50%63%51%27%38%100% 61%48%COVERAGE100% 101% 100% 77%100% 100% 101% 84%SAU101777SeqID10673114481235213176IDENTITY64%43%100% 62%COVERAGE97%88%100% 98%SAU101781SeqID10495119171235313308IDENTITY67%38%100% 28%COVERAGE99%93%100% 85%SAU101782SeqID1049611689119161235413309IDENTITY75%44%41%100% 40%COVERAGE100% 89%99%100% 96%SAU101784SeqID1003710498112081170011866123551356313900IDENTITY44%65%45%35%42%100% 37%44%COVERAGE97%100% 97%92%99%100% 99%97%SAU101790SeqID1035010524111061143751701221513207IDENTITY51%81%55%48%55%100% 79%COVERAGE86%99%86%86%90%101% 99%SAU101791SeqID103491052511107114365169122161320814108IDENTITY67%90%69%62%66%100% 89%67%COVERAGE101% 101% 101% 100% 100% 101% 101% 102% SAU101792SeqID1034810526111085168122171320914107IDENTITY53%66%52%49%100% 68%50%COVERAGE96%94%95%97%101% 94%96%SAU101793SeqID10347105271110911589116545167122181321014106IDENTITY64%85%65%51%64%63%100% 79%64%COVERAGE100% 101% 99%99%101% 99%101% 100% 101% SAU101795SeqID103451052811111114355165122191321214104IDENTITY51%79%47%44%44%100% 76%51%COVERAGE99%101% 99%98%100% 101% 101% 101% SAU101797SeqID103431053011113114335163122211321414102IDENTITY45%68%41%41%48%100% 66%46%COVERAGE100% 101% 99%93%96%101% 101% 101% SAU101798SeqID103421053111114114325162122221321514101IDENTITY55%72%55%62%52%100% 66%55%COVERAGE99%95%99%87%99%101% 96%99%SAU101799SeqID10341105321111551611222313216IDENTITY51%62%42%42%100% 69%COVERAGE100% 102% 100% 97%102% 98%SAU101800SeqID103401053411116114315160122251321714099IDENTITY47%79%46%40%42%100% 84%47%COVERAGE99%101% 99%90%99%101% 101% 99%SAU101802SeqID100751053611008113481163311942122271321913717IDENTITY48%64%52%31%47%53%100% 56%47%COVERAGE97%97%97%93%97%84%100% 96%97%SAU101803SeqID101111053711052114291165111876122281322014010IDENTITY71%84%71%60%70%71%100% 82%70%COVERAGE97%101% 97%100% 101% 97%101% 101% 101% SAU101805SeqID1033710539111191142711990122291322114097IDENTITY53%75%52%58%60%100% 74%52%COVERAGE96%101% 99%99%96%101% 101% 96%SAU101806SeqID1033610540111201142611989122301322214096IDENTITY62%85%64%60%61%100% 85%63%COVERAGE100% 101% 100% 102% 100% 101% 92%101% SAU101807SeqID1033410541111221158311987122311322314094IDENTITY42%71%42%37%42%100% 58%42%COVERAGE99%100% 99%94%99%100% 99%99%SAU101808SeqID10333105421112311582116275158122321322414093IDENTITY48%65%49%46%48%45%100% 67%48%COVERAGE98%103% 98%99%78%98%101% 106% 98%SAU101810SeqID100531054411229116251166611909122331344114110IDENTITY35%52%34%32%36%33%100% 47%36%COVERAGE76%88%78%77%73%72%100% 88%73%SAU101811SeqID101961054511068114631166611888122341344013721IDENTITY38%49%33%32%33%32%100% 45%34%COVERAGE78%87%82%82%83%82%100% 87%76%SAU101814SeqID10327106021124111471116555188122371335613729IDENTITY58%69%57%47%56%55%100% 65%56%COVERAGE94%96%94%92%71%97%101% 99%94%SAU101815SeqID10326112401128812016122381336113732IDENTITY49%48%46%53%100% 69%51%COVERAGE98%98%93%93%101% 99%99%SAU101818SeqID1123111307118141236913494IDENTITY32%33%31%100% 35%COVERAGE95%90%96%101% 93%SAU101824SeqID101581200412371IDENTITY33%28%100% COVERAGE71%75%100% SAU101833SeqID1020710747110401148111794123731338813775IDENTITY42%49%28%44%35%100% 46%44%COVERAGE100% 102% 95%107% 117% 100% 103% 89%SAU101839SeqID10398108491123612100124951329113924IDENTITY30%33%32%25%100% 32%28%COVERAGE94%78%90%98%100% 83%94%SAU101842SeqID101051094211075113761172311855125101344513999IDENTITY45%70%33%48%33%47%100% 65%45%COVERAGE98%95%95%99%94%97%100% 82%99%SAU101845SeqID10231107391156711899125061354413953IDENTITY30%47%40%26%100% 43%28%COVERAGE101% 102% 102% 101% 100% 102% 101% SAU101849SeqID1001510740112091147212058125671337913713IDENTITY56%77%54%56%56%100% 75%56%COVERAGE103% 99%103% 101% 103% 100% 98%104% SAU101857SeqID12569IDENTITY100% COVERAGE100% SAU101862SeqID1025710817109551133411802125711330513797IDENTITY40%63%40%33%39%100% 62%39%COVERAGE98%100% 98%101% 98%100% 99%98%SAU101864SeqID12572IDENTITY100% COVERAGE100% SAU101865SeqID1004410834111511141711938123181322713910IDENTITY43%58%45%40%40%100% 54%41%COVERAGE85%88%88%87%87%100% 88%88%SAU101866SeqID10835118731231913586IDENTITY42%29%100% 40%COVERAGE102% 99%100% 100% SAU101868SeqID1004910733110861130511813123201322813898IDENTITY45%56%45%42%48%100% 49%45%COVERAGE101% 99%101% 96%100% 100% 108% 99%SAU101869SeqID107341232113668IDENTITY55%100% 49%COVERAGE100% 100% 101% SAU101876SeqID12169IDENTITY100% COVERAGE101% SAU101881SeqID10325120811216213728IDENTITY42%41%100% 42%COVERAGE98%97%100% 98%SAU101882SeqID102461082411743120801216313727IDENTITY33%30%31%31%100% 33%COVERAGE96%89%73%94%100% 95%SAU101890SeqID1037411125120911228013809IDENTITY53%49%47%100% 53%COVERAGE91%92%93%100% 91%SAU101891SeqID1029510766111961148311791122811341313739IDENTITY63%72%62%60%58%100% 67%64%COVERAGE91%91%90%90%93%100% 92%91%SAU101893SeqID10300107241174811981122821329013825IDENTITY46%47%41%35%100% 40%43%COVERAGE87%100% 78%93%100% 95%96%SAU101904SeqID1004710648110891145111935126171334513913IDENTITY34%38%33%31%31%100% 34%33%COVERAGE98%101% 102% 105% 104% 100% 93%98%SAU101907SeqID1036210482110591141511995124421317113964IDENTITY75%90%76%74%73%100% 75%74%COVERAGE100% 101% 100% 101% 101% 100% 101% 100% SAU101909SeqID103901124911346117891244114063IDENTITY41%32%29%36%100% 32%COVERAGE99%88%90%93%100% 73%SAU101910SeqID101991181812440IDENTITY56%60%100% COVERAGE97%97%100% SAU101915SeqID1083812439IDENTITY26%100% COVERAGE90%100% SAU101922SeqID12438IDENTITY100% COVERAGE100% SAU101948SeqID12709IDENTITY100% COVERAGE100% SAU101966SeqID1010110561110071153811705118971218614003IDENTITY45%31%32%37%43%45%100% 45%COVERAGE88%91%92%86%88%88%101% 88%SAU101968SeqID10106105681124211480119651218713998IDENTITY30%31%33%27%30%100% 31%COVERAGE90%92%90%88%83%100% 76%SAU101991SeqID109381245413500IDENTITY40%100% 25%COVERAGE101% 101% 80%SAU101995SeqID1038810939110661157511646119571245513386IDENTITY46%47%49%58%46%57%100% 51%COVERAGE72%78%73%72%72%76%100% 74%SAU101996SeqID1023710940109991132511901124561345513956IDENTITY38%64%36%38%35%100% 58%37%COVERAGE98%99%98%98%99%100% 100% 98%SAU101999SeqID1047610941112591130412035124231324113708IDENTITY48%61%46%49%51%100% 64%48%COVERAGE97%98%98%91%96%100% 97%97%SAU102001SeqID1025810628111341148911787124241363614088IDENTITY47%58%47%43%49%100% 46%47%COVERAGE105% 98%106% 105% 98%100% 98%105% SAU102002SeqID12425IDENTITY100% COVERAGE100% SAU102003SeqID12426IDENTITY100% COVERAGE101% SAU102006SeqID11267115551242713260IDENTITY44%28%100% 47%COVERAGE92%74%101% 105% SAU102007SeqID112661242813258IDENTITY60%100% 61%COVERAGE97%100% 97%SAU102032SeqID120861219813989IDENTITY62%100% 58%COVERAGE99%100% 75%SAU102035SeqID1029910933109741151411860121991336013763IDENTITY60%50%26%29%41%100% 31%56%COVERAGE98%99%85%84%97%100% 86%99%SAU102044SeqID1014110916110111134412041124141344713977IDENTITY56%67%59%50%58%100% 69%56%COVERAGE100% 102% 100% 101% 101% 100% 102% 100% SAU102046SeqID1010310723120891241514001IDENTITY32%28%29%100% 29%COVERAGE74%86%90%100% 89%SAU102049SeqID1042710518109621129111784124161365213781IDENTITY36%39%49%40%41%100% 46%36%COVERAGE101% 99%97%99%100% 100% 98%101% SAU102054SeqID1028010494110951135611676118561241713877IDENTITY53%50%55%51%53%55%100% 53%COVERAGE100% 79%100% 100% 70%100% 100% 100% SAU102059SeqID1008510771111521162211969122861322614059IDENTITY43%72%43%40%41%100% 72%40%COVERAGE107% 100% 107% 102% 109% 100% 71%89%SAU102067SeqID10380105641115511795122871340713798IDENTITY32%52%31%28%100% 44%31%COVERAGE95%98%98%97%100% 98%94%SAU102068SeqID1068012288IDENTITY29%100% COVERAGE101% 100% SAU102102SeqID12696IDENTITY100% COVERAGE100% SAU102113SeqID1064112178IDENTITY34%100% COVERAGE110%101% SAU102116SeqID106421218013480IDENTITY29%100% 31%COVERAGE85%100% 81%SAU102117SeqID10016106431160412027121811348113947IDENTITY43%61%38%42%100% 55%41%COVERAGE101% 100% 102% 103% 100% 100% 85%SAU102129SeqID108591217613400IDENTITY60%100% 56%COVERAGE98%100% 99%SAU102132SeqID107601217713304IDENTITY39%100% 41%COVERAGE101% 100% 101% SAU102142SeqID1015412457IDENTITY37%100% COVERAGE99%100% SAU102143SeqID1015412458IDENTITY32%100% COVERAGE100% 100% SAU102144SeqID12459IDENTITY100% COVERAGE100% SAU102162SeqID12462IDENTITY100% COVERAGE100% SAU102165SeqID12460IDENTITY100% COVERAGE100% SAU102200SeqID12665IDENTITY100% COVERAGE101% SAU102201SeqID12666IDENTITY100% COVERAGE101% SAU102222SeqID1044710797109941135811986125111319213818IDENTITY58%68%58%52%59%100% 67%58%COVERAGE99%99%99%99%99%100% 99%99%SAU102231SeqID10323107981119312020125271356113731IDENTITY41%50%42%38%100% 46%41%COVERAGE94%93%89%94%100% 99%94%SAU102232SeqID101001079911687125301356214004IDENTITY36%40%35%100% 42%34%COVERAGE75%79%74%100% 79%75%SAU102233SeqID108001253113496IDENTITY61%100% 45%COVERAGE98%100% 91%SAU102241SeqID101631084512539IDENTITY28%43%100% COVERAGE74%99%100% SAU102242SeqID101881084710953116001163411907125401359313981IDENTITY47%72%44%38%47%47%100% 70%47%COVERAGE100% 99%101% 100% 98%100% 100% 100% 100% SAU102246SeqID1027410854111541147611932125421331313866IDENTITY59%74%60%54%62%100% 81%58%COVERAGE99%100% 97%96%100% 100% 101% 99%SAU102247SeqID1254313180IDENTITY100% 28%COVERAGE101% 74%SAU102252SeqID10300106771174811981122411329013825IDENTITY39%48%39%37%100% 43%41%COVERAGE79%93%73%91%100% 95%98%SAU102256SeqID10451115151224313531IDENTITY33%32%100% 75%COVERAGE97%97%101% 101% SAU102257SeqID10451115151224413274IDENTITY38%29%100% 85%COVERAGE81%75%101% 101% SAU102259SeqID10844122451351913782IDENTITY65%100% 72%25%COVERAGE97%100% 97%87%SAU102260SeqID101821064611682122461327513984IDENTITY34%37%32%100% 83%32%COVERAGE96%87%96%101% 100% 87%SAU102261SeqID1018310731122471327613983IDENTITY25%30%100% 74%26%COVERAGE79%80%100% 99%79%SAU102262SeqID102701075911724122481327713881IDENTITY35%39%31%100% 82%34%COVERAGE104% 103% 84%100% 100% 104% SAU102264SeqID1016051031225013830IDENTITY45%44%100% 43%COVERAGE100% 100% 100% 101% SAU102265SeqID1192612251IDENTITY37%100% COVERAGE100% 100% SAU102268SeqID12252IDENTITY100% COVERAGE101% SAU102270SeqID12253IDENTITY100% COVERAGE100% SAU102280SeqID12378IDENTITY100% COVERAGE100% SAU102281SeqID10316112271146912054123841349713762IDENTITY45%48%39%45%100% 61%44%COVERAGE99%99%100% 99%100% 100% 99%SAU102283SeqID1026010875109821156011945121191325114086IDENTITY41%59%43%41%41%100% 54%41%COVERAGE88%88%88%92%95%102% 88%88%SAU102284SeqID12389IDENTITY100% COVERAGE100% SAU102286SeqID10385105951239313688IDENTITY37%42%100% 39%COVERAGE104% 99%100% 101% SAU102287SeqID1022010594110251166311925123981342713934IDENTITY42%45%40%39%41%100% 41%39%COVERAGE81%95%88%89%84%101% 94%83%SAU102292SeqID103991057911018114551175812111123681323014065IDENTITY41%59%40%37%41%42%100% 57%41%COVERAGE101% 100% 101% 100% 101% 101% 100% 94%101% SAU102294SeqID12610IDENTITY100% COVERAGE100% SAU102297SeqID1040510912110631130312117127041368614066IDENTITY52%66%51%46%50%100% 64%48%COVERAGE99%100% 100% 99%98%100% 100% 77%SAU102298SeqID10404109141103111686121161270513255IDENTITY36%62%33%35%28%100% 54%COVERAGE72%99%87%89%87%100% 100% SAU102308SeqID100771057711248116251173212032127061335013995IDENTITY38%46%37%33%39%38%100% 45%39%COVERAGE88%100% 86%87%88%90%100% 100% 95%SAU102318SeqID101221079511806127071324214039IDENTITY32%75%37%100% 63%31%COVERAGE90%97%72%100% 97%89%SAU102333SeqID100571055012102126571331613829IDENTITY41%43%40%100% 31%38%COVERAGE96%97%96%100% 90%95%SAU102334SeqID100561210112658IDENTITY50%50%100% COVERAGE91%92%100% SAU102336SeqID12659IDENTITY100% COVERAGE101% SAU102340SeqID12660IDENTITY100% COVERAGE100% SAU102345SeqID1184312655IDENTITY37%100% COVERAGE86%101% SAU102350SeqID12433IDENTITY100% COVERAGE101% SAU102352SeqID106571243413426IDENTITY55%100% 39%COVERAGE100% 100% 91%SAU102355SeqID1072612435IDENTITY39%100% COVERAGE87%100% SAU102356SeqID1022710669112031154611805124361332413960IDENTITY43%60%45%48%43%100% 56%43%COVERAGE95%100% 95%98%95%100% 99%95%SAU102378SeqID12437IDENTITY100% COVERAGE100% SAU102380SeqID1187012265IDENTITY32%100% COVERAGE71%100% SAU102388SeqID103671115711386118081226713802IDENTITY36%33%27%39%100% 36%COVERAGE96%90%101% 99%100% 96%SAU102389SeqID10063105471098811837122681339513917IDENTITY33%59%31%36%100% 35%33%COVERAGE99%97%97%95%100% 98%99%SAU102390SeqID10192116781226913753IDENTITY41%26%100% 42%COVERAGE100% 97%101% 100% SAU102392SeqID101311050011673119511227013474IDENTITY50%42%32%42%100% 42%COVERAGE73%80%80%74%100% 76%SAU102394SeqID1080712271IDENTITY32%100% COVERAGE102% 100% SAU102396SeqID1024310809122721346713794IDENTITY37%62%100% 27%37%COVERAGE101% 99%100% 98%98%SAU102401SeqID12209IDENTITY100% COVERAGE100% SAU102417SeqID109341206812204IDENTITY31%25%100% COVERAGE79%72%100% SAU102418SeqID1176012205IDENTITY25%100% COVERAGE89%100% SAU102420SeqID12206IDENTITY100% COVERAGE100% SAU102422SeqID1030811665119771220713776IDENTITY30%30%27%100% 31%COVERAGE92%72%93%100% 92%SAU102423SeqID11084114911209912208IDENTITY27%25%27%100% COVERAGE94%92%93%100% SAU102433SeqID10395109081116711616117721270113552IDENTITY42%51%39%37%52%100% 44%COVERAGE101% 100% 100% 73%72%100% 98%SAU102434SeqID10394109071116611773127001344613921IDENTITY26%44%28%26%100% 40%27%COVERAGE99%100% 99%100% 100% 101% 99%SAU102437SeqID1039310952110571133011774126951342013920IDENTITY55%67%57%51%55%100% 64%56%COVERAGE86%99%88%86%87%100% 99%86%SAU102440SeqID120851269213990IDENTITY41%100% 39%COVERAGE98%100% 99%SAU102447SeqID109471268513436IDENTITY38%100% 32%COVERAGE98%100% 98%SAU102448SeqID1046010946110491133212073126811343513860IDENTITY32%55%31%35%34%100% 46%32%COVERAGE101% 102% 101% 101% 101% 101% 102% 102% SAU102449SeqID104451094511253114441173112072126771343414028IDENTITY45%55%43%35%43%44%100% 51%45%COVERAGE97%98%98%99%76%97%100% 100% 97%SAU102450SeqID1045610943112641148712076126751323713857IDENTITY47%70%46%43%47%100% 68%47%COVERAGE100% 100% 100% 99%99%100% 100% 100% SAU102452SeqID104201074811143114781162911820126741326513783IDENTITY41%70%37%32%40%40%100% 62%38%COVERAGE97%98%97%97%94%97%100% 100% 99%SAU102453SeqID10749121071266913266IDENTITY43%29%100% 41%COVERAGE101% 70%100% 71%SAU102460SeqID10063105471098811837121711339513917IDENTITY34%35%34%34%100% 34%34%COVERAGE98%100% 100% 100% 100% 101% 98%SAU102469SeqID1021712172IDENTITY58%100% COVERAGE98%100% SAU102473SeqID108681217313475IDENTITY28%100% 35%COVERAGE88%100% 83%SAU102474SeqID1071310971121741347614025IDENTITY26%26%100% 26%27%COVERAGE96%105% 100% 89%97%SAU102476SeqID12175IDENTITY100% COVERAGE100% SAU102479SeqID1030612405IDENTITY26%100% COVERAGE84%100% SAU102480SeqID1031010935118711240413770IDENTITY28%33%30%100% 27%COVERAGE100% 88%100% 100% 100% SAU102481SeqID10289108311242213879IDENTITY26%29%100% 26%COVERAGE102% 94%101% 102% SAU102485SeqID1045710890124211351213961IDENTITY28%53%100% 56%60%COVERAGE86%100% 100% 99%93%SAU102486SeqID102941088911025124201351313962IDENTITY36%38%27%100% 42%37%COVERAGE95%97%95%101% 93%95%SAU102487SeqID12419IDENTITY100% COVERAGE100% SAU102498SeqID102411059710974113421170611842126881338714092IDENTITY36%35%35%33%37%38%100% 35%36%COVERAGE93%94%93%92%94%94%100% 93%93%SAU102502SeqID1206012689IDENTITY26%100% COVERAGE85%100% SAU102503SeqID1205912690IDENTITY32%100% COVERAGE92%100% SAU102526SeqID12691IDENTITY100% COVERAGE100% SAU102527SeqID103521056011104114395171122601320413968IDENTITY54%74%55%56%58%100% 75%54%COVERAGE93%101% 93%94%93%101% 94%93%SAU102531SeqID1076512667IDENTITY34%100% COVERAGE102% 100% SAU102541SeqID1007610520110001149811966126681340513718IDENTITY41%49%38%37%44%100% 45%41%COVERAGE93%102% 91%93%100% 100% 81%93%SAU102551SeqID1101311353118161267213271IDENTITY47%38%39%100% 41%COVERAGE87%84%84%101% 95%SAU102554SeqID104941267313466IDENTITY47%100% 44%COVERAGE99%100% 98%SAU102575SeqID101661123211618117771260913836IDENTITY28%29%35%30%100% 27%COVERAGE98%91%99%96%100% 98%SAU102578SeqID1045910948110501142012074124111350313859IDENTITY59%76%60%51%65%100% 73%59%COVERAGE88%95%88%89%81%101% 94%89%SAU102584SeqID12537IDENTITY100% COVERAGE100% SAU102585SeqID12611IDENTITY100% COVERAGE100% SAU102593SeqID108891246313513IDENTITY27%100% 27%COVERAGE87%100% 88%SAU102598SeqID101871095811710119791246413833IDENTITY30%32%27%31%100% 31%COVERAGE102% 85%75%92%100% 86%SAU102599SeqID1020610944109581161911975124661365313773IDENTITY36%26%30%30%33%100% 32%32%COVERAGE89%76%93%73%79%100% 77%101% SAU102601SeqID10273110761172211931124671325613867IDENTITY27%30%28%28%100% 51%27%COVERAGE95%93%95%93%100% 97%92%SAU102602SeqID103561055511100114411167911993122491320013971IDENTITY58%78%61%57%59%60%100% 77%58%COVERAGE100% 100% 100% 100% 100% 99%100% 100% 99%SAU102603SeqID12469IDENTITY100% COVERAGE100% SAU102605SeqID1083612470IDENTITY47%100% COVERAGE96%100% SAU102606SeqID10273110761172211931124711325613867IDENTITY27%30%27%25%100% 50%26%COVERAGE95%92%95%93%100% 97%94%SAU102607SeqID1247213579IDENTITY100% 43%COVERAGE100% 98%SAU102609SeqID12473IDENTITY100% COVERAGE100% SAU102610SeqID12474IDENTITY100% COVERAGE100% SAU102613SeqID10461112721247513988IDENTITY26%28%100% 26%COVERAGE97%95%100% 97%SAU102614SeqID10211106001247613927IDENTITY33%55%100% 32%COVERAGE89%100% 100% 89%SAU102615SeqID102341060111720120981247713926IDENTITY32%40%32%26%100% 31%COVERAGE98%100% 92%87%100% 100% SAU102620SeqID12479IDENTITY100% COVERAGE100% SAU102621SeqID102881051911724124801337013881IDENTITY61%62%58%100% 59%61%COVERAGE100% 101% 81%100% 101% 100% SAU102629SeqID1088512481IDENTITY26%100% COVERAGE108% 100% SAU102631SeqID10522116571184112712IDENTITY27%44%32%100% COVERAGE83%83%81%100% SAU102636SeqID1265013696IDENTITY100% 29%COVERAGE100% 102% SAU102637SeqID1265113697IDENTITY100% 39%COVERAGE100% 98%SAU102652SeqID12653IDENTITY100% COVERAGE101% SAU102658SeqID10283109101106412090126541351413855IDENTITY45%54%42%39%100% 49%41%COVERAGE97%92%97%97%100% 96%100% SAU102663SeqID1030410840110431162611798121581317213780IDENTITY43%58%44%34%45%100% 56%41%COVERAGE99%99%96%95%91%100% 97%99%SAU102669SeqID10022107561125712045121601337114035IDENTITY42%26%43%41%100% 54%41%COVERAGE96%91%95%94%100% 95%93%SAU102671SeqID1040911079113191168312043121611337314033IDENTITY34%32%44%35%56%100% 69%33%COVERAGE91%91%96%74%99%100% 96%91%SAU102674SeqID10020111641164851271215614016IDENTITY55%54%46%55%100% 53%COVERAGE102% 103% 101% 105% 101% 102% SAU102693SeqID10178106591147411883126271330113940IDENTITY53%74%38%49%100% 61%49%COVERAGE82%87%86%86%101% 90%72%SAU102694SeqID1017710660112221129651201262813302IDENTITY48%66%50%44%55%100% 60%COVERAGE97%102% 97%94%94%102% 102% SAU102725SeqID1041810514111371150712088123381337813789IDENTITY40%72%39%38%37%100% 66%40%COVERAGE96%100% 96%103% 104% 100% 100% 96%SAU102764SeqID1017910929112341129511884126251348413938IDENTITY44%67%42%41%42%100% 63%43%COVERAGE99%99%99%90%97%100% 99%99%SAU102812SeqID108601212713253IDENTITY48%100% 49%COVERAGE100% 101% 96%SAU102870SeqID1011310880121701327014008IDENTITY29%35%100% 29%28%COVERAGE92%83%100% 93%87%SAU102880SeqID10360105331109611443116435177122241319613975IDENTITY60%82%61%57%61%58%100% 85%61%COVERAGE100% 101% 100% 97%100% 100% 101% 101% 100% SAU102881SeqID10357105511109911994122421319913972IDENTITY38%69%37%38%100% 54%38%COVERAGE89%98%89%89%101% 102% 89%SAU102883SeqID103961116811449121181270213181IDENTITY63%70%60%65%100% 76%COVERAGE86%88%86%86%102% 90%SAU102905SeqID10732112171137312273IDENTITY31%26%38%100% COVERAGE92%80%87%100% SAU102909SeqID100421048811150114571163711940123151343713908IDENTITY59%68%60%69%59%60%100% 73%59%COVERAGE95%95%95%130%95%98%101% 124%95%SAU102933SeqID104481094910995115791176211985124121350213817IDENTITY33%53%35%32%31%29%100% 50%31%COVERAGE104% 113%101% 108% 107% 101% 101% 101% 103% SAU102936SeqID1023610872118041235613955IDENTITY33%66%60%100% 33%COVERAGE97%100% 96%101% 98%SAU102942SeqID10136104921123011696122961333913834IDENTITY52%55%43%50%100% 51%51%COVERAGE100% 100% 99%99%100% 99%99%SAU102944SeqID1246813257IDENTITY100% 42%COVERAGE100% 99%SAU102979SeqID10014109791138411936125361342913712IDENTITY33%37%32%41%100% 33%33%COVERAGE88%87%87%87%100% 87%90%SAU102983SeqID108831267613269IDENTITY28%100% 27%COVERAGE70%100% 76%SAU102992SeqID1017610661112231129711882126301330313941IDENTITY62%70%62%48%59%100% 63%61%COVERAGE99%92%99%97%99%101% 99%101% SAU103010SeqID12194IDENTITY100% COVERAGE100% SAU103024SeqID116701204212200IDENTITY44%26%100% COVERAGE89%72%101% SAU103025SeqID12202IDENTITY100% COVERAGE100% SAU103037SeqID108671261313267IDENTITY27%100% 26%COVERAGE99%101% 86%SAU103077SeqID12408IDENTITY100% COVERAGE100% SAU103115SeqID1250813469IDENTITY100% 32%COVERAGE101% 101% SAU103144SeqID1093612663IDENTITY42%100% COVERAGE84%100% SAU103159SeqID1011010783111341148911787126701341113994IDENTITY43%48%38%48%48%100% 63%43%COVERAGE115%100% 112%117%98%100% 101% 116%SAU103169SeqID1267813239IDENTITY100% 34%COVERAGE100% 84%SAU103175SeqID1015712687IDENTITY36%100% COVERAGE96%100% SAU103191SeqID1246513332IDENTITY100% 42%COVERAGE102% 75%SAU103204SeqID12499IDENTITY100% COVERAGE101% SAU103226SeqID12713IDENTITY100% COVERAGE100% SAU103232SeqID1036811704118481269713803IDENTITY36%35%48%100% 35%COVERAGE102% 98%101% 101% 102% SAU200006SeqID10033106391119211553120071272313479IDENTITY53%70%47%43%50%100% 65%COVERAGE78%80%84%82%89%100% 77%SAU200028SeqID12694IDENTITY100% COVERAGE100% SAU200030SeqID103721055311056114471167212092127451344913807IDENTITY42%74%39%43%41%35%100% 73%42%COVERAGE84%98%84%93%86%93%102% 95%84%SAU200058SeqID106211271913327IDENTITY39%100% 37%COVERAGE79%101% 78%SAU200059SeqID10259106221097812026127201332514087IDENTITY31%33%32%36%100% 40%31%COVERAGE73%97%73%74%100% 96%73%SAU200088SeqID10262109841140311947127241341514090IDENTITY51%56%57%45%100% 68%49%COVERAGE82%91%93%93%102% 100% 82%SAU200242SeqID1071212734IDENTITY28%100% COVERAGE99%100% SAU200297SeqID10109107561125711982127391337113996IDENTITY33%64%34%33%100% 33%32%COVERAGE95%100% 98%95%100% 95%95%SAU200345SeqID12751IDENTITY100% COVERAGE100% SAU200392SeqID10164105841096811566119121275513892IDENTITY26%30%25%27%33%100% 26%COVERAGE97%80%96%98%93%100% 98%SAU200468SeqID10201104781105412061129371342513822IDENTITY78%75%62%36%100% 76%78%COVERAGE74%75%74%81%101% 75%74%SAU200558SeqID10039107281127712046127771342313904IDENTITY28%31%26%30%100% 32%29%COVERAGE72%102% 80%75%100% 99%72%SAU200561SeqID12693IDENTITY100% COVERAGE100% SAU200564SeqID10099111701160211645117881278013992IDENTITY33%31%31%34%32%100% 34%COVERAGE87%87%82%86%93%100% 87%SAU200565SeqID100981125011386117861278113991IDENTITY32%34%35%39%100% 33%COVERAGE97%96%98%97%100% 97%SAU200593SeqID1043510613110381141211998127841339714046IDENTITY53%73%50%53%52%100% 64%52%COVERAGE99%100% 99%98%100% 100% 99%99%SAU200628SeqID1017310856127901329713937IDENTITY32%31%100% 29%34%COVERAGE92%97%100% 97%94%SAU200685SeqID1280113185IDENTITY100% 31%COVERAGE100% 94%SAU200721SeqID10208105821101511541127971368113922IDENTITY40%33%41%36%100% 42%41%COVERAGE92%79%99%94%100% 100% 94%SAU200725SeqID10118107611096611780129331363214020IDENTITY30%46%30%25%100% 47%29%COVERAGE98%100% 97%98%100% 100% 98%SAU200731SeqID10283108221106412090123421351413855IDENTITY55%54%44%43%100% 51%46%COVERAGE99%100% 98%98%100% 100% 99%SAU200740SeqID1031810554112251139312056127981369513760IDENTITY48%56%48%49%50%100% 55%48%COVERAGE86%102% 86%73%87%100% 93%86%SAU200752SeqID12809IDENTITY100% COVERAGE100% SAU200914SeqID10383107141174711927128371343113788IDENTITY26%28%27%27%100% 25%25%COVERAGE96%98%79%90%100% 91%90%SAU200916SeqID12838IDENTITY100% COVERAGE100% SAU200928SeqID104391062711036115715179128151364614042IDENTITY54%73%55%53%49%100% 69%54%COVERAGE86%99%87%86%102% 100% 100% 86%SAU200934SeqID1021210780119641284213835IDENTITY44%60%42%100% 42%COVERAGE72%93%82%100% 88%SAU200949SeqID12846IDENTITY100% COVERAGE100% SAU200960SeqID115001188612431IDENTITY42%33%100% COVERAGE70%91%102% SAU200994SeqID10036104971127011865129351331014054IDENTITY36%62%32%37%100% 35%33%COVERAGE100% 101% 100% 102% 100% 73%99%SAU201167SeqID1077912887IDENTITY37%100% COVERAGE98%100% SAU201168SeqID108191288913626IDENTITY53%100% 56%COVERAGE102% 100% 100% SAU201184SeqID1044810715109951157911985128071350213819IDENTITY40%52%35%37%37%100% 53%32%COVERAGE70%108% 97%82%70%101% 111%111%SAU201197SeqID103301092411160113215215129381336413885IDENTITY58%66%60%53%58%100% 63%58%COVERAGE99%99%99%98%99%101% 96%99%SAU201225SeqID10812110901289613170IDENTITY41%33%100% 38%COVERAGE93%80%100% 87%SAU201236SeqID1002610679111841161312013128911350514073IDENTITY32%29%33%33%34%100% 30%32%COVERAGE92%96%93%89%95%100% 95%90%SAU201301SeqID12899IDENTITY100% COVERAGE100% SAU201333SeqID10192116781290513753IDENTITY41%28%100% 41%COVERAGE100% 96%101% 100% SAU201375SeqID1192912926IDENTITY36%100% COVERAGE95%100% SAU201380SeqID103791049911313120241292213801IDENTITY34%25%26%25%100% 25%COVERAGE94%93%95%89%100% 101% SAU201381SeqID102411059710974113871170611833129231338713878IDENTITY68%59%46%44%56%57%100% 52%64%COVERAGE89%96%90%91%89%100% 104% 92%89%SAU201403SeqID12913IDENTITY100% COVERAGE100% SAU201469SeqID12967IDENTITY100% COVERAGE100% SAU201486SeqID13023IDENTITY100% COVERAGE100% SAU201506SeqID10145119631294613841IDENTITY49%49%100% 50%COVERAGE101% 102% 100% 100% SAU201508SeqID10370118741294713805IDENTITY37%42%100% 36%COVERAGE73%72%100% 73%SAU201513SeqID1022912944IDENTITY29%100% COVERAGE71%101% SAU201539SeqID10109112575099129431362513996IDENTITY33%28%34%100% 32%33%COVERAGE95%96%96%100% 97%95%SAU201541SeqID101311050011673119511294213474IDENTITY50%39%33%41%100% 41%COVERAGE71%74%77%73%100% 73%SAU201558SeqID10112112581139611875129541359814009IDENTITY51%51%43%49%100% 46%51%COVERAGE96%94%94%99%101% 96%96%SAU201571SeqID1022410951112131135711905129971326813957IDENTITY50%61%47%50%45%100% 54%49%COVERAGE98%94%99%92%103% 100% 70%98%SAU201611SeqID11539119021297313243IDENTITY38%48%100% 58%COVERAGE73%99%100% 95%SAU201615SeqID1196212972IDENTITY40%100% COVERAGE72%100% SAU201621SeqID10038108421139211707120471266213902IDENTITY49%53%42%49%47%100% 46%COVERAGE91%91%91%91%91%101% 91%SAU201654SeqID12982IDENTITY100% COVERAGE101% SAU201666SeqID1029110900110281155711761118111298113743IDENTITY33%29%35%31%32%34%100% 33%COVERAGE71%80%71%76%79%73%100% 71%SAU201752SeqID106231296313689IDENTITY45%100% 40%COVERAGE89%100% 92%SAU201765SeqID12770IDENTITY100% COVERAGE100% SAU201773SeqID12996IDENTITY100% COVERAGE100% SAU201775SeqID12996IDENTITY100% COVERAGE100% SAU201810SeqID12769IDENTITY100% COVERAGE100% SAU201827SeqID1025810783111341131011787130021341114088IDENTITY38%46%41%41%45%100% 63%39%COVERAGE108% 100% 100% 104% 88%100% 101% 108% SAU201929SeqID13008IDENTITY100% COVERAGE100% SAU201952SeqID13020IDENTITY100% COVERAGE100% SAU201971SeqID13015IDENTITY100% COVERAGE101% SAU202006SeqID13018IDENTITY100% COVERAGE100% SAU202039SeqID113591300913374IDENTITY44%100% 48%COVERAGE96%101% 98%SAU202126SeqID1026110874109831156111946127141341714085IDENTITY51%50%52%33%46%100% 58%52%COVERAGE94%94%91%84%93%101% 94%94%SAU202174SeqID12895IDENTITY100% COVERAGE101% SAU202176SeqID12895IDENTITY100% COVERAGE101% SAU202186SeqID1006212731IDENTITY28%100% COVERAGE73%101% SAU202267SeqID12727IDENTITY100% COVERAGE100% SAU202708SeqID10428109131285513735IDENTITY25%28%100% 25%COVERAGE86%84%100% 86%SAU202736SeqID101481090211181114941167711857129271324813844IDENTITY39%40%37%40%37%38%100% 38%39%COVERAGE95%93%98%91%80%93%100% 103% 95%SAU202756SeqID1043610614110715181130271324614045IDENTITY44%63%47%44%100% 53%40%COVERAGE97%92%86%92%100% 91%97%SAU202781SeqID12718IDENTITY100% COVERAGE100% SAU202872SeqID106561286613670IDENTITY45%100% 28%COVERAGE101% 100% 98%SAU202882SeqID12848IDENTITY100% COVERAGE101% SAU202930SeqID12871IDENTITY100% COVERAGE100% SAU202945SeqID12868IDENTITY100% COVERAGE100% SAU202968SeqID12886IDENTITY100% COVERAGE100% SAU203001SeqID12894IDENTITY100% COVERAGE100% SAU203007SeqID12893IDENTITY100% COVERAGE100% SAU203196SeqID12945IDENTITY100% COVERAGE101% SAU203293SeqID12979IDENTITY100% COVERAGE101% SAU203296SeqID1133012263IDENTITY29%100% COVERAGE88%101% SAU203524SeqID12957IDENTITY100% COVERAGE100% SAU300110SeqID1005410544116621303113441IDENTITY33%38%33%100% 30%COVERAGE82%109% 73%102% 109% SAU300131SeqID103441052911112114345164130341321314103IDENTITY45%71%44%52%47%100% 60%44%COVERAGE100% 99%100% 99%99%101% 99%100% SAU300156SeqID13036IDENTITY100% COVERAGE100% SAU300191SeqID1056211519118441236713522IDENTITY43%39%32%100% 41%COVERAGE103% 91%72%101% 104% SAU300572SeqID1152212717IDENTITY32%100% COVERAGE108% 100% SAU300617SeqID108511251313289IDENTITY50%100% 49%COVERAGE97%100% 97%SAU300713SeqID107671182313058IDENTITY26%30%100% COVERAGE83%93%100% SAU300719SeqID104681061111246113801164411887129871345613726IDENTITY46%34%34%30%30%40%100% 33%34%COVERAGE100% 87%101% 94%101% 100% 101% 96%100% SAU300732SeqID10282106821306113394IDENTITY26%51%100% 49%COVERAGE71%88%100% 86%SAU300825SeqID106551306813671IDENTITY52%100% 41%COVERAGE97%100% 97%SAU300975SeqID1060412203IDENTITY30%100% COVERAGE72%102% SAU300998SeqID108201307713489IDENTITY40%100% 40%COVERAGE99%102% 99%SAU301004SeqID1074413079IDENTITY40%100% COVERAGE101% 100% SAU301030SeqID13080IDENTITY100% COVERAGE100% SAU301080SeqID13083IDENTITY100% COVERAGE100% SAU301118SeqID102421080811092116531290413795IDENTITY47%58%48%53%100% 48%COVERAGE98%98%91%78%100% 96%SAU301133SeqID108981308713443IDENTITY39%100% 30%COVERAGE96%100% 93%SAU301223SeqID1029710640109641132311783130901366413737IDENTITY31%50%31%32%34%100% 48%32%COVERAGE104% 99%102% 90%102% 100% 98%104% SAU301230SeqID1025210877110101166911956130921350613704IDENTITY52%52%63%52%59%100% 59%52%COVERAGE95%92%74%95%77%100% 92%95%SAU301268SeqID13102IDENTITY100% COVERAGE100% SAU301275SeqID1004810926110141151111934131031336613897IDENTITY54%47%55%50%53%100% 46%54%COVERAGE99%84%97%97%97%101% 84%99%SAU301357SeqID1069611063117661285913354IDENTITY74%32%33%100% 76%COVERAGE98%80%93%101% 100% SAU301433SeqID1284513393IDENTITY100% 26%COVERAGE100% 91%SAU301465SeqID1021010663112141155411921130131341813925IDENTITY29%54%32%37%28%100% 52%29%COVERAGE100% 104% 104% 100% 101% 100% 103% 102% SAU301472SeqID1015712925IDENTITY36%100% COVERAGE85%100% SAU301592SeqID13137IDENTITY100% COVERAGE100% SAU301620SeqID13140IDENTITY100% COVERAGE100% SAU301758SeqID13156IDENTITY100% COVERAGE100% SAU301773SeqID12729IDENTITY100% COVERAGE100% SAU301829SeqID101071130911857131621324813935IDENTITY45%40%42%100% 38%41%COVERAGE98%97%96%100% 106% 99%SAU301869SeqID107321137312903IDENTITY30%36%100% COVERAGE80%95%100% SAU301898SeqID1093213057IDENTITY27%100% COVERAGE71%100% SAU302060SeqID13042IDENTITY100% COVERAGE100% SAU302513SeqID12851IDENTITY100% COVERAGE100% SAU302626SeqID13105IDENTITY100% COVERAGE100% SAU302685SeqID13113IDENTITY100% COVERAGE100% SAU302698SeqID12725IDENTITY100% COVERAGE100% SAU302699SeqID13115IDENTITY100% COVERAGE100% SAU302805SeqID1134513133IDENTITY33%100% COVERAGE75%101% SAU302901SeqID12872IDENTITY100% COVERAGE100% SAU302931SeqID13155IDENTITY100% COVERAGE100% SAU302950SeqID12664IDENTITY100% COVERAGE101% SAU302956SeqID10023112561174212044129301337214018IDENTITY32%28%31%26%100% 31%32%COVERAGE88%88%88%86%101% 88%88%ECO100078SeqID100231125611742120441359514018IDENTITY100% 66%95%65%41%97%COVERAGE100% 98%100% 99%97%100% ECO100252SeqID1005211503120781262613932IDENTITY100% 41%48%38%40%COVERAGE100% 99%96%93%93%ECO100397SeqID1006410781109931149911959128841361413915IDENTITY100% 50%71%38%71%45%47%94%COVERAGE100% 96%100% 97%97%97%97%99%ECO100398SeqID1006510653109921131111958128831317713916IDENTITY100% 53%81%46%71%57%50%98%COVERAGE100% 95%101% 98%99%95%95%100% ECO100990SeqID1012011768IDENTITY100% 72%COVERAGE100% 82%ECO102108SeqID10214106081112911757118521362713931IDENTITY100% 36%74%94%36%36%96%COVERAGE100% 96%100% 100% 97%97%73%ECO102262SeqID102281120411631120381313213963IDENTITY100% 42%86%51%35%87%COVERAGE100% 100% 81%100% 100% 100% ECO102447SeqID102471181213948IDENTITY100% 47%99%COVERAGE100% 93%96%ECO102539SeqID102581062811134114895192125261363614088IDENTITY100% 46%77%48%71%52%47%97%COVERAGE100% 101% 100% 100% 100% 100% 82%100% ECO102620SeqID1026610510112691152411819129151327914049IDENTITY100% 51%26%30%28%42%49%89%COVERAGE100% 93%80%94%91%96%101% 99%ECO103101SeqID1031510763112151161511716120521366213764IDENTITY100% 37%73%26%96%64%33%94%COVERAGE100% 74%100% 76%100% 100% 74%101% ECO104120SeqID104621060911034117261185313887IDENTITY100% 29%34%87%28%37%COVERAGE100% 79%89%100% 89%92%ECO104268SeqID1047510607123701316613707IDENTITY100% 43%43%38%95%COVERAGE100% 92%99%92%100% KPN100432SeqID10258107361113411310116285192127891363614088IDENTITY90%37%62%37%100% 62%41%47%92%COVERAGE100% 97%100% 93%101% 97%86%87%101% KPN100854SeqID1008610652111971156511630118621338914060IDENTITY35%29%26%27%100% 42%32%35%COVERAGE74%72%72%85%100% 77%71%74%KPN101022SeqID104751060711642123701316613707IDENTITY90%29%100% 27%26%91%COVERAGE100% 77%101% 101% 79%101% KPN101026SeqID102281120411631120381313213963IDENTITY86%44%100% 54%37%85%COVERAGE99%97%100% 98%99%99%KPN101729SeqID1104511467116471206713032IDENTITY50%50%100% 63%63%COVERAGE96%96%102% 96%96%KPN101750SeqID100521150311652120781262613918IDENTITY94%38%100% 47%37%34%COVERAGE100% 103% 100% 100% 96%100% KPN102057SeqID10406108921103511661118541315313883IDENTITY29%30%30%100% 27%28%29%COVERAGE96%96%84%100% 97%85%96%KPN102638SeqID10266105101152411667129151355714049IDENTITY77%51%29%100% 44%50%77%COVERAGE79%79%83%100% 80%79%79%KPN103882SeqID1031510763112151145411716120521366213764IDENTITY96%38%73%26%100% 65%33%93%COVERAGE100% 74%100% 77%100% 100% 74%101% KPN104183SeqID100651065310992114901165011958128831317713916IDENTITY97%56%80%46%100% 80%60%55%98%COVERAGE85%74%89%86%100% 85%74%74%85%KPN104281SeqID100231125611742120441359514018IDENTITY95%68%100% 66%41%95%COVERAGE94%92%101% 94%91%101% KPN104538SeqID104621060911034117261185313887IDENTITY87%27%35%100% 29%38%COVERAGE100% 87%89%100% 89%94%KPN104716SeqID10214106081112911757118521362713931IDENTITY94%36%75%100% 36%35%94%COVERAGE100% 96%100% 100% 97%97%73%KPN105779SeqID1177012103IDENTITY100% 28%COVERAGE101% 99%KPN106659SeqID1006410781109931164911959128841361413915IDENTITY90%58%72%100% 74%51%58%91%COVERAGE80%70%75%101% 74%72%70%81%KPN106840SeqID1025910857109781166412026121821369114087IDENTITY91%44%74%100% 55%38%42%91%COVERAGE100% 101% 98%100% 99%94%92%100% KPN107776SeqID1022211132117711181013936IDENTITY78%37%100% 35%80%COVERAGE98%89%102% 87%98%SAU100968SeqID1006410781109931149911959126431361413915IDENTITY45%62%44%36%46%100% 62%46%COVERAGE97%97%100% 99%97%100% 98%97%SAU201145SeqID1006410781109931149911959128841361413915IDENTITY45%62%44%36%46%100% 62%46%COVERAGE97%97%100% 99%97%100% 98%97%SPN101971SeqID1006410781109931149911959128841328713915IDENTITY46%77%42%36%48%62%100% 46%COVERAGE100% 99%102% 100% 100% 99%100% 100% SPN201024SeqID1006410781109931149911959128841361413915IDENTITY46%77%43%36%49%62%100% 46%COVERAGE99%99%102% 101% 99%99%100% 99%STY000277SeqID1047510607123701316613707IDENTITY95%44%42%38%100% COVERAGE100% 91%99%96%100% STY000625SeqID1042113784IDENTITY93%100% COVERAGE100% 101% STY000773SeqID1031510763112151145411716120521366213764IDENTITY94%36%71%26%93%62%31%100% COVERAGE100% 74%100% 77%100% 100% 74%100% STY001430SeqID1006410781109931149911959128841361413915IDENTITY94%49%70%37%70%46%47%100% COVERAGE100% 96%101% 98%98%97%98%100% STY001433SeqID1006510653109921131111958128831317713916IDENTITY98%53%82%46%72%58%50%100% COVERAGE99%94%100% 97%99%94%94%100% STY001867SeqID102471181213948IDENTITY99%47%100% COVERAGE98%96%100% STY002995SeqID100231125611742120441359514018IDENTITY97%67%95%65%40%100% COVERAGE94%92%101% 94%91%101% STY003357SeqID102281120411631120381313213963IDENTITY87%42%85%49%36%100% COVERAGE100% 100% 81%101% 100% 100% PA0028SeqID5053COVERAGE100% IDENTITY100% PA0120SeqID1038610959505413899COVERAGE96%94%100% 95%IDENTITY28%28%100% 28%PA0129SeqID102651138850551284414048COVERAGE93%91%100% 94%91%IDENTITY67%32%100% 36%67%PA0141SeqID5056COVERAGE100% IDENTITY100% PA0221SeqID11250113861170150571278113778COVERAGE73%77%83%100% 96%77%IDENTITY32%26%28%100% 28%29%PA0265SeqID1026410550114665058123751331614047COVERAGE100% 97%99%100% 96%91%100% IDENTITY81%35%26%100% 38%34%80%PA0321SeqID5059COVERAGE100% IDENTITY100% PA0337SeqID1027810785112755060123511328113880COVERAGE99%73%72%100% 72%73%99%IDENTITY43%35%37%100% 36%35%42%PA0353SeqID104081108811397117495061121591351114034COVERAGE97%100% 88%101% 100% 100% 96%101% IDENTITY74%75%28%74%100% 45%38%74%PA0378SeqID1032411130506213730COVERAGE94%80%100% 95%IDENTITY52%49%100% 53%PA0401SeqID10078108585063129931356013723COVERAGE99%100% 100% 96%100% 99%IDENTITY26%31%100% 33%33%26%PA0413SeqID5064COVERAGE100% IDENTITY100% PA0414SeqID5065COVERAGE100% IDENTITY100% PA0419SeqID102961087111003116605066129711346113738COVERAGE100% 93%102% 78%100% 100% 91%100% IDENTITY46%29%45%47%100% 27%29%47%PA0423SeqID101231142450671270814038COVERAGE99%97%100% 75%99%IDENTITY75%32%100% 32%76%PA0469SeqID5068COVERAGE100% IDENTITY100% PA0472SeqID104715069COVERAGE88%100% IDENTITY47%100% PA0506SeqID5070COVERAGE100% IDENTITY100% PA0600SeqID5071COVERAGE100% IDENTITY100% PA0642SeqID5072COVERAGE100% IDENTITY100% PA0650SeqID1015011237115815073121531345913846COVERAGE95%83%93%100% 76%95%95%IDENTITY38%38%35%100% 34%38%39%PA0715SeqID5074COVERAGE100% IDENTITY100% PA0788SeqID5075COVERAGE100% IDENTITY100% PA0882SeqID10233507614013COVERAGE85%100% 101% IDENTITY33%100% 28%PA0934SeqID1027610876110061175350771264613483COVERAGE101% 93%101% 80%100% 92%94%IDENTITY47%40%46%37%100% 39%38%PA0938SeqID5078COVERAGE100% IDENTITY100% PA1019SeqID1046710592111805079COVERAGE88%84%88%100% IDENTITY26%25%28%100% PA1072SeqID1037750801341013813COVERAGE100% 100% 71%100% IDENTITY62%100% 36%61%PA1115SeqID5081COVERAGE100% IDENTITY100% PA1270SeqID1032811751508213946COVERAGE76%79%100% 76%IDENTITY26%25%100% 26%PA1301SeqID104705083COVERAGE96%100% IDENTITY28%100% PA1360SeqID1010450841328214000COVERAGE92%100% 97%92%IDENTITY63%100% 25%63%PA1365SeqID5085COVERAGE100% IDENTITY100% PA1398SeqID5086COVERAGE100% IDENTITY100% PA1462SeqID10915115595087COVERAGE98%101% 100% IDENTITY29%30%100% PA1493SeqID11042311718508813786COVERAGE92%97%100% 92%IDENTITY56%49%100% 56%PA1547SeqID113775089COVERAGE88%100% IDENTITY28%100% SeqID11009150901299013890COVERAGE101% 100% 96%81%IDENTITY37%100% 26%32%PA1684SeqID116935091COVERAGE99%100% IDENTITY59%100% PA1868SeqID103615092COVERAGE82%100% IDENTITY35%100% PA1876SeqID11746509314036COVERAGE76%100% 93%IDENTITY40%100% 39%PA1918SeqID1015311033509413745COVERAGE79%82%100% 79%IDENTITY31%28%100% 28%PA1986SeqID5095COVERAGE100% IDENTITY100% PA2009SeqID5096COVERAGE100% IDENTITY100% PA2083SeqID10253116925097COVERAGE87%85%100% IDENTITY31%35%100% PA2101SeqID1019850981328213861COVERAGE92%100% 88%95%IDENTITY30%100% 25%28%PA2108SeqID10109112575099129431362513996COVERAGE96%95%100% 94%90%96%IDENTITY37%27%100% 34%29%37%PA2128SeqID10472108651175251001368313893COVERAGE97%96%86%100% 80%97%IDENTITY27%26%25%100% 27%33%PA2147SeqID10181510113985COVERAGE98%100% 98%IDENTITY60%100% 59%PA2196SeqID10169510213852COVERAGE99%100% 99%IDENTITY43%100% 43%PA2197SeqID1016051031291713830COVERAGE100% 100% 97%100% IDENTITY74%100% 44%73%PA2222SeqID5104COVERAGE100% IDENTITY100% PA2313SeqID5105COVERAGE100% IDENTITY100% PA2398SeqID101325106COVERAGE86%100% IDENTITY35%100% PA2424SeqID5107COVERAGE100% IDENTITY100% PA2461SeqID5108COVERAGE100% IDENTITY100% PA2470SeqID510913930COVERAGE100% 98%IDENTITY100% 60%PA2488SeqID1018911172511013980COVERAGE89%70%100% 87%IDENTITY32%28%100% 29%PA2494SeqID103311114511516511113719COVERAGE99%98%100% 100% 98%IDENTITY42%31%26%100% 41%PA2584SeqID101951089910967115045112123301344214058COVERAGE94%99%94%97%100% 99%92%94%IDENTITY60%37%57%38%100% 41%42%58%PA2594SeqID10116117145113COVERAGE97%80%100% IDENTITY41%45%100% PA2634SeqID104415114COVERAGE74%100% IDENTITY28%100% PA2641SeqID1022610566511513959COVERAGE95%89%100% 95%IDENTITY80%37%100% 80%PA2671SeqID5116COVERAGE100% IDENTITY100% PA2680SeqID104441070311730511714029COVERAGE101% 74%90%100% 101% IDENTITY42%30%43%100% 42%PA2684SeqID103845118COVERAGE99%100% IDENTITY33%100% PA2726SeqID5119COVERAGE100% IDENTITY100% PA2742SeqID1017710660112221129651201262813302COVERAGE91%97%84%89%100% 97%97%IDENTITY64%50%67%47%100% 55%45%PA3006SeqID5121COVERAGE100% IDENTITY100% PA3011SeqID1015110695112331129351221233913848COVERAGE100% 79%100% 86%100% 75%100% IDENTITY68%40%64%39%100% 42%66%PA3013SeqID1041610494110951152551231246113750COVERAGE98%80%102% 102% 100% 102% 98%IDENTITY64%39%43%41%100% 40%64%PA3041SeqID10307512413777COVERAGE88%100% 88%IDENTITY32%100% 32%PA3048SeqID1011710966512514005COVERAGE99%75%100% 99%IDENTITY47%45%100% 47%PA3068SeqID5126COVERAGE100% IDENTITY100% PA3121SeqID10021111641136351271215614017COVERAGE99%99%81%100% 99%99%IDENTITY63%59%26%100% 56%62%PA3153SeqID5128COVERAGE100% IDENTITY100% PA3154SeqID5129COVERAGE100% IDENTITY100% PA3160SeqID5130COVERAGE100% IDENTITY100% PA3279SeqID5131COVERAGE100% IDENTITY100% PA3280SeqID5132COVERAGE100% IDENTITY100% PA3374SeqID104525133COVERAGE99%100% IDENTITY55%100% PA3479SeqID5134COVERAGE100% IDENTITY100% PA3484SeqID5135COVERAGE100% IDENTITY100% PA3522SeqID103311114511516513613719COVERAGE98%99%99%100% 99%IDENTITY41%30%26%100% 40%PA3643SeqID100461117311378513713912COVERAGE99%100% 79%100% 99%IDENTITY53%51%30%100% 52%PA3703SeqID10194513813751COVERAGE100% 100% 100% IDENTITY30%100% 31%PA3709SeqID5139COVERAGE100% IDENTITY100% PA3716SeqID5140COVERAGE100% IDENTITY100% PA3764SeqID1025510991514113793COVERAGE94%91%100% 82%IDENTITY38%41%100% 39%PA3845SeqID1027711200514213882COVERAGE98%98%100% 98%IDENTITY34%30%100% 35%PA3866SeqID5143COVERAGE100% IDENTITY100% PA3876SeqID10144514413840COVERAGE97%100% 97%IDENTITY61%100% 58%PA3877SeqID1016151451269913831COVERAGE98%100% 92%98%IDENTITY28%100% 27%27%PA3931SeqID10050108331106711460116565146125481317313720COVERAGE82%92%103% 92%82%100% 96%109% 95%IDENTITY50%43%41%49%48%100% 44%36%35%PA3984SeqID100871100211674514714061COVERAGE97%98%91%100% 99%IDENTITY40%37%39%100% 40%PA4024SeqID102441070011736514813951COVERAGE95%95%71%100% 95%IDENTITY50%50%72%100% 50%PA4027SeqID5149COVERAGE100% IDENTITY100% PA4037SeqID10102105631119411527117255150129581329614002COVERAGE72%83%72%72%72%100% 70%71%72%IDENTITY35%30%33%34%33%100% 35%31%34%PA4067SeqID10149515113845COVERAGE98%100% 99%IDENTITY44%100% 43%PA4070SeqID101595152COVERAGE96%100% IDENTITY28%100% PA4081SeqID5153COVERAGE100% IDENTITY100% PA4105SeqID5154COVERAGE100% IDENTITY100% PA4124SeqID515514023COVERAGE100% 93%IDENTITY100% 64%PA4125SeqID515614024COVERAGE100% 94%IDENTITY100% 67%PA4158SeqID100801061011009113791176951571229713725COVERAGE98%95%88%83%74%100% 96%97%IDENTITY61%38%31%28%61%100% 50%61%PA4237SeqID103331054211123115825158122321322414093COVERAGE91%97%98%90%100% 92%97%91%IDENTITY79%43%76%43%100% 45%42%79%PA4242SeqID103381053811117114285159COVERAGE100% 100% 100% 100% 100% IDENTITY87%68%76%74%100% PA4244SeqID1034010534111165160122251321714099COVERAGE100% 100% 100% 100% 100% 100% 100% IDENTITY65%46%63%100% 42%43%65%PA4245SeqID1034110532111155161122231321613812COVERAGE95%98%95%100% 98%98%78%IDENTITY56%42%58%100% 42%40%33%PA4246SeqID103421053111114114325162122221321514101COVERAGE100% 92%99%88%100% 99%92%100% IDENTITY77%52%74%49%100% 52%53%77%PA4247SeqID103431053011113114335163122211321414102COVERAGE99%98%99%97%100% 98%98%99%IDENTITY59%52%63%37%100% 48%54%59%PA4248SeqID103441052911112114345164122201357114103COVERAGE100% 99%100% 99%100% 99%99%100% IDENTITY62%49%66%50%100% 43%47%62%PA4249SeqID103451052811111114355165130331321214104COVERAGE99%102% 99%100% 100% 102% 102% 99%IDENTITY64%46%64%40%100% 44%47%64%PA4250SeqID1034610599111105166127371321114105COVERAGE100% 100% 100% 100% 100% 100% 100% IDENTITY69%43%63%100% 46%53%67%PA4251SeqID10347105271110911589116545167122181321014106COVERAGE99%99%99%99%99%100% 90%98%99%IDENTITY69%58%68%48%69%100% 63%61%68%PA4252SeqID1034810526111085168122171320914107COVERAGE97%92%94%100% 98%92%96%IDENTITY65%49%62%100% 49%46%64%PA4253SeqID103491052511107114365169122161320814108COVERAGE101% 100% 101% 100% 100% 100% 100% 101% IDENTITY85%66%85%65%100% 66%66%84%PA4254SeqID1035010524111061143751701221513207COVERAGE90%98%90%84%100% 89%89%IDENTITY71%53%62%45%100% 55%56%PA4256SeqID103521056011104114395171122601320413968COVERAGE100% 100% 100% 96%100% 98%98%100% IDENTITY77%54%77%65%100% 58%57%77%PA4257SeqID103531055911103115925172122591320313969COVERAGE99%91%100% 99%100% 91%93%99%IDENTITY74%61%72%55%100% 57%59%74%PA4258SeqID103541055811102115935173122581320213970COVERAGE100% 91%100% 95%100% 99%91%100% IDENTITY69%57%70%41%100% 48%58%69%PA4259SeqID1035510557111011159451741225513201COVERAGE100% 101% 100% 99%100% 100% 100% IDENTITY82%70%84%61%100% 63%67%PA4262SeqID103581054911098115955175122401319813973COVERAGE100% 95%100% 96%100% 101% 97%100% IDENTITY68%45%72%36%100% 46%44%68%PA4263SeqID1035911097114425176122351319713974COVERAGE99%98%91%100% 103% 99%99%IDENTITY75%73%35%100% 46%51%75%PA4264SeqID103601053311096114431164351771319613975COVERAGE100% 75%100% 95%100% 100% 99%100% IDENTITY90%58%92%57%92%100% 61%91%PA4268SeqID103651047911062114095178124451323113967COVERAGE100% 111%100% 100% 100% 111% 111%100% IDENTITY89%70%89%75%100% 68%70%89%PA4269SeqID104391062711036114105179124461364614042COVERAGE100% 100% 100% 109% 100% 101% 99%100% IDENTITY76%46%73%47%100% 46%45%75%PA4271SeqID104371061511072115725180124491324714044COVERAGE100% 101% 101% 102% 100% 98%100% 100% IDENTITY66%65%66%54%100% 58%58%64%PA4272SeqID1043610614110715181124501324614045COVERAGE99%95%100% 100% 99%95%99%IDENTITY68%40%66%100% 39%42%65%PA4316SeqID1020011235518213821COVERAGE88%90%100% 91%IDENTITY51%47%100% 51%PA4332SeqID5183COVERAGE100% IDENTITY1100% PA4347SeqID116995184COVERAGE86%100% IDENTITY27%100% PA4363SeqID1029211740518513742COVERAGE95%81%100% 95%IDENTITY40%36%100% 41%PA4375SeqID100721114511516518613719COVERAGE101% 100% 100% 100% 101% IDENTITY33%45%28%100% 33%PA4413SeqID100301080511188114585187123601333314077COVERAGE90%94%92%93%100% 93%98%90%IDENTITY45%33%41%30%100% 33%32%44%PA4433SeqID10327106021124111289116555188122371335613729COVERAGE100% 99%100% 94%72%100% 99%99%100% IDENTITY75%59%73%54%76%100% 55%56%72%PA4473SeqID1046311195518913986COVERAGE84%81%100% 84%IDENTITY39%37%100% 39%PA4506SeqID10381106581119811314117175190128501324813800COVERAGE99%77%98%79%91%100% 99%81%99%IDENTITY58%48%60%51%59%100% 46%42%58%PA4512SeqID519113815COVERAGE100% 99%IDENTITY100% 57%PA4542SeqID102581062811134114895192125261342114088COVERAGE100% 101% 100% 100% 100% 101% 80%100% IDENTITY71%47%70%49%100% 52%46%71%PA4576SeqID5193COVERAGE100% IDENTITY100% PA4598SeqID100721114511516519413719COVERAGE100% 100% 99%100% 100% IDENTITY50%29%28%100% 50%PA4665SeqID10143108261125111287116755195123801333613979COVERAGE100% 97%101% 97%100% 100% 98%99%100% IDENTITY66%54%64%52%65%100% 53%50%66%PA4681SeqID5196COVERAGE100% IDENTITY100% PA4709SeqID5197COVERAGE100% IDENTITY100% PA4744SeqID1031411216115015198123221366313765COVERAGE107% 98%93%100% 78%91%107% IDENTITY58%58%39%100% 48%43%58%PA4771SeqID103871128051991340213828COVERAGE100% 99%100% 96%97%IDENTITY87%75%100% 33%33%PA4888SeqID5200COVERAGE100% IDENTITY100% PA4942SeqID1045510972520113856COVERAGE93%91%100% 95%IDENTITY48%41%100% 48%PA4997SeqID101151061910960113945202125011345814006COVERAGE86%82%97%83%100% 96%97%86%IDENTITY43%36%44%31%100% 37%32%44%PA5030SeqID101655203COVERAGE90%100% IDENTITY64%100% PA5076SeqID101971079611176113831169452041329214057COVERAGE94%82%97%97%90%100% 98%94%IDENTITY29%33%27%26%29%100% 30%30%PA5088SeqID5205COVERAGE100% IDENTITY100% PA5193SeqID103731112611709520613808COVERAGE100% 96%77%100% 100% IDENTITY41%39%42%100% 41%PA5199SeqID103751059611711520713810COVERAGE102% 71%102% 100% 103% IDENTITY33%26%34%100% 32%PA5207SeqID1126011612520812730COVERAGE100% 88%100% 100% IDENTITY54%39%100% 28%PA5209SeqID10302520913758COVERAGE90%100% 89%IDENTITY29%100% 28%PA5248SeqID5210COVERAGE100% IDENTITY100% PA5299SeqID5211COVERAGE100% IDENTITY100% PA5316SeqID103911115811327521212129COVERAGE100% 99%78%100% 73%IDENTITY82%79%39%100% 40%PA5388SeqID105035213COVERAGE85%100% IDENTITY28%100% PA5393SeqID5214COVERAGE100% IDENTITY100% PA5436SeqID103301092411160113215215131271361713885COVERAGE94%94%94%94%100% 94%94%94%IDENTITY52%51%52%46%100% 55%54%52%PA5443SeqID104131078811199114525216124891364313748COVERAGE100% 103% 100% 96%100% 100% 105% 100% IDENTITY64%38%56%35%100% 38%39%64%PA5490SeqID5217COVERAGE100% IDENTITY100% PA5493SeqID1041710668111331160952181262313236COVERAGE102% 102% 102% 102% 100% 100% 101% IDENTITY62%37%58%31%100% 38%37%PA5507SeqID101195219COVERAGE99%100% IDENTITY31%100% PA5567SeqID103971091111169114505220127031333813923COVERAGE99%103% 99%100% 100% 102% 101% 99%IDENTITY67%39%64%33%100% 34%37%67%


[0779]

13









TABLE VIIB














Staphyl
-



PathoSeq


Enterococcus




Escherichia




Pseudomonas




ococcus




Cluster ID


faecalis




coli




aeruginosa




aureus





















15
EFA102326
ECO101796
PAE100280
SAU102515


55
EFA100151
ECO104157
PAE100416
SAU100633


57
EFA100617
ECO102690
PAE105434
SAU100158


1443
EFA100689
ECO103692
PAE101987
SAU100952


1861
EFA101412
ECO103231
PAE104331
SAU101793


2286
EFA103268
ECO103265
PAE104314
SAU101756


2362
EFA101425
ECO100662
PAE101537
SAU101236


2367
EFA101417
ECO103226
PAE103206
SAU101798


2549
EFA101410
ECO103233
PAE104329
SAU101791


3816
EFA101159
ECO103243
PAE104319
SAU100546


3857
EFA101415
ECO103228
PAE103204
SAU101796


4322
EFA101165
ECO103237
PAE104325
SAU100141


4569
EFA100955
ECO103217
PAE103215
SAU101808


4948
EFA101160
ECO103242
PAE104320
SAU100547


5818
EFA100742
ECO103224
PAE103208
SAU101800


8159
EFA101163
ECO103239
PAE104323
SAU100139


8296
EFA101164
ECO103238
PAE104324
SAU100140


8316
EFA101409
ECO103234
PAE104328
SAU101790


8494
EFA103062
ECO103884
PAE104311
SAU100433


8498
EFA101411
ECO103232
PAE104330
SAU101792


8499
EFA101416
ECO103227
PAE103205
SAU101797


7

ECO100071
PAE100837
SAU102674


8
EFA101340

PAE106580
SAU100118


28
EFA101403

PAE102647
SAU100514


41
EFA101753
ECO100148

SAU101565


63
EFA101685

PAE103857
SAU100331


147

ECO100645
PAE100543
SAU100053


548

ECO100377
PAE100604
SAU100747


730

ECO103592
PAE103108
SAU100061


1721
EFA101686
ECO100663

SAU101996


1749
EFA101477
ECO102557

SAU100613


2153
EFA102656
ECO100184
SAU101869


2790
EFA102764
ECO100500
SAU101578


3164
EFA101162
ECO103240

SAU102602


3312
EFA103174

PAE105008
SAU100521


3926
EFA100194
ECO103220

SAU101806


4441
EFA102541

PAE105364
SAU101814


5685
EFA100190
ECO103264

SAU100157


7417
EFA102788
ECO101684

SAU102992


7437
EFA102351
ECO100084

SAU100056


7579

ECO102470
PAE102641
SAU100607


7726
EFA102551
ECO103221

SAU101805


7727
EFA100978
ECO103218

SAU101807


8092

ECO102035
PAE102964
SAU100794


8158
EFA103365

PAE104318
SAU102880


8161
EFA100210

PAE104326
SAU102527


8162
EFA101414

PAE103203
SAU101795


8164
EFA100741
ECO103223

SAU101801


8493
EFA101141

PAE104310
SAU100432


10185
EFA102728
ECO104092

SAU102578


35

ECO102870

SAU100497


44


PAE101061
SAU101143


54


PAE100225
SAU100123


85

ECO101104

SAU101262


184


PAE104901
SAU101366


362
EFA102736


SAU 100414


575
EFA101790


SAU100133


579
EFA102110


SAU101624


911


PAE105432
SAU102054


941

ECO101365

SAU102162


952
EFA100615


SAU100964


1084
EFA100289
ECO102819


1141

ECO102255

SAU102356


1232

ECO100703

SAU101346


1274


PAE103655
SAU102264


1337

ECO102562

SAU100567


1350

ECO100930
PAE103901


1374

ECO103659

SAU101385


1427
EFA100394


SAU100714


1535

ECO101207

SAU101561


1653
EFA102655


SAU101868


1849
EFA100642


SAU101653


1932
EFA100919


SAU101365


2156
EFA101150


SAU101271


2189

ECO102827
PAE100476


2238

ECO101436

SAU101092


2338
EFA103038


SAU100518


2411
EFA102802


SAU102246


2501
EFA101121


SAU100996


2974


PAE102537
SAU102125


3027

ECO103959

SAU200242


3239
EFA103021


SAU100300


3244
EFA100399


SAU101891


3386
EFA100426


SAU100886


3447
EFA102915


SAU102112


3460
EFA102023


SAU101399


3682
EFA100740


SAU101802


3771
EFA101540


SAU100275


4424
EFA102542


SAU101815


4654

ECO100488
PAE106184


5148
EFA100065


SAU100658


7227
EFA100023


SAU100436


7240

ECO103672

SAU101682


7278


PAE101620
SAU301370


7374


PAE106765
SAU103042


7375
EFA102051


SAU103038


7402

ECO103572
PAE106044


7419

ECO101686

SAU102693


7436
EFA101792


SAU101495


7504
EFA101670


SAU102603


7653
EFA100397


SAU100246


7660
EFA102352
ECO103698


7719
EFA100756


SAU100496


7725
EFA100739


SAU101803


8040
EFA101736


SAU101197


8058
EFA103571


SAU101242


8077
EFA100200


SAU102231


8082
EFA101080


SAU100199


8116
EFA101963


SAU101028


8122
EFA101737


SAU101198


8141
EFA102780


SAU102433


8177
EFA103348


SAU202126


8178
EFA101022


SAU102283


8181
EFA101541


SAU102909


8191
EFA102022


SAU101398


8234
EFA103033


SAU100745


8237
EFA101682


SAU101266


8238
EFA103295


SAU100963


8251


PAE100662
SAU100596


8300
EFA101120


SAU100944


8539
EFA101339


SAU101400


8610

ECO103661

SAU102298


8874
EFA100748


SAU101155


9028
EFA103210


SAU100731


9996
EFA102338


SAU100175


10234
EFA102186


SAU102933


10248

ECO102828

SAU101220


10297


PAE105229
SAU101381


10328
EFA101079


SAU101547


10345
EFA100298


SAU100659


10365
EFA100641


SAU101655


10393
EFA103504


SAU100961


10402
EFA101833


SAU100880


12426
EFA101413


SAU101794


14277
EFA103081


SAU200088


14330
EFA101161


SAU102881


14455
EFA101424


SAU101771


14520
EFA100211


SAU101789


15660
EFA103375


SAU102694











Example 13


Use of Identified Nucleic Acid Sequences as Probes

[0780] The sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids can be used as probes to obtain the sequence of additional genes of interest from a second cell or microorganism. For example, probes to genes encoding potential bacterial target proteins may be hybridized to nucleic acids from other organisms including other bacteria and higher organisms, to identify homologous sequences in these other organisms. For example, the identified sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, homologous coding nucleic acids, or homologous antisense nucleic acids may be used to identify homologous sequences in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species. In some embodiments of the present invention, the nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids may be used to identify homologous nucleic acids from a heterologous organism other than E. coli.


[0781] Hybridization between the nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids and nucleic acids from humans might indicate that the protein encoded by the gene to which the probe corresponds is found in humans and therefore not necessarily an optimal drug target. Alternatively, the gene can be conserved only in bacteria and therefore would be a good drug target for a broad spectrum antibiotic or antimicrobial. These probes can also be used in a known manner to isolate homologous nucleic acids from Staphylococcus, Salmonella, Klebsiella, Pseudomonas, Enterococcus or other cells or microorganisms, e.g. by screening a genomic or cDNA library.


[0782] Probes derived from the nucleic acid sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids, or portions thereof, can be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe can be single stranded or double stranded and can be made using techniques known in the art, including in vitro transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it can be denatured prior to contacting the probe. In some applications, the nucleic acid sample can be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample can comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.


[0783] Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe can be cloned into vectors such as expression vectors, sequencing vectors, or in vitro transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques can be used to isolate, purify and clone sequences from a genomic library, made from a variety of bacterial species, which are capable of hybridizing to probes made from the sequences identified in Examples 5 and 6.



Example 14


Preparation of PCR Primers and Amplification of DNA

[0784] The identified Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi genes corresponding directly to or located within the operon of nucleic acid sequences required for proliferation, homologous coding nucleic acids, or homologous antisense nucleic acids or portions thereof can be used to prepare PCR primers for a variety of applications, including the identification or isolation of homologous sequences from other species. For example, the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi genes may be used to prepare PCR primers to identify or isolate homologous sequences from Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis; Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the PCR primers may be used to identify or isolate homologous nucleic acids from an organism other than E. coli.


[0785] The identified or isolated nucleic acids obtained using the PCR primers may contain part or all of the homologous nucleic acids. Because homologous nucleic acids are related but not identical in sequence, those skilled in the art will often employ degenerate sequence PCR primers. Such degenerate sequence primers are designed based on sequence regions that are either known to be conserved or suspected to be conserved such as conserved coding regions. The successful production of a PCR product using degenerate probes generated from the sequences identified herein would indicate the presence of a homologous gene sequence in the species being screened. The PCR primers are at least 10 nucleotides, and preferably at least 20 nucleotides in length. More preferably, the PCR primers are at least 20-30 nucleotides in length. In some embodiments, the PCR primers can be more than 30 nucleotides in length. It is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B. A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. When the entire coding sequence of the target gene is known, the 5′ and 3′ regions of the target gene can be used as the sequence source for PCR probe generation. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.



Example 15


Inverse PCR

[0786] The technique of inverse polymerase chain reaction can be used to extend the known nucleic acid sequence identified in Examples 5 and 6. The inverse PCR reaction is described generally by Ochman et al., in Ch. 10 of PCR Technology: Principles and Applications for DNA Amplification, (Henry A. Erlich, Ed.) W.H. Freeman and Co. (1992). Traditional PCR requires two primers that are used to prime the synthesis of complementary strands of DNA. In inverse PCR, only a core sequence need be known.


[0787] Using the sequences identified as relevant from the techniques taught in Examples 5 and 6 and applied to other species of bacteria, a subset of nucleic sequences are identified that correspond to genes or operons that are required for bacterial proliferation. In species for which a genome sequence is not known, the technique of inverse PCR provides a method for obtaining the gene in order to determine the sequence or to place the probe sequences in full context to the target sequence to which the identified nucleic acid sequence binds.


[0788] To practice this technique, the genome of the target organism is digested with an appropriate restriction enzyme so as to create fragments of nucleic acid that contain the identified sequence as well as unknown sequences that flank the identified sequence. These fragments are then circularized and become the template for the PCR reaction. PCR primers are designed in accordance with the teachings of Example 15 and directed to the ends of the identified sequence. The primers direct nucleic acid synthesis away from the known sequence and toward the unknown sequence contained within the circularized template. After the PCR reaction is complete, the resulting PCR products can be sequenced so as to extend the sequence of the identified gene past the core sequence of the identified exogenous nucleic acid sequence identified. In this manner, the full sequence of each novel gene can be identified. Additionally the sequences of adjacent coding and noncoding regions can be identified.



Example 16


Identification of Genes Required for Escherichia coli Proliferation

[0789] Genes required for proliferation in Escherichia coli are identified according to the methods described above.



Example 17


Identification of Genes Required for Neisseria gonorrhoeae Proliferation

[0790] Genes required for proliferation in Neisseria gonorrhoeae are identified according to the methods described above.



Example 18


Identification of Genes Required for Salmonella enterica Proliferation

[0791] Genes required for proliferation in Salmonella enterica are identified according to the methods described above.



Example 19


Identification of Genes Required for Enterococcus faecium Proliferation

[0792] Genes required for proliferation in Enterococcus faecium are identified according to the methods described above.



Example 20


Identification of Genes Required for Haemophilus influenzae Proliferation

[0793] Genes required for proliferation in Haemophilus influenzae are identified according to the methods described above.



Example 21


Identification of Genes Required for Aspergillus fumigatus Proliferation

[0794] Genes required for proliferation in Aspergillus fumigatus are identified according to the methods described above.



Example 22


Identification of Genes Required for Helicobacter pylori Proliferation

[0795] Genes required for proliferation in Helicobacter pylori are identified according to the methods described above.



Example 23


Identification of Genes Required for Mycoplasma pneumoniae Proliferation

[0796] Genes required for proliferation in Mycoplasma pneumoniae are identified according to the methods described above.



Example 24


Identification of Genes Required for Plasmodium ovale Proliferation

[0797] Genes required for proliferation in Plasmodium ovale are identified according to the methods described above.



Example 25


Identification of Genes Required for Entamoeba histolytica Proliferation

[0798] Genes required for proliferation in Entamoeba histolytica are identified according to the methods described above.



Example 26


Identification of Genes Required for Candida albicans Proliferation

[0799] Genes required for proliferation in Candida albicans are identified according to the methods described above.



Example 27


Identification of Genes Required for Histoplasma capsulatum Proliferation

[0800] Genes required for proliferation in Histoplasma capsulatum are identified according to the methods described above.



Example 28


Identification of Genes Required for Salmonella typhi Proliferation

[0801] Genes required for proliferation in Salmonella typhi are identified according to the methods described above.



Example 29


Identification of Genes Required for Salmonella paratyphi Proliferation

[0802] Genes required for proliferation in Salmonella paratyphi are identified according to the methods described above.



Example 30


Identification of Genes Required for Salmonella cholerasuis Proliferation

[0803] Genes required for proliferation in Salmonella cholerasuis are identified according to the methods described above.



Example 31


Identification of Genes Required for Staphylococcus epidermis Proliferation

[0804] Genes required for proliferation in Staphylococcus epidermis are identified according to the methods described above.



Example 32


Identification of Genes Required for Mycobacterium tuberculosis Proliferation

[0805] Genes required for proliferation in Mycobacterium tuberculosis are identified according to the methods described above.



Example 33


Identification of Genes Required for Mycobacterium leprae Proliferation

[0806] Genes required for proliferation in Mycobacterium leprae are identified according to the methods described above.



Example 34


Identification of Genes Required for Treponema pallidum Proliferation

[0807] Genes required for proliferation in Treponema pallidum are identified according to the methods described above.



Example 35


Identification of Genes Required for Bacillus anthracis Proliferation

[0808] Genes required for proliferation in Bacillus anthracis are identified according to the methods described above.



Example 36


Identification of Genes Required for Yersinia pestis Proliferation

[0809] Genes required for proliferation in Yersinia pestis are identified according to the methods described above.



Example 37


Identification of Genes Required for Clostridium botulinum Proliferation

[0810] Genes required for proliferation in Clostridium botulinum are identified according to the methods described above.



Example 38


Identification of Genes Required for Campylobacter jejuni Proliferation

[0811] Genes required for proliferation in Campylobacter jejuni are identified according to the methods described above.



Example 39


Identification of Genes Required for Chlamydia trachomatis Proliferation

[0812] Genes required for proliferation in Chlamydia trachomatis are identified according to the methods described above.



Example 40


Identification of Genes Required for Staphylococcus aureus Proliferation

[0813] Genes required for proliferation in Staphylococcus aureus are identified according to the methods described above.



Example 41


Identification of Genes Required for Salmonella typhimurium Proliferation

[0814] Genes required for proliferation in Salmonella typhimurium are identified according to the methods described above.



Example 42


Identification of Genes Required for Klebsiella Pneumoniae Proliferation

[0815] Genes required for proliferation in Klebsiella Pneumoniae are identified according to the methods described above.



Example 43


Identification of Genes Required for Pseudomonas aeruginosa Proliferation

[0816] Genes required for proliferation in Pseudomonas aeruginosa are identified according to the methods described above.



Example 44


Identification of Genes Required for Enterococcus faecalis Proliferation

[0817] Genes required for proliferation in Enterococcus faecalis are identified according to the methods described above.


[0818] Use of Isolated Exogenous Nucleic Acid Fragments as Antisense Antibiotics


[0819] In addition to using the identified sequences to enable screening of molecule libraries to identify compounds useful to identify antibiotics, antisense nucleic acids complementary to the proliferation-required sequences or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids, or homologous antisense nucleic acids can be used as therapeutic agents. Specifically, the proliferation-required sequences or homolgous coding nucleic acids, or portions therof, in an antisense orientation or homologous antisense nucleic acids can be provided to an individual to inhibit the translation of a bacterial target gene or the processing, folding, or assembly into a protein/RNA complex of a nontranslated RNA.



Example 45


Generation of Antisense Therapeutics from Identified Exogenous Sequences

[0820] Antisense nucleic acids complementary to the proliferation-required sequences described herein, or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids, or portions thereof, or homologous antisense nucleic acids or portions thereof can be used as antisense therapeutics for the treatment of bacterial infections or simply for inhibition of bacterial growth in vitro or in vivo. For example, the antisense therapeutics may be used to treat bacterial infections caused by Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or to inhibit the growth of these organisms. The antisense therapeutics may also be used to treat infections caused by or to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia colt, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the antisense therapuetics may be used to treat infection by or inhibit the growth of an organism other than E. coli.


[0821] The therapy exploits the biological process in cells where genes are transcribed into messenger RNA (mRNA) that is then translated into proteins. Antisense RNA technology contemplates the use of antisense nucleic acids, including antisense oligonucleotides, complementary to a target gene that will bind to its target nucleic acid and decrease or inhibit the expression of the target gene. For example, the antisense nucleic acid may inhibit the translation or transcription of the target nucleic acid. In one embodiment, antisense oligonucleotides can be used to treat and control a bacterial infection of a cell culture containing a population of desired cells contaminated with bacteria. In another embodiment, the antisense oligonucleotides can be used to treat an organism with a bacterial infection.


[0822] Antisense oligonucleotides can be synthesized from any of the sequences of the present invention using methods well known in the art. In a preferred embodiment, antisense oligonucleotides are synthesized using artificial means. Uhlmann & Peymann, Chemical Rev. 90:543-584 (1990) review antisense oligonucleotide technology in detail. Modified or unmodified antisense oligonucleotides can be used as therapeutic agents. Modified antisense oligonucleotides are preferred. Modification of the phosphate backbones of the antisense oligonucleotides can be achieved by substituting the intemucleotide phosphate residues with methylphosphonates, phosphorothioates, phosphoramidates, and phosphate esters. Nonphosphate internucleotide analogs such as siloxane bridges, carbonate brides, thioester bridges, as well as many others known in the art may also be used. The preparation of certain antisense oligonucleotides with modified internucleotide linkages is described in U.S. Pat. No. 5,142,047, hereby incorporated by reference.


[0823] Modifications to the nucleoside units of the antisense oligonucleotides are also contemplated. These modifications can increase the half-life and increase cellular rates of uptake for the oligonucleotides in vivo. For example, α-anomeric nucleotide units and modified nucleotides such as 1,2-dideoxy-d-ribofaranose, 1,2-dideoxy-1-phenylribofuranose, and N4, N4-ethano-5-methyl-cytosine are contemplated for use in the present invention.


[0824] An additional form of modified antisense molecules is found in peptide nucleic acids. Peptide nucleic acids (PNA) have been developed to hybridize to single and double stranded nucleic acids. PNA are nucleic acid analogs in which the entire deoxyribose-phosphate backbone has been exchanged with a chemically different, but structurally homologous, polyamide (peptide) backbone containing 2-aminoethyl glycine units. Unlike DNA, which is highly negatively charged, the PNA backbone is neutral. Therefore, there is much less repulsive energy between complementary strands in a PNA-DNA hybrid than in the comparable DNA-DNA hybrid, and consequently they are much more stable. PNA can hybridize to DNA in either a Watson/Crick or Hoogsteen fashion (Demidov et al., Proc. Natl. Acad. Sci. U.S.A. 92:2637-2641, 1995; Egholm, Nature 365:566-568, 1993; Nielsen et al., Science 254:1497-1500, 1991; Dueholm et al., New J. Chem. 21:19-31, 1997).


[0825] Molecules called PNA “clamps” have been synthesized which have two identical PNA sequences joined by a flexible hairpin linker containing three 8-amino-3,6-dioxaoctanoic acid units. When a PNA clamp is mixed with a complementary homopurine or homopyrimidine DNA target sequence, a PNA-DNA-PNA triplex hybrid can form which has been shown to be extremely stable (Bentin et al., Biochemistry 35:8863-8869, 1996; Egholm et al., Nucleic Acids Res. 23:217-222, 1995; Griffith et al., J. Am. Chem. Soc. 117:831-832, 1995).


[0826] The sequence-specific and high affinity duplex and triplex binding of PNA have been extensively described (Nielsen et al., Science 254:1497-1500, 1991; Egholm et al., J. Am. Chem. Soc. 114:9677-9678, 1992; Egholm et al., Nature 365:566-568, 1993; Almarsson et al., Proc. Natl. Acad. Sci. USA. 90:9542-9546, 1993; Demidov et al., Proc. Natl. Acad. Sci. USA. 92:2637-2641, 1995). They have also been shown to be resistant to nuclease and protease digestion (Demidov et al., Biochem. Pharm. 48:1010-1313, 1994). PNA has been used to inhibit gene expression (Hanvey et al., Science 258:1481-1485,1992; Nielsen et al., Nucl. Acids. Res., 21:197-200, 1993; Nielsen et al., Gene 149:139-145, 1994; Good & Nielsen, Science, 95: 2073-2076, 1998; all of which are hereby incorporated by reference), to block restriction enzyme activity (Nielsen et al., supra., 1993), to act as an artificial transcription promoter (Mollegaard, Proc. Natl. Acad Sci. U.S.A. 91:3892-3895, 1994) and as a pseudo restriction endonuclease (Demidov et al., Nucl. Acids. Res. 21:2103-2107, 1993). Recently, PNA has also been shown to have antiviral and antitumoral activity mediated through an antisense mechanism (Norton, Nature Biotechnol., 14:615-619, 1996; Hirschman et al., J. Investig. Med. 44:347-351, 1996). PNAs have been linked to various peptides in order to promote PNA entry into cells (Basu et al., Bioconj. Chem. 8:481-488, 1997; Pardridge et al., Proc. Natl. Acad. Sci. U.S.A. 92:5592-5596, 1995).


[0827] The antisense oligonucleotides contemplated by the present invention can be administered by direct application of oligonucleotides to a target using standard techniques well known in the art. The antisense oligonucleotides can be generated within the target using a plasmid, or a phage. Alternatively, the antisense nucleic acid may be expressed from a sequence in the chromosome of the target cell. For example, a promoter may be introduced into the chromosome of the target cell near the target gene such that the promoter directs the transcription of the antisense nucleic acid. Alternatively, a nucleic acid containing the antisense sequence operably linked to a promoter may be introduced into the chromosome of the target cell. It is further contemplated that the antisense oligonucleotides are incorporated in a ribozyme sequence to enable the antisense to specifically bind and cleave its target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi et al., Pharmacol. Ther. 50(2):245-254, (1991), which is hereby incorporated by reference. The present invention also contemplates using a retron to introduce an antisense oligonucleotide to a cell. Retron technology is exemplified by U.S. Pat. No. 5,405,775, which is hereby incorporated by reference. Antisense oligonucleotides can also be delivered using liposomes or by electroporation techniques which are well known in the art.


[0828] The antisense nucleic acids described above can also be used to design antibiotic compounds comprising nucleic acids which function by intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. The antisense nucleic acids can be used to inhibit cell or microorganism gene expression in individuals infected with such microorganisms or containing such cells. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences based on the sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia colt, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or homologous nucleic acids that are required for proliferation are contemplated for use as antibiotic compound templates.


[0829] The antisense nucleic acids, such as antisense oligonucleotides, which are complementary to the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or to homologous coding nucleic acids, or portions thereof, may be used to induce bacterial cell death or at least bacterial stasis by inhibiting target nucleic acid transcription or translation. Antisense oligonucleotides complementary to about 8 to 40 nucleotides of the proliferation-required nucleic acids described herein or homologous coding nucleic acids have sufficient complementarity to form a duplex with the target sequence under physiological conditions.


[0830] To kill bacterial cells or inhibit their growth, the antisense oligonucleotides are applied to the bacteria or to the target cells under conditions that facilitate their uptake. These conditions include sufficient incubation times of cells and oligonucleotides so that the antisense oligonucleotides are taken up by the cells. In one embodiment, an incubation period of 7-10 days is sufficient to kill bacteria in a sample. An optimum concentration of antisense oligonucleotides is selected for use.


[0831] The concentration of antisense oligonucleotides to be used can vary depending on the type of bacteria sought to be controlled, the nature of the antisense oligonucleotide to be used, and the relative toxicity of the antisense oligonucleotide to the desired cells in the treated culture. Antisense oligonucleotides can be introduced to cell samples at a number of different concentrations preferably between 1×10−10M to 1×10−4M. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use in vivo. For example, an inhibiting concentration in culture of 1×10−7 translates into a dose of approximately 0.6 mg/kg body weight. Levels of oligonucleotide approaching 100 mg/kg body weight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the subject are removed, treated with the antisense oligonucleotide, and reintroduced into the subject. This range is merely illustrative and one of skill in the art are able to determine the optimal concentration to be used in a given case.


[0832] After the bacterial cells have been killed or controlled in a desired culture, the desired cell population may be used for other purposes.



Example 46


Use of Antisense Oligonucleotides to Treat Contaminated Cell Cultures

[0833] The following example demonstrates the ability of an Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi antisense oligonucleotide or an antisense oligonucleotide complementary to a homologous coding nucleic acid, or portions thereof, to act as a bacteriocidal or bacteriostatic agent to treat a contaminated cell culture system. The application of the antisense oligonucleotides of the present invention are thought to inhibit the translation of bacterial gene products required for proliferation. The antisense nucleic acids may also inhibit the transcription, folding or processing of the target RNA.


[0834] In one embodiment of the present invention, the antisense oligonucleotide may comprise a phosphorothioate modified nucleic acid comprising at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, or more than 40 consecutive nucleotides of an antisense nucleic acid listed in Table IA. A sense oligodeoxynucleotide complementary to the antisense sequence is synthesized and used as a control. The oligonucleotides are synthesized and purified according to the procedures of Matsukura, et al., Gene 72:343 (1988). The test oligonucleotides are dissolved in a small volume of autoclaved water and added to culture medium to make a 100 micromolar stock solution.


[0835] Human bone marrow cells are obtained from the peripheral blood of two patients and cultured according standard procedures well known in the art. The culture is contaminated with Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or an organism containing a homologous nucleic acid and incubated at 37° C. overnight to establish bacterial infection.


[0836] The control and antisense oligonucleotide containing solutions are added to the contaminated cultures and monitored for bacterial growth. After a 10 hour incubation of culture and oligonucleotides, samples from the control and experimental cultures are drawn and analyzed for the translation of the target bacterial gene using standard microbiological techniques well known in the art. The target Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi gene or an organism containing the homologous coding nucleic acid is found to be translated in the control culture treated with the control oligonucleotide, however, translation of the target gene in the experimental culture treated with the antisense oligonucleotide of the present invention is not detected or reduced, indicating that the culture is no longer contaminated or is contaminated at a reduced level.



Example 47


Use of Antisense Oligonucleotides to Treat Infections

[0837] A subject suffering from a Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi infection or an infection with an organism containing a homologous coding nucleic acid is treated with the antisense oligonucleotide preparation above. The antisense oligonucleotide is provided in a pharmaceutically acceptable carrier at a concentration effective to inhibit the transcription or translation of the target nucleic acid. The present subject is treated with a concentration of antisense oligonucleotide sufficient to achieve a blood concentration of about 0.1-100 micromolar. The patient receives daily injections of antisense oligonucleotide to maintain this concentration for a period of 1 week. At the end of the week a blood sample is drawn and analyzed for the presence or absence of the organism using standard techniques well known in the art. There is no detectable evidence of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or an organim containing a homologous coding nucleic acid and the treatment is terminated.


[0838] Antisense nucleic acids complementary to a homologous coding nucleic acid or a portion thereof may be used in the preceding method to treat individuals infected with an organism containing the homologous coding nucleic acid.



Example 48


Preparation and Use of Triple Helix Forming Oligonucleotides

[0839] The sequences of proliferation-required nucleic acids, homologous coding nucleic acids, or homologous antisense nucleic acids are scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches that could be used in triple-helix based strategies for inhibiting gene expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into a population of bacterial cells that normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis.


[0840] The oligonucleotides can be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.


[0841] Treated cells are monitored for a reduction in proliferation using techniques such as monitoring growth levels as compared to untreated cells using optical density measurements. The oligonucleotides that are effective in inhibiting gene expression in cultured cells can then be introduced in vivo using the techniques well known in that art at a dosage level shown to be effective.


[0842] In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3′ end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (Science 245:967-971 (1989), which is hereby incorporated by this reference).



Example 49


Identification of Bacterial Strains from Isolated Specimens by PCR

[0843] Classical bacteriological methods for the detection of various bacterial species are time consuming and costly. These methods include growing the bacteria isolated from a subject in specialized medium, cultivation on selective agar medium, followed by a set of confirmation assays that can take from 8 to 10 days or longer to complete. Use of the identified sequences of the present invention provides a method to dramatically reduce the time necessary to detect and identify specific bacterial species present in a sample.


[0844] In one exemplary method, bacteria are grown in enriched medium and DNA samples are isolated from specimens of, for example, blood, urine, stool, saliva or central nervous system fluid by conventional methods. A panel of PCR primers based on identified sequences unique to various species or types of cells or microorganisms are then utilized in accordance with Example 12 to amplify DNA of approximately 100-200 nucleotides in length from the specimen. A separate PCR reaction is set up for each pair of PCR primers and after the PCR reaction is complete, the reaction mixtures are assayed for the presence of PCR product. The presence or absence of bacteria from the species to which the PCR primer pairs belong is determined by the presence or absence of a PCR product in the various test PCR reaction tubes.


[0845] Although the PCR reaction is used to assay the isolated sample for the presence of various bacterial species, other assays such as the Southern blot hybridization are also contemplated.


[0846] Compounds which inhibit the activity or reduce the amount of gene products required for proliferation may be identified using rational drug design. These methods may be used with the proliferation-required polypeptides described herein or homologous polypeptides. In such methods, the structure of the gene product is determined using methods such as x-ray crystallography, NMR, or computer modelling. Compounds are screened to identify those which have a structure which allows them to interact with the gene product. In some embodiments, the compounds are screened to identify those which have structures which allow them to interact with regions of the gene product which are important for its activity. For example, the compounds may be screened to identify those which have structures which allow them to bind to the active site of the gene product to inhibit its activity. For example, the compound may be a suicide substrate which binds to the active site with high affinity, thereby preventing the gene product from acting on its natural substrate. Alternatively, the compound may bind to a region of the gene product which is involved in complex formation with other biomolecules. In such instances, the activity of the gene product is inhibited by blocking the interaction between the gene product and other members of the complex.


[0847] Thus, one embodiment of the present invention comprises a method of using a crystal of the gene products of the present invention and/or a dataset comprising the three-dimensional coordinates obtained from the crystal in a drug-screening assay. The present invention also includes agents (modulators or drugs) that are identified by the methods of the present invention, along with the method of using agents (modulators or drugs) identified by a method of the present invention, for inhibiting the activity of or modulating the amount of an essential gene product. The present invention also includes crystals comprising the gene products of the present invention or portions thereof.


[0848] In some embodiments of the present invention, the three-dimensional structure of the polypeptides required for proliferation is determined using X-ray crystallography or NMR. The coordinates of the determined structure are used in computer-assisted modeling programs to identify compounds that bind to and/or modulate the activity or amount of the encoded polypeptide. The method may include the following steps: 1) the generation of high-purity crystals of the encoded recombinant (or endogenous) polypeptide for analysis; 2) determination of the three-dimensional structure of the polypeptide; and, 3) the use of computer-assisted “docking” programs to analyze the molecular interaction of compound structure and the polypeptide (i.e., drug screening).


[0849] General methods for performing each of the above steps are described below and are also well known to those of skill in the art. Any method known to those of skill in the art, including those described herein, may be employed for generating the three-dimensional structure for each identified essential gene product and its use in the drug-screening assays.


[0850] Crystals of the gene products required for proliferation may be obtained as follows. Under certain conditions, molecules condense from solution into a highly-ordered crystalline lattice, which is defined by a unit cell, the smallest repeating volume of the crystalline array. The contents of such a cell can interact with and diffract certain electromagnetic and particle waves (e.g., X-rays, neutron beams, electron beams etc.). Due to the symmetry of the lattice, the diffracted waves interact to create a diffraction pattern. By measuring the diffraction pattern, crystallographers are able to reconstruct the three-dimensional structure of the atoms in the crystal.


[0851] Any method known to those of skill in the art, including those set forth below, may be employed to prepare high-purity crystals. For example, crystals of the product of the identified essential gene can be grown by a number of techniques including batch crystallization, vapor diffusion (either by sitting drop or hanging drop) and by microdialysis. Seeding of the crystals in some instances is required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used. Exemplified below is the hanging-drop vapor diffusion procedure. Hanging drops of an essential gene product (2.5 μl, 10 mg/ml) in 20 mM Tris, pH=8.0, 100 mM NaCl are mixed with an equal amount of reservoir buffer containing 2.7-3.2 M sodium formate and 100 mM Tris buffer, pH=8.0, and kept at 4° C. Crystal showers may appear after 1-2 days with large single crystals growing to full size (0.3×0.3×0.15 mmd) within 2-3 weeks. Crystals are harvested in 3.5 M sodium formate and 100 mM Tris buffer, pH=8.0 and cryoprotected in 3.5 M sodium formate, 100 mM Tris buffer, pH=8.0, 10% (w/v) sucrose, and 10% (v/v) ethylene glycol before flash freezing in liquid propane.


[0852] In some embodiments, the crystal may be obtained using the methods described in U.S. Pat. No. 5,869,604, the disclosure of which is incorporated herein by reference in its entirety. The method involves (a) contacting a mixture containing uncrystallized polypeptides with an exogenous nucleating agent that has an areal lattice match of at least 90.4% to the polypeptide,(b) crystallizing the polypeptides, thereby forming at least one crystal of the polypeptide attached to the nucleating agent, the attached crystal being of a high purity, and at least one polypeptide crystal unattached to the nucleating agent, the unattached crystal being of a lower purity than the attached crystal, and (c) separating the crystal attached to the nucleating agent from the crystal unattached to the nucleating agent. The crystallized polypeptide may also be purified from contaminants by (a) contacting a mixture containing uncrystallized polypeptides and a contaminant with an exogenous nucleating agent that has an areal lattice match of at least 90.4% to the polypeptide, (b) crystallizing the polypeptides, thereby forming at least one crystal of the polypeptide attached to the nucleating agent, the attached crystal being of a high purity and produced in a high yield, and at least one crystal unattached to the nucleating agent, the unattached crystal being of a lower purity than the attached crystal, and (c) separating the crystal attached to the nucleating agent from the crystal unattached to the nucleating agent.


[0853] Once a crystal of the present invention is grown, X-ray diffraction data can be collected using methods familiar to those skilled in the art. Therefore, any person with skill in the art of protein crystallization having the present teachings and without undue experimentation can crystallize a large number of alternative forms of the essential gene products from a variety of different organisms, or polypeptides having conservative substitutions in their amino acid sequence.


[0854] A crystal lattice is defined by the symmetry of its unit cell and any structural motifs the unit cell contains. For example, there are 230 possible symmetry groups for an arbitrary crystal lattice, while the unit cell of the crystal lattice group may have an arbitrary dimension that depends on the molecules making up the lattice. Biological macromolecules, however, have asymmetric centers and are limited to 65 of the 230 symmetry groups. See Cantor et al., Biophysical Chemistry, Vol. III, W. H. Freeman & Company (1980), the disclosure of which is incorporated herein by reference in its entirety.


[0855] A crystal lattice interacts with electromagnetic or particle waves, such as X-rays or electron beams respectively, that have a wavelength with the same order of magnitude as the spacing between atoms in the unit cell. The diffracted waves are measured as an array of spots on a detection surface positioned adjacent to the crystal. Each spot has a three-dimensional position, hkl, and an intensity, I(hkl), both of which are used to reconstruct the three-dimensional electron density of the crystal with the so-called Electron Density Equation. The Electron Density Equation states that the three-dimensional electron density of the unit cell is the Fourier transform of the structure factors. Thus, in theory, if the structure factors are known for a sufficient number of spots in the detection space, then the three-dimensional electron density of the unit cell could be calculated using the Electron Density Equation.


[0856] In some embodiments of the present invention, an image of a crystal of a gene product required for proliferation or a portion thereof is obtained with the aid of a digital computer and the crystal's diffraction pattern as described in U.S. Pat. No. 5,353,236, the disclosure of which is incorporated herein by reference in its entirety. The diffraction pattern contains a plurality of reflections, each having an associated resolution. The image is obtained by (a) converting the diffraction pattern of the crystal into computer usable normalized amplitudes, the pattern being produced with a diffractometer; (b) determining from the diffraction pattern a dimension of a unit cell of the crystal; (c) providing an envelope defining the region of the unit cell occupied by the gene product or portion thereof in the crystal; (d) distributing a collection of scattering bodies within said envelope, the collection of scattering bodies having various arrangements, each of which has an associated pattern of Fourier amplitudes; (e) condensing the collection of scattering bodies to a condensed arrangement that results in a high correlation between a diffraction pattern and the pattern of Fourier amplitudes for said collection of scattering bodies; (f) determining the phase associated with at least one of the reflections of said diffraction pattern from the condensed arrangement of scattering bodies; (g) calculating an electron density distribution of the gene product or portion thereof within the unit cell from the phase determined in procedure f; and (h) displaying a graphical image of the gene product or portion thereof constructed from said electron density distribution.


[0857] The crystals of the gene products required for proliferation may be used in drug screening methods such as those described in U.S. Pat. No. 6,156,526, the disclosure of which is incorporated herein by reference in its entirety. Briefly, in such methods, a compound which inhibits the formation of a complex comprising the gene product or a portion thereof is identified as follows. A set of atomic coordinates defining the three-dimensional structure of a complex including the gene product of interest or a portion thereof are determined. A potential compound that binds to the gene product or a portion thereof involved in complex formation is selected using the atomic coordinates obtained above. The compound is contacted with the gene product or portion thereof and its binding partner(s) in the complex under conditions which would permit the complex to form in the absence of the potential compound. The binding affinity of the gene product or portion thereof for its binding partner(s) is determined and a potential compound is identified as a compound that inhibits the formation of the complex when there is a decrease in the binding affinity of the gene product or portion thereof for its binding partner(s).


[0858] In some embodiments of the present invention, the three dimensional structure of the essential gene product is determined and potential agonists and/or potential antagonists are designed with the aid of computer modeling [Bugg et al., Scientific American, Dec.:92-98 (1993); West et al., TIPS, 16:67-74 (1995); Dunbrack et al., Folding & Design, 2:27-42 (1997), the disclosures of which are incorporated herein by reference in their entireties].


[0859] Computer analysis may be performed with one or more of the computer programs including: QUANTA, CHARMM, INSIGHT, SYBYL, MACROMODEL and ICM [Dunbrack et al., Folding & Design, 2:27-42 (1997), the disclosure of which is incorporated herein by reference in its entirety]. In a further embodiment of this aspect of the invention, an initial drug-screening assay is performed using the three-dimensional structure so obtained, preferably along with a docking computer program. Such computer modeling can be performed with one or more Docking programs such as FlexX, DOC, GRAM and AUTO DOCK [Dunbrack et al., Folding & Design, 2:27-42 (1997)].


[0860] It should be understood that for each drug screening assay provided herein, a number of iterative cycles of any or all of the steps may be performed to optimize the selection. The drug screening assays of the present invention may use any of a number of means for determining the interaction between an agent or drug and an essential gene product.


[0861] In some embodiments of the present invention, a drug can be specifically designed to bind to an essential gene product of the present invention through NMR based methodology. [Shuker et al., pi Science 274:1531-1534 (1996) the disclosure of which is incorporated herein by reference herein in its entirety.] NMR spectra may be recorded using devices familiar to those skilled in the art, such as the Varian Unity Plus 500 and unity 600 spectrometers, each equipped with a pulsed-field gradient triple resonance probe as analyzed as described in Bagby et al., [Cell 82:857-867 (1995), the disclosure of which is incorporated herein by reference in its entirety]. Sequential resonance assignments of backbone 1H, .15 N, and .13C atoms may be made using a combination of triple resonance experiments similar to those previously described [Bagby et al., Biochemistry, 33:2409-2421 (1994a), the disclosure of which is incorporated herein by reference in its entirety], except with enhanced sensitivity [Muhandiram and Kay, J. Magn. Reson., 103: 203-216 (1994), the disclosure of which is incorporated herein by reference in its entirety] and minimal H2O saturation [Kay et al., J. Magn. Reson., 109:129-133 (1994), the disclosure of which is incorporated herein by reference in its entirety]. Side chain 1H and 13 C assignments may be made using HCCH-TOCSY [Bax et al., J. Magn. Reson., 87:620-627 (1990), the disclosure of which is incorporated herein by reference in its entirety] experiments with mixing times of 8 ms and 16 ms.in solution but need not be included in structure calculations. Nuclear Overhauser effect (NOE) cross peaks in two-dimensional 1H-1H NOE spectroscopy (NOESY), three-dimensional 15N-edited NOESY-HSQC [Zhang et al., J. Biomol, NMR, 4:845-858 (1994), the disclosure of which is incorporated herein by reference in its entirety] and three-dimensional simultaneous acquisition 15N/13C-edited NOE [Pascal et al., J. Magn. Reson., 103:197-201 (1994), the disclosure of which is incorporated herein by reference in its entirety] spectra may be obtained with 100 ms NOE mixing times. Standard pseudo-atom distance corrections [Wuthrich et al., J. Mol. Biol., 169:949-961 (1983), the disclosure of which is incorporated herein by reference in its entirety] may be incorporated to account for center averaging. An additional 0.5 .ANG. may be added to the upper limits for distances involving methyl groups [Wagner et al., J. Mol. Biol., 196:611-639 (1987); Clore et al., Biochemistry, 26:8012-8023 (1987), the disclosures of which are incorporated herein by reference in their entireties].


[0862] The structures can be calculated using a simulated annealing protocol [Nilges et al., In computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy, J. C. Hoch, F. M. Poulsen, and C. Redfield, eds., New York: Plenum Press, pp. 451-455 (1991, the disclosures of which are incorporated herein by reference in their entireties] within X-PLOR [Brunger, X-PLOR Manual, Version 3.1, New Haven, Conn.: Department of Molecular Biophysics and Biochemistry, Yale University (1993), the disclosure of which is incorporated herein by reference in its entirety] using the previously described strategy [Bagby et al., Structure, 2:107-122 (1994b), the disclosure of which is incorporated herein by reference in its entirety]. Interhelical anges may be calculated using a program written by K. Yap. Accessible surface areas were calculated using the program Naccess, available from Prof. J. Thornton, University College, London.


[0863] Compounds capable of reducing the activity or amount of gene products required for cellular proliferation may be identified using the methods described in U.S. Pat. No. 6,077,682, the disclosure of which is incorporated herein by reference in its entirety. Briefly, the three-dimensional structure of the gene product or portion thereof may be used in a drug screening assay by (a) selecting a potential drug by performing rational drug design with the three-dimensional structure determined from one or more sets of atomic coordinates of the gene product or portion thereof in conjunction with computer modeling; (b) contacting the potential drug with a polypeptide comprising the gene product or portion thereof and (c) detecting the binding of the potential drug with said polypeptide; wherein a potential drug is selected as a drug if the potential drug binds to the polypeptide. In some methods, the three-dimensional structure of the gene product or portion thereof is used in a drug screening assay involving (a) selecting a potential drug by performing structural based rotational drug design with the three-dimensional structure of the gene product or portion thereof; wherein said selecting is performed in conjunction with computer modeling; (b) contacting the potential drug with a polypeptide comprising the gene product or portion thereof in the presence of a substrate of the gene product; wherein in the absence of the potential drug the substrate is acted upon by the gene product; and (c) determining the extent to which the gene product acted upon the substrate; wherein a drug is selected when a decrease in the action of the gene product on the substrate is determined in the presence of the potential drug relative to in its absence. In some embodiments, the preceding method further involves(d) contacting the potential drug with the gene product or portion thereof for NMR analysis; wherein a binding complex forms between the potential drug and said gene product or portion thereof for NMR analysis; wherein the gene product or portion thereof for NMR analysis comprises a conservative amino acid substitution; (e) determining the three-dimensional structure of the binding complex by NMR; and (f) selecting a candidate drug by performing structural based rational drug design with the three-dimensional structure determined for the binding complex; wherein said selecting is performed in conjunction with computer modeling; (g) contacting the candidate drug with a second polypeptide comprising the gene product or portion thereof in the presence of a substrate of the gene product or portion thereof; wherein in the absence of the candidate drug the substrate is acted upon by the second polypeptide; and (h) determining the amount of action of the second polypeptide on the substrate; wherein a drug is selected when a decrease in the amount of action of the second polypeptide is determined in the presence of the candidate drug relative to in its absence.


[0864] Once the three-dimensional structure of a crystal comprising an essential gene product is determined, a potential modulator of its activity, can be examined through the use of computer modeling using a docking program such as FlexX, GRAM, DOCK, or AUTODOCK [Dunbrack et al., 1997, supra], to identify potential modulators. This procedure can include computer fitting of potential modulators to the polypeptide or fragments thereof to ascertain how well the shape and the chemical structure of the potential modulator will bind. Computer programs can also be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (e.g., the essential gene product and a potential modulator). Generally the tighter the fit, the lower the steric hindrances, and the greater the attractive forces, the more potent the potential modulator since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug the more likely that the drug will not interact as well with other proteins. This will minimize potential side-effects due to unwanted interactions with other proteins.


[0865] Compound and compound analogs can be systematically modified by computer modeling programs until one or more promising potential analogs is identified. In addition systematic modification of selected analogs can then be systematically modified by computer modeling programs until one or more potential analogs are identified. Such analysis has been shown to be effective in the development of HIV protease inhibitors [Lam et al., Science 263:380-384 (1994); Wlodawer et al., Ann. Rev. Biochem. 62:543-585 (1993); Appelt, Perspectives in Drug Discovery and Design 1:23-48 (1993); Erickson, Perspectives in Drug Discovery and Design 1:109-128 (1993), the disclosures of which are incorporated herein by reference in their entireties]. Alternatively a potential modulator could be obtained by initially screening a random peptide library produced by recombinant bacteriophage for example, [Scott and Smith, Science, 249:386-390 (1990); Cwirla et al., Proc. Natl. Acad. Sci., 87:6378-6382 (1990); Devlin et al., Science, 249:404-406 (1990), the disclosures of which are incorporated herein by reference in their entireties]. A peptide selected in this manner would then be systematically modified by computer modeling programs as described above, and then treated analogously to a structural analog.


[0866] Example 45 describes computer modelling of the structures of gene products required for proliferation.



Example 50


Determination of the Structure of Gene Products Required for Proliferation Using Computer Modelling

[0867] Three dimensional models were built by applying computer modelling methods to some of the gene products required for proliferation of Staphylococcus aureus using the amino acid sequences of the encoded proteins as follows. Sir Tom Blundell's program COMPOSER as provided by Tripos Associates in their BIOPOLYMER module to SYBYL was used to build the models. Skolnik's method of topology fingerprinting as implemented in Matchmaker was used to score the average mutation free energy. This number is in Boltzmans (units of kT) and should be negative (the more negative, the better the model.


[0868] Composer uses a Needleman Wunsch alignment with jumbling to find significant alignments. The reported parameters are percent identity and significance as measured from the jumbling. Those matches which were 30% identical and had a significance greater that 4 on the scale were judged to be good candidates for model building templates. If no three dimensional structures met these criteria, then a BLAST search was conducted against the most recent PDB sequence database. Any significant hits discovered in this manner were then added to the binary protein structure database and the candidate search was repeated in the manner discussed above.


[0869] In the next phase, Composer assigned structurally conserved and structurally variable regions and built the backbone structure and then searched the database for structures of the variable loops. These were then spliced in and a model of the protein resulted. Any loops (variable regions) which were unassignable were manually built and refined with a combination of dynamics.


[0870] The structure was then refined. Hydrogen atoms were added and a non-active aggregate was defined. 1000 pS of dynamics using AMBER ALL-ATOM and Kollman charges are performed. Next a minimization cycle of up 5000 steepest decent steps were performed and then the aggregate was thawed and the process was repeated on the entire protein.


[0871] The resulting structure was then validated in MATCHMAKER. The topologicaly scanned free energy determined from empirically derived protein topologies was computed and the average energy/residue is reported in Boltzamans was reported. As this number represents a free energy the more negative it is the more favorable it is.


[0872] Sixty six proteins required for the proliferation of Staphylococcus aureus were modelled as described above. MATCHMAKER energies were computed for these.


[0873] The distribution of the models built by class is shown in the table below.
14TABLE 1Distribution of models built with their MATCHMAKER energies in kTAverage MatchmakerClassificationNumber of ModelsEnergyAcylases1−0.10Dehydrogenases3−0.12DNA Related3−0.12Heat Shock Protein2−0.16Hydrolases3−0.16Isomerases1−0.05Ligases7−0.07Lyases1−0.09Membrane Anchored1−0.12Misc18−0.21Oxidoreductases6−0.09Proteases1−0.03Ribosome3−0.11Synthases4−0.14Transferases6−0.12


[0874] The validity of the above method was confirmed using FtsZ. In the case of FtsZ, a crystal structure from M. Janeschi was available. Examination of the gross structural features determined using the above modelling showed all of the folds in the 20 correct place, although there were some minor differences from the structure determined by x-ray crystallography.



Example 51


Functional Complementation

[0875] In another embodiment, gene products whose activities may be complemented by a proliferation-required gene product from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or homologous polypeptides are identified using merodiploids, created by introducing a plasmid or Bacterial Artificial Chromosome into an organism having a mutation in the essential gene which reduces or eliminates the activity of the gene product. In some embodiments, the mutation may be a conditional mutation, such as a temperature sensitive mutation, such that the organism proliferates under permissive conditions but is unable to proliferate under non-permissive conditions in the absence of complementation by the gene on the plasmid or Bacterial Artificial Chromosome. Alternatively, duplications may be constructed as described in Roth et al. (1987) Biosynthesis of Aromatic Amino Acids in Escherichia coli and Salmonella typhimurium, F. C. Neidhardt, ed., American Society for Microbiology, publisher, pp. 2269-2270, the disclosure of which is incorporated herein by reference in its entirety. Such methods are familiar to those skilled in the art.


[0876] Table VIII provides a cross reference for SEQ ID NOs. of the nucleotide sequences discussed herein and the SEQ ID NOs. of the polypeptides encoded by these nucleotide.


[0877] All documents cited herein are incorporated herein by reference in their entireties.
15TABLE VIIINucleotide SeqIDProtein SeqIDNucleotide SeqIDProtein SeqID59161001359611005859171001459621005959181001559631006059191001659641006159201001759651006259211001859661006359221001959671006459231002059681006559241002159691006659251002259701006759261002359711006859271002459721006959281002559731007059291002659741007159301002759751007259311002859761007359321002959771007459331003059781007559341003159791007659351003259801007759361003359811007859371003459821007959381003559831008059391003659841008159401003759851008259411003859861008359421003959871008459431004059881008559441004159891008659451004259901008759461004359911008859471004459921008959481004559931009059491004659941009159501004759951009259511004859961009359521004959971009459531005059981009559541005159991009659551005260001009759561005360011009859571005460021009959581005560031010059591005660041010159601005760051010260061010360531015060071010460541015160081010560551015260091010660561015360101010760571015460111010860581015560121010960591015660131011060601015760141011160611015860151011260621015960161011360631016060171011460641016160181011560651016260191011660661016360201011760671016460211011860681016560221011960691016660231012060701016760241012160711016860251012260721016960261012360731017060271012460741017160281012560751017260291012660761017360301012760771017460311012860781017560321012960791017660331013060801017760341013160811017860351013260821017960361013360831018060371013460841018160381013560851018260391013660861018360401013760871018460411013860881018560421013960891018660431014060901018760441014160911018860451014260921018960461014360931019060471014460941019160481014560951019260491014660961019360501014760971019460511014860981019560521014960991019661001019761471024461011019861481024561021019961491024661031020061501024761041020161511024861051020261521024961061020361531025061071020461541025161081020561551025261091020661561025361101020761571025461111020861581025561121020961591025661131021061601025761141021161611025861151021261621025961161021361631026061171021461641026161181021561651026261191021661661026361201021761671026461211021861681026561221021961691026661231022061701026761241022161711026861251022261721026961261022361731027061271022461741027161281022561751027261291022661761027361301022761771027461311022861781027561321022961791027661331023061801027761341023161811027861351023261821027961361023361831028061371023461841028161381023561851028261391023661861028361401023761871028461411023861881028561421023961891028661431024061901028761441024161911028861451024261921028961461024361931029061941029162411033861951029262421033961961029362431034061971029462441034161981029562451034261991029662461034362001029762471034462011029862481034562021029962491034662031030062501034762041030162511034862051030262521034962061030362531035062071030462541035162081030562551035262091030662561035362101030762571035462111030862581035562121030962591035662131031062601035762141031162611035862151031262621035962161031362631036062171031462641036162181031562651036262191031662661036362201031762671036462211031862681036562221031962691036662231032062701036762241032162711036862251032262721036962261032362731037062271032462741037162281032562751037262291032662761037362301032762771037462311032862781037562321032962791037662331033062801037762341033162811037862351033262821037962361033362831038062371033462841038162381033562851038262391033662861038362401033762871038462881038563351043262891038663361043362901038763371043462911038863381043562921038963391043662931039063401043762941039163411043862951039263421043962961039363431044062971039463441044162981039563451044262991039663461044363001039763471044463011039863481044563021039963491044663031040063501044763041040163511044863051040263521044963061040363531045063071040463541045163081040563551045263091040663561045363101040763571045463111040863581045563121040963591045663131041063601045763141041163611045863151041263621045963161041363631046063171041463641046163181041563651046263191041663661046363201041763671046463211041863681046563221041963691046663231042063701046763241042163711046863251042263721046963261042363731047063271042463741047163281042563751047263291042663761047363301042763771047463311042863781047563321042963791047663331043063801047763341043163811047863821047964291052663831048064301052763841048164311052863851048264321052963861048364331053063871048464341053163881048564351053263891048664361053363901048764371053463911048864381053563921048964391053663931049064401053763941049164411053863951049264421053963961049364431054063971049464441054163981049564451054263991049664461054364001049764471054464011049864481054564021049964491054664031050064501054764041050164511054864051050264521054964061050364531055064071050464541055164081050564551055264091050664561055364101050764571055464111050864581055564121050964591055664131051064601055764141051164611055864151051264621055964161051364631056064171051464641056164181051564651056264191051664661056364201051764671056464211051864681056564221051964691056664231052064701056764241052164711056864251052264721056964261052364731057064271052464741057164281052564751057264761057365231062064771057465241062164781057565251062264791057665261062364801057765271062464811057865281062564821057965291062664831058065301062764841058165311062864851058265321062964861058365331063064871058465341063164881058565351063264891058665361063364901058765371063464911058865381063564921058965391063664931059065401063764941059165411063864951059265421063964961059365431064064971059465441064164981059565451064264991059665461064365001059765471064465011059865481064565021059965491064665031060065501064765041060165511064865051060265521064965061060365531065065071060465541065165081060565551065265091060665561065365101060765571065465111060865581065565121060965591065665131061065601065765141061165611065865151061265621065965161061365631066065171061465641066165181061565651066265191061665661066365201061765671066465211061865681066565221061965691066665701066766171071465711066866181071565721066966191071665731067066201071765741067166211071865751067266221071965761067366231072065771067466241072165781067566251072265791067666261072365801067766271072465811067866281072565821067966291072665831068066301072765841068166311072865851068266321072965861068366331073065871068466341073165881068566351073265891068666361073365901068766371073465911068866381073565921068966391073665931069066401073765941069166411073865951069266421073965961069366431074065971069466441074165981069566451074265991069666461074366001069766471074466011069866481074566021069966491074666031070066501074766041070166511074866051070266521074966061070366531075066071070466541075166081070566551075266091070666561075366101070766571075466111070866581075566121070966591075666131071066601075766141071166611075866151071266621075966161071366631076066641076167111080866651076267121080966661076367131081066671076467141081166681076567151081266691076667161081366701076767171081466711076867181081566721076967191081666731077067201081766741077167211081866751077267221081966761077367231082066771077467241082166781077567251082266791077667261082366801077767271082466811077867281082566821077967291082666831078067301082766841078167311082866851078267321082966861078367331083066871078467341083166881078567351083266891078667361083366901078767371083466911078867381083566921078967391083666931079067401083766941079167411083866951079267421083966961079367431084066971079467441084166981079567451084266991079667461084367001079767471084467011079867481084567021079967491084667031080067501084767041080167511084867051080267521084967061080367531085067071080467541085167081080567551085267091080667561085367101080767571085467581085568051090267591085668061090367601085768071090467611085868081090567621085968091090667631086068101090767641086168111090867651086268121090967661086368131091067671086468141091167681086568151091267691086668161091367701086768171091467711086868181091567721086968191091667731087068201091767741087168211091867751087268221091967761087368231092067771087468241092167781087568251092267791087668261092367801087768271092467811087868281092567821087968291092667831088068301092767841088168311092867851088268321092967861088368331093067871088468341093167881088568351093267891088668361093367901088768371093467911088868381093567921088968391093667931089068401093767941089168411093867951089268421093967961089368431094067971089468441094167981089568451094267991089668461094368001089768471094468011089868481094568021089968491094668031090068501094768041090168511094868521094968991099668531095069001099768541095169011099868551095269021099968561095369031100068571095469041100168581095569051100268591095669061100368601095769071100468611095869081100568621095969091100668631096069101100768641096169111100868651096269121100968661096369131101068671096469141101168681096569151101268691096669161101368701096769171101468711096869181101568721096969191101668731097069201101768741097169211101868751097269221101968761097369231102068771097469241102168781097569251102268791097669261102368801097769271102468811097869281102568821097969291102668831098069301102768841098169311102868851098269321102968861098369331103068871098469341103168881098569351103268891098669361103368901098769371103468911098869381103568921098969391103668931099069401103768941099169411103868951099269421103968961099369431104068971099469441104168981099569451104269461104369931109069471104469941109169481104569951109269491104669961109369501104769971109469511104869981109569521104969991109669531105070001109769541105170011109869551105270021109969561105370031110069571105470041110169581105570051110269591105670061110369601105770071110469611105870081110569621105970091110669631106070101110769641106170111110869651106270121110969661106370131111069671106470141111169681106570151111269691106670161111369701106770171111469711106870181111569721106970191111669731107070201111769741107170211111869751107270221111969761107370231112069771107470241112169781107570251112269791107670261112369801107770271112469811107870281112569821107970291112669831108070301112769841108170311112869851108270321112969861108370331113069871108470341113169881108570351113269891108670361113369901108770371113469911108870381113569921108970391113670401113770871118470411113870881118570421113970891118670431114070901118770441114170911118870451114270921118970461114370931119070471114470941119170481114570951119270491114670961119370501114770971119470511114870981119570521114970991119670531115071001119770541115171011119870551115271021119970561115371031120070571115471041120170581115571051120270591115671061120370601115771071120470611115871081120570621115971091120670631116071101120770641116171111120870651116271121120970661116371131121070671116471141121170681116571151121270691116671161121370701116771171121470711116871181121570721116971191121670731117071201121770741117171211121870751117271221121970761117371231122070771117471241122170781117571251122270791117671261122370801117771271122470811117871281122570821117971291122670831118071301122770841118171311122870851118271321122970861118371331123071341123171811127871351123271821127971361123371831128071371123471841128171381123571851128271391123671861128371401123771871128471411123871881128571421123971891128671431124071901128771441124171911128871451124271921128971461124371931129071471124471941129171481124571951129271491124671961129371501124771971129471511124871981129571521124971991129671531125072001129771541125172011129871551125272021129971561125372031130071571125472041130171581125572051130271591125672061130371601125772071130471611125872081130571621125972091130671631126072101130771641126172111130871651126272121130971661126372131131071671126472141131171681126572151131271691126672161131371701126772171131471711126872181131571721126972191131671731127072201131771741127172211131871751127272221131971761127372231132071771127472241132171781127572251132271791127672261132371801127772271132472281132572751137272291132672761137372301132772771137472311132872781137572321132972791137672331133072801137772341133172811137872351133272821137972361133372831138072371133472841138172381133572851138272391133672861138372401133772871138472411133872881138572421133972891138672431134072901138772441134172911138872451134272921138972461134372931139072471134472941139172481134572951139272491134672961139372501134772971139472511134872981139572521134972991139672531135073001139772541135173011139872551135273021139972561135373031140072571135473041140172581135573051140272591135673061140372601135773071140472611135873081140572621135973091140672631136073101140772641136173111140872651136273121140972661136373131141072671136473141141172681136573151141272691136673161141372701136773171141472711136873181141572721136973191141672731137073201141772741137173211141873221141973691146673231142073701146773241142173711146873251142273721146973261142373731147073271142473741147173281142573751147273291142673761147373301142773771147473311142873781147573321142973791147673331143073801147773341143173811147873351143273821147973361143373831148073371143473841148173381143573851148273391143673861148373401143773871148473411143873881148573421143973891148673431144073901148773441144173911148873451144273921148973461144373931149073471144473941149173481144573951149273491144673961149373501144773971149473511144873981149573521144973991149673531145074001149773541145174011149873551145274021149973561145374031150073571145474041150173581145574051150273591145674061150373601145774071150473611145874081150573621145974091150673631146074101150773641146174111150873651146274121150973661146374131151073671146474141151173681146574151151274161151374631156074171151474641156174181151574651156274191151674661156374201151774671156474211151874681156574221151974691156674231152074701156774241152174711156874251152274721156974261152374731157074271152474741157174281152574751157274291152674761157374301152774771157474311152874781157574321152974791157674331153074801157774341153174811157874351153274821157974361153374831158074371153474841158174381153574851158274391153674861158374401153774871158474411153874881158574421153974891158674431154074901158774441154174911158874451154274921158974461154374931159074471154474941159174481154574951159274491154674961159374501154774971159474511154874981159574521154974991159674531155075001159774541155175011159874551155275021159974561155375031160074571155475041160174581155575051160274591155675061160374601155775071160474611155875081160574621155975091160675101160775571165475111160875581165575121160975591165675131161075601165775141161175611165875151161275621165975161161375631166075171161475641166175181161575651166275191161675661166375201161775671166475211161875681166575221161975691166675231162075701166775241162175711166875251162275721166975261162375731167075271162475741167175281162575751167275291162675761167375301162775771167475311162875781167575321162975791167675331163075801167775341163175811167875351163275821167975361163375831168075371163475841168175381163575851168275391163675861168375401163775871168475411163875881168575421163975891168675431164075901168775441164175911168875451164275921168975461164375931169075471164475941169175481164575951169275491164675961169375501164775971169475511164875981169575521164975991169675531165076001169775541165176011169875551165276021169975561165376031170076041170176511174876051170276521174976061170376531175076071170476541175176081170576551175276091170676561175376101170776571175476111170876581175576121170976591175676131171076601175776141171176611175876151171276621175976161171376631176076171171476641176176181171576651176276191171676661176376201171776671176476211171876681176576221171976691176676231172076701176776241172176711176876251172276721176976261172376731177076271172476741177176281172540525107762911726405351087630117274054510976311172840555110763211729405651117633117304057511276341173140585113763511732405951147636117334060511576371173440615116763811735406251177639117364063511876401173740645119764111738406551207642117394066512176431174040675122764411741406851237645117424069512476461174340705125764711744407151267648117454072512776491174640735128765011747407451294075513041225177407651314123517840775132412451794078513341255180407951344126518140805135412751824081513641285183408251374129518440835138413051854084513941315186408551404132518740865141413351884087514241345189408851434135519040895144413651914090514541375192409151464138519340925147413951944093514841405195409451494141519640955150414251974096515141435198409751524144519940985153414552004099515441465201410051554147520241015156414852034102515741495204410351584150520541045159415152064105516041525207410651614153520841075162415452094108516341555210410951644156521141105165415752124111516641585213411251674159521441135168416052154114516941615216411551704162521741165171416352184117517241645219411851734165522041195174399850534120517539995054412151764000505540015056404851034002505740495104400350584050510540045059405151064005506076751177240065061767611773400750627677117744008506376781177540095064767611776401050657679117774011506676801177840125067768111779401350687682117804014506976831178140155070768411782401650717685117834017507276861178440185073768711785401950747688117864020507576891178740215076769011788402250777691117894023507876921179040245079769311791402550807694117924026508176951179340275082769611794402850837697117954029508476981179640305085769911797403150867700117984032508777011179940335088770211800403450897703118014035509077041180240365091770511803403750927706118044038509377071180540395094770811806404050957709118074041509677101180840425097771111809404350987712118104044509977131181140455100771411812404651017715118134047510277161181477171181577641186277181181677651186377191181777661186477201181877671186577211181977681186677221182077691186777231182177701186877241182277711186977251182377721187077261182477731187177271182577741187277281182677751187377291182777761187477301182877771187577311182977781187677321183077791187777331183177801187877341183277811187977351183377821188077361183477831188177371183577841188277381183677851188377391183777861188477401183877871188577411183977881188677421184077891188777431184177901188877441184277911188977451184377921189077461184477931189177471184577941189277481184677951189377491184777961189477501184877971189577511184977981189677521185077991189777531185178001189877541185278011189977551185378021190077561185478031190177571185578041190277581185678051190377591185778061190477601185878071190577611185978081190677621186078091190777631186178101190878111190978581195678121191078591195778131191178601195878141191278611195978151191378621196078161191478631196178171191578641196278181191678651196378191191778661196478201191878671196578211191978681196678221192078691196778231192178701196878241192278711196978251192378721197078261192478731197178271192578741197278281192678751197378291192778761197478301192878771197578311192978781197678321193078791197778331193178801197878341193278811197978351193378821198078361193478831198178371193578841198278381193678851198378391193778861198478401193878871198578411193978881198678421194078891198778431194178901198878441194278911198978451194378921199078461194478931199178471194578941199278481194678951199378491194778961199478501194878971199578511194978981199678521195078991199778531195179001199878541195279011199978551195379021200078561195479031200178571195579041200279051200379521205079061200479531205179071200579541205279081200679551205379091200779561205479101200879571205579111200979581205679121201079591205779131201179601205879141201279611205979151201379621206079161201479631206179171201579641206279181201679651206379191201779661206479201201879671206579211201979681206679221202079691206779231202179701206879241202279711206979251202379721207079261202479731207179271202579741207279281202679751207379291202779761207479301202879771207579311202979781207679321203079791207779331203179801207879341203279811207979351203379821208079361203479831208179371203579841208279381203679851208379391203779861208479401203879871208579411203979881208679421204079891208779431204179901208879441204279911208979451204379921209079461204479931209179471204579941209279481204679951209379491204779961209479501204879971209579511204979981209679991209780461214480001209880471214580011209980481214680021210080491214780031210180501214880041210280511214980051210380521215080061210480531215180071210580541215280081210680551215380091210780561215480101210880571215580111210980581215680121211080591215780131211180601215880141211280611215980151211380621216080161211480631216180171211580641216280181211680651216380191211780661216480201211880671216580211211980681216680221212080691216780231212180701216880241212280711216980251212380721217080261212480731217180271212580741217280281212680751217380291212780761217480301212880771217580311212980781217680321213080791217780331213180801217880341213280811217980351213380821218080361213480831218180371213580841218280381213680851218380391213780861218480401213880871218580411213980881218680421214080891218780431214180901218880441214280911218980451214380921219080931219181401223880941219281411223980951219381421224080961219481431224180971219581441224280981219681451224380991219781461224481001219881471224581011219981481224681021220081491224781031220181501224881041220281511224981051220381521225081061220481531225181071220581541225281081220681551225381091220781561225481101220881571225581111220981581225681121221081591225781131221181601225881141221281611225981151221381621226081161221481631226181171221581641226281181221681651226381191221781661226481201221881671226581211221981681226681221222081691226781231222181701226881241222281711226981251222381721227081261222481731227181271222581741227281281222681751227381291222781761227481301222881771227581311222981781227681321223081791227781331223181801227881341223281811227981351223381821228081361223481831228181371223581841228281381223681851228381391223781861228481871228582341233281881228682351233381891228782361233481901228882371233581911228982381233681921229082391233781931229182401233881941229282411233981951229382421234081961229482431234181971229582441234281981229682451234381991229782461234482001229882471234582011229982481234682021230082491234782031230182501234882041230282511234982051230382521235082061230482531235182071230582541235282081230682551235382091230782561235482101230882571235582111230982581235682121231082591235782131231182601235882141231282611235982151231382621236082161231482631236182171231582641236282181231682651236382191231782661236482201231882671236582211231982681236682221232082691236782231232182701236882241232282711236982251232382721237082261232482731237182271232582741237282281232682751237382291232782761237482301232882771237582311232982781237682321233082791237782331233182801237882811237983281242682821238083291242782831238183301242882841238283311242982851238383321243082861238483331243182871238583341243282881238683351243382891238783361243482901238883371243582911238983381243682921239083391243782931239183401243882941239283411243982951239383421244082961239483431244182971239583441244282981239683451244382991239783461244483001239883471244583011239983481244683021240083491244783031240183501244883041240283511244983051240383521245083061240483531245183071240583541245283081240683551245383091240783561245483101240883571245583111240983581245683121241083591245783131241183601245883141241283611245983151241383621246083161241483631246183171241583641246283181241683651246383191241783661246483201241883671246583211241983681246683221242083691246783231242183701246883241242283711246983251242383721247083261242483731247183271242583741247283751247384221252083761247484231252183771247584241252283781247684251252383791247784261252483801247884271252583811247984281252683821248084291252783831248184301252883841248284311252983851248384321253083861248484331253183871248584341253283881248684351253383891248784361253483901248884371253583911248984381253683921249084391253783931249184401253883941249284411253983951249384421254083961249484431254183971249584441254283981249684451254383991249784461254484001249884471254584011249984481254684021250084491254784031250184501254884041250284511254984051250384521255084061250484531255184071250584541255284081250684551255384091250784561255484101250884571255584111250984581255684121251084591255784131251184601255884141251284611255984151251384621256084161251484631256184171251584641256284181251684651256384191251784661256484201251884671256584211251984681256684691256785161261484701256885171261584711256985181261684721257085191261784731257185201261884741257285211261984751257385221262084761257485231262184771257585241262284781257685251262384791257785261262484801257885271262584811257985281262684821258085291262784831258185301262884841258285311262984851258385321263084861258485331263184871258585341263284881258685351263384891258785361263484901258885371263584911258985381263684921259085391263784931259185401263884941259285411263984951259385421264084961259485431264184971259585441264284981259685451264384991259785461264485001259885471264585011259985481264685021260085491264785031260185501264885041260285511264985051260385521265085061260485531265185071260585541265285081260685551265385091260785561265485101260885571265585111260985581265685121261085591265785131261185601265885141261285611265985151261385621266085631266186101270885641266286111270985651266386121271085661266486131271185671266586141271285681266686151271385691266786161271485701266886171271585711266986181271685721267086191271785731267186201271885741267286211271985751267386221272085761267486231272185771267586241272285781267686251272385791267786261272485801267886271272585811267986281272685821268086291272785831268186301272885841268286311272985851268386321273085861268486331273185871268586341273285881268686351273385891268786361273485901268886371273585911268986381273685921269086391273785931269186401273885941269286411273985951269386421274085961269486431274185971269586441274285981269686451274385991269786461274486001269886471274586011269986481274686021270086491274786031270186501274886041270286511274986051270386521275086061270486531275186071270586541275286081270686551275386091270786561275486571275587041280286581275687051280386591275787061280486601275887071280586611275987081280686621276087091280786631276187101280886641276287111280986651276387121281086661276487131281186671276587141281286681276687151281386691276787161281486701276887171281586711276987181281686721277087191281786731277187201281886741277287211281986751277387221282086761277487231282186771277587241282286781277687251282386791277787261282486801277887271282586811277987281282686821278087291282786831278187301282886841278287311282986851278387321283086861278487331283186871278587341283286881278687351283386891278787361283486901278887371283586911278987381283686921279087391283786931279187401283886941279287411283986951279387421284086961279487431284186971279587441284286981279687451284386991279787461284487001279887471284587011279987481284687021280087491284787031280187501284887511284987981289687521285087991289787531285188001289887541285288011289987551285388021290087561285488031290187571285588041290287581285688051290387591285788061290487601285888071290587611285988081290687621286088091290787631286188101290887641286288111290987651286388121291087661286488131291187671286588141291287681286688151291387691286788161291487701286888171291587711286988181291687721287088191291787731287188201291887741287288211291987751287388221292087761287488231292187771287588241292287781287688251292387791287788261292487801287888271292587811287988281292687821288088291292787831288188301292887841288288311292987851288388321293087861288488331293187871288588341293287881288688351293387891288788361293487901288888371293587911288988381293687921289088391293787931289188401293887941289288411293987951289388421294087961289488431294187971289588441294288451294388921299088461294488931299188471294588941299288481294688951299388491294788961299488501294888971299588511294988981299688521295088991299788531295189001299888541295289011299988551295389021300088561295489031300188571295589041300288581295689051300388591295789061300488601295889071300588611295989081300688621296089091300788631296189101300888641296289111300988651296389121301088661296489131301188671296589141301288681296689151301388691296789161301488701296889171301588711296989181301688721297089191301788731297189201301888741297289211301988751297389221302088761297489231302188771297589241302288781297689251302388791297789261302488801297889271302588811297989281302688821298089291302788831298189301302888841298289311302988851298389321303088861298489331303188871298589341303288881298689351303388891298789361303488901298889371303588911298989381303689391303789861308489401303889871308589411303989881308689421304089891308789431304189901308889441304289911308989451304389921309089461304489931309189471304589941309289481304689951309389491304789961309489501304889971309589511304989981309689521305089991309789531305190001309889541305290011309989551305390021310089561305490031310189571305590041310289581305690051310389591305790061310489601305890071310589611305990081310689621306090091310789631306190101310889641306290111310989651306390121311089661306490131311189671306590141311289681306690151311389691306790161311489701306890171311589711306990181311689721307090191311789731307190201311889741307290211311989751307390221312089761307490231312189771307590241312289781307690251312389791307790261312489801307890271312589811307990281312689821308090291312789831308190301312889841308290311312989851308390321313090331313190801317890341313290811317990351313390821318090361313490831318190371313590841318290381313690851318390391313790861318490401313890871318590411313990881318690421314090891318790431314190901318890441314290911318990451314390921319090461314490931319190471314590941319290481314690951319390491314790961319490501314890971319590511314990981319690521315090991319790531315191001319890541315291011319990551315391021320090561315491031320190571315591041320290581315691051320390591315791061320490601315891071320590611315991081320690621316091091320790631316191101320890641316291111320990651316391121321090661316491131321190671316591141321290681316691151321390691316791161321490701316891171321590711316991181321690721317091191321790731317191201321890741317291211321990751317391221322090761317491231322190771317591241322290781317691251322390791317791261322491271322591741327291281322691751327391291322791761327491301322891771327591311322991781327691321323091791327791331323191801327891341323291811327991351323391821328091361323491831328191371323591841328291381323691851328391391323791861328491401323891871328591411323991881328691421324091891328791431324191901328891441324291911328991451324391921329091461324491931329191471324591941329291481324691951329391491324791961329491501324891971329591511324991981329691521325091991329791531325192001329891541325292011329991551325392021330091561325492031330191571325592041330291581325692051330391591325792061330491601325892071330591611325992081330691621326092091330791631326192101330891641326292111330991651326392121331091661326492131331191671326592141331291681326692151331391691326792161331491701326892171331591711326992181331691721327092191331791731327192201331892211331992681336692221332092691336792231332192701336892241332292711336992251332392721337092261332492731337192271332592741337292281332692751337392291332792761337492301332892771337592311332992781337692321333092791337792331333192801337892341333292811337992351333392821338092361333492831338192371333592841338292381333692851338392391333792861338492401333892871338592411333992881338692421334092891338792431334192901338892441334292911338992451334392921339092461334492931339192471334592941339292481334692951339392491334792961339492501334892971339592511334992981339692521335092991339792531335193001339892541335293011339992551335393021340092561335493031340192571335593041340292581335693051340392591335793061340492601335893071340592611335993081340692621336093091340792631336193101340892641336293111340992651336393121341092661336493131341192671336593141341293151341393621346093161341493631346193171341593641346293181341693651346393191341793661346493201341893671346593211341993681346693221342093691346793231342193701346893241342293711346993251342393721347093261342493731347193271342593741347293281342693751347393291342793761347493301342893771347593311342993781347693321343093791347793331343193801347893341343293811347993351343393821348093361343493831348193371343593841348293381343693851348393391343793861348493401343893871348593411343993881348693421344093891348793431344193901348893441344293911348993451344393921349093461344493931349193471344593941349293481344693951349393491344793961349493501344893971349593511344993981349693521345093991349793531345194001349893541345294011349993551345394021350093561345494031350193571345594041350293581345694051350393591345794061350493601345894071350593611345994081350694091350794561355494101350894571355594111350994581355694121351094591355794131351194601355894141351294611355994151351394621356094161351494631356194171351594641356294181351694651356394191351794661356494201351894671356594211351994681356694221352094691356794231352194701356894241352294711356994251352394721357094261352494731357194271352594741357294281352694751357394291352794761357494301352894771357594311352994781357694321353094791357794331353194801357894341353294811357994351353394821358094361353494831358194371353594841358294381353694851358394391353794861358494401353894871358594411353994881358694421354094891358794431354194901358894441354294911358994451354394921359094461354494931359194471354594941359294481354694951359394491354794961359494501354894971359594511354994981359694521355094991359794531355195001359894541355295011359994551355395021360095031360195501364895041360295511364995051360395521365095061360495531365195071360595541365295081360695551365395091360795561365495101360895571365595111360995581365695121361095591365795131361195601365895141361295611365995151361395621366095161361495631366195171361595641366295181361695651366395191361795661366495201361895671366595211361995681366695221362095691366795231362195701366895241362295711366995251362395721367095261362495731367195271362595741367295281362695751367395291362795761367495301362895771367595311362995781367695321363095791367795331363195801367895341363295811367995351363395821368095361363495831368195371363595841368295381363695851368395391363795861368495401363895871368595411363995881368695421364095891368795431364195901368895441364295911368995451364395921369095461364495931369195471364595941369295481364695951369395491364795961369495971369596441374295981369696451374395991369796461374496001369896471374596011369996481374696021370096491374796031370196501374896041370296511374996051370396521375096061370496531375196071370596541375296081370696551375396091370796561375496101370896571375596111370996581375696121371096591375796131371196601375896141371296611375996151371396621376096161371496631376196171371596641376296181371696651376396191371796661376496201371896671376596211371996681376696221372096691376796231372196701376896241372296711376996251372396721377096261372496731377196271372596741377296281372696751377396291372796761377496301372896771377596311372996781377696321373096791377796331373196801377896341373296811377996351373396821378096361373496831378196371373596841378296381373696851378396391373796861378496401373896871378596411373996881378696421374096891378796431374196901378896911378997381383696921379097391383796931379197401383896941379297411383996951379397421384096961379497431384196971379597441384296981379697451384396991379797461384497001379897471384597011379997481384697021380097491384797031380197501384897041380297511384997051380397521385097061380497531385197071380597541385297081380697551385397091380797561385497101380897571385597111380997581385697121381097591385797131381197601385897141381297611385997151381397621386097161381497631386197171381597641386297181381697651386397191381797661386497201381897671386597211381997681386697221382097691386797231382197701386897241382297711386997251382397721387097261382497731387197271382597741387297281382697751387397291382797761387497301382897771387597311382997781387697321383097791387797331383197801387897341383297811387997351383397821388097361383497831388197371383597841388297851388398321393097861388498331393197871388598341393297881388698351393397891388798361393497901388898371393597911388998381393697921389098391393797931389198401393897941389298411393997951389398421394097961389498431394197971389598441394297981389698451394397991389798461394498001389898471394598011389998481394698021390098491394798031390198501394898041390298511394998051390398521395098061390498531395198071390598541395298081390698551395398091390798561395498101390898571395598111390998581395698121391098591395798131391198601395898141391298611395998151391398621396098161391498631396198171391598641396298181391698651396398191391798661396498201391898671396598211391998681396698221392098691396798231392198701396898241392298711396998251392398721397098261392498731397198271392598741397298281392698751397398291392798761397498301392898771397598311392998781397698791397799261402498801397899271402598811397999281402698821398099291402798831398199301402898841398299311402998851398399321403098861398499331403198871398599341403298881398699351403398891398799361403498901398899371403598911398999381403698921399099391403798931399199401403898941399299411403998951399399421404098961399499431404198971399599441404298981399699451404398991399799461404499001399899471404599011399999481404699021400099491404799031400199501404899041400299511404999051400399521405099061400499531405199071400599541405299081400699551405399091400799561405499101400899571405599111400999581405699121401099591405799131401199601405899141401299611405999151401399621406099161401499631406199171401599641406299181401699651406399191401799661406499201401899671406599211401999681406699221402099691406799231402199701406899241402299711406999251402399721407099731407199741407299751407399761407499771407599781407699791407799801407899811407999821408099831408199841408299851408399861408499871408599881408699891408799901408899911408999921409099931409199941409299951409399961409499971409599981409699991409710000 1409810001 1409910002 1410010003 1410110004 1410210005 1410310006 1410410007 1410510008 1410610009 1410710010 1410810011 1410910012 14110


[0878]

16







TABLE IA








SeqID
Clone name
Organism

















8
E3M10000001A02


Enterococcus faecalis




9
E3M10000001A06


Enterococcus faecalis




10
E3M10000001B01


Enterococcus faecalis




11
E3M10000001B02


Enterococcus faecalis




12
E3M10000001B05


Enterococcus faecalis




13
E3M10000001B06


Enterococcus faecalis




14
E3M10000001B08


Enterococcus faecalis




15
E3M10000001B10


Enterococcus faecalis




16
E3M10000001C02


Enterococcus faecalis




17
E3M10000001C09


Enterococcus faecalis




18
E3M10000001D02


Enterococcus faecalis




19
E3M10000001D04


Enterococcus faecalis




20
E3M10000001D05


Enterococcus faecalis




21
E3M10000001D09


Enterococcus faecalis




22
E3M10000001E01


Enterococcus faecalis




23
E3M10000001E02


Enterococcus faecalis




24
E3M10000001E03


Enterococcus faecalis




25
E3M10000001E04


Enterococcus faecalis




26
E3M10000001E08


Enterococcus faecalis




27
E3M10000001E09


Enterococcus faecalis




28
E3M10000001F02


Enterococcus faecalis




29
E3M10000001F04


Enterococcus faecalis




30
E3M10000001F06


Enterococcus faecalis




31
E3M10000001F07


Enterococcus faecalis




32
E3M10000001G02


Enterococcus faecalis




33
E3M10000001G03


Enterococcus faecalis




34
E3M10000001G04


Enterococcus faecalis




35
E3M10000001G05


Enterococcus faecalis




36
E3M10000001H02


Enterococcus faecalis




37
E3M10000001H03


Enterococcus faecalis




38
E3M10000001H04


Enterococcus faecalis




39
E3M10000004A04


Enterococcus faecalis




40
E3M10000004C03


Enterococcus faecalis




41
E3M10000004D01


Enterococcus faecalis




42
E3M10000004D02


Enterococcus faecalis




43
E3M10000004D10


Enterococcus faecalis




44
E3M10000004E11


Enterococcus faecalis




45
E3M10000004F08


Enterococcus faecalis




46
E3M10000004F10


Enterococcus faecalis




47
E3M10000004G01


Enterococcus faecalis




48
E3M10000004H11


Enterococcus faecalis




49
E3M10000005A07


Enterococcus faecalis




50
E3M10000005B01


Enterococcus faecalis




51
E3M10000005B08


Enterococcus faecalis




52
E3M10000005C01


Enterococcus faecalis




53
E3M10000005C03


Enterococcus faecalis




54
E3M10000005C04


Enterococcus faecalis




55
E3M10000005D03


Enterococcus faecalis




56
E3M10000005D04


Enterococcus faecalis




57
E3M10000005D10


Enterococcus faecalis




58
E3M10000005E01


Enterococcus faecalis




59
E3M10000005E02


Enterococcus faecalis




60
E3M10000005E03


Enterococcus faecalis




61
E3M10000005E08


Enterococcus faecalis




62
E3M10000005F07


Enterococcus faecalis




63
E3M10000005F10


Enterococcus faecalis




64
E3M10000005G05


Enterococcus faecalis




65
E3M10000005H04


Enterococcus faecalis




66
E3M10000006B03


Enterococcus faecalis




67
E3M10000006C01


Enterococcus faecalis




68
E3M10000006C12


Enterococcus faecalis




69
E3M10000006D03


Enterococcus faecalis




70
E3M10000006E11


Enterococcus faecalis




71
E3M10000006F04


Enterococcus faecalis




72
E3M10000006G04


Enterococcus faecalis




73
E3M10000006G12


Enterococcus faecalis




74
E3M10000006H09


Enterococcus faecalis




75
E3M10000007A02


Enterococcus faecalis




76
E3M10000007B02


Enterococcus faecalis




77
E3M10000007B03


Enterococcus faecalis




78
E3M10000007C03


Enterococcus faecalis




79
E3M10000007C04


Enterococcus faecalis




80
E3M10000007D03


Enterococcus faecalis




81
E3M10000007E05


Enterococcus faecalis




82
E3M10000007F01


Enterococcus faecalis




83
E3M10000007F06


Enterococcus faecalis




84
E3M10000007G01


Enterococcus faecalis




85
E3M10000008C03


Enterococcus faecalis




86
E3M10000008C08


Enterococcus faecalis




87
E3M10000008C09


Enterococcus faecalis




88
E3M10000008D08


Enterococcus faecalis




89
E3M10000008E02


Enterococcus faecalis




90
E3M10000008G05


Enterococcus faecalis




91
E3M10000008G09


Enterococcus faecalis




92
E3M10000008H02


Enterococcus faecalis




93
E3M10000009C07


Enterococcus faecalis




94
E3M10000009C09


Enterococcus faecalis




95
E3M10000009D01


Enterococcus faecalis




96
E3M10000009E02


Enterococcus faecalis




97
E3M10000009E03


Enterococcus faecalis




98
E3M10000009E05


Enterococcus faecalis




99
E3M10000009G02


Enterococcus faecalis




100
E3M10000010C08


Enterococcus faecalis




101
E3M10000010D05


Enterococcus faecalis




102
E3M10000010F01


Enterococcus faecalis




103
E3M10000010G05


Enterococcus faecalis




104
E3M10000010G07


Enterococcus faecalis




105
E3M10000010G09


Enterococcus faecalis




106
E3M10000010G10


Enterococcus faecalis




107
E3M10000010H02


Enterococcus faecalis




108
E3M10000011A09


Enterococcus faecalis




109
E3M10000011B03


Enterococcus faecalis




110
E3M10000011B09


Enterococcus faecalis




111
E3M10000011C07


Enterococcus faecalis




112
E3M10000011D03


Enterococcus faecalis




113
E3M10000011H02


Enterococcus faecalis




114
E3M10000011H05


Enterococcus faecalis




115
E3M10000012B01


Enterococcus faecalis




116
E3M10000012B02


Enterococcus faecalis




117
E3M10000012B07


Enterococcus faecalis




118
E3M10000012B08


Enterococcus faecalis




119
E3M10000012C01


Enterococcus faecalis




120
E3M10000012D10


Enterococcus faecalis




121
E3M10000012E08


Enterococcus faecalis




122
E3M10000012F05


Enterococcus faecalis




123
E3M10000012F06


Enterococcus faecalis




124
E3M10000012F07


Enterococcus faecalis




125
E3M10000012F10


Enterococcus faecalis




126
E3M10000012G02


Enterococcus faecalis




127
E3M10000012G07


Enterococcus faecalis




128
E3M10000013A06


Enterococcus faecalis




129
E3M10000013A07


Enterococcus faecalis




130
E3M10000013C05


Enterococcus faecalis




131
E3M10000013D02


Enterococcus faecalis




132
E3M10000013D08


Enterococcus faecalis




133
E3M10000013D10


Enterococcus faecalis




134
E3M10000013E02


Enterococcus faecalis




135
E3M10000013E08


Enterococcus faecalis




136
E3M10000013F05


Enterococcus faecalis




137
E3M10000013F12


Enterococcus faecalis




138
E3M10000013G10


Enterococcus faecalis




139
E3M10000013H03


Enterococcus faecalis




140
E3M10000013H05


Enterococcus faecalis




141
E3M10000013H10


Enterococcus faecalis




142
E3M10000014B12


Enterococcus faecalis




143
E3M10000014E12


Enterococcus faecalis




144
E3M10000014G09


Enterococcus faecalis




145
E3M10000015B04


Enterococcus faecalis




146
E3M10000015B12


Enterococcus faecalis




147
E3M10000015E12


Enterococcus faecalis




148
E3M10000016A03


Enterococcus faecalis




149
E3M10000016A04


Enterococcus faecalis




150
E3M10000016C11


Enterococcus faecalis




151
E3M10000016D03


Enterococcus faecalis




152
E3M10000016F06


Enterococcus faecalis




153
E3M10000016F10


Enterococcus faecalis




154
E3M10000016H05


Enterococcus faecalis




155
E3M10000016H10


Enterococcus faecalis




156
E3M10000017A09


Enterococcus faecalis




157
E3M10000017D09


Enterococcus faecalis




158
E3M10000018A07


Enterococcus faecalis




159
E3M10000018C02


Enterococcus faecalis




160
E3M10000018E01


Enterococcus faecalis




161
E3M10000018G09


Enterococcus faecalis




162
E3M10000018H06


Enterococcus faecalis




163
E3M10000019B06


Enterococcus faecalis




164
E3M10000019D02


Enterococcus faecalis




165
E3M10000019E03


Enterococcus faecalis




166
E3M10000019E04


Enterococcus faecalis




167
E3M10000020G04


Enterococcus faecalis




168
E3M10000020H05


Enterococcus faecalis




169
E3M10000021A08


Enterococcus faecalis




170
E3M10000021A11


Enterococcus faecalis




171
E3M10000021B10


Enterococcus faecalis




172
E3M10000021C03


Enterococcus faecalis




173
E3M10000021C04


Enterococcus faecalis




174
E3M10000021C08


Enterococcus faecalis




175
E3M10000021D04


Enterococcus faecalis




176
E3M10000021E10


Enterococcus faecalis




177
E3M10000021G04


Enterococcus faecalis




178
E3M10000021G10


Enterococcus faecalis




179
E3M10000021G11


Enterococcus faecalis




180
E3M10000021H11


Enterococcus faecalis




181
E3M10000022A04


Enterococcus faecalis




182
E3M10000022A11


Enterococcus faecalis




183
E3M10000022B04


Enterococcus faecalis




184
E3M10000022B05


Enterococcus faecalis




185
E3M10000022B07


Enterococcus faecalis




186
E3M10000022C05


Enterococcus faecalis




187
E3M10000022C06


Enterococcus faecalis




188
E3M10000022C09


Enterococcus faecalis




189
E3M10000022D04


Enterococcus faecalis




190
E3M10000022F05


Enterococcus faecalis




191
E3M10000022F06


Enterococcus faecalis




192
E3M10000022F08


Enterococcus faecalis




193
E3M10000022G02


Enterococcus faecalis




194
E3M10000022G12


Enterococcus faecalis




195
E3M10000023A03


Enterococcus faecalis




196
E3M10000023A06


Enterococcus faecalis




197
E3M10000023A07


Enterococcus faecalis




198
E3M10000023A09


Enterococcus faecalis




199
E3M10000023B02


Enterococcus faecalis




200
E3M10000023B06


Enterococcus faecalis




201
E3M10000023C03


Enterococcus faecalis




202
E3M10000023C04


Enterococcus faecalis




203
E3M10000023C06


Enterococcus faecalis




204
E3M10000023C08


Enterococcus faecalis




205
E3M10000023C09


Enterococcus faecalis




206
E3M10000023D02


Enterococcus faecalis




207
E3M10000023D04


Enterococcus faecalis




208
E3M10000023D10


Enterococcus faecalis




209
E3M10000023E04


Enterococcus faecalis




210
E3M10000023E07


Enterococcus faecalis




211
E3M10000023E09


Enterococcus faecalis




212
E3M10000023F02


Enterococcus faecalis




213
E3M10000023F10


Enterococcus faecalis




214
E3M10000023G02


Enterococcus faecalis




215
E3M10000023G04


Enterococcus faecalis




216
E3M10000023G10


Enterococcus faecalis




217
E3M10000023H08


Enterococcus faecalis




218
E3M10000024A03


Enterococcus faecalis




219
E3M10000024A04


Enterococcus faecalis




220
E3M10000024A08


Enterococcus faecalis




221
E3M10000024C06


Enterococcus faecalis




222
E3M10000025A06


Enterococcus faecalis




223
E3M10000025B01


Enterococcus faecalis




224
E3M10000025B03


Enterococcus faecalis




225
E3M10000025B05


Enterococcus faecalis




226
E3M10000025B10


Enterococcus faecalis




227
E3M10000025C01


Enterococcus faecalis




228
E3M10000025C04


Enterococcus faecalis




229
E3M10000025C05


Enterococcus faecalis




230
E3M10000025C07


Enterococcus faecalis




231
E3M10000025C08


Enterococcus faecalis




232
E3M10000025C09


Enterococcus faecalis




233
E3M10000025C11


Enterococcus faecalis




234
E3M10000025D0I


Enterococcus faecalis




235
E3M10000025D10


Enterococcus faecalis




236
E3M10000025E07


Enterococcus faecalis




237
E3M10000025E08


Enterococcus faecalis




238
E3M10000025E12


Enterococcus faecalis




239
E3M10000025F04


Enterococcus faecalis




240
E3M10000025F06


Enterococcus faecalis




241
E3M10000025F08


Enterococcus faecalis




242
E3M10000025F09


Enterococcus faecalis




243
E3M10000025F10


Enterococcus faecalis




244
E3M10000025F11


Enterococcus faecalis




245
E3M10000025F12


Enterococcus faecalis




246
E3M10000025G02


Enterococcus faecalis




247
E3M10000025G07


Enterococcus faecalis




248
E3M10000025G09


Enterococcus faecalis




249
E3M10000027A02


Enterococcus faecalis




250
F3M10000027A07


Enterococcus faecalis




251
E3M10000027A09


Enterococcus faecalis




252
E3M10000027B07


Enterococcus faecalis




253
E3M10000027B08


Enterococcus faecalis




254
E3M10000027B09


Enterococcus faecalis




255
E3M10000027C02


Enterococcus faecalis




256
E3M10000027C03


Enterococcus faecalis




257
E3M10000027C08


Enterococcus faecalis




258
E3M10000027D03


Enterococcus faecalis




259
E3M10000027D05


Enterococcus faecalis




260
E3M10000027D08


Enterococcus faecalis




261
E3M10000027D10


Enterococcus faecalis




262
E3M10000027G01


Enterococcus faecalis




263
E3M10000027G08


Enterococcus faecalis




264
E3M10000027H04


Enterococcus faecalis




265
E3M10000027H07


Enterococcus faecalis




266
E3M10000028A02


Enterococcus faecalis




267
E3M10000028A03


Enterococcus faecalis




268
E3M10000028A04


Enterococcus faecalis




269
E3M10000028A05


Enterococcus faecalis




270
E3M10000028A06


Enterococcus faecalis




271
E3M10000028A08


Enterococcus faecalis




272
E3M10000028B01


Enterococcus faecalis




273
E3M10000028B02


Enterococcus faecalis




274
E3M10000028B03


Enterococcus faecalis




275
E3M10000028B04


Enterococcus faecalis




276
E3M10000028B05


Enterococcus faecalis




277
E3M10000028B06


Enterococcus faecalis




278
E3M10000028B07


Enterococcus faecalis




279
E3M10000028B08


Enterococcus faecalis




280
E3M10000028C01


Enterococcus faecalis




281
E3M10000028C02


Enterococcus faecalis




282
E3M10000028C04


Enterococcus faecalis




283
E3M10000028C05


Enterococcus faecalis




284
E3M10000028C06


Enterococcus faecalis




285
E3M10000028C07


Enterococcus faecalis




286
E3M10000028C08


Enterococcus faecalis




287
E3M10000028D01


Enterococcus faecalis




288
E3M10000028D02


Enterococcus faecalis




289
E3M10000028D05


Enterococcus faecalis




290
E3M10000028D06


Enterococcus faecalis




291
E3M10000028D08


Enterococcus faecalis




292
E3M10000028E01


Enterococcus faecalis




293
E3M10000028E04


Enterococcus faecalis




294
E3M10000028E07


Enterococcus faecalis




295
E3M10000028F02


Enterococcus faecalis




296
E3M10000028F03


Enterococcus faecalis




297
E3M10000028F04


Enterococcus faecalis




298
E3M10000028F05


Enterococcus faecalis




299
E3M10000028F06


Enterococcus faecalis




300
E3M10000028F07


Enterococcus faecalis




301
E3M10000028G05


Enterococcus faecalis




302
E3M10000028G06


Enterococcus faecalis




303
E3M10000028G07


Enterococcus faecalis




304
E3M10000028H04


Enterococcus faecalis




305
E3M10000028H07


Enterococcus faecalis




306
E3M10000029A02


Enterococcus faecalis




307
E3M10000029A04


Enterococcus faecalis




308
E3M10000029A05


Enterococcus faecalis




309
E3M10000029A10


Enterococcus faecalis




310
E3M10000029A11


Enterococcus faecalis




311
E3M10000029B01


Enterococcus faecalis




312
E3M10000029B02


Enterococcus faecalis




313
E3M10000029B05


Enterococcus faecalis




314
E3M10000029B06


Enterococcus faecalis




315
E3M10000029B08


Enterococcus faecalis




316
E3M10000029B11


Enterococcus faecalis




317
E3M10000029B12


Enterococcus faecalis




318
E3M10000029C01


Enterococcus faecalis




319
E3M10000029C02


Enterococcus faecalis




320
E3M10000029C03


Enterococcus faecalis




321
E3M10000029C04


Enterococcus faecalis




322
E3M10000029C05


Enterococcus faecalis




323
E3M10000029C06


Enterococcus faecalis




324
E3M10000029C07


Enterococcus faecalis




325
E3M10000029C08


Enterococcus faecalis




326
E3M10000029C09


Enterococcus faecalis




327
E3M10000029C10


Enterococcus faecalis




328
E3M10000029C12


Enterococcus faecalis




329
E3M10000029D01


Enterococcus faecalis




330
E3M10000029D03


Enterococcus faecalis




331
E3M10000029D04


Enterococcus faecalis




332
E3M10000029D05


Enterococcus faecalis




333
E3M10000029D06


Enterococcus faecalis




334
E3M10000029D08


Enterococcus faecalis




335
E3M10000029D12


Enterococcus faecalis




336
E3M10000029E01


Enterococcus faecalis




337
E3M10000029E02


Enterococcus faecalis




338
E3M10000029E03


Enterococcus faecalis




339
E3M10000029E05


Enterococcus faecalis




340
E3M10000029E07


Enterococcus faecalis




341
E3M10000029E08


Enterococcus faecalis




342
E3M10000029E09


Enterococcus faecalis




343
E3M10000029E12


Enterococcus faecalis




344
E3M10000029F01


Enterococcus faecalis




345
E3M10000029F05


Enterococcus faecalis




346
E3M10000029F06


Enterococcus faecalis




347
E3M10000029F09


Enterococcus faecalis




348
E3M10000029F10


Enterococcus faecalis




349
E3M10000029F11


Enterococcus faecalis




350
E3M10000029F12


Enterococcus faecalis




351
E3M10000029G01


Enterococcus faecalis




352
E3M10000029G04


Enterococcus faecalis




353
E3M10000029G05


Enterococcus faecalis




354
E3M10000029G07


Enterococcus faecalis




355
E3M10000029G08


Enterococcus faecalis




356
E3M10000029G09


Enterococcus faecalis




357
E3M10000029G10


Enterococcus faecalis




358
E3M10000029G11


Enterococcus faecalis




359
E3M10000029G12


Enterococcus faecalis




360
E3M10000029H02


Enterococcus faecalis




361
E3M10000029H04


Enterococcus faecalis




362
E3M10000029H05


Enterococcus faecalis




363
E3M10000029H07


Enterococcus faecalis




364
E3M10000029H08


Enterococcus faecalis




365
E3M10000029H11


Enterococcus faecalis




366
E3M10000030A05


Enterococcus faecalis




367
E3M10000030A08


Enterococcus faecalis




368
E3M10000030A09


Enterococcus faecalis




369
E3M10000030A11


Enterococcus faecalis




370
E3M10000030B03


Enterococcus faecalis




371
E3M10000030B04


Enterococcus faecalis




372
E3M10000030B05


Enterococcus faecalis




373
E3M10000030B06


Enterococcus faecalis




374
E3M10000030B07


Enterococcus faecalis




375
E3M10000030B08


Enterococcus faecalis




376
E3M10000030B10


Enterococcus faecalis




377
E3M10000030B11


Enterococcus faecalis




378
E3M10000030B12


Enterococcus faecalis




379
E3M10000030C03


Enterococcus faecalis




380
E3M10000030C04


Enterococcus faecalis




381
E3M10000030C12


Enterococcus faecalis




382
E3M10000030D02


Enterococcus faecalis




383
E3M10000030D05


Enterococcus faecalis




384
E3M10000030D08


Enterococcus faecalis




385
E3M10000030D09


Enterococcus faecalis




386
E3M10000030D10


Enterococcus faecalis




387
E3M10000030D12


Enterococcus faecalis




388
E3M10000030E01


Enterococcus faecalis




389
E3M10000030E02


Enterococcus faecalis




390
E3M10000030E04


Enterococcus faecalis




391
E3M10000030E08


Enterococcus faecalis




392
E3M10000030E09


Enterococcus faecalis




393
E3M10000030E10


Enterococcus faecalis




394
E3M10000030F01


Enterococcus faecalis




395
E3M10000030F04


Enterococcus faecalis




396
E3M10000030F06


Enterococcus faecalis




397
E3M10000030F07


Enterococcus faecalis




398
E3M10000030F10


Enterococcus faecalis




399
E3M10000030F12


Enterococcus faecalis




400
E3M10000030G01


Enterococcus faecalis




401
E3M10000030G03


Enterococcus faecalis




402
E3M10000030G06


Enterococcus faecalis




403
E3M10000030G08


Enterococcus faecalis




404
E3M10000030G09


Enterococcus faecalis




405
E3M10000030G12


Enterococcus faecalis




406
E3M10000030H03


Enterococcus faecalis




407
E3M10000030H04


Enterococcus faecalis




408
E3M10000030H06


Enterococcus faecalis




409
E3M10000030H07


Enterococcus faecalis




410
E3M10000030H08


Enterococcus faecalis




411
E3M10000030H10


Enterococcus faecalis




412
E3M10000030H11


Enterococcus faecalis




413
E3M10000031A02


Enterococcus faecalis




414
E3M10000031A06


Enterococcus faecalis




415
E3M10000031A07


Enterococcus faecalis




416
E3M10000031A08


Enterococcus faecalis




417
E3M10000031B02


Enterococcus faecalis




418
E3M10000031B03


Enterococcus faecalis




419
E3M10000031B04


Enterococcus faecalis




420
E3M10000031B09


Enterococcus faecalis




421
E3M10000031B10


Enterococcus faecalis




422
E3M10000031B11


Enterococcus faecalis




423
E3M10000031B12


Enterococcus faecalis




424
E3M10000031C01


Enterococcus faecalis




425
E3M10000031C04


Enterococcus faecalis




426
E3M10000031C06


Enterococcus faecalis




427
E3M10000031C10


Enterococcus faecalis




428
E3M10000031C11


Enterococcus faecalis




429
E3M10000031C12


Enterococcus faecalis




430
E3M10000031D03


Enterococcus faecalis




431
E3M10000031D04


Enterococcus faecalis




432
E3M10000031D08


Enterococcus faecalis




433
E3M10000031E03


Enterococcus faecalis




434
E3M10000031E09


Enterococcus faecalis




435
E3M10000031F02


Enterococcus faecalis




436
E3M10000031F04


Enterococcus faecalis




437
E3M10000031F07


Enterococcus faecalis




438
E3M10000031F09


Enterococcus faecalis




439
E3M10000031F11


Enterococcus faecalis




440
E3M10000031G03


Enterococcus faecalis




441
E3M10000031G04


Enterococcus faecalis




442
E3M10000031G05


Enterococcus faecalis




443
E3M10000031G06


Enterococcus faecalis




444
E3M10000031G07


Enterococcus faecalis




445
E3M10000031G08


Enterococcus faecalis




446
E3M10000031G11


Enterococcus faecalis




447
E3M10000031H05


Enterococcus faecalis




448
E3M10000031H06


Enterococcus faecalis




449
E3M10000031H07


Enterococcus faecalis




450
E3M10000031H08


Enterococcus faecalis




451
E3M10000031H10


Enterococcus faecalis




452
E3M10000031H11


Enterococcus faecalis




453
E3M10000032A02


Enterococcus faecalis




454
E3M10000032A04


Enterococcus faecalis




455
E3M10000032A06


Enterococcus faecalis




456
E3M10000032A07


Enterococcus faecalis




457
E3M10000032A08


Enterococcus faecalis




458
E3M10000032A09


Enterococcus faecalis




459
E3M10000032A10


Enterococcus faecalis




460
E3M10000032A11


Enterococcus faecalis




461
E3M10000032B03


Enterococcus faecalis




462
E3M10000032B04


Enterococcus faecalis




463
E3M10000032B07


Enterococcus faecalis




464
E3M10000032B08


Enterococcus faecalis




465
E3M10000032B09


Enterococcus faecalis




466
E3M10000032B11


Enterococcus faecalis




467
E3M10000032B12


Enterococcus faecalis




468
E3M10000032C01


Enterococcus faecalis




469
E3M10000032C02


Enterococcus faecalis




470
E3M10000032C03


Enterococcus faecalis




471
E3M10000032C04


Enterococcus faecalis




472
E3M10000032C06


Enterococcus faecalis




473
E3M10000032C09


Enterococcus faecalis




474
E3M10000032C11


Enterococcus faecalis




475
E3M10000032C12


Enterococcus faecalis




476
E3M10000032D01


Enterococcus faecalis




477
E3M10000032D02


Enterococcus faecalis




478
E3M10000032D03


Enterococcus faecalis




479
E3M10000032D06


Enterococcus faecalis




480
E3M10000032D09


Enterococcus faecalis




481
E3M10000032D12


Enterococcus faecalis




482
E3M10000032E04


Enterococcus faecalis




483
E3M10000032E05


Enterococcus faecalis




484
E3M10000032E08


Enterococcus faecalis




485
E3M10000032E10


Enterococcus faecalis




486
E3M10000032E11


Enterococcus faecalis




487
E3M10000032E12


Enterococcus faecalis




488
E3M10000032F02


Enterococcus faecalis




489
E3M10000032F03


Enterococcus faecalis




490
E3M10000032F05


Enterococcus faecalis




491
E3M10000032F07


Enterococcus faecalis




492
E3M10000032F08


Enterococcus faecalis




493
E3M10000032F11


Enterococcus faecalis




494
E3M10000032F12


Enterococcus faecalis




495
E3M10000032G01


Enterococcus faecalis




496
E3M10000032G02


Enterococcus faecalis




497
E3M10000032G04


Enterococcus faecalis




498
E3M10000032G05


Enterococcus faecalis




499
E3M10000032G06


Enterococcus faecalis




500
E3M10000032G07


Enterococcus faecalis




501
E3M10000032H05


Enterococcus faecalis




502
E3M10000032H06


Enterococcus faecalis




503
E3M10000032H08


Enterococcus faecalis




504
E3M10000032H09


Enterococcus faecalis




505
E3M10000032H10


Enterococcus faecalis




506
E3M10000033A03


Enterococcus faecalis




507
E3M10000033A04


Enterococcus faecalis




508
E3M10000033A05


Enterococcus faecalis




509
E3M10000033A06


Enterococcus faecalis




510
E3M10000033A07


Enterococcus faecalis




511
E3M10000033A08


Enterococcus faecalis




512
E3M10000033A11


Enterococcus faecalis




513
E3M10000033B01


Enterococcus faecalis




514
E3M10000033B02


Enterococcus faecalis




515
E3M10000033B04


Enterococcus faecalis




516
E3M10000033B05


Enterococcus faecalis




517
E3M10000033B06


Enterococcus faecalis




518
E3M10000033B08


Enterococcus faecalis




519
E3M10000033B09


Enterococcus faecalis




520
E3M10000033C01


Enterococcus faecalis




521
E3M10000033C02


Enterococcus faecalis




522
E3M10000033C05


Enterococcus faecalis




523
E3M10000033C09


Enterococcus faecalis




524
E3M10000033C10


Enterococcus faecalis




525
E3M10000033C11


Enterococcus faecalis




526
E3M10000033C12


Enterococcus faecalis




527
E3M10000033D01


Enterococcus faecalis




528
E3M10000033D04


Enterococcus faecalis




529
E3M10000033D05


Enterococcus faecalis




530
E3M10000033D06


Enterococcus faecalis




531
E3M10000033D09


Enterococcus faecalis




532
E3M10000033D10


Enterococcus faecalis




533
E3M10000033D11


Enterococcus faecalis




534
E3M10000033E02


Enterococcus faecalis




535
E3M10000033E03


Enterococcus faecalis




536
E3M10000033E04


Enterococcus faecalis




537
E3M10000033E05


Enterococcus faecalis




538
E3M10000033E07


Enterococcus faecalis




539
E3M10000033E08


Enterococcus faecalis




540
E3M10000033E09


Enterococcus faecalis




541
E3M10000033E11


Enterococcus faecalis




542
E3M10000033F01


Enterococcus faecalis




543
E3M10000033F03


Enterococcus faecalis




544
E3M10000033F04


Enterococcus faecalis




545
E3M10000033F05


Enterococcus faecalis




546
E3M10000033F07


Enterococcus faecalis




547
E3M10000033F08


Enterococcus faecalis




548
E3M10000033F10


Enterococcus faecalis




549
E3M10000033F12


Enterococcus faecalis




550
E3M10000033G01


Enterococcus faecalis




551
E3M10000033G02


Enterococcus faecalis




552
E3M10000033G03


Enterococcus faecalis




553
E3M10000033G04


Enterococcus faecalis




554
E3M10000033G06


Enterococcus faecalis




555
E3M10000033G07


Enterococcus faecalis




556
E3M10000033G08


Enterococcus faecalis




557
E3M10000033G09


Enterococcus faecalis




558
E3M10000033G12


Enterococcus faecalis




559
E3M10000033H02


Enterococcus faecalis




560
E3M10000033H04


Enterococcus faecalis




561
E3M10000033H05


Enterococcus faecalis




562
E3M10000033H07


Enterococcus faecalis




563
E3M10000033H08


Enterococcus faecalis




564
E3M10000033H09


Enterococcus faecalis




565
E3M10000033H10


Enterococcus faecalis




566
E3M10000033H11


Enterococcus faecalis




567
E3M10000034A02


Enterococcus faecalis




568
E3M10000034A03


Enterococcus faecalis




569
E3M10000034A04


Enterococcus faecalis




570
E3M10000034B02


Enterococcus faecalis




571
E3M10000034B04


Enterococcus faecalis




572
E3M10000034C04


Enterococcus faecalis




573
E3M10000034D01


Enterococcus faecalis




574
E3M10000034D02


Enterococcus faecalis




575
E3M10000034E01


Enterococcus faecalis




576
E3M10000034E04


Enterococcus faecalis




577
E3M10000034F02


Enterococcus faecalis




578
E3M10000034F03


Enterococcus faecalis




579
E3M10000034F04


Enterococcus faecalis




580
E3M10000034G02


Enterococcus faecalis




581
E3M10000034G03


Enterococcus faecalis




582
E3M10000034H02


Enterococcus faecalis




583
E3M10000034H03


Enterococcus faecalis




584
E3M10000035A02


Enterococcus faecalis




585
E3M10000035A04


Enterococcus faecalis




586
E3M10000035A05


Enterococcus faecalis




587
E3M10000035A06


Enterococcus faecalis




588
E3M10000035A08


Enterococcus faecalis




589
E3M10000035A09


Enterococcus faecalis




590
E3M1000003SA11


Enterococcus faecalis




591
E3M10000035B01


Enterococcus faecalis




592
E3M10000035B03


Enterococcus faecalis




593
E3M10000035B06


Enterococcus faecalis




594
E3M10000035B07


Enterococcus faecalis




595
E3M10000035B08


Enterococcus faecalis




596
E3M10000035B10


Enterococcus faecalis




597
E3M1000003SB11


Enterococcus faecalis




598
E3M10000035B12


Enterococcus faecalis




599
E3M10000035C01


Enterococcus faecalis




600
E3M10000035C03


Enterococcus faecalis




601
E3M10000035C04


Enterococcus faecalis




602
E3M1000003SC05


Enterococcus faecalis




603
E3M10000035C06


Enterococcus faecalis




604
E3M10000035C07


Enterococcus faecalis




605
E3M10000035C08


Enterococcus faecalis




606
E3M10000035C09


Enterococcus faecalis




607
E3M10000035C11


Enterococcus faecalis




608
E3M10000035C12


Enterococcus faecalis




609
E3M10000035D02


Enterococcus faecalis




610
E3M10000035D03


Enterococcus faecalis




611
E3M10000035D04


Enterococcus faecalis




612
E3M10000035D05


Enterococcus faecalis




613
E3M10000035D10


Enterococcus faecalis




614
E3M10000035D11


Enterococcus faecalis




615
E3M10000035E03


Enterococcus faecalis




616
E3M10000035E04


Enterococcus faecalis




617
E3M10000035E05


Enterococcus faecalis




618
E3M10000035E07


Enterococcus faecalis




619
E3M10000035E08


Enterococcus faecalis




620
E3M10000035E09


Enterococcus faecalis




621
E3M10000035E10


Enterococcus faecalis




622
E3M10000035E11


Enterococcus faecalis




623
E3M10000035E12


Enterococcus faecalis




624
E3M10000035F01


Enterococcus faecalis




625
E3M10000035F02


Enterococcus faecalis




626
E3M10000035F03


Enterococcus faecalis




627
E3M10000035F06


Enterococcus faecalis




628
E3M10000035F07


Enterococcus faecalis




629
E3M10000035F08


Enterococcus faecalis




630
E3M10000035F09


Enterococcus faecalis




631
E3M10000035F11


Enterococcus faecalis




632
E3M10000035F12


Enterococcus faecalis




633
E3M10000035G02


Enterococcus faecalis




634
E3M10000035G04


Enterococcus faecalis




635
E3M10000035G05


Enterococcus faecalis




636
E3M10000035G08


Enterococcus faecalis




637
E3M10000035G09


Enterococcus faecalis




638
E3M10000035G10


Enterococcus faecalis




639
E3M10000035G11


Enterococcus faecalis




640
E3M10000035H03


Enterococcus faecalis




641
E3M10000035H06


Enterococcus faecalis




642
E3M10000035H09


Enterococcus faecalis




643
E3M10000035H11


Enterococcus faecalis




644
E3M10000036A03


Enterococcus faecalis




645
E3M10000036A04


Enterococcus faecalis




646
E3M10000036A05


Enterococcus faecalis




647
E3M10000036A06


Enterococcus faecalis




648
E3M10000036A07


Enterococcus faecalis




649
E3M10000036A08


Enterococcus faecalis




650
E3M10000036A09


Enterococcus faecalis




651
E3M10000036A10


Enterococcus faecalis




652
E3M10000036B01


Enterococcus faecalis




653
E3M10000036B03


Enterococcus faecalis




654
E3M10000036B06


Enterococcus faecalis




655
E3M10000036B07


Enterococcus faecalis




656
E3M10000036B08


Enterococcus faecalis




657
E3M10000036B09


Enterococcus faecalis




658
E3M10000036B11


Enterococcus faecalis




659
E3M10000036B12


Enterococcus faecalis




660
E3M10000036C01


Enterococcus faecalis




661
E3M10000036C03


Enterococcus faecalis




662
E3M10000036C06


Enterococcus faecalis




663
E3M10000036C07


Enterococcus faecalis




664
E3M10000036C08


Enterococcus faecalis




665
E3M10000036C09


Enterococcus faecalis




666
E3M10000036C10


Enterococcus faecalis




667
E3M10000036C11


Enterococcus faecalis




668
E3M10000036D03


Enterococcus faecalis




669
E3M10000036D04


Enterococcus faecalis




670
E3M10000036D06


Enterococcus faecalis




671
E3M10000036D08


Enterococcus faecalis




672
E3M10000036D09


Enterococcus faecalis




673
E3M10000036D10


Enterococcus faecalis




674
E3M10000036D11


Enterococcus faecalis




675
E3M10000036D12


Enterococcus faecalis




676
E3M10000036E01


Enterococcus faecalis




677
E3M10000036E04


Enterococcus faecalis




678
E3M10000036E05


Enterococcus faecalis




679
E3M10000036E07


Enterococcus faecalis




680
E3M10000036E08


Enterococcus faecalis




681
E3M10000036F03


Enterococcus faecalis




682
E3M10000036F04


Enterococcus faecalis




683
E3M10000036F05


Enterococcus faecalis




684
E3M10000036F08


Enterococcus faecalis




685
E3M10000036F09


Enterococcus faecalis




686
E3M10000036F10


Enterococcus faecalis




687
E3M10000036F12


Enterococcus faecalis




688
E3M10000036G01


Enterococcus faecalis




689
E3M10000036G02


Enterococcus faecalis




690
E3M10000036G03


Enterococcus faecalis




691
E3M10000036G04


Enterococcus faecalis




692
E3M10000036G06


Enterococcus faecalis




693
E3M10000036G10


Enterococcus faecalis




694
E3M10000036H02


Enterococcus faecalis




695
E3M10000036H03


Enterococcus faecalis




696
E3M10000036H04


Enterococcus faecalis




697
E3M10000036H05


Enterococcus faecalis




698
E3M10000036H06


Enterococcus faecalis




699
E3M10000036H07


Enterococcus faecalis




700
E3M10000036H08


Enterococcus faecalis




701
E3M10000036H09


Enterococcus faecalis




702
E3M10000036H10


Enterococcus faecalis




703
E3M10000037A03


Enterococcus faecalis




704
E3M10000037A06


Enterococcus faecalis




705
E3M10000037A08


Enterococcus faecalis




706
E3M10000037A09


Enterococcus faecalis




707
E3M10000037A10


Enterococcus faecalis




708
E3M10000037B02


Enterococcus faecalis




709
E3M10000037B07


Enterococcus faecalis




710
E3M10000037B08


Enterococcus faecalis




711
E3M10000037B11


Enterococcus faecalis




712
E3M10000037C01


Enterococcus faecalis




713
E3M10000037C02


Enterococcus faecalis




714
E3M10000037C04


Enterococcus faecalis




715
E3M10000037C05


Enterococcus faecalis




716
E3M10000037C07


Enterococcus faecalis




717
E3M10000037C11


Enterococcus faecalis




718
E3M10000037C12


Enterococcus faecalis




719
E3M10000037D02


Enterococcus faecalis




720
E3M10000037D03


Enterococcus faecalis




721
E3M10000037D04


Enterococcus faecalis




722
E3M10000037D05


Enterococcus faecalis




723
E3M10000037D06


Enterococcus faecalis




724
E3M10000037D09


Enterococcus faecalis




725
E3M10000037D11


Enterococcus faecalis




726
E3M10000037E01


Enterococcus faecalis




727
E3M10000037E02


Enterococcus faecalis




728
E3M10000037E03


Enterococcus faecalis




729
E3M10000037E05


Enterococcus faecalis




730
E3M10000037E07


Enterococcus faecalis




731
E3M10000037E08


Enterococcus faecalis




732
E3M10000037E10


Enterococcus faecalis




733
E3M10000037E12


Enterococcus faecalis




734
E3M10000037F01


Enterococcus faecalis




735
E3M10000037F02


Enterococcus faecalis




736
E3M10000037F06


Enterococcus faecalis




737
E3M10000037F07


Enterococcus faecalis




738
E3M10000037F12


Enterococcus faecalis




739
E3M10000037G01


Enterococcus faecalis




740
E3M10000037G02


Enterococcus faecalis




741
E3M10000037G03


Enterococcus faecalis




742
E3M10000037G05


Enterococcus faecalis




743
E3M10000037G06


Enterococcus faecalis




744
E3M10000037G07


Enterococcus faecalis




745
E3M10000037G08


Enterococcus faecalis




746
E3M10000037G10


Enterococcus faecalis




747
E3M10000037G11


Enterococcus faecalis




748
E3M10000037H02


Enterococcus faecalis




749
E3M10000037H05


Enterococcus faecalis




750
E3M10000037H07


Enterococcus faecalis




751
E3M10000037H10


Enterococcus faecalis




752
E3M10000037H11


Enterococcus faecalis




753
E3M10000038A02


Enterococcus faecalis




754
E3M10000038A03


Enterococcus faecalis




755
E3M10000038A05


Enterococcus faecalis




756
E3M10000038A06


Enterococcus faecalis




757
E3M10000038A07


Enterococcus faecalis




758
E3M10000038A09


Enterococcus faecalis




759
E3M10000038A10


Enterococcus faecalis




760
E3M10000038A11


Enterococcus faecalis




761
E3M10000038B02


Enterococcus faecalis




762
E3M10000038B03


Enterococcus faecalis




763
E3M10000038B04


Enterococcus faecalis




764
E3M10000038B05


Enterococcus faecalis




765
E3M10000038B07


Enterococcus faecalis




766
E3M10000038B08


Enterococcus faecalis




767
E3M10000038B09


Enterococcus faecalis




768
E3M10000038B11


Enterococcus faecalis




769
E3M10000038C02


Enterococcus faecalis




770
E3M10000038C03


Enterococcus faecalis




771
E3M10000038C05


Enterococcus faecalis




772
E3M10000038C07


Enterococcus faecalis




773
E3M10000038C10


Enterococcus faecalis




774
E3M10000038C12


Enterococcus faecalis




775
E3M10000038D01


Enterococcus faecalis




776
E3M10000038D02


Enterococcus faecalis




777
E3M10000038D04


Enterococcus faecalis




778
E3M10000038D08


Enterococcus faecalis




779
E3M10000038D10


Enterococcus faecalis




780
E3M10000038D11


Enterococcus faecalis




781
E3M10000038D12


Enterococcus faecalis




782
E3M10000038E02


Enterococcus faecalis




783
E3M10000038E03


Enterococcus faecalis




784
E3M10000038E04


Enterococcus faecalis




785
E3M10000038E05


Enterococcus faecalis




786
E3M10000038E07


Enterococcus faecalis




787
E3M10000038E08


Enterococcus faecalis




788
E3M10000038E11


Enterococcus faecalis




789
E3M10000038F02


Enterococcus faecalis




790
E3M10000038F04


Enterococcus faecalis




791
E3M10000038F05


Enterococcus faecalis




792
E3M10000038F06


Enterococcus faecalis




793
E3M10000038F07


Enterococcus faecalis




794
E3M10000038F09


Enterococcus faecalis




795
E3M10000038F10


Enterococcus faecalis




796
E3M10000038F11


Enterococcus faecalis




797
E3M10000038G02


Enterococcus faecalis




798
E3M10000038G03


Enterococcus faecalis




799
E3M10000038G06


Enterococcus faecalis




800
E3M10000038G07


Enterococcus faecalis




801
E3M10000038G11


Enterococcus faecalis




802
E3M10000038H02


Enterococcus faecalis




803
E3M10000038H05


Enterococcus faecalis




804
E3M10000038H06


Enterococcus faecalis




805
E3M10000038H07


Enterococcus faecalis




806
E3M10000038H08


Enterococcus faecalis




807
E3M10000038H09


Enterococcus faecalis




808
E3M10000038H10


Enterococcus faecalis




809
E3M10000039A02


Enterococcus faecalis




810
E3M10000039A06


Enterococcus faecalis




811
E3M10000039A07


Enterococcus faecalis




812
E3M10000039A08


Enterococcus faecalis




813
E3M10000039A10


Enterococcus faecalis




814
E3M10000039A11


Enterococcus faecalis




815
E3M10000039B01


Enterococcus faecalis




816
E3M10000039B03


Enterococcus faecalis




817
E3M10000039B04


Enterococcus faecalis




818
E3M10000039B06


Enterococcus faecalis




819
E3M10000039B07


Enterococcus faecalis




820
E3M10000039B08


Enterococcus faecalis




821
E3M10000039B09


Enterococcus faecalis




822
E3M10000039B11


Enterococcus faecalis




823
E3M10000039C02


Enterococcus faecalis




824
E3M10000039C04


Enterococcus faecalis




825
E3M10000039C05


Enterococcus faecalis




826
E3M10000039C06


Enterococcus faecalis




827
E3M10000039C07


Enterococcus faecalis




828
E3M10000039C08


Enterococcus faecalis




829
E3M10000039C09


Enterococcus faecalis




830
E3M10000039C10


Enterococcus faecalis




831
E3M10000039D02


Enterococcus faecalis




832
E3M10000039D03


Enterococcus faecalis




833
E3M10000039D04


Enterococcus faecalis




834
E3M10000039D06


Enterococcus faecalis




835
E3M10000039E01


Enterococcus faecalis




836
E3M10000039E02


Enterococcus faecalis




837
E3M10000039E03


Enterococcus faecalis




838
E3M10000039E05


Enterococcus faecalis




839
E3M10000039E07


Enterococcus faecalis




840
E3M10000039E08


Enterococcus faecalis




841
E3M10000039F01


Enterococcus faecalis




842
E3M10000039F02


Enterococcus faecalis




843
E3M10000039F03


Enterococcus faecalis




844
E3M10000039F06


Enterococcus faecalis




845
E3M10000039F07


Enterococcus faecalis




846
E3M10000039F08


Enterococcus faecalis




847
E3M10000039G01


Enterococcus faecalis




848
E3M10000039G02


Enterococcus faecalis




849
E3M10000039G05


Enterococcus faecalis




850
E3M10000039G07


Enterococcus faecalis




851
E3M10000039G09


Enterococcus faecalis




852
E3M10000039G10


Enterococcus faecalis




853
E3M10000039H02


Enterococcus faecalis




854
E3M10000039H07


Enterococcus faecalis




855
E3M10000039H08


Enterococcus faecalis




856
E3M10000039H10


Enterococcus faecalis




857
E3M10000039H11


Enterococcus faecalis




858
E3M10000040A03


Enterococcus faecalis




859
E3M10000040A05


Enterococcus faecalis




860
E3M10000040A07


Enterococcus faecalis




861
E3M10000040A09


Enterococcus faecalis




862
E3M10000040A10


Enterococcus faecalis




863
E3M10000040A11


Enterococcus faecalis




864
E3M10000040B01


Enterococcus faecalis




865
E3M10000040B02


Enterococcus faecalis




866
E3M10000040B05


Enterococcus faecalis




867
E3M10000040B06


Enterococcus faecalis




868
E3M10000040B08


Enterococcus faecalis




869
E3M10000040B09


Enterococcus faecalis




870
E3M1000004GB10


Enterococcus faecalis




871
E3M1000004GB11


Enterococcus faecalis




872
E3M1000004GB12


Enterococcus faecalis




873
E3M10000040C02


Enterococcus faecalis




874
E3M10000040C05


Enterococcus faecalis




875
E3M10000040C06


Enterococcus faecalis




876
E3M10000040C07


Enterococcus faecalis




877
E3M10000040C08


Enterococcus faecalis




878
E3M10000040C09


Enterococcus faecalis




879
E3M10000040C10


Enterococcus faecalis




880
E3M10000040C11


Enterococcus faecalis




881
E3M10000040C12


Enterococcus faecalis




882
E3M10000040D03


Enterococcus faecalis




883
E3M10000040D04


Enterococcus faecalis




884
E3M10000040D08


Enterococcus faecalis




885
E3M10000040D12


Enterococcus faecalis




886
E3M10000040E02


Enterococcus faecalis




887
E3M10000040E10


Enterococcus faecalis




888
E3M10000040E11


Enterococcus faecalis




889
E3M10000040E12


Enterococcus faecalis




890
E3M10000040F01


Enterococcus faecalis




891
E3M10000040F03


Enterococcus faecalis




892
E3M10000040F08


Enterococcus faecalis




893
E3M10000040F09


Enterococcus faecalis




894
E3M10000040F10


Enterococcus faecalis




895
E3M10000040G01


Enterococcus faecalis




896
E3M10000040G02


Enterococcus faecalis




897
E3M10000040G04


Enterococcus faecalis




898
E3M10000040G05


Enterococcus faecalis




899
E3M10000040G07


Enterococcus faecalis




900
E3M10000040G08


Enterococcus faecalis




901
E3M10000040G09


Enterococcus faecalis




902
E3M10000040G11


Enterococcus faecalis




903
E3M10000040H02


Enterococcus faecalis




904
E3M10000040H03


Enterococcus faecalis




905
E3M10000040H04


Enterococcus faecalis




906
E3M10000040H05


Enterococcus faecalis




907
E3M10000040H09


Enterococcus faecalis




908
E3M10000041A03


Enterococcus faecalis




909
E3M10000041A05


Enterococcus faecalis




910
E3M10000041A08


Enterococcus faecalis




911
E3M10000041A09


Enterococcus faecalis




912
E3M10000041A10


Enterococcus faecalis




913
E3M10000041A11


Enterococcus faecalis




914
E3M10000041B02


Enterococcus faecalis




915
E3M10000041B03


Enterococcus faecalis




916
E3M10000041B05


Enterococcus faecalis




917
E3M10000041B06


Enterococcus faecalis




918
E3M10000041B08


Enterococcus faecalis




919
E3M10000041B09


Enterococcus faecalis




920
E3M10000041B10


Enterococcus faecalis




921
E3M10000041B11


Enterococcus faecalis




922
E3M10000041B12


Enterococcus faecalis




923
E3M10000041C01


Enterococcus faecalis




924
E3M10000041C07


Enterococcus faecalis




925
E3M10000041C08


Enterococcus faecalis




926
E3M10000041C09


Enterococcus faecalis




927
E3M10000041C10


Enterococcus faecalis




928
E3M10000041C11


Enterococcus faecalis




929
E3M10000041C12


Enterococcus faecalis




930
E3M10000041D02


Enterococcus faecalis




931
E3M10000041D03


Enterococcus faecalis




932
E3M10000041D04


Enterococcus faecalis




933
E3M10000041D05


Enterococcus faecalis




934
E3M10000041D06


Enterococcus faecalis




935
E3M10000041D08


Enterococcus faecalis




936
E3M10000041D09


Enterococcus faecalis




937
E3M10000041D10


Enterococcus faecalis




938
E3M10000041D11


Enterococcus faecalis




939
E3M10000041D12


Enterococcus faecalis




940
E3M10000041E02


Enterococcus faecalis




941
E3M10000041E03


Enterococcus faecalis




942
E3M10000041EO5


Enterococcus faecalis




943
E3M10000041E07


Enterococcus faecalis




944
E3M10000041E10


Enterococcus faecalis




945
E3M1000004IE11


Enterococcus faecalis




946
E3M10000041F03


Enterococcus faecalis




947
E3M10000041F05


Enterococcus faecalis




948
E3M10000041F06


Enterococcus faecalis




949
E3M10000041F07


Enterococcus faecalis




950
E3M10000041F08


Enterococcus faecalis




951
E3M10000041F09


Enterococcus faecalis




952
E3M10000041F10


Enterococcus faecalis




953
E3M10000041F11


Enterococcus faecalis




954
E3M10000041G02


Enterococcus faecalis




955
E3M10000041G03


Enterococcus faecalis




956
E3M10000041G04


Enterococcus faecalis




957
E3M10000041G06


Enterococcus faecalis




958
E3M10000041G07


Enterococcus faecalis




959
E3M10000041G08


Enterococcus faecalis




960
E3M10000041G09


Enterococcus faecalis




961
E3M10000041G10


Enterococcus faecalis




962
E3M10000041G12


Enterococcus faecalis




963
E3M10000041H04


Enterococcus faecalis




964
E3M10000041H05


Enterococcus faecalis




965
E3M10000041H06


Enterococcus faecalis




966
E3M10000041H07


Enterococcus faecalis




967
E3M10000041H08


Enterococcus faecalis




968
E3M10000041H09


Enterococcus faecalis




969
E3M10000041H10


Enterococcus faecalis




970
E3M10000041H11


Enterococcus faecalis




971
E3M10000042A03


Enterococcus faecalis




972
E3M10000042A08


Enterococcus faecalis




973
E3M10000042A10


Enterococcus faecalis




974
E3M10000042B01


Enterococcus faecalis




975
E3M10000042B02


Enterococcus faecalis




976
E3M10000042B04


Enterococcus faecalis




977
E3M10000042B08


Enterococcus faecalis




978
E3M10000042B09


Enterococcus faecalis




979
E3M10000042B10


Enterococcus faecalis




980
E3M10000042B11


Enterococcus faecalis




981
E3M10000042C02


Enterococcus faecalis




982
E3M10000042C03


Enterococcus faecalis




983
E3M10000042C04


Enterococcus faecalis




984
E3M10000042C10


Enterococcus faecalis




985
E3M10000042D01


Enterococcus faecalis




986
E3M10000042D02


Enterococcus faecalis




987
E3M10000042D03


Enterococcus faecalis




988
E3M10000042D06


Enterococcus faecalis




989
E3M10000042D09


Enterococcus faecalis




990
E3M10000042D11


Enterococcus faecalis




991
E3M10000042D12


Enterococcus faecalis




992
E3M10000042E05


Enterococcus faecalis




993
E3M10000042E12


Enterococcus faecalis




994
E3M10000042F11


Enterococcus faecalis




995
E3M10000042G01


Enterococcus faecalis




996
E3M10000042G05


Enterococcus faecalis




997
E3M10000042G07


Enterococcus faecalis




998
E3M10000042G08


Enterococcus faecalis




999
E3M10000042G11


Enterococcus faecalis




1000
E3M10000042G12


Enterococcus faecalis




1001
E3M10000042H06


Enterococcus faecalis




1002
E3M10000042H08


Enterococcus faecalis




1003
E3M10000042H11


Enterococcus faecalis




1004
E3M10000043A02


Enterococcus faecalis




1005
E3M10000043A03


Enterococcus faecalis




1006
E3M10000043A05


Enterococcus faecalis




1007
E3M10000043A08


Enterococcus faecalis




1008
E3M10000043A09


Enterococcus faecalis




1009
E3M10000043A10


Enterococcus faecalis




1010
E3M10000043A11


Enterococcus faecalis




1011
E3M10000043B01


Enterococcus faecalis




1012
E3M10000043B02


Enterococcus faecalis




1013
E3M10000043B03


Enterococcus faecalis




1014
E3M10000043B06


Enterococcus faecalis




1015
E3M10000043B08


Enterococcus faecalis




1016
E3M10000043B09


Enterococcus faecalis




1017
E3M10000043B10


Enterococcus faecalis




1018
E3M10000043B11


Enterococcus faecalis




1019
E3M10000043B12


Enterococcus faecalis




1020
E3M10000043C01


Enterococcus faecalis




1021
E3M10000043C08


Enterococcus faecalis




1022
E3M10000043C09


Enterococcus faecalis




1023
E3M10000043D01


Enterococcus faecalis




1024
E3M10000043D02


Enterococcus faecalis




1025
E3M10000043D09


Enterococcus faecalis




1026
E3M10000043D10


Enterococcus faecalis




1027
E3M10000043D12


Enterococcus faecalis




1028
E3M10000043E03


Enterococcus faecalis




1029
E3M10000043E07


Enterococcus faecalis




1030
E3M10000043E08


Enterococcus faecalis




1031
E3M10000043E10


Enterococcus faecalis




1032
E3M10000043E11


Enterococcus faecalis




1033
E3M10000043F03


Enterococcus faecalis




1034
E3M10000043F04


Enterococcus faecalis




1035
E3M10000043F06


Enterococcus faecalis




1036
E3M10000043F08


Enterococcus faecalis




1037
E3M10000043F10


Enterococcus faecalis




1038
E3M10000043F12


Enterococcus faecalis




1039
E3M10000043G03


Enterococcus faecalis




1040
E3M10000043G04


Enterococcus faecalis




1041
E3M10000043G05


Enterococcus faecalis




1042
E3M10000043G07


Enterococcus faecalis




1043
E3M10000043G08


Enterococcus faecalis




1044
E3M10000043G10


Enterococcus faecalis




1045
E3M10000043G11


Enterococcus faecalis




1046
E3M10000043G12


Enterococcus faecalis




1047
E3M10000043H02


Enterococcus faecalis




1048
E3M10000043H05


Enterococcus faecalis




1049
E3M10000043H08


Enterococcus faecalis




1050
E3M10000043H09


Enterococcus faecalis




1051
E3M10000043H11


Enterococcus faecalis




1052
E3M10000044C02


Enterococcus faecalis




1053
E3M10000044E01


Enterococcus faecalis




1054
K1M10000002F02


Klebsiella pneumoniae




1055
K1M10000003C01


Klebsiella pneumoniae




1056
K1M10000004F06


Klebsiella pneumoniae




1057
K1M10000007F01


Klebsiella pneumoniae




1058
K1M10000008C02


Klebsiella pneumoniae




1059
K1M10000008C10


Klebsiella pneumoniae




1060
K1M10000008G10


Klebsiella pneumoniae




1061
K1M10000009D04


Klebsiella pneumoniae




1062
K1M10000013E04


Klebsiella pneumoniae




1063
K1M10000013E06


Klebsiella pneumoniae




1064
K1M10000019D06


Klebsiella pneumoniae




1065
K1M10000020B02


Klebsiella pneumoniae




1066
K1M10000021HO6


Klebsiella pneumoniae




1067
K1M10000022C10


Klebsiella pneumoniae




1068
K1M10000023E09


Klebsiella pneumoniae




1069
K1M10000023E10


Klebsiella pneumoniae




1070
K1M10000030C07


Klebsiella pneumoniae




1071
K1M10000030E07


Klebsiella pneumoniae




1072
K1M10000031B11


Klebsiella pneumoniae




1073
K1M10000032E11


Klebsiella pneumoniae




1074
K1M10000033B02


Klebsiella pneumoniae




1075
K1M10000033E01


Klebsiella pneumoniae




1076
K1M10000036G08


Klebsiella pneumoniae




1077
K1M10000037D10


Klebsiella pneumoniae




1078
K1M10000038H09


Klebsiella pneumoniae




1079
K1M10000039H03


Klebsiella pneumoniae




1080
K1M10000043C01


Klebsiella pneumoniae




1081
K1M10000043D05


Klebsiella pneumoniae




1082
K1M10000043H10


Klebsiella pneumoniae




1083
K1M10000044D05


Klebsiella pneumoniae




1084
K1M10000044D08


Klebsiella pneumoniae




1085
K1M10000044E05


Klebsiella pneumoniae




1086
K1M10000044G05


Klebsiella pneumoniae




1087
K1M10000045A07


Klebsiella pneumoniae




1088
K1M10000045D10


Klebsiella pneumoniae




1089
K1M10000003D03


Klebsiella pneumoniae




1090
K1M10000010C02


Klebsiella pneumoniae




1091
K1M10000021H10


Klebsiella pneumoniae




1092
P1M10000008C06


Pseudomonas aeruginosa




1093
P1M10000008G04


Pseudomonas aeruginosa




1094
P1M10000010C03


Pseudomonas aeruginosa




1095
P1M10000014H10


Pseudomonas aeruginosa




1096
P1M10000015C06


Pseudomonas aeruginosa




1097
P1M10000015C09


Pseudomonas aeruginosa




1098
P1M10000016C04


Pseudomonas aeruginosa




1099
P1M10000018B01


Pseudomonas aeruginosa




1100
P1M10000018C01


Pseudomonas aeruginosa




1101
P1M10000018E01


Pseudomonas aeruginosa




1102
P1M10000018G01


Pseudomonas aeruginosa




1103
P1M10000019F01


Pseudomonas aeruginosa




1104
P1M10000021G03


Pseudomonas aeruginosa




1105
P1M10000021G05


Pseudomonas aeruginosa




1106
P1M10000022D09


Pseudomonas aeruginosa




1107
P1M10000024D06


Pseudomonas aeruginosa




1108
P1M10000024E06


Pseudomonas aeruginosa




1109
P1M10000024H03


Pseudomonas aeruginosa




1110
P1M10000025A06


Pseudomonas aeruginosa




1111
P1M10000025G07


Pseudomonas aeruginosa




1112
P1M10000025H07


Pseudomonas aeruginosa




1113
P1M10000026E06


Pseudomonas aeruginosa




1114
P1M10000026F04


Pseudomonas aeruginosa




1115
P1M10000026G09


Pseudomonas aeruginosa




1116
P1M10000026H02


Pseudomonas aeruginosa




1117
P1M10000026H05


Pseudomonas aeruginosa




1118
P1M10000027A06


Pseudomonas aeruginosa




1119
P1M10000027B02


Pseudomonas aeruginosa




1120
P1M10000027G05


Pseudomonas aeruginosa




1121
P1M10000028A08


Pseudomonas aeruginosa




1122
P1M10000028B01


Pseudomonas aeruginosa




1123
P1M10000028E02


Pseudomonas aeruginosa




1124
P1M10000029A09


Pseudomonas aeruginosa




1125
P1M10000029G03


Pseudomonas aeruginosa




1126
P1M10000029H05


Pseudomonas aeruginosa




1127
P1M10000032F04


Pseudomonas aeruginosa




1128
P1M10000033A02


Pseudomonas aeruginosa




1129
P1M10000033B08


Pseudomonas aeruginosa




1130
P1M10000033E03


Pseudomonas aeruginosa




1131
P1M10000033F01


Pseudomonas aeruginosa




1132
P1M10000033G08


Pseudomonas aeruginosa




1133
P1M10000035A06


Pseudomonas aeruginosa




1134
P1M10000037B12


Pseudomonas aeruginosa




1135
P1M10000037G12


Pseudomonas aeruginosa




1136
P1M10000038B08


Pseudomonas aeruginosa




1137
P1M10000038C03


Pseudomonas aeruginosa




1138
P1M10000038C06


Pseudomonas aeruginosa




1139
P1M10000038F04


Pseudomonas aeruginosa




1140
P1M10000038G02


Pseudomonas aeruginosa




1141
P1M10000039G05


Pseudomonas aeruginosa




1142
P1M10000039G12


Pseudomonas aeruginosa




1143
PIM10000040C01


Pseudomonas aeruginosa




1144
P1M10000040C04


Pseudomonas aeruginosa




1145
P1M10000040D04


Pseudomonas aeruginosa




1146
P1M10000040D05


Pseudomonas aeruginosa




1147
P1M10000040E10


Pseudomonas aeruginosa




1148
P1M10000040H03


Pseudomonas aeruginosa




1149
P1M1OOOOO41A12


Pseudomonas aeruginosa




1150
P1M10000041B02


Pseudomonas aeruginosa




1151
P1M10000041E01


Pseudomonas aeruginosa




1152
P1M10000041F01


Pseudomonas aeruginosa




1153
P1M10000042B12


Pseudomonas aeruginosa




1154
P1M10000042E08


Pseudomonas aeruginosa




1155
P1M10000043A03


Pseudomonas aeruginosa




1156
P1M10000043D06


Pseudomonas aeruginosa




1157
P1M10000044F07


Pseudomonas aeruginosa




1158
P1M10000046B03


Pseudomonas aeruginosa




1159
P1M10000046C07


Pseudomonas aeruginosa




1160
P1M10000046C08


Pseudomonas aeruginosa




1161
P1M10000046C09


Pseudomonas aeruginosa




1162
P1M10000046G11


Pseudomonas aeruginosa




1163
P1M10000047B04


Pseudomonas aeruginosa




1164
P1M10000047E11


Pseudomonas aeruginosa




1165
P1M10000047F07


Pseudomonas aeruginosa




1166
P1M10000047G10


Pseudomonas aeruginosa




1167
P1M10000048A03


Pseudomonas aeruginosa




1168
P1M10000049E08


Pseudomonas aeruginosa




1169
P1M10000049G10


Pseudomonas aeruginosa




1170
P1M10000050G11


Pseudomonas aeruginosa




1171
P1M10000051D11


Pseudomonas aeruginosa




1172
P1M10000051F01


Pseudomonas aeruginosa




1173
P1M10000052C03


Pseudomonas aeruginosa




1174
P1M10000052C12


Pseudomonas aeruginosa




1175
P1M10000052E04


Pseudomonas aeruginosa




1176
P1M10000053B12


Pseudomonas aeruginosa




1177
P1M10000053C02


Pseudomonas aeruginosa




1178
P1M10000053E07


Pseudomonas aeruginosa




1179
P1M10000053F08


Pseudomonas aeruginosa




1180
P1M10000055A11


Pseudomonas aeruginosa




1181
P1M10000055C08


Pseudomonas aeruginosa




1182
P1M10000055E05


Pseudomonas aeruginosa




1183
P1M10000056C07


Pseudomonas aeruginosa




1184
P1M10000056F05


Pseudomonas aeruginosa




1185
P1M10000056F06


Pseudomonas aeruginosa




1186
P1M10000056G01


Pseudomonas aeruginosa




1187
P1M10000058B07


Pseudomonas aeruginosa




1188
P1M10000059B04


Pseudomonas aeruginosa




1189
P1M10000059B10


Pseudomonas aeruginosa




1190
P1M10000059B11


Pseudomonas aeruginosa




1191
P1M10000059D11


Pseudomonas aeruginosa




1192
P1M10000059H08


Pseudomonas aeruginosa




1193
P1M10000059H09


Pseudomonas aeruginosa




1194
P1M10000060E03


Pseudomonas aeruginosa




1195
P1M10000060H02


Pseudomonas aeruginosa




1196
P1M10000060H04


Pseudomonas aeruginosa




1197
P1M10000061B04


Pseudomonas aeruginosa




1198
P1M10000061E04


Pseudomonas aeruginosa




1199
P1M10000061F04


Pseudomonas aeruginosa




1200
P1M10000062A12


Pseudomonas aeruginosa




1201
P1M10000062C03


Pseudomonas aeruginosa




1202
P1M10000062C04


Pseudomonas aeruginosa




1203
P1M10000062C07


Pseudomonas aeruginosa




1204
P1M10000062C12


Pseudomonas aeruginosa




1205
P1M10000062D07


Pseudomonas aeruginosa




1206
P1M10000062D08


Pseudomonas aeruginosa




1207
P1M10000062E08


Pseudomonas aeruginosa




1208
P1M10000062F06


Pseudomonas aeruginosa




1209
P1M10000062G11


Pseudomonas aeruginosa




1210
P1M10000062H01


Pseudomonas aeruginosa




1211
P1M10000062H04


Pseudomonas aeruginosa




1212
P1M10000063F02


Pseudomonas aeruginosa




1213
P1M10000063G02


Pseudomonas aeruginosa




1214
P1M10000063H02


Pseudomonas aeruginosa




1215
P1M10000064A10


Pseudomonas aeruginosa




1216
P1M10000064C02


Pseudomonas aeruginosa




1217
P1M10000064C03


Pseudomonas aeruginosa




1218
P1M10000064D03


Pseudomonas aeruginosa




1219
P1M10000064E05


Pseudomonas aeruginosa




1220
P1M10000064G12


Pseudomonas aeruginosa




1221
P1M10000064H07


Pseudomonas aeruginosa




1222
P1M10000065A04


Pseudomonas aeruginosa




1223
P1M10000065B07


Pseudomonas aeruginosa




1224
P1M10000065C03


Pseudomonas aeruginosa




1225
P1M10000065C05


Pseudomonas aeruginosa




1226
P1M10000065D06


Pseudomonas aeruginosa




1227
P1M10000065F01


Pseudomonas aeruginosa




1228
P1M10000065G06


Pseudomonas aeruginosa




1229
P1M10000065H07


Pseudomonas aeruginosa




1230
P1M10000066A10


Pseudomonas aeruginosa




1231
P1M10000066A11


Pseudomonas aeruginosa




1232
P1M10000066F04


Pseudomonas aeruginosa




1233
P1M10000067A05


Pseudomonas aeruginosa




1234
P1M10000067A06


Pseudomonas aeruginosa




1235
P1M10000067A08


Pseudomonas aeruginosa




1236
P1M10000067C04


Pseudomonas aeruginosa




1237
P1M10000067C06


Pseudomonas aeruginosa




1238
P1M10000067D05


Pseudomonas aeruginosa




1239
P1M10000067F05


Pseudomonas aeruginosa




1240
P1M10000067G05


Pseudomonas aeruginosa




1241
P1M10000068A09


Pseudomonas aeruginosa




1242
P1M10000068D04


Pseudomonas aeruginosa




1243
P1M10000068F04


Pseudomonas aeruginosa




1244
P1M10000068F08


Pseudomonas aeruginosa




1245
P1M10000068G01


Pseudomonas aeruginosa




1246
P1M10000068H05


Pseudomonas aeruginosa




1247
P1M10000069D09


Pseudomonas aeruginosa




1248
P1M10000069G06


Pseudomonas aeruginosa




1249
P1M10000069H02


Pseudomonas aeruginosa




1250
P1M10000070A05


Pseudomonas aeruginosa




1251
P1M10000070B10


Pseudomonas aeruginosa




1252
P1M10000070C06


Pseudomonas aeruginosa




1253
P1M10000070D08


Pseudomonas aeruginosa




1254
P1M10000070E03


Pseudomonas aeruginosa




1255
P1M10000070G06


Pseudomonas aeruginosa




1256
P1M10000070G12


Pseudomonas aeruginosa




1257
P1M10000070H06


Pseudomonas aeruginosa




1258
P1M10000071A03


Pseudomonas aeruginosa




1259
P1M10000071C01


Pseudomonas aeruginosa




1260
P1M10000071E04


Pseudomonas aeruginosa




1261
P1M10000071F01


Pseudomonas aeruginosa




1262
P1M10000073A06


Pseudomonas aeruginosa




1263
P1M10000073B10


Pseudomonas aeruginosa




1264
P1M10000073D04


Pseudomonas aeruginosa




1265
P1M10000073D09


Pseudomonas aeruginosa




1266
P1M10000073G03


Pseudomonas aeruginosa




1267
PIM10000074B01


Pseudomonas aeruginosa




1268
P1M10000074B04


Pseudomonas aeruginosa




1269
P1M10000074E04


Pseudomonas aeruginosa




1270
P1M10000074E09


Pseudomonas aeruginosa




1271
P1M10000074F10


Pseudomonas aeruginosa




1272
P1M10000074G12


Pseudomonas aeruginosa




1273
P1M10000075A04


Pseudomonas aeruginosa




1274
P1M10000075B03


Pseudomonas aeruginosa




1275
P1M10000075F02


Pseudomonas aeruginosa




1276
P1M10000075G05


Pseudomonas aeruginosa




1277
P1M10000076D05


Pseudomonas aeruginosa




1278
P1M10000076D10


Pseudomonas aeruginosa




1279
P1M10000077A08


Pseudomonas aeruginosa




1280
P1M10000077C08


Pseudomonas aeruginosa




1281
P1M10000077E04


Pseudomonas aeruginosa




1282
P1M10000077H05


Pseudomonas aeruginosa




1283
P1M10000079A10


Pseudomonas aeruginosa




1284
P1M10000079B10


Pseudomonas aeruginosa




1285
P1M10000079C10


Pseudomonas aeruginosa




1286
P1M10000079D01


Pseudomonas aeruginosa




1287
P1M10000079D10


Pseudomonas aeruginosa




1288
P1M10000079F06


Pseudomonas aeruginosa




1289
P1M10000080B01


Pseudomonas aeruginosa




1290
P1M10000080B06


Pseudomonas aeruginosa




1291
P1M10000080C01


Pseudomonas aeruginosa




1292
P1M10000080C06


Pseudomonas aeruginosa




1293
P1M10000080E04


Pseudomonas aeruginosa




1294
P1M10000081D12


Pseudomonas aeruginosa




1295
P1M10000081G05


Pseudomonas aeruginosa




1296
P1M10000081H05


Pseudomonas aeruginosa




1297
P1M10000082A05


Pseudomonas aeruginosa




1298
P1M10000082B04


Pseudomonas aeruginosa




1299
P1M10000082C05


Pseudomonas aeruginosa




1300
P1M10000082D05


Pseudomonas aeruginosa




1301
P1M10000082E05


Pseudomonas aeruginosa




1302
P1M10000083A11


Pseudomonas aeruginosa




1303
P1M10000083B01


Pseudomonas aeruginosa




1304
P1M10000083B12


Pseudomonas aeruginosa




1305
P1M10000083C11


Pseudomonas aeruginosa




1306
P1M10000083C12


Pseudomonas aeruginosa




1307
P1M10000084A04


Pseudomonas aeruginosa




1308
P1M10000084D03


Pseudomonas aeruginosa




1309
P1M10000084E04


Pseudomonas aeruginosa




1310
P1M10000084E11


Pseudomonas aeruginosa




1311
P1M10000084F08


Pseudomonas aeruginosa




1312
P1M10000085D06


Pseudomonas aeruginosa




1313
P1M10000086A02


Pseudomonas aeruginosa




1314
P1M10000086B01


Pseudomonas aeruginosa




1315
P1M10000086D02


Pseudomonas aeruginosa




1316
P1M10000086E05


Pseudomonas aeruginosa




1317
P1M10000087A11


Pseudomonas aeruginosa




1318
P1M10000087C09


Pseudomonas aeruginosa




1319
P1M10000087E04


Pseudomonas aeruginosa




1320
P1M10000087F04


Pseudomonas aeruginosa




1321
P1M10000087F09


Pseudomonas aeruginosa




1322
P1M10000088A07


Pseudomonas aeruginosa




1323
P1M10000088D06


Pseudomonas aeruginosa




1324
P1M10000089C08


Pseudomonas aeruginosa




1325
P1M10000089D11


Pseudomonas aeruginosa




1326
P1M10000089G08


Pseudomonas aeruginosa




1327
P1M10000090B11


Pseudomonas aeruginosa




1328
P1M10000090F06


Pseudomonas aeruginosa




1329
P1M10000090F08


Pseudomonas aeruginosa




1330
P1M10000091D02


Pseudomonas aeruginosa




1331
P1M10000091E09


Pseudomonas aeruginosa




1332
P1M10000091G10


Pseudomonas aeruginosa




1333
P1M10000092B02


Pseudomonas aeruginosa




1334
P1M10000092B10


Pseudomonas aeruginosa




1335
P1M10000092D09


Pseudomonas aeruginosa




1336
P1M10000092E02


Pseudomonas aeruginosa




1337
P1M10000092F05


Pseudomonas aeruginosa




1338
P1M10000093A03


Pseudomonas aeruginosa




1339
P1M10000093B09


Pseudomonas aeruginosa




1340
P1M10000093C08


Pseudomonas aeruginosa




1341
P1M10000093E09


Pseudomonas aeruginosa




1342
P1M10000093F03


Pseudomonas aeruginosa




1343
P1M10000093H07


Pseudomonas aeruginosa




1344
P1M10000094F04


Pseudomonas aeruginosa




1345
P1M10000094H03


Pseudomonas aeruginosa




1346
P1M10000095C01


Pseudomonas aeruginosa




1347
P1M10000095C09


Pseudomonas aeruginosa




1348
P1M10000095E04


Pseudomonas aeruginosa




1349
P1M10000095G04


Pseudomonas aeruginosa




1350
P1M10000096E04


Pseudomonas aeruginosa




1351
P1M10000096E12


Pseudomonas aeruginosa




1352
ID2


Pseudomonas aeruginosa




1353
4.1


Pseudomonas aeruginosa




1354
S1M10000001A05


Staphylococcus aureus




1355
S1M10000001A08


Staphylococcus aureus




1356
S1M10000001A09


Staphylococcus aureus




1357
S1M10000001A10


Staphylococcus aureus




1358
S1M10000001C06


Staphylococcus aureus




1359
S1M10000001D01


Staphylococcus aureus




1360
S1M1000000ID02


Staphylococcus aureus




1361
S1M1000000ID06


Staphylococcus aureus




1362
S1M10000001D07


Staphylococcus aureus




1363
S1M10000001E02


Staphylococcus aureus




1364
S1M10000001E04


Staphylococcus aureus




1365
S1M10000001E05


Staphylococcus aureus




1366
S1M10000001E09


Staphylococcus aureus




1367
S1M10000001E10


Staphylococcus aureus




1368
S1M10000001E11


Staphylococcus aureus




1369
S1M10000001F02


Staphylococcus aureus




1370
S1M10000001F04


Staphylococcus aureus




1371
S1M10000001F08


Staphylococcus aureus




1372
S1M10000001F09


Staphylococcus aureus




1373
S1M10000001F10


Staphylococcus aureus




1374
S1M10000001F11


Staphylococcus aureus




1375
S1M10000001G01


Staphylococcus aureus




1376
S1M10000001G07


Staphylococcus aureus




1377
S1M10000001G08


Staphylococcus aureus




1378
S1M10000001G10


Staphylococcus aureus




1379
S1M10000002A02


Staphylococcus aureus




1380
S1M10000002A09


Staphylococcus aureus




1381
S1M10000002A10


Staphylococcus aureus




1382
S1M10000002A12


Staphylococcus aureus




1383
S1M10000002B01


Staphylococcus aureus




1384
S1M10000002B03


Staphylococcus aureus




1385
S1M10000002B04


Staphylococcus aureus




1386
S1M10000002B05


Staphylococcus aureus




1387
S1M10000002B06


Staphylococcus aureus




1388
S1M10000002B07


Staphylococcus aureus




1389
S1M10000002B09


Staphylococcus aureus




1390
S1M10000002B11


Staphylococcus aureus




1391
S1M10000002C02


Staphylococcus aureus




1392
S1M10000002C09


Staphylococcus aureus




1393
S1M10000002C10


Staphylococcus aureus




1394
S1M10000002C11


Staphylococcus aureus




1395
S1M10000002C12


Staphylococcus aureus




1396
S1M10000002D01


Staphylococcus aureus




1397
S1M10000002D02


Staphylococcus aureus




1398
S1M10000002D03


Staphylococcus aureus




1399
S1M10000002D05


Staphylococcus aureus




1400
S1M10000002D07


Staphylococcus aureus




1401
S1M10000002D08


Staphylococcus aureus




1402
S1M10000002D10


Staphylococcus aureus




1403
S1M10000002D12


Staphylococcus aureus




1404
S1M10000002E01


Staphylococcus aureus




1405
S1M10000002E02


Staphylococcus aureus




1406
S1M10000002E07


Staphylococcus aureus




1407
S1M10000002E09


Staphylococcus aureus




1408
S1M10000002E11


Staphylococcus aureus




1409
S1M10000002E12


Staphylococcus aureus




1410
S1M10000002F01


Staphylococcus aureus




1411
S1M10000002F02


Staphylococcus aureus




1412
S1M10000002F04


Staphylococcus aureus




1413
S1M10000002F09


Staphylococcus aureus




1414
S1M10000002F12


Staphylococcus aureus




1415
S1M10000002G01


Staphylococcus aureus




1416
S1M10000002G03


Staphylococcus aureus




1417
S1M10000002G05


Staphylococcus aureus




1418
S1M10000002G06


Staphylococcus aureus




1419
S1M10000002G07


Staphylococcus aureus




1420
S1M10000002G08


Staphylococcus aureus




1421
S1M10000002G09


Staphylococcus aureus




1422
S1M10000002G10


Staphylococcus aureus




1423
S1M10000002G11


Staphylococcus aureus




1424
S1M10000002G12


Staphylococcus aureus




1425
S1M10000003A01


Staphylococcus aureus




1426
S1M10000003A02


Staphylococcus aureus




1427
S1M10000003A03


Staphylococcus aureus




1428
S1M10000003A04


Staphylococcus aureus




1429
S1M10000003A06


Staphylococcus aureus




1430
S1M10000003A07


Staphylococcus aureus




1431
S1M10000003A08


Staphylococcus aureus




1432
S1M10000003A10


Staphylococcus aureus




1433
S1M10000003A11


Staphylococcus aureus




1434
S1M10000003B06


Staphylococcus aureus




1435
S1M10000003B08


Staphylococcus aureus




1436
S1M10000003B09


Staphylococcus aureus




1437
S1M10000003B12


Staphylococcus aureus




1438
S1M10000003C06


Staphylococcus aureus




1439
S1M10000003C07


Staphylococcus aureus




1440
S1M10000003C10


Staphylococcus aureus




1441
S1M10000003C12


Staphylococcus aureus




1442
S1M10000003D05


Staphylococcus aureus




1443
S1M10000003D06


Staphylococcus aureus




1444
S1M10000003D08


Staphylococcus aureus




1445
S1M10000003D10


Staphylococcus aureus




1446
S1M10000003E07


Staphylococcus aureus




1447
S1M10000003E09


Staphylococcus aureus




1448
S1M10000003E10


Staphylococcus aureus




1449
S1M10000003E11


Staphylococcus aureus




1450
S1M10000003F02


Staphylococcus aureus




1451
S1M10000003F05


Staphylococcus aureus




1452
S1M10000003F06


Staphylococcus aureus




1453
S1M10000003F07


Staphylococcus aureus




1454
S1M10000003F08


Staphylococcus aureus




1455
S1M10000003F12


Staphylococcus aureus




1456
S1M10000003G03


Staphylococcus aureus




1457
S1M10000003G04


Staphylococcus aureus




1458
S1M10000003G08


Staphylococcus aureus




1459
S1M10000003G10


Staphylococcus aureus




1460
S1M10000004A04


Staphylococcus aureus




1461
S1M10000004A06


Staphylococcus aureus




1462
S1M10000004A07


Staphylococcus aureus




1463
S1M10000004A11


Staphylococcus aureus




1464
S1M10000004A12


Staphylococcus aureus




1465
S1M10000004B03


Staphylococcus aureus




1466
S1M10000004B04


Staphylococcus aureus




1467
S1M10000004B06


Staphylococcus aureus




1468
S1M10000004B08


Staphylococcus aureus




1469
S1M10000004B09


Staphylococcus aureus




1470
S1M10000004B11


Staphylococcus aureus




1471
S1M10000004C01


Staphylococcus aureus




1472
S1M10000004C02


Staphylococcus aureus




1473
S1M10000004C03


Staphylococcus aureus




1474
S1M10000004C06


Staphylococcus aureus




1475
S1M10000004C07


Staphylococcus aureus




1476
S1M10000004C08


Staphylococcus aureus




1477
S1M10000004C09


Staphylococcus aureus




1478
S1M10000004C10


Staphylococcus aureus




1479
S1M10000004C12


Staphylococcus aureus




1480
S1M10000004D01


Staphylococcus aureus




1481
S1M10000004D03


Staphylococcus aureus




1482
S1M10000004D04


Staphylococcus aureus




1483
S1M10000004D06


Staphylococcus aureus




1484
S1M10000004D07


Staphylococcus aureus




1485
S1M10000004D08


Staphylococcus aureus




1486
S1M10000004D10


Staphylococcus aureus




1487
S1M10000004D12


Staphylococcus aureus




1488
S1M10000004E03


Staphylococcus aureus




1489
S1M10000004E04


Staphylococcus aureus




1490
S1M10000004E06


Staphylococcus aureus




1491
S1M10000004E07


Staphylococcus aureus




1492
S1M10000004E11


Staphylococcus aureus




1493
S1M10000004E12


Staphylococcus aureus




1494
S1M10000004F01


Staphylococcus aureus




1495
S1M10000004F02


Staphylococcus aureus




1496
S1M10000004F06


Staphylococcus aureus




1497
S1M10000004F07


Staphylococcus aureus




1498
S1M10000004F08


Staphylococcus aureus




1499
S1M10000004F09


Staphylococcus aureus




1500
S1M10000004F12


Staphylococcus aureus




1501
S1M10000004G01


Staphylococcus aureus




1502
S1M10000004G02


Staphylococcus aureus




1503
S1M10000004G03


Staphylococcus aureus




1504
S1M10000004G05


Staphylococcus aureus




1505
S1M10000004G06


Staphylococcus aureus




1506
S1M10000004G07


Staphylococcus aureus




1507
S1M10000004G09


Staphylococcus aureus




1508
S1M10000004G12


Staphylococcus aureus




1509
S1M10000005A01


Staphylococcus aureus




1510
S1M10000005A03


Staphylococcus aureus




1511
S1M10000005A05


Staphylococcus aureus




1512
S1M10000005A06


Staphylococcus aureus




1513
S1M10000005A07


Staphylococcus aureus




1514
S1M10000005A08


Staphylococcus aureus




1515
S1M10000005A09


Staphylococcus aureus




1516
S1M10000005A10


Staphylococcus aureus




1517
S1M10000005A11


Staphylococcus aureus




1518
S1M10000005B02


Staphylococcus aureus




1519
S1M10000005B04


Staphylococcus aureus




1520
S1M10000005B07


Staphylococcus aureus




1521
S1M10000005B08


Staphylococcus aureus




1522
S1M10000005B09


Staphylococcus aureus




1523
S1M10000005B12


Staphylococcus aureus




1524
S1M10000005C01


Staphylococcus aureus




1525
S1M10000005C05


Staphylococcus aureus




1526
S1M10000005C06


Staphylococcus aureus




1527
S1M10000005C09


Staphylococcus aureus




1528
S1M10000005C11


Staphylococcus aureus




1529
S1M10000005D01


Staphylococcus aureus




1530
S1M10000005D02


Staphylococcus aureus




1531
S1M10000005D03


Staphylococcus aureus




1532
S1M10000005D04


Staphylococcus aureus




1533
S1M10000005D05


Staphylococcus aureus




1534
S1M10000005D06


Staphylococcus aureus




1535
S1M10000005D07


Staphylococcus aureus




1536
S1M10000005D08


Staphylococcus aureus




1537
S1M10000005D09


Staphylococcus aureus




1538
S1M10000005D11


Staphylococcus aureus




1539
S1M10000005D12


Staphylococcus aureus




1540
S1M10000005E01


Staphylococcus aureus




1541
S1M10000005E02


Staphylococcus aureus




1542
S1M10000005E05


Staphylococcus aureus




1543
S1M10000005E06


Staphylococcus aureus




1544
S1M10000005E07


Staphylococcus aureus




1545
S1M10000005E08


Staphylococcus aureus




1546
S1M10000005E10


Staphylococcus aureus




1547
S1M10000005E11


Staphylococcus aureus




1548
S1M10000005E12


Staphylococcus aureus




1549
S1M10000005F02


Staphylococcus aureus




1550
S1M10000005F03


Staphylococcus aureus




1551
S1M10000005F04


Staphylococcus aureus




1552
S1M10000006A03


Staphylococcus aureus




1553
S1M10000006A04


Staphylococcus aureus




1554
S1M10000006A05


Staphylococcus aureus




1555
S1M10000006A07


Staphylococcus aureus




1556
S1M10000006A08


Staphylococcus aureus




1557
S1M10000006A10


Staphylococcus aureus




1558
S1M10000006A12


Staphylococcus aureus




1559
S1M10000006B02


Staphylococcus aureus




1560
S1M10000006B03


Staphylococcus aureus




1561
S1M10000006B04


Staphylococcus aureus




1562
S1M10000006B07


Staphylococcus aureus




1563
S1M10000006B10


Staphylococcus aureus




1564
S1M10000006B11


Staphylococcus aureus




1565
S1M10000006C02


Staphylococcus aureus




1566
S1M10000006C04


Staphylococcus aureus




1567
S1M10000006C06


Staphylococcus aureus




1568
S1M10000006C07


Staphylococcus aureus




1569
S1M10000006C08


Staphylococcus aureus




1570
S1M10000006C10


Staphylococcus aureus




1571
S1M10000006D03


Staphylococcus aureus




1572
S1M10000006D05


Staphylococcus aureus




1573
S1M10000006D06


Staphylococcus aureus




1574
S1M10000006D07


Staphylococcus aureus




1575
S1M10000006D08


Staphylococcus aureus




1576
S1M10000006E02


Staphylococcus aureus




1577
S1M10000006E03


Staphylococcus aureus




1578
S1M10000006E04


Staphylococcus aureus




1579
S1M10000006E07


Staphylococcus aureus




1580
S1M10000006E08


Staphylococcus aureus




1581
S1M10000006F01


Staphylococcus aureus




1582
S1M10000006F02


Staphylococcus aureus




1583
S1M10000006F03


Staphylococcus aureus




1584
S1M10000006F04


Staphylococcus aureus




1585
S1M10000006F06


Staphylococcus aureus




1586
S1M10000006G02


Staphylococcus aureus




1587
S1M10000006G03


Staphylococcus aureus




1588
S1M10000006G05


Staphylococcus aureus




1589
S1M10000006G06


Staphylococcus aureus




1590
S1M10000006G07


Staphylococcus aureus




1591
S1M10000006G09


Staphylococcus aureus




1592
S1M10000006G10


Staphylococcus aureus




1593
S1M10000006G11


Staphylococcus aureus




1594
S1M10000007A02


Staphylococcus aureus




1595
S1M10000007A03


Staphylococcus aureus




1596
S1M10000007B02


Staphylococcus aureus




1597
S1M10000007B11


Staphylococcus aureus




1598
S1M10000007C02


Staphylococcus aureus




1599
S1M10000007C04


Staphylococcus aureus




1600
S1M10000007C05


Staphylococcus aureus




1601
S1M10000007CO6


Staphylococcus aureus




1602
S1M10000007C07


Staphylococcus aureus




1603
S1M10000007C08


Staphylococcus aureus




1604
S1M10000007C09


Staphylococcus aureus




1605
S1M10000007D03


Staphylococcus aureus




1606
S1M10000007D06


Staphylococcus aureus




1607
S1M10000007D08


Staphylococcus aureus




1608
S1M10000007D10


Staphylococcus aureus




1609
S1M10000007D11


Staphylococcus aureus




1610
S1M10000007E04


Staphylococcus aureus




1611
S1M10000007E06


Staphylococcus aureus




1612
S1M10000007E07


Staphylococcus aureus




1613
S1M10000007F01


Staphylococcus aureus




1614
S1M10000007F02


Staphylococcus aureus




1615
S1M10000007F04


Staphylococcus aureus




1616
S1M10000007F08


Staphylococcus aureus




1617
S1M10000007F09


Staphylococcus aureus




1618
S1M10000007F10


Staphylococcus aureus




1619
S1M10000007F11


Staphylococcus aureus




1620
S1M10000007F12


Staphylococcus aureus




1621
S1M10000007G02


Staphylococcus aureus




1622
S1M10000007G03


Staphylococcus aureus




1623
S1M10000007G05


Staphylococcus aureus




1624
S1M10000007G07


Staphylococcus aureus




1625
S1M10000007G08


Staphylococcus aureus




1626
S1M10000008A03


Staphylococcus aureus




1627
S1M10000008A04


Staphylococcus aureus




1628
S1M10000008A05


Staphylococcus aureus




1629
S1M10000008A08


Staphylococcus aureus




1630
S1M10000008A09


Staphylococcus aureus




1631
S1M10000008A12


Staphylococcus aureus




1632
S1M10000008B03


Staphylococcus aureus




1633
S1M10000008B04


Staphylococcus aureus




1634
S1M10000008B06


Staphylococcus aureus




1635
S1M10000008B08


Staphylococcus aureus




1636
S1M10000008B09


Staphylococcus aureus




1637
S1M10000008B10


Staphylococcus aureus




1638
S1M10000008C05


Staphylococcus aureus




1639
S1M10000008C06


Staphylococcus aureus




1640
S1M10000008C07


Staphylococcus aureus




1641
S1M10000008C08


Staphylococcus aureus




1642
S1M10000008C09


Staphylococcus aureus




1643
S1M10000008D05


Staphylococcus aureus




1644
S1M10000008D09


Staphylococcus aureus




1645
S1M10000008E05


Staphylococcus aureus




1646
S1M10000008E08


Staphylococcus aureus




1647
S1M10000008E09


Staphylococcus aureus




1648
S1M10000008E10


Staphylococcus aureus




1649
S1M10000008F01


Staphylococcus aureus




1650
S1M10000008F02


Staphylococcus aureus




1651
S1M10000008F03


Staphylococcus aureus




1652
S1M10000008F06


Staphylococcus aureus




1653
S1M10000008F08


Staphylococcus aureus




1654
S1M10000008F09


Staphylococcus aureus




1655
S1M10000008F10


Staphylococcus aureus




1656
S1M10000008F11


Staphylococcus aureus




1657
S1M10000008G02


Staphylococcus aureus




1658
S1M10000008G03


Staphylococcus aureus




1659
S1M10000008G05


Staphylococcus aureus




1660
S1M10000009A02


Staphylococcus aureus




1661
S1M10000009A04


Staphylococcus aureus




1662
S1M10000009A07


Staphylococcus aureus




1663
S1M10000009A08


Staphylococcus aureus




1664
S1M10000009A09


Staphylococcus aureus




1665
S1M10000009A10


Staphylococcus aureus




1666
S1M10000009A11


Staphylococcus aureus




1667
S1M10000009B01


Staphylococcus aureus




1668
S1M10000009B02


Staphylococcus aureus




1669
S1M10000009B03


Staphylococcus aureus




1670
S1M10000009B04


Staphylococcus aureus




1671
S1M10000009B05


Staphylococcus aureus




1672
S1M10000009B06


Staphylococcus aureus




1673
S1M10000009B07


Staphylococcus aureus




1674
S1M10000009B10


Staphylococcus aureus




1675
S1M10000009B11


Staphylococcus aureus




1676
S1M10000009B12


Staphylococcus aureus




1677
S1M10000009C01


Staphylococcus aureus




1678
S1M10000009C02


Staphylococcus aureus




1679
S1M10000009C05


Staphylococcus aureus




1680
S1M10000009C06


Staphylococcus aureus




1681
S1M10000009C07


Staphylococcus aureus




1682
S1M10000009C08


Staphylococcus aureus




1683
S1M10000009C09


Staphylococcus aureus




1684
S1M10000009C10


Staphylococcus aureus




1685
S1M10000009C11


Staphylococcus aureus




1686
S1M10000009D01


Staphylococcus aureus




1687
S1M10000009D02


Staphylococcus aureus




1688
S1M10000009D03


Staphylococcus aureus




1689
S1M10000009D04


Staphylococcus aureus




1690
S1M10000009D05


Staphylococcus aureus




1691
S1M10000009D07


Staphylococcus aureus




1692
S1M10000009D09


Staphylococcus aureus




1693
S1M10000009D11


Staphylococcus aureus




1694
S1M10000009E02


Staphylococcus aureus




1695
S1M10000009E06


Staphylococcus aureus




1696
S1M10000009E08


Staphylococcus aureus




1697
S1M10000009B09


Staphylococcus aureus




1698
S1M10000009E11


Staphylococcus aureus




1699
S1M10000009E12


Staphylococcus aureus




1700
S1M10000009F01


Staphylococcus aureus




1701
S1M10000009F02


Staphylococcus aureus




1702
S1M10000009F03


Staphylococcus aureus




1703
S1M10000009F05


Staphylococcus aureus




1704
S1M10000009F06


Staphylococcus aureus




1705
S1M10000009F07


Staphylococcus aureus




1706
S1M10000009F09


Staphylococcus aureus




1707
S1M10000009F10


Staphylococcus aureus




1708
S1M10000009G02


Staphylococcus aureus




1709
S1M10000009G03


Staphylococcus aureus




1710
S1M10000009G05


Staphylococcus aureus




1711
S1M10000009G06


Staphylococcus aureus




1712
S1M10000009G07


Staphylococcus aureus




1713
S1M10000009G09


Staphylococcus aureus




1714
S1M10000009G10


Staphylococcus aureus




1715
S1M10000009G11


Staphylococcus aureus




1716
S1M10000009H01


Staphylococcus aureus




1717
S1M10000009H02


Staphylococcus aureus




1718
S1M10000009H03


Staphylococcus aureus




1719
S1M10000009H05


Staphylococcus aureus




1720
S1M10000009H07


Staphylococcus aureus




1721
S1M10000009H09


Staphylococcus aureus




1722
S1M10000009H11


Staphylococcus aureus




1723
S1M10000011A02


Staphylococcus aureus




1724
S1M10000011A03


Staphylococcus aureus




1725
S1M10000011A04


Staphylococcus aureus




1726
S1M10000011A06


Staphylococcus aureus




1727
S1M10000011B01


Staphylococcus aureus




1728
S1M10000011B02


Staphylococcus aureus




1729
S1M10000011B03


Staphylococcus aureus




1730
S1M10000011B04


Staphylococcus aureus




1731
S1M10000011B05


Staphylococcus aureus




1732
S1M10000011C01


Staphylococcus aureus




1733
S1M10000011C05


Staphylococcus aureus




1734
S1M10000011C06


Staphylococcus aureus




1735
S1M10000011D01


Staphylococcus aureus




1736
S1M10000011D02


Staphylococcus aureus




1737
S1M10000011D04


Staphylococcus aureus




1738
S1M10000011D06


Staphylococcus aureus




1739
S1M10000011E02


Staphylococcus aureus




1740
S1M10000011E03


Staphylococcus aureus




1741
S1M10000011E04


Staphylococcus aureus




1742
S1M10000011F01


Staphylococcus aureus




1743
S1M10000011F03


Staphylococcus aureus




1744
S1M10000011F04


Staphylococcus aureus




1745
S1M10000011F06


Staphylococcus aureus




1746
S1M10000011G01


Staphylococcus aureus




1747
S1M10000011G03


Staphylococcus aureus




1748
S1M10000011G04


Staphylococcus aureus




1749
S1M10000011G05


Staphylococcus aureus




1750
S1M10000011G06


Staphylococcus aureus




1751
S1M10000011H01


Staphylococcus aureus




1752
S1M10000011H03


Staphylococcus aureus




1753
S1M10000011H04


Staphylococcus aureus




1754
S1M10000012A02


Staphylococcus aureus




1755
S1M10000012A06


Staphylococcus aureus




1756
S1M10000012A08


Staphylococcus aureus




1757
S1M10000012A09


Staphylococcus aureus




1758
S1M10000012A10


Staphylococcus aureus




1759
S1M10000012A11


Staphylococcus aureus




1760
S1M10000012B01


Staphylococcus aureus




1761
S1M10000012B05


Staphylococcus aureus




1762
S1M10000012B06


Staphylococcus aureus




1763
S1M10000012B07


Staphylococcus aureus




1764
S1M10000012B11


Staphylococcus aureus




1765
S1M10000012C01


Staphylococcus aureus




1766
S1M10000012C03


Staphylococcus aureus




1767
S1M10000012C04


Staphylococcus aureus




1768
S1M10000012C05


Staphylococcus aureus




1769
S1M10000012C06


Staphylococcus aureus




1770
S1M10000012C11


Staphylococcus aureus




1771
S1M10000012C12


Staphylococcus aureus




1772
S1M10000012D04


Staphylococcus aureus




1773
S1M10000012D06


Staphylococcus aureus




1774
S1M10000012D07


Staphylococcus aureus




1775
S1M10000012D08


Staphylococcus aureus




1776
S1M10000012D09


Staphylococcus aureus




1777
S1M10000012D12


Staphylococcus aureus




1778
S1M10000012E01


Staphylococcus aureus




1779
S1M10000012E02


Staphylococcus aureus




1780
S1M10000012E04


Staphylococcus aureus




1781
S1M10000012E07


Staphylococcus aureus




1782
S1M10000012E08


Staphylococcus aureus




1783
S1M10000012E12


Staphylococcus aureus




1784
S1M10000012F04


Staphylococcus aureus




1785
S1M10000012F07


Staphylococcus aureus




1786
S1M10000012F08


Staphylococcus aureus




1787
S1M10000012F09


Staphylococcus aureus




1788
S1M10000012F10


Staphylococcus aureus




1789
S1M10000012F11


Staphylococcus aureus




1790
S1M10000012F12


Staphylococcus aureus




1791
S1M10000012G01


Staphylococcus aureus




1792
S1M10000012G02


Staphylococcus aureus




1793
S1M10000012G03


Staphylococcus aureus




1794
S1M10000012G06


Staphylococcus aureus




1795
S1M10000012G07


Staphylococcus aureus




1796
S1M10000012G08


Staphylococcus aureus




1797
S1M10000012G10


Staphylococcus aureus




1798
S1M10000012H05


Staphylococcus aureus




1799
S1M10000012H08


Staphylococcus aureus




1800
S1M10000012H09


Staphylococcus aureus




1801
S1M10000012H10


Staphylococcus aureus




1802
S1M10000012H11


Staphylococcus aureus




1803
S1M10000013A02


Staphylococcus aureus




1804
S1M10000013A03


Staphylococcus aureus




1805
S1M10000013A05


Staphylococcus aureus




1806
S1M10000013A07


Staphylococcus aureus




1807
S1M10000013A08


Staphylococcus aureus




1808
S1M10000013A09


Staphylococcus aureus




1809
S1M10000013A10


Staphylococcus aureus




1810
S1M10000013A11


Staphylococcus aureus




1811
S1M10000013A12


Staphylococcus aureus




1812
S1M10000013B02


Staphylococcus aureus




1813
S1M10000013B03


Staphylococcus aureus




1814
S1M10000013B04


Staphylococcus aureus




1815
S1M10000013B05


Staphylococcus aureus




1816
S1M10000013B06


Staphylococcus aureus




1817
S1M10000013B07


Staphylococcus aureus




1818
S1M10000013B09


Staphylococcus aureus




1819
S1M10000013B11


Staphylococcus aureus




1820
S1M10000013C03


Staphylococcus aureus




1821
S1M10000013C05


Staphylococcus aureus




1822
S1M10000013C07


Staphylococcus aureus




1823
S1M10000013C08


Staphylococcus aureus




1824
S1M10000013C09


Staphylococcus aureus




1825
S1M10000013C10


Staphylococcus aureus




1826
S1M10000013C11


Staphylococcus aureus




1827
S1M10000013C12


Staphylococcus aureus




1828
S1M10000013D08


Staphylococcus aureus




1829
S1M10000013D09


Staphylococcus aureus




1830
S1M10000013D11


Staphylococcus aureus




1831
S1M10000013E01


Staphylococcus aureus




1832
S1M10000013E02


Staphylococcus aureus




1833
S1M10000013E04


Staphylococcus aureus




1834
S1M10000013E06


Staphylococcus aureus




1835
S1M10000013E08


Staphylococcus aureus




1836
S1M10000013E09


Staphylococcus aureus




1837
S1M10000013E10


Staphylococcus aureus




1838
S1M10000013F02


Staphylococcus aureus




1839
S1M10000013F03


Staphylococcus aureus




1840
S1M10000013F06


Staphylococcus aureus




1841
S1M10000013F07


Staphylococcus aureus




1842
S1M10000013F08


Staphylococcus aureus




1843
S1M10000013F09


Staphylococcus aureus




1844
S1M10000013F12


Staphylococcus aureus




1845
S1M10000013G01


Staphylococcus aureus




1846
S1M10000013G04


Staphylococcus aureus




1847
S1M10000013G05


Staphylococcus aureus




1848
S1M10000013G06


Staphylococcus aureus




1849
S1M10000013G07


Staphylococcus aureus




1850
S1M10000013G10


Staphylococcus aureus




1851
S1M10000013G11


Staphylococcus aureus




1852
S1M10000013G12


Staphylococcus aureus




1853
S1M10000013H03


Staphylococcus aureus




1854
S1M10000013H04


Staphylococcus aureus




1855
S1M10000013H05


Staphylococcus aureus




1856
S1M10000013H07


Staphylococcus aureus




1857
S1M10000013H09


Staphylococcus aureus




1858
S1M10000013H10


Staphylococcus aureus




1859
S1M10000013H11


Staphylococcus aureus




1860
S1M10000014A02


Staphylococcus aureus




1861
S1M10000014A03


Staphylococcus aureus




1862
S1M10000014A05


Staphylococcus aureus




1863
S1M10000014A07


Staphylococcus aureus




1864
S1M10000014A08


Staphylococcus aureus




1865
S1M10000014A11


Staphylococcus aureus




1866
S1M10000014A12


Staphylococcus aureus




1867
S1M10000014B01


Staphylococcus aureus




1868
S1M10000014B02


Staphylococcus aureus




1869
S1M10000014B03


Staphylococcus aureus




1870
S1M10000014B04


Staphylococcus aureus




1871
S1M10000014B05


Staphylococcus aureus




1872
S1M10000014B06


Staphylococcus aureus




1873
S1M10000014B07


Staphylococcus aureus




1874
S1M10000014B08


Staphylococcus aureus




1875
S1M10000014B10


Staphylococcus aureus




1876
S1M10000014B11


Staphylococcus aureus




1877
S1M10000014B12


Staphylococcus aureus




1878
S1M10000014C01


Staphylococcus aureus




1879
S1M10000014C05


Staphylococcus aureus




1880
S1M10000014C06


Staphylococcus aureus




1881
S1M10000014C07


Staphylococcus aureus




1882
S1M10000014C09


Staphylococcus aureus




1883
S1M10000014C10


Staphylococcus aureus




1884
S1M10000014C11


Staphylococcus aureus




1885
S1M10000014C12


Staphylococcus aureus




1886
S1M10000014D03


Staphylococcus aureus




1887
S1M10000014D06


Staphylococcus aureus




1888
S1M10000014D08


Staphylococcus aureus




1889
S1M10000014D09


Staphylococcus aureus




1890
S1M10000014D10


Staphylococcus aureus




1891
S1M10000014E01


Staphylococcus aureus




1892
S1M10000014E04


Staphylococcus aureus




1893
S1M10000014E05


Staphylococcus aureus




1894
S1M10000014E07


Staphylococcus aureus




1895
S1M10000014E08


Staphylococcus aureus




1896
S1M10000014E09


Staphylococcus aureus




1897
S1M10000014E10


Staphylococcus aureus




1898
S1M10000014E12


Staphylococcus aureus




1899
S1M10000014F02


Staphylococcus aureus




1900
S1M10000014F03


Staphylococcus aureus




1901
S1M10000014F04


Staphylococcus aureus




1902
S1M10000014F05


Staphylococcus aureus




1903
S1M10000014F08


Staphylococcus aureus




1904
S1M10000014F09


Staphylococcus aureus




1905
S1M10000014F10


Staphylococcus aureus




1906
S1M10000014G02


Staphylococcus aureus




1907
S1M10000014G04


Staphylococcus aureus




1908
S1M10000014G06


Staphylococcus aureus




1909
S1M10000014G07


Staphylococcus aureus




1910
S1M10000014G08


Staphylococcus aureus




1911
S1M10000014G12


Staphylococcus aureus




1912
S1M10000014H02


Staphylococcus aureus




1913
S1M10000014H03


Staphylococcus aureus




1914
S1M10000014H04


Staphylococcus aureus




1915
S1M10000014H05


Staphylococcus aureus




1916
S1M10000014H06


Staphylococcus aureus




1917
S1M10000014H07


Staphylococcus aureus




1918
S1M10000014HO8


Staphylococcus aureus




1919
S1M10000014H11


Staphylococcus aureus




1920
S1M10000015A02


Staphylococcus aureus




1921
S1M10000015A03


Staphylococcus aureus




1922
S1M10000015A05


Staphylococcus aureus




1923
S1M10000015A06


Staphylococcus aureus




1924
S1M10000015A09


Staphylococcus aureus




1925
S1M10000015A10


Staphylococcus aureus




1926
S1M10000015A11


Staphylococcus aureus




1927
S1M10000015A12


Staphylococcus aureus




1928
S1M10000015B02


Staphylococcus aureus




1929
S1M10000015B05


Staphylococcus aureus




1930
S1M10000015B08


Staphylococcus aureus




1931
S1M10000015B09


Staphylococcus aureus




1932
S1M10000015B10


Staphylococcus aureus




1933
S1M10000015C01


Staphylococcus aureus




1934
S1M10000015C02


Staphylococcus aureus




1935
S1M10000015C03


Staphylococcus aureus




1936
S1M10000015C05


Staphylococcus aureus




1937
S1M10000015C06


Staphylococcus aureus




1938
S1M10000015C08


Staphylococcus aureus




1939
S1M10000015C10


Staphylococcus aureus




1940
S1M10000015C12


Staphylococcus aureus




1941
S1M10000015D02


Staphylococcus aureus




1942
S1M10000015D03


Staphylococcus aureus




1943
S1M10000015D04


Staphylococcus aureus




1944
S1M10000015D05


Staphylococcus aureus




1945
S1M10000015D06


Staphylococcus aureus




1946
S1M10000015D12


Staphylococcus aureus




1947
S1M10000015E02


Staphylococcus aureus




1948
S1M10000015E03


Staphylococcus aureus




1949
S1M10000015E06


Staphylococcus aureus




1950
S1M10000015E07


Staphylococcus aureus




1951
S1M10000015E09


Staphylococcus aureus




1952
S1M10000015E10


Staphylococcus aureus




1953
S1M10000015E11


Staphylococcus aureus




1954
S1M10000015E12


Staphylococcus aureus




1955
S1M10000015F01


Staphylococcus aureus




1956
S1M10000015F02


Staphylococcus aureus




1957
S1M10000015F03


Staphylococcus aureus




1958
SIM10000015F04


Staphylococcus aureus




1959
S1M10000015F06


Staphylococcus aureus




1960
S1M10000015F07


Staphylococcus aureus




1961
S1M10000015F08


Staphylococcus aureus




1962
S1M10000015F09


Staphylococcus aureus




1963
S1M10000015F10


Staphylococcus aureus




1964
S1M10000015G01


Staphylococcus aureus




1965
S1M10000015G02


Staphylococcus aureus




1966
S1M10000015G03


Staphylococcus aureus




1967
S1M10000015G04


Staphylococcus aureus




1968
S1M10000015G05


Staphylococcus aureus




1969
S1M10000015G06


Staphylococcus aureus




1970
S1M10000015G07


Staphylococcus aureus




1971
S1M10000015G08


Staphylococcus aureus




1972
SIM10000015G09


Staphylococcus aureus




1973
S1M10000015G10


Staphylococcus aureus




1974
S1M10000015G11


Staphylococcus aureus




1975
S1M10000015H04


Staphylococcus aureus




1976
S1M10000015H06


Staphylococcus aureus




1977
S1M10000016A03


Staphylococcus aureus




1978
S1M10000016A04


Staphylococcus aureus




1979
S1M10000016A06


Staphylococcus aureus




1980
S1M10000016A07


Staphylococcus aureus




1981
S1M10000016A09


Staphylococcus aureus




1982
S1M10000016A10


Staphylococcus aureus




1983
S1M10000016A12


Staphylococcus aureus




1984
S1M10000016B02


Staphylococcus aureus




1985
S1M10000016B05


Staphylococcus aureus




1986
S1M10000016B06


Staphylococcus aureus




1987
S1M10000016B07


Staphylococcus aureus




1988
S1M10000016B08


Staphylococcus aureus




1989
S1M10000016B09


Staphylococcus aureus




1990
S1M10000016B10


Staphylococcus aureus




1991
S1M10000016B11


Staphylococcus aureus




1992
S1M10000016B12


Staphylococcus aureus




1993
S1M10000016C01


Staphylococcus aureus




1994
S1M10000016C02


Staphylococcus aureus




1995
S1M10000016C04


Staphylococcus aureus




1996
S1M10000016C05


Staphylococcus aureus




1997
S1M10000016C06


Staphylococcus aureus




1998
S1M10000016C08


Staphylococcus aureus




1999
S1M10000016C09


Staphylococcus aureus




2000
S1M10000016C10


Staphylococcus aureus




2001
S1M10000016C11


Staphylococcus aureus




2002
S1M10000016C12


Staphylococcus aureus




2003
S1M10000016D01


Staphylococcus aureus




2004
S1M10000016D02


Staphylococcus aureus




2005
S1M10000016D04


Staphylococcus aureus




2006
S1M10000016D05


Staphylococcus aureus




2007
S1M10000016D06


Staphylococcus aureus




2008
S1M10000016D08


Staphylococcus aureus




2009
S1M10000016D09


Staphylococcus aureus




2010
S1M10000016D10


Staphylococcus aureus




2011
S1M10000016D11


Staphylococcus aureus




2012
S1M10000016E04


Staphylococcus aureus




2013
S1M10000016E05


Staphylococcus aureus




2014
S1M10000016E06


Staphylococcus aureus




2015
S1M10000016E07


Staphylococcus aureus




2016
S1M10000016E08


Staphylococcus aureus




2017
S1M10000016E09


Staphylococcus aureus




2018
S1M10000016E10


Staphylococcus aureus




2019
S1M10000016E11


Staphylococcus aureus




2020
S1M10000016E12


Staphylococcus aureus




2021
S1M10000016F02


Staphylococcus aureus




2022
S1M10000016F03


Staphylococcus aureus




2023
S1M10000016F05


Staphylococcus aureus




2024
S1M10000016F06


Staphylococcus aureus




2025
S1M10000016F08


Staphylococcus aureus




2026
S1M10000016F09


Staphylococcus aureus




2027
S1M10000016F11


Staphylococcus aureus




2028
S1M10000016G01


Staphylococcus aureus




2029
S1M10000016G03


Staphylococcus aureus




2030
S1M10000016G04


Staphylococcus aureus




2031
S1M10000016G05


Staphylococcus aureus




2032
S1M10000016H03


Staphylococcus aureus




2033
S1M10000016H04


Staphylococcus aureus




2034
S1M10000016H08


Staphylococcus aureus




2035
S1M10000016H10


Staphylococcus aureus




2036
S1M10000017A02


Staphylococcus aureus




2037
S1M10000017A03


Staphylococcus aureus




2038
S1M10000017A04


Staphylococcus aureus




2039
S1M10000017A08


Staphylococcus aureus




2040
S1M1OOOOO17A11


Staphylococcus aureus




2041
S1M10000017A12


Staphylococcus aureus




2042
S1M10000017B02


Staphylococcus aureus




2043
S1M10000017B05


Staphylococcus aureus




2044
S1M10000017B07


Staphylococcus aureus




2045
S1M10000017B08


Staphylococcus aureus




2046
S1M10000017B09


Staphylococcus aureus




2047
S1M10000017B10


Staphylococcus aureus




2048
S1M10000017B11


Staphylococcus aureus




2049
S1M10000017B12


Staphylococcus aureus




2050
S1M10000017C01


Staphylococcus aureus




2051
S1M10000017C03


Staphylococcus aureus




2052
S1M10000017C05


Staphylococcus aureus




2053
S1M10000017C08


Staphylococcus aureus




2054
S1M10000017C09


Staphylococcus aureus




2055
S1M10000017C10


Staphylococcus aureus




2056
S1M10000017C11


Staphylococcus aureus




2057
S1M10000017C12


Staphylococcus aureus




2058
S1M10000017D03


Staphylococcus aureus




2059
S1M10000017D09


Staphylococcus aureus




2060
S1M10000017D10


Staphylococcus aureus




2061
S1M10000017E04


Staphylococcus aureus




2062
S1M10000017E05


Staphylococcus aureus




2063
S1M10000017E08


Staphylococcus aureus




2064
S1M10000017E11


Staphylococcus aureus




2065
S1M10000017F01


Staphylococcus aureus




2066
S1M10000017FO4


Staphylococcus aureus




2067
S1M10000017F05


Staphylococcus aureus




2068
S1M10000017F06


Staphylococcus aureus




2069
S1M10000017F11


Staphylococcus aureus




2070
S1M10000017G02


Staphylococcus aureus




2071
S1M10000017G05


Staphylococcus aureus




2072
S1M10000017G06


Staphylococcus aureus




2073
S1M10000018A03


Staphylococcus aureus




2074
S1M10000018A04


Staphylococcus aureus




2075
S1M10000018A05


Staphylococcus aureus




2076
S1M10000018A06


Staphylococcus aureus




2077
S1M10000018A08


Staphylococcus aureus




2078
S1M10000018A09


Staphylococcus aureus




2079
S1M10000018A10


Staphylococcus aureus




2080
S1M10000018A11


Staphylococcus aureus




2081
S1M10000018B02


Staphylococcus aureus




2082
S1M10000018BO3


Staphylococcus aureus




2083
S1M10000018B05


Staphylococcus aureus




2084
S1M10000018B09


Staphylococcus aureus




2085
S1M10000018B10


Staphylococcus aureus




2086
S1M10000018B11


Staphylococcus aureus




2087
S1M10000018C01


Staphylococcus aureus




2088
S1M10000018C02


Staphylococcus aureus




2089
S1M10000018C03


Staphylococcus aureus




2090
S1M10000018C04


Staphylococcus aureus




2091
S1M10000018C05


Staphylococcus aureus




2092
S1M10000018C06


Staphylococcus aureus




2093
S1M10000018C08


Staphylococcus aureus




2094
S1M10000018C09


Staphylococcus aureus




2095
S1M10000018C10


Staphylococcus aureus




2096
S1M10000018C11


Staphylococcus aureus




2097
S1M10000018C12


Staphylococcus aureus




2098
S1M10000018D01


Staphylococcus aureus




2099
S1M10000018D02


Staphylococcus aureus




2100
S1M10000018D03


Staphylococcus aureus




2101
S1M10000018D04


Staphylococcus aureus




2102
S1M10000018D09


Staphylococcus aureus




2103
S1M10000018D10


Staphylococcus aureus




2104
S1M10000018D11


Staphylococcus aureus




2105
S1M10000018D12


Staphylococcus aureus




2106
S1M10000018E01


Staphylococcus aureus




2107
S1M10000018E02


Staphylococcus aureus




2108
S1M10000018E03


Staphylococcus aureus




2109
S1M10000018E04


Staphylococcus aureus




2110
S1M10000018E05


Staphylococcus aureus




2111
S1M10000018E08


Staphylococcus aureus




2112
S1M10000018E09


Staphylococcus aureus




2113
S1M10000018E11


Staphylococcus aureus




2114
S1M10000018E12


Staphylococcus aureus




2115
S1M10000018F03


Staphylococcus aureus




2116
S1M10000018F04


Staphylococcus aureus




2117
S1M10000018F07


Staphylococcus aureus




2118
S1M10000018F09


Staphylococcus aureus




2119
SIM10000018F10


Staphylococcus aureus




2120
S1M10000018F12


Staphylococcus aureus




2121
S1M10000018G03


Staphylococcus aureus




2122
S1M10000018G05


Staphylococcus aureus




2123
S1M10000018G07


Staphylococcus aureus




2124
S1M10000018G08


Staphylococcus aureus




2125
S1M10000018G09


Staphylococcus aureus




2126
S1M10000018G10


Staphylococcus aureus




2127
S1M10000018G12


Staphylococcus aureus




2128
S1M10000018H01


Staphylococcus aureus




2129
S1M10000018H02


Staphylococcus aureus




2130
S1M10000018H07


Staphylococcus aureus




2131
S1M10000018H09


Staphylococcus aureus




2132
S1M10000018H10


Staphylococcus aureus




2133
S1M10000019A02


Staphylococcus aureus




2134
S1M10000019A03


Staphylococcus aureus




2135
S1M10000019A05


Staphylococcus aureus




2136
S1M10000019A06


Staphylococcus aureus




2137
S1M10000019A07


Staphylococcus aureus




2138
S1M10000019A09


Staphylococcus aureus




2139
S1M10000019A11


Staphylococcus aureus




2140
S1M10000019A12


Staphylococcus aureus




2141
S1M10000019B03


Staphylococcus aureus




2142
S1M10000019B04


Staphylococcus aureus




2143
S1M10000019B07


Staphylococcus aureus




2144
S1M10000019B08


Staphylococcus aureus




2145
S1M10000019B09


Staphylococcus aureus




2146
S1M10000019B10


Staphylococcus aureus




2147
S1M10000019B11


Staphylococcus aureus




2148
S1M10000019B12


Staphylococcus aureus




2149
S1M10000019C01


Staphylococcus aureus




2150
S1M10000019C04


Staphylococcus aureus




2151
S1M10000019C05


Staphylococcus aureus




2152
S1M10000019C06


Staphylococcus aureus




2153
S1M10000019C07


Staphylococcus aureus




2154
S1M10000019C08


Staphylococcus aureus




2155
S1M10000019C11


Staphylococcus aureus




2156
S1M10000019C12


Staphylococcus aureus




2157
S1M10000019D01


Staphylococcus aureus




2158
S1M10000019D02


Staphylococcus aureus




2159
S1M10000019D04


Staphylococcus aureus




2160
S1M10000019D05


Staphylococcus aureus




2161
S1M10000019D06


Staphylococcus aureus




2162
S1M10000019D07


Staphylococcus aureus




2163
S1M10000019D09


Staphylococcus aureus




2164
S1M10000019D12


Staphylococcus aureus




2165
S1M10000019E01


Staphylococcus aureus




2166
S1M10000019E02


Staphylococcus aureus




2167
S1M10000019E07


Staphylococcus aureus




2168
S1M10000019F01


Staphylococcus aureus




2169
S1M10000019F05


Staphylococcus aureus




2170
S1M10000019F06


Staphylococcus aureus




2171
S1M10000019F08


Staphylococcus aureus




2172
S1M10000019F09


Staphylococcus aureus




2173
S1M10000019F11


Staphylococcus aureus




2174
S1M10000019G04


Staphylococcus aureus




2175
S1M10000019G07


Staphylococcus aureus




2176
S1M10000019G09


Staphylococcus aureus




2177
S1M10000019G10


Staphylococcus aureus




2178
S1M10000019G11


Staphylococcus aureus




2179
S1M10000019H05


Staphylococcus aureus




2180
S1M10000019H08


Staphylococcus aureus




2181
S1M10000020A05


Staphylococcus aureus




2182
S1M10000020A06


Staphylococcus aureus




2183
S1M10000020A07


Staphylococcus aureus




2184
S1M10000020A11


Staphylococcus aureus




2185
S1M10000020A12


Staphylococcus aureus




2186
S1M10000020B02


Staphylococcus aureus




2187
S1M10000020B03


Staphylococcus aureus




2188
S1M10000020B05


Staphylococcus aureus




2189
S1M10000020B06


Staphylococcus aureus




2190
S1M10000020B07


Staphylococcus aureus




2191
S1M10000020B09


Staphylococcus aureus




2192
S1M10000020B12


Staphylococcus aureus




2193
S1M10000020C09


Staphylococcus aureus




2194
S1M10000020C10


Staphylococcus aureus




2195
S1M10000020C11


Staphylococcus aureus




2196
S1M10000020D03


Staphylococcus aureus




2197
S1M10000020D04


Staphylococcus aureus




2198
S1M10000020D06


Staphylococcus aureus




2199
S1M10000020D07


Staphylococcus aureus




2200
S1M10000020D08


Staphylococcus aureus




2201
S1M10000020D09


Staphylococcus aureus




2202
S1M10000020D12


Staphylococcus aureus




2203
S1M10000020E01


Staphylococcus aureus




2204
S1M10000020E03


Staphylococcus aureus




2205
S1M10000020E04


Staphylococcus aureus




2206
S1M10000020E06


Staphylococcus aureus




2207
S1M10000020E08


Staphylococcus aureus




2208
S1M10000020E11


Staphylococcus aureus




2209
S1M10000020E12


Staphylococcus aureus




2210
S1M10000020F01


Staphylococcus aureus




2211
S1M10000020F05


Staphylococcus aureus




2212
S1M10000020F06


Staphylococcus aureus




2213
51M10000020F07


Staphylococcus aureus




2214
S1M10000020F09


Staphylococcus aureus




2215
S1M10000020F11


Staphylococcus aureus




2216
S1M10000020F12


Staphylococcus aureus




2217
S1M10000020G01


Staphylococcus aureus




2218
S1M10000020G05


Staphylococcus aureus




2219
S1M10000020G07


Staphylococcus aureus




2220
S1M10000020G08


Staphylococcus aureus




2221
S1M10000020G09


Staphylococcus aureus




2222
S1M10000020G10


Staphylococcus aureus




2223
S1M10000020G11


Staphylococcus aureus




2224
S1M10000020G12


Staphylococcus aureus




2225
S1M10000020H01


Staphylococcus aureus




2226
S1M10000020H02


Staphylococcus aureus




2227
S1M10000020H04


Staphylococcus aureus




2228
S1M10000020H06


Staphylococcus aureus




2229
S1M10000020H08


Staphylococcus aureus




2230
S1M10000020H10


Staphylococcus aureus




2231
S1M10000020H11


Staphylococcus aureus




2232
S1M10000021A04


Staphylococcus aureus




2233
S1M10000021A05


Staphylococcus aureus




2234
S1M10000021A06


Staphylococcus aureus




2235
S1M10000021A07


Staphylococcus aureus




2236
S1M10000021A08


Staphylococcus aureus




2237
S1M10000021A09


Staphylococcus aureus




2238
S1M10000021A10


Staphylococcus aureus




2239
S1M10000021B05


Staphylococcus aureus




2240
S1M10000021B06


Staphylococcus aureus




2241
S1M10000021B07


Staphylococcus aureus




2242
S1M10000021B10


Staphylococcus aureus




2243
S1M10000021C04


Staphylococcus aureus




2244
S1M10000021C05


Staphylococcus aureus




2245
S1M10000021C07


Staphylococcus aureus




2246
S1M10000021C08


Staphylococcus aureus




2247
S1M10000021C10


Staphylococcus aureus




2248
S1M10000021C11


Staphylococcus aureus




2249
S1M10000021C12


Staphylococcus aureus




2250
S1M10000021D01


Staphylococcus aureus




2251
S1M10000021D03


Staphylococcus aureus




2252
S1M10000021D04


Staphylococcus aureus




2253
S1M10000021D06


Staphylococcus aureus




2254
S1M10000021D09


Staphylococcus aureus




2255
S1M10000021D10


Staphylococcus aureus




2256
S1M10000021E01


Staphylococcus aureus




2257
S1M10000021E02


Staphylococcus aureus




2258
S1M10000021E03


Staphylococcus aureus




2259
S1M10000021E05


Staphylococcus aureus




2260
S1M10000021E06


Staphylococcus aureus




2261
S1M10000021E09


Staphylococcus aureus




2262
S1M10000021E12


Staphylococcus aureus




2263
S1M10000021F02


Staphylococcus aureus




2264
S1M10000021F04


Staphylococcus aureus




2265
S1M10000021F05


Staphylococcus aureus




2266
S1M10000021F06


Staphylococcus aureus




2267
S1M10000021F07


Staphylococcus aureus




2268
S1M10000021F09


Staphylococcus aureus




2269
S1M10000021F11


Staphylococcus aureus




2270
S1M10000021G01


Staphylococcus aureus




2271
S1M10000021G03


Staphylococcus aureus




2272
S1M10000021G08


Staphylococcus aureus




2273
S1M10000021H04


Staphylococcus aureus




2274
S1M10000021H05


Staphylococcus aureus




2275
S1M10000021H07


Staphylococcus aureus




2276
S1M10000021H08


Staphylococcus aureus




2277
S1M10000021H11


Staphylococcus aureus




2278
S1M10000022A02


Staphylococcus aureus




2279
S1M10000022A03


Staphylococcus aureus




2280
S1M10000022A05


Staphylococcus aureus




2281
S1M10000022A08


Staphylococcus aureus




2282
S1M10000022A09


Staphylococcus aureus




2283
S1M10000022A12


Staphylococcus aureus




2284
S1M10000022B02


Staphylococcus aureus




2285
S1M10000022B03


Staphylococcus aureus




2286
S1M10000022B05


Staphylococcus aureus




2287
S1M10000022B06


Staphylococcus aureus




2288
S1M10000022B08


Staphylococcus aureus




2289
S1M10000022B09


Staphylococcus aureus




2290
S1M10000022B10


Staphylococcus aureus




2291
S1M10000022B11


Staphylococcus aureus




2292
S1M10000022B12


Staphylococcus aureus




2293
S1M10000022C02


Staphylococcus aureus




2294
S1M10000022C03


Staphylococcus aureus




2295
S1M10000022C04


Staphylococcus aureus




2296
S1M10000022C06


Staphylococcus aureus




2297
S1M10000022C07


Staphylococcus aureus




2298
S1M10000022C08


Staphylococcus aureus




2299
S1M10000022C11


Staphylococcus aureus




2300
S1M10000022D03


Staphylococcus aureus




2301
S1M10000022D05


Staphylococcus aureus




2302
S1M10000022D06


Staphylococcus aureus




2303
S1M10000022D07


Staphylococcus aureus




2304
S1M10000022D08


Staphylococcus aureus




2305
S1M10000022D09


Staphylococcus aureus




2306
S1M10000022D11


Staphylococcus aureus




2307
S1M10000022E01


Staphylococcus aureus




2308
S1M10000022E03


Staphylococcus aureus




2309
S1M10000022E05


Staphylococcus aureus




2310
S1M10000022E09


Staphylococcus aureus




2311
S1M10000022F04


Staphylococcus aureus




2312
S1M10000022F06


Staphylococcus aureus




2313
S1M10000022F07


Staphylococcus aureus




2314
S1M10000022F08


Staphylococcus aureus




2315
S1M10000022F11


Staphylococcus aureus




2316
S1M10000022G03


Staphylococcus aureus




2317
S1M10000022G04


Staphylococcus aureus




2318
S1M10000022G07


Staphylococcus aureus




2319
S1M10000022G08


Staphylococcus aureus




2320
S1M10000022G12


Staphylococcus aureus




2321
S1M10000022H03


Staphylococcus aureus




2322
S1M10000022H05


Staphylococcus aureus




2323
S1M10000022H06


Staphylococcus aureus




2324
S1M10000022H07


Staphylococcus aureus




2325
S1M10000022H08


Staphylococcus aureus




2326
S1M10000022H11


Staphylococcus aureus




2327
S1M10000023A05


Staphylococcus aureus




2328
S1M10000023A09


Staphylococcus aureus




2329
S1M10000023A11


Staphylococcus aureus




2330
S1M10000023A12


Staphylococcus aureus




2331
S1M10000023B01


Staphylococcus aureus




2332
S1M10000023B03


Staphylococcus aureus




2333
S1M10000023B07


Staphylococcus aureus




2334
S1M10000023B08


Staphylococcus aureus




2335
S1M10000023B09


Staphylococcus aureus




2336
S1M10000023B10


Staphylococcus aureus




2337
S1M10000023B11


Staphylococcus aureus




2338
S1M10000023B12


Staphylococcus aureus




2339
S1M10000023C02


Staphylococcus aureus




2340
S1M10000023C10


Staphylococcus aureus




2341
S1M10000023C11


Staphylococcus aureus




2342
S1M10000023C12


Staphylococcus aureus




2343
S1M10000023D01


Staphylococcus aureus




2344
S1M10000023D03


Staphylococcus aureus




2345
S1M10000023D04


Staphylococcus aureus




2346
S1M10000023D07


Staphylococcus aureus




2347
S1M10000023D08


Staphylococcus aureus




2348
S1M10000023D09


Staphylococcus aureus




2349
S1M10000023D10


Staphylococcus aureus




2350
S1M10000023D12


Staphylococcus aureus




2351
S1M10000023E01


Staphylococcus aureus




2352
S1M10000023E04


Staphylococcus aureus




2353
S1M10000023E07


Staphylococcus aureus




2354
S1M10000023E10


Staphylococcus aureus




2355
S1M10000023E11


Staphylococcus aureus




2356
S1M10000023F04


Staphylococcus aureus




2357
S1M10000023F07


Staphylococcus aureus




2358
S1M10000023F08


Staphylococcus aureus




2359
S1M10000023F10


Staphylococcus aureus




2360
S1M10000023F11


Staphylococcus aureus




2361
S1M10000023F12


Staphylococcus aureus




2362
S1M10000023G02


Staphylococcus aureus




2363
S1M10000023G03


Staphylococcus aureus




2364
S1M10000023G06


Staphylococcus aureus




2365
S1M10000023G07


Staphylococcus aureus




2366
S1M10000023G08


Staphylococcus aureus




2367
S1M10000023G09


Staphylococcus aureus




2368
S1M10000023G11


Staphylococcus aureus




2369
S1M10000023H02


Staphylococcus aureus




2370
S1M10000023H06


Staphylococcus aureus




2371
S1M10000023H07


Staphylococcus aureus




2372
S1M10000023H09


Staphylococcus aureus




2373
S1M10000023H10


Staphylococcus aureus




2374
S1M10000024A02


Staphylococcus aureus




2375
S1M10000024A04


Staphylococcus aureus




2376
S1M10000024A07


Staphylococcus aureus




2377
S1M10000024A08


Staphylococcus aureus




2378
S1M10000024A11


Staphylococcus aureus




2379
S1M10000024B05


Staphylococcus aureus




2380
S1M10000024B06


Staphylococcus aureus




2381
S1M10000024B08


Staphylococcus aureus




2382
S1M10000024B09


Staphylococcus aureus




2383
S1M10000024B10


Staphylococcus aureus




2384
S1M10000024C02


Staphylococcus aureus




2385
S1M10000024C04


Staphylococcus aureus




2386
S1M10000024C07


Staphylococcus aureus




2387
S1M10000024D02


Staphylococcus aureus




2388
S1M10000024D03


Staphylococcus aureus




2389
S1M10000024D10


Staphylococcus aureus




2390
S1M10000024D11


Staphylococcus aureus




2391
S1M10000024E03


Staphylococcus aureus




2392
S1M10000024E05


Staphylococcus aureus




2393
S1M10000024E06


Staphylococcus aureus




2394
S1M10000024E07


Staphylococcus aureus




2395
S1M10000024E08


Staphylococcus aureus




2396
S1M10000024F02


Staphylococcus aureus




2397
S1M10000024F03


Staphylococcus aureus




2398
S1M10000024F05


Staphylococcus aureus




2399
S1M10000024F08


Staphylococcus aureus




2400
S1M10000024F10


Staphylococcus aureus




2401
S1M10000024G05


Staphylococcus aureus




2402
S1M10000024G06


Staphylococcus aureus




2403
S1M10000024G07


Staphylococcus aureus




2404
S1M10000024G08


Staphylococcus aureus




2405
S1M10000024G10


Staphylococcus aureus




2406
S1M10000024G12


Staphylococcus aureus




2407
S1M10000024H02


Staphylococcus aureus




2408
S1M10000024H04


Staphylococcus aureus




2409
S1M10000024H07


Staphylococcus aureus




2410
S1M10000024H08


Staphylococcus aureus




2411
S1M10000025A03


Staphylococcus aureus




2412
S1M10000025A08


Staphylococcus aureus




2413
S1M10000025A09


Staphylococcus aureus




2414
S1M10000025A10


Staphylococcus aureus




2415
S1M10000025B01


Staphylococcus aureus




2416
S1M10000025B02


Staphylococcus aureus




2417
S1M10000025B03


Staphylococcus aureus




2418
S1M10000025B05


Staphylococcus aureus




2419
S1M10000025B06


Staphylococcus aureus




2420
S1M10000025B09


Staphylococcus aureus




2421
S1M10000025B12


Staphylococcus aureus




2422
S1M10000025C01


Staphylococcus aureus




2423
S1M10000025C03


Staphylococcus aureus




2424
S1M10000025C05


Staphylococcus aureus




2425
S1M10000025C09


Staphylococcus aureus




2426
S1M10000025C10


Staphylococcus aureus




2427
S1M10000025C11


Staphylococcus aureus




2428
S1M10000025D01


Staphylococcus aureus




2429
S1M10000025D03


Staphylococcus aureus




2430
S1M10000025D04


Staphylococcus aureus




2431
S1M10000025D06


Staphylococcus aureus




2432
S1M10000025D08


Staphylococcus aureus




2433
S1M10000025D09


Staphylococcus aureus




2434
S1M10000025D10


Staphylococcus aureus




2435
S1M10000025E01


Staphylococcus aureus




2436
S1M10000025E04


Staphylococcus aureus




2437
S1M10000025E09


Staphylococcus aureus




2438
S1M10000025E11


Staphylococcus aureus




2439
S1M10000025F03


Staphylococcus aureus




2440
S1M10000025F05


Staphylococcus aureus




2441
S1M10000025F08


Staphylococcus aureus




2442
S1M10000025F09


Staphylococcus aureus




2443
S1M1000002SF10


Staphylococcus aureus




2444
S1M1000002SF12


Staphylococcus aureus




2445
S1M10000025G04


Staphylococcus aureus




2446
S1M10000025G06


Staphylococcus aureus




2447
S1M10000025G10


Staphylococcus aureus




2448
S1M10000025H05


Staphylococcus aureus




2449
S1M10000025H06


Staphylococcus aureus




2450
S1M10000025H07


Staphylococcus aureus




2451
S1M10000025H10


Staphylococcus aureus




2452
S1M10000026A02


Staphylococcus aureus




2453
S1M10000026A04


Staphylococcus aureus




2454
S1M10000026A05


Staphylococcus aureus




2455
S1M10000026A06


Staphylococcus aureus




2456
S1M10000026A07


Staphylococcus aureus




2457
S1M10000026A08


Staphylococcus aureus




2458
S1M10000026A09


Staphylococcus aureus




2459
S1M10000026A10


Staphylococcus aureus




2460
S1M10000026A11


Staphylococcus aureus




2461
S1M10000026B02


Staphylococcus aureus




2462
S1M10000026B03


Staphylococcus aureus




2463
S1M10000026B05


Staphylococcus aureus




2464
S1M10000026B06


Staphylococcus aureus




2465
S1M10000026B07


Staphylococcus aureus




2466
S1M10000026B10


Staphylococcus aureus




2467
S1M10000026B11


Staphylococcus aureus




2468
S1M10000026B12


Staphylococcus aureus




2469
S1M10000026C01


Staphylococcus aureus




2470
S1M10000026C06


Staphylococcus aureus




2471
S1M10000026C07


Staphylococcus aureus




2472
S1M10000026C08


Staphylococcus aureus




2473
S1M10000026C11


Staphylococcus aureus




2474
S1M10000026C12


Staphylococcus aureus




2475
S1M10000026D04


Staphylococcus aureus




2476
S1M10000026D05


Staphylococcus aureus




2477
S1M10000026D06


Staphylococcus aureus




2478
S1M10000026D07


Staphylococcus aureus




2479
S1M10000026D08


Staphylococcus aureus




2480
S1M10000026D10


Staphylococcus aureus




2481
S1M10000026D12


Staphylococcus aureus




2482
S1M10000026E01


Staphylococcus aureus




2483
S1M10000026E07


Staphylococcus aureus




2484
S1M10000026E09


Staphylococcus aureus




2485
S1M10000026E10


Staphylococcus aureus




2486
S1M10000026E11


Staphylococcus aureus




2487
S1M10000026E12


Staphylococcus aureus




2488
S1M10000026F01


Staphylococcus aureus




2489
S1M10000026F03


Staphylococcus aureus




2490
S1M10000026F04


Staphylococcus aureus




2491
S1M10000026F05


Staphylococcus aureus




2492
S1M10000026F06


Staphylococcus aureus




2493
S1M10000026F07


Staphylococcus aureus




2494
S1M10000026F08


Staphylococcus aureus




2495
S1M10000026F09


Staphylococcus aureus




2496
S1M10000026F10


Staphylococcus aureus




2497
S1M10000026F11


Staphylococcus aureus




2498
S1M10000026F12


Staphylococcus aureus




2499
S1M10000026G01


Staphylococcus aureus




2500
S1M10000026G03


Staphylococcus aureus




2501
S1M10000026G04


Staphylococcus aureus




2502
S1M10000026G05


Staphylococcus aureus




2503
S1M10000026G06


Staphylococcus aureus




2504
S1M10000026G07


Staphylococcus aureus




2505
S1M10000026G09


Staphylococcus aureus




2506
S1M10000026G10


Staphylococcus aureus




2507
S1M10000026G12


Staphylococcus aureus




2508
S1M10000026H01


Staphylococcus aureus




2509
S1M10000026H02


Staphylococcus aureus




2510
S1M10000026H03


Staphylococcus aureus




2511
S1M10000026H04


Staphylococcus aureus




2512
S1M10000026H05


Staphylococcus aureus




2513
S1M10000026H07


Staphylococcus aureus




2514
S1M10000026H09


Staphylococcus aureus




2515
S1M10000026H10


Staphylococcus aureus




2516
S1M10000027A04


Staphylococcus aureus




2517
S1M10000027A05


Staphylococcus aureus




2518
S1M10000027A08


Staphylococcus aureus




2519
S1M10000027A11


Staphylococcus aureus




2520
S1M10000027B04


Staphylococcus aureus




2521
S1M10000027B06


Staphylococcus aureus




2522
S1M10000027B07


Staphylococcus aureus




2523
S1M10000027B08


Staphylococcus aureus




2524
S1M10000027B09


Staphylococcus aureus




2525
S1M10000027B11


Staphylococcus aureus




2526
S1M10000027C02


Staphylococcus aureus




2527
S1M10000027C04


Staphylococcus aureus




2528
S1M10000027C05


Staphylococcus aureus




2529
S1M10000027C06


Staphylococcus aureus




2530
S1M10000027C08


Staphylococcus aureus




2531
S1M10000027C09


Staphylococcus aureus




2532
S1M10000027D02


Staphylococcus aureus




2533
S1M10000027D03


Staphylococcus aureus




2534
S1M10000027D05


Staphylococcus aureus




2535
S1M10000027D06


Staphylococcus aureus




2536
S1M10000027D08


Staphylococcus aureus




2537
S1M10000027D09


Staphylococcus aureus




2538
S1M10000027D10


Staphylococcus aureus




2539
S1M10000027D11


Staphylococcus aureus




2540
S1M10000027E05


Staphylococcus aureus




2541
S1M10000027E06


Staphylococcus aureus




2542
S1M10000027E07


Staphylococcus aureus




2543
S1M10000027E08


Staphylococcus aureus




2544
S1M10000027E09


Staphylococcus aureus




2545
S1M10000027E11


Staphylococcus aureus




2546
S1M10000027F01


Staphylococcus aureus




2547
S1M10000027F02


Staphylococcus aureus




2548
S1M10000027F05


Staphylococcus aureus




2549
S1M10000027F06


Staphylococcus aureus




2550
S1M10000027F08


Staphylococcus aureus




2551
S1M10000027F09


Staphylococcus aureus




2552
S1M10000027G03


Staphylococcus aureus




2553
S1M10000027G04


Staphylococcus aureus




2554
S1M10000027G05


Staphylococcus aureus




2555
S1M10000027G06


Staphylococcus aureus




2556
S1M10000027G07


Staphylococcus aureus




2557
S1M10000027G09


Staphylococcus aureus




2558
S1M10000027G11


Staphylococcus aureus




2559
S1M10000027H02


Staphylococcus aureus




2560
S1M10000027H04


Staphylococcus aureus




2561
S1M10000027H05


Staphylococcus aureus




2562
S1M10000027H06


Staphylococcus aureus




2563
S1M10000027H07


Staphylococcus aureus




2564
S1M10000027H08


Staphylococcus aureus




2565
S1M10000027H09


Staphylococcus aureus




2566
S1M10000027H10


Staphylococcus aureus




2567
S1M10000027H11


Staphylococcus aureus




2568
S1M10000028A02


Staphylococcus aureus




2569
S1M10000028A04


Staphylococcus aureus




2570
S1M10000028A06


Staphylococcus aureus




2571
S1M10000028A08


Staphylococcus aureus




2572
S1M10000028B01


Staphylococcus aureus




2573
S1M10000028B02


Staphylococcus aureus




2574
S1M10000028B03


Staphylococcus aureus




2575
S1M10000028B04


Staphylococcus aureus




2576
S1M10000028B05


Staphylococcus aureus




2577
S1M10000028B06


Staphylococcus aureus




2578
S1M10000028B08


Staphylococcus aureus




2579
S1M10000028B09


Staphylococcus aureus




2580
S1M10000028C02


Staphylococcus aureus




2581
S1M10000028C04


Staphylococcus aureus




2582
S1M10000028C05


Staphylococcus aureus




2583
S1M10000028C06


Staphylococcus aureus




2584
S1M10000028C08


Staphylococcus aureus




2585
S1M10000028D03


Staphylococcus aureus




2586
S1M10000028D04


Staphylococcus aureus




2587
S1M10000028D06


Staphylococcus aureus




2588
S1M10000028D07


Staphylococcus aureus




2589
S1M10000028D08


Staphylococcus aureus




2590
S1M10000028D09


Staphylococcus aureus




2591
S1M10000028E01


Staphylococcus aureus




2592
S1M10000028E03


Staphylococcus aureus




2593
S1M10000028E08


Staphylococcus aureus




2594
S1M10000028F01


Staphylococcus aureus




2595
S1M10000028F03


Staphylococcus aureus




2596
S1M10000028F04


Staphylococcus aureus




2597
S1M10000028F05


Staphylococcus aureus




2598
S1M10000028F06


Staphylococcus aureus




2599
S1M10000028F07


Staphylococcus aureus




2600
S1M10000028G01


Staphylococcus aureus




2601
S1M10000028G02


Staphylococcus aureus




2602
S1M10000028G03


Staphylococcus aureus




2603
S1M10000028G04


Staphylococcus aureus




2604
S1M10000028G05


Staphylococcus aureus




2605
S1M10000028G06


Staphylococcus aureus




2606
S1M10000028G08


Staphylococcus aureus




2607
S1M10000028H03


Staphylococcus aureus




2608
S1M10000028H04


Staphylococcus aureus




2609
S1M10000028H05


Staphylococcus aureus




2610
S1M10000029A02


Staphylococcus aureus




2611
S1M10000029A04


Staphylococcus aureus




2612
S1M10000029A09


Staphylococcus aureus




2613
S1M10000029A10


Staphylococcus aureus




2614
S1M10000029A11


Staphylococcus aureus




2615
S1M10000029A12


Staphylococcus aureus




2616
S1M10000029B02


Staphylococcus aureus




2617
S1M10000029B03


Staphylococcus aureus




2618
S1M10000029B04


Staphylococcus aureus




2619
S1M10000029B05


Staphylococcus aureus




2620
S1M10000029B06


Staphylococcus aureus




2621
S1M10000029B08


Staphylococcus aureus




2622
S1M10000029B10


Staphylococcus aureus




2623
S1M10000029C02


Staphylococcus aureus




2624
S1M10000029C03


Staphylococcus aureus




2625
S1M10000029C05


Staphylococcus aureus




2626
S1M10000029C07


Staphylococcus aureus




2627
S1M10000029C09


Staphylococcus aureus




2628
S1M10000029C10


Staphylococcus aureus




2629
S1M10000029C12


Staphylococcus aureus




2630
S1M10000029D02


Staphylococcus aureus




2631
S1M10000029D05


Staphylococcus aureus




2632
S1M10000029D09


Staphylococcus aureus




2633
S1M10000029D10


Staphylococcus aureus




2634
S1M10000029D12


Staphylococcus aureus




2635
S1M10000029E02


Staphylococcus aureus




2636
S1M10000029E05


Staphylococcus aureus




2637
S1M10000029E10


Staphylococcus aureus




2638
S1M10000029E11


Staphylococcus aureus




2639
S1M10000029F01


Staphylococcus aureus




2640
S1M10000029F02


Staphylococcus aureus




2641
S1M10000029F04


Staphylococcus aureus




2642
S1M10000029F09


Staphylococcus aureus




2643
S1M10000029F10


Staphylococcus aureus




2644
S1M10000029F11


Staphylococcus aureus




2645
S1M10000029F12


Staphylococcus aureus




2646
S1M10000029G01


Staphylococcus aureus




2647
S1M10000029G02


Staphylococcus aureus




2648
S1M10000029G03


Staphylococcus aureus




2649
S1M10000029G05


Staphylococcus aureus




2650
S1M10000029G07


Staphylococcus aureus




2651
S1M10000029G08


Staphylococcus aureus




2652
S1M10000029G12


Staphylococcus aureus




2653
S1M10000029H01


Staphylococcus aureus




2654
S1M10000029H05


Staphylococcus aureus




2655
S1M10000029H06


Staphylococcus aureus




2656
S1M10000029H08


Staphylococcus aureus




2657
S1M10000029H09


Staphylococcus aureus




2658
S1M10000029H10


Staphylococcus aureus




2659
S1M10000030A02


Staphylococcus aureus




2660
S1M10000030A05


Staphylococcus aureus




2661
S1M10000030A09


Staphylococcus aureus




2662
S1M10000030A10


Staphylococcus aureus




2663
S1M10000030A11


Staphylococcus aureus




2664
S1M10000030B02


Staphylococcus aureus




2665
S1M10000030B05


Staphylococcus aureus




2666
S1M10000030B07


Staphylococcus aureus




2667
S1M10000030B09


Staphylococcus aureus




2668
S1M10000030C02


Staphylococcus aureus




2669
S1M10000030C03


Staphylococcus aureus




2670
S1M10000030C04


Staphylococcus aureus




2671
S1M10000030C05


Staphylococcus aureus




2672
S1M10000030C08


Staphylococcus aureus




2673
S1M10000030C09


Staphylococcus aureus




2674
S1M10000030C10


Staphylococcus aureus




2675
S1M10000030C12


Staphylococcus aureus




2676
S1M10000030D01


Staphylococcus aureus




2677
S1M10000030D02


Staphylococcus aureus




2678
S1M10000030D03


Staphylococcus aureus




2679
S1M10000030D05


Staphylococcus aureus




2680
S1M10000030D06


Staphylococcus aureus




2681
S1M10000030D07


Staphylococcus aureus




2682
S1M10000030D09


Staphylococcus aureus




2683
S1M10000030D10


Staphylococcus aureus




2684
S1M1000003OD11


Staphylococcus aureus




2685
S1M10000030E02


Staphylococcus aureus




2686
S1M10000030E06


Staphylococcus aureus




2687
S1M10000030E07


Staphylococcus aureus




2688
S1M10000030E11


Staphylococcus aureus




2689
S1M10000030E12


Staphylococcus aureus




2690
S1M10000030F01


Staphylococcus aureus




2691
S1M10000030F07


Staphylococcus aureus




2692
S1M10000030F08


Staphylococcus aureus




2693
S1M10000030F09


Staphylococcus aureus




2694
S1M10000030F10


Staphylococcus aureus




2695
S1M10000030G03


Staphylococcus aureus




2696
S1M10000030G05


Staphylococcus aureus




2697
S1M10000030G07


Staphylococcus aureus




2698
S1M10000030G08


Staphylococcus aureus




2699
S1M10000030G09


Staphylococcus aureus




2700
S1M10000030G10


Staphylococcus aureus




2701
S1M10000030G11


Staphylococcus aureus




2702
S1M10000030G12


Staphylococcus aureus




2703
S1M10000030H01


Staphylococcus aureus




2704
S1M10000030H02


Staphylococcus aureus




2705
S1M10000030H03


Staphylococcus aureus




2706
S1M10000030H05


Staphylococcus aureus




2707
S1M10000030H07


Staphylococcus aureus




2708
S1M10000030H09


Staphylococcus aureus




2709
S1M10000031A03


Staphylococcus aureus




2710
S1M10000031A08


Staphylococcus aureus




2711
S1M10000031A10


Staphylococcus aureus




2712
S1M10000031B01


Staphylococcus aureus




2713
S1M10000031B02


Staphylococcus aureus




2714
S1M10000031B04


Staphylococcus aureus




2715
S1M10000031B11


Staphylococcus aureus




2716
S1M10000031B12


Staphylococcus aureus




2717
S1M10000031C04


Staphylococcus aureus




2718
S1M10000031C07


Staphylococcus aureus




2719
S1M10000031C09


Staphylococcus aureus




2720
S1M10000031C11


Staphylococcus aureus




2721
S1M10000031D06


Staphylococcus aureus




2722
S1M10000031D07


Staphylococcus aureus




2723
S1M10000031DO8


Staphylococcus aureus




2724
S1M10000031D09


Staphylococcus aureus




2725
S1M10000031E02


Staphylococcus aureus




2726
S1M10000031E03


Staphylococcus aureus




2727
S1M10000031EO4


Staphylococcus aureus




2728
S1M10000031E07


Staphylococcus aureus




2729
S1M10000031E08


Staphylococcus aureus




2730
S1M10000031E10


Staphylococcus aureus




2731
S1M10000031E12


Staphylococcus aureus




2732
S1M10000031F02


Staphylococcus aureus




2733
S1M10000031F03


Staphylococcus aureus




2734
S1M10000031F04


Staphylococcus aureus




2735
S1M10000031F05


Staphylococcus aureus




2736
S1M10000031F08


Staphylococcus aureus




2737
S1M10000031F10


Staphylococcus aureus




2738
S1M10000031F11


Staphylococcus aureus




2739
S1M10000031F12


Staphylococcus aureus




2740
S1M10000031G02


Staphylococcus aureus




2741
S1M10000031G03


Staphylococcus aureus




2742
S1M10000031G04


Staphylococcus aureus




2743
S1M10000031G06


Staphylococcus aureus




2744
S1M10000031G09


Staphylococcus aureus




2745
S1M10000031G10


Staphylococcus aureus




2746
S1M10000031G11


Staphylococcus aureus




2747
S1M10000031H01


Staphylococcus aureus




2748
S1M10000031H02


Staphylococcus aureus




2749
S1M10000031H06


Staphylococcus aureus




2750
S1M10000031H09


Staphylococcus aureus




2751
S1M10000031H11


Staphylococcus aureus




2752
S1M10000032A03


Staphylococcus aureus




2753
S1M10000032A05


Staphylococcus aureus




2754
S1M10000032A06


Staphylococcus aureus




2755
S1M10000032A07


Staphylococcus aureus




2756
S1M10000032A08


Staphylococcus aureus




2757
S1M10000032A10


Staphylococcus aureus




2758
S1M10000032B01


Staphylococcus aureus




2759
S1M10000032B05


Staphylococcus aureus




2760
S1M10000032B07


Staphylococcus aureus




2761
S1M10000032B08


Staphylococcus aureus




2762
S1M10000032B11


Staphylococcus aureus




2763
S1M10000032B12


Staphylococcus aureus




2764
S1M10000032C01


Staphylococcus aureus




2765
S1M10000032C03


Staphylococcus aureus




2766
S1M10000032C04


Staphylococcus aureus




2767
S1M10000032C05


Staphylococcus aureus




2768
S1M10000032C09


Staphylococcus aureus




2769
S1M10000032C10


Staphylococcus aureus




2770
S1M10000032C11


Staphylococcus aureus




2771
S1M10000032C12


Staphylococcus aureus




2772
S1M10000032D03


Staphylococcus aureus




2773
S1M10000032D06


Staphylococcus aureus




2774
S1M10000032D07


Staphylococcus aureus




2775
S1M10000032D09


Staphylococcus aureus




2776
S1M10000032D11


Staphylococcus aureus




2777
S1M10000032E02


Staphylococcus aureus




2778
S1M10000032E03


Staphylococcus aureus




2779
S1M10000032E04


Staphylococcus aureus




2780
S1M10000032E06


Staphylococcus aureus




2781
S1M10000032E08


Staphylococcus aureus




2782
S1M10000032E09


Staphylococcus aureus




2783
S1M10000032E10


Staphylococcus aureus




2784
S1M10000032E11


Staphylococcus aureus




2785
S1M10000032E12


Staphylococcus aureus




2786
S1M10000032F01


Staphylococcus aureus




2787
S1M10000032F04


Staphylococcus aureus




2788
S1M10000032F05


Staphylococcus aureus




2789
S1M10000032F10


Staphylococcus aureus




2790
S1M10000032F11


Staphylococcus aureus




2791
S1M10000032F12


Staphylococcus aureus




2792
S1M10000032G02


Staphylococcus aureus




2793
S1M10000032G03


Staphylococcus aureus




2794
S1M10000032G04


Staphylococcus aureus




2795
S1M10000032G06


Staphylococcus aureus




2796
S1M10000032G08


Staphylococcus aureus




2797
S1M10000032G10


Staphylococcus aureus




2798
S1M10000032G12


Staphylococcus aureus




2799
S1M10000032H01


Staphylococcus aureus




2800
S1M10000032H04


Staphylococcus aureus




2801
S1M10000032H07


Staphylococcus aureus




2802
S1M10000032H09


Staphylococcus aureus




2803
S1M10000032H11


Staphylococcus aureus




2804
S1M10000033A02


Staphylococcus aureus




2805
S1M10000033A07


Staphylococcus aureus




2806
S1M10000033A08


Staphylococcus aureus




2807
S1M10000033A10


Staphylococcus aureus




2808
S1M10000033B02


Staphylococcus aureus




2809
S1M10000033B07


Staphylococcus aureus




2810
S1M10000033B08


Staphylococcus aureus




2811
S1M10000033B11


Staphylococcus aureus




2812
S1M10000033B12


Staphylococcus aureus




2813
S1M10000033C04


Staphylococcus aureus




2814
S1M10000033D02


Staphylococcus aureus




2815
S1M10000033D03


Staphylococcus aureus




2816
S1M10000033D04


Staphylococcus aureus




2817
S1M10000033D05


Staphylococcus aureus




2818
S1M10000033D06


Staphylococcus aureus




2819
S1M10000033D10


Staphylococcus aureus




2820
S1M10000033D12


Staphylococcus aureus




2821
S1M10000033E04


Staphylococcus aureus




2822
S1M10000033E10


Staphylococcus aureus




2823
S1M10000033E12


Staphylococcus aureus




2824
S1M10000033F02


Staphylococcus aureus




2825
S1M10000033F03


Staphylococcus aureus




2826
S1M10000033F06


Staphylococcus aureus




2827
S1M10000033F07


Staphylococcus aureus




2828
S1M10000033F09


Staphylococcus aureus




2829
S1M10000033F11


Staphylococcus aureus




2830
S1M10000033G05


Staphylococcus aureus




2831
S1M10000033G07


Staphylococcus aureus




2832
S1M10000033G09


Staphylococcus aureus




2833
S1M10000033G10


Staphylococcus aureus




2834
S1M10000033G11


Staphylococcus aureus




2835
S1M10000033G12


Staphylococcus aureus




2836
S1M10000033H01


Staphylococcus aureus




2837
S1M10000033H02


Staphylococcus aureus




2838
S1M10000033H03


Staphylococcus aureus




2839
S1M10000033H07


Staphylococcus aureus




2840
S1M10000033H08


Staphylococcus aureus




2841
S1M10000033H09


Staphylococcus aureus




2842
S1M10000033H10


Staphylococcus aureus




2843
S1M10000033H11


Staphylococcus aureus




2844
S1M10000034A02


Staphylococcus aureus




2845
S1M10000034A03


Staphylococcus aureus




2846
S1M10000034A04


Staphylococcus aureus




2847
S1M10000034A05


Staphylococcus aureus




2848
S1M10000034A08


Staphylococcus aureus




2849
S1M10000034A09


Staphylococcus aureus




2850
S1M10000034A11


Staphylococcus aureus




2851
S1M10000034A12


Staphylococcus aureus




2852
S1M10000034B03


Staphylococcus aureus




2853
S1M10000034B05


Staphylococcus aureus




2854
S1M10000034B06


Staphylococcus aureus




2855
S1M10000034B07


Staphylococcus aureus




2856
S1M10000034B08


Staphylococcus aureus




2857
S1M10000034B09


Staphylococcus aureus




2858
S1M10000034B10


Staphylococcus aureus




2859
S1M10000034B12


Staphylococcus aureus




2860
S1M10000034C02


Staphylococcus aureus




2861
S1M10000034C06


Staphylococcus aureus




2862
S1M10000034C07


Staphylococcus aureus




2863
S1M10000034C09


Staphylococcus aureus




2864
S1M10000034C12


Staphylococcus aureus




2865
S1M10000034D01


Staphylococcus aureus




2866
S1M10000034D05


Staphylococcus aureus




2867
S1M10000034D06


Staphylococcus aureus




2868
S1M10000034D07


Staphylococcus aureus




2869
S1M10000034D08


Staphylococcus aureus




2870
S1M10000034D10


Staphylococcus aureus




2871
S1M10000034D11


Staphylococcus aureus




2872
S1M10000034D12


Staphylococcus aureus




2873
S1M10000034E01


Staphylococcus aureus




2874
S1M10000034E02


Staphylococcus aureus




2875
S1M10000034E04


Staphylococcus aureus




2876
S1M10000034E05


Staphylococcus aureus




2877
S1M10000034E06


Staphylococcus aureus




2878
S1M10000034E07


Staphylococcus aureus




2879
S1M10000034E10


Staphylococcus aureus




2880
S1M10000034E11


Staphylococcus aureus




2881
S1M10000034E12


Staphylococcus aureus




2882
S1M10000034F01


Staphylococcus aureus




2883
S1M10000034F02


Staphylococcus aureus




2884
S1M10000034F03


Staphylococcus aureus




2885
S1M10000034F04


Staphylococcus aureus




2886
S1M10000034F05


Staphylococcus aureus




2887
S1M10000034F07


Staphylococcus aureus




2888
S1M10000034F08


Staphylococcus aureus




2889
S1M10000034F09


Staphylococcus aureus




2890
S1M10000034F10


Staphylococcus aureus




2891
S1M10000034F12


Staphylococcus aureus




2892
S1M10000034G02


Staphylococcus aureus




2893
S1M10000034G03


Staphylococcus aureus




2894
S1M10000034G06


Staphylococcus aureus




2895
S1M10000034G07


Staphylococcus aureus




2896
S1M10000034G08


Staphylococcus aureus




2897
S1M10000034G09


Staphylococcus aureus




2898
S1M10000034G11


Staphylococcus aureus




2899
S1M10000034G12


Staphylococcus aureus




2900
S1M10000034H01


Staphylococcus aureus




2901
S1M10000034H02


Staphylococcus aureus




2902
S1M10000034H03


Staphylococcus aureus




2903
S1M10000034H06


Staphylococcus aureus




2904
S1M10000034H07


Staphylococcus aureus




2905
S1M10000034H08


Staphylococcus aureus




2906
S1M10000034H09


Staphylococcus aureus




2907
S1M10000034H10


Staphylococcus aureus




2908
S1M10000035A03


Staphylococcus aureus




2909
S1M10000035A08


Staphylococcus aureus




2910
S1M10000035A09


Staphylococcus aureus




2911
S1M10000035A10


Staphylococcus aureus




2912
S1M10000035A11


Staphylococcus aureus




2913
S1M10000035A12


Staphylococcus aureus




2914
S1M10000035B01


Staphylococcus aureus




2915
S1M10000035B03


Staphylococcus aureus




2916
S1M10000035B04


Staphylococcus aureus




2917
S1M10000035B08


Staphylococcus aureus




2918
S1M10000035B11


Staphylococcus aureus




2919
S1M10000035C01


Staphylococcus aureus




2920
S1M10000035C02


Staphylococcus aureus




2921
S1M10000035C04


Staphylococcus aureus




2922
S1M10000035C06


Staphylococcus aureus




2923
S1M10000035C11


Staphylococcus aureus




2924
S1M10000035D01


Staphylococcus aureus




2925
S1M10000035D04


Staphylococcus aureus




2926
S1M10000035D06


Staphylococcus aureus




2927
S1M10000035D09


Staphylococcus aureus




2928
S1M10000035D12


Staphylococcus aureus




2929
S1M10000035E02


Staphylococcus aureus




2930
S1M10000035E03


Staphylococcus aureus




2931
S1M10000035E04


Staphylococcus aureus




2932
S1M10000035E08


Staphylococcus aureus




2933
S1M10000035E09


Staphylococcus aureus




2934
S1M10000035E12


Staphylococcus aureus




2935
S1M10000035F03


Staphylococcus aureus




2936
S1M10000035F04


Staphylococcus aureus




2937
S1M10000035F09


Staphylococcus aureus




2938
S1M10000035F12


Staphylococcus aureus




2939
S1M10000035G02


Staphylococcus aureus




2940
S1M10000035G09


Staphylococcus aureus




2941
S1M10000035G11


Staphylococcus aureus




2942
S1M10000035G12


Staphylococcus aureus




2943
S1M10000035H01


Staphylococcus aureus




2944
S1M10000035H07


Staphylococcus aureus




2945
S1M10000035H08


Staphylococcus aureus




2946
S1M10000035H09


Staphylococcus aureus




2947
S1M10000035H10


Staphylococcus aureus




2948
S1M10000035H11


Staphylococcus aureus




2949
S1M10000036A02


Staphylococcus aureus




2950
S1M10000036A03


Staphylococcus aureus




2951
S1M10000036A04


Staphylococcus aureus




2952
S1M10000036A05


Staphylococcus aureus




2953
S1M10000036A08


Staphylococcus aureus




2954
S1M10000036A11


Staphylococcus aureus




2955
S1M10000036A12


Staphylococcus aureus




2956
S1M10000036B04


Staphylococcus aureus




2957
S1M10000036B06


Staphylococcus aureus




2958
S1M10000036B07


Staphylococcus aureus




2959
S1M10000036B08


Staphylococcus aureus




2960
S1M10000036B11


Staphylococcus aureus




2961
S1M10000036B12


Staphylococcus aureus




2962
S1M10000036C01


Staphylococcus aureus




2963
S1M10000036C03


Staphylococcus aureus




2964
S1M10000036C04


Staphylococcus aureus




2965
S1M10000036C05


Staphylococcus aureus




2966
S1M10000036C06


Staphylococcus aureus




2967
S1M10000036C07


Staphylococcus aureus




2968
S1M10000036C09


Staphylococcus aureus




2969
S1M10000036C10


Staphylococcus aureus




2970
S1M10000036D02


Staphylococcus aureus




2971
S1M10000036D03


Staphylococcus aureus




2972
S1M10000036D06


Staphylococcus aureus




2973
S1M10000036D08


Staphylococcus aureus




2974
S1M10000036D10


Staphylococcus aureus




2975
S1M10000036D11


Staphylococcus aureus




2976
S1M10000036D12


Staphylococcus aureus




2977
S1M10000036E06


Staphylococcus aureus




2978
S1M10000036E08


Staphylococcus aureus




2979
S1M10000036E11


Staphylococcus aureus




2980
S1M10000036F06


Staphylococcus aureus




2981
S1M10000036F07


Staphylococcus aureus




2982
S1M10000036F08


Staphylococcus aureus




2983
S1M10000036F09


Staphylococcus aureus




2984
S1M10000036F10


Staphylococcus aureus




2985
S1M10000036F11


Staphylococcus aureus




2986
S1M10000036G03


Staphylococcus aureus




2987
S1M10000036G07


Staphylococcus aureus




2988
S1M10000036G08


Staphylococcus aureus




2989
S1M10000036G11


Staphylococcus aureus




2990
S1M10000036H01


Staphylococcus aureus




2991
S1M10000036H02


Staphylococcus aureus




2992
S1M10000036H03


Staphylococcus aureus




2993
S1M10000036H04


Staphylococcus aureus




2994
S1M10000036H05


Staphylococcus aureus




2995
S1M10000036H06


Staphylococcus aureus




2996
S1M10000036H08


Staphylococcus aureus




2997
S1M10000036H11


Staphylococcus aureus




2998
S1M10000037A02


Staphylococcus aureus




2999
S1M10000037A03


Staphylococcus aureus




3000
S1M10000037A06


Staphylococcus aureus




3001
S1M10000037A08


Staphylococcus aureus




3002
S1M10000037A09


Staphylococcus aureus




3003
S1M10000037A11


Staphylococcus aureus




3004
S1M10000037A12


Staphylococcus aureus




3005
S1M10000037B03


Staphylococcus aureus




3006
S1M10000037B04


Staphylococcus aureus




3007
S1M10000037B05


Staphylococcus aureus




3008
S1M10000037B06


Staphylococcus aureus




3009
S1M10000037B07


Staphylococcus aureus




3010
S1M10000037B08


Staphylococcus aureus




3011
S1M10000037B10


Staphylococcus aureus




3012
S1M10000037B11


Staphylococcus aureus




3013
S1M10000037B12


Staphylococcus aureus




3014
S1M10000037C05


Staphylococcus aureus




3015
S1M10000037C06


Staphylococcus aureus




3016
S1M10000037C07


Staphylococcus aureus




3017
S1M10000037C08


Staphylococcus aureus




3018
S1M10000037C09


Staphylococcus aureus




3019
S1M10000037C10


Staphylococcus aureus




3020
S1M10000037D04


Staphylococcus aureus




3021
S1M10000037D05


Staphylococcus aureus




3022
S1M10000037D06


Staphylococcus aureus




3023
S1M10000037D09


Staphylococcus aureus




3024
S1M10000037D12


Staphylococcus aureus




3025
S1M10000037E02


Staphylococcus aureus




3026
S1M10000037E03


Staphylococcus aureus




3027
S1M10000037E06


Staphylococcus aureus




3028
S1M10000037E08


Staphylococcus aureus




3029
S1M10000037E09


Staphylococcus aureus




3030
S1M10000037E10


Staphylococcus aureus




3031
S1M10000037E11


Staphylococcus aureus




3032
S1M10000037E12


Staphylococcus aureus




3033
S1M10000037F02


Staphylococcus aureus




3034
S1M10000037F03


Staphylococcus aureus




3035
S1M10000037F04


Staphylococcus aureus




3036
S1M10000037F05


Staphylococcus aureus




3037
S1M10000037F06


Staphylococcus aureus




3038
S1M10000037F07


Staphylococcus aureus




3039
S1M10000037F08


Staphylococcus aureus




3040
S1M10000037F09


Staphylococcus aureus




3041
S1M10000037F10


Staphylococcus aureus




3042
S1M10000037G01


Staphylococcus aureus




3043
S1M10000037G02


Staphylococcus aureus




3044
S1M10000037G03


Staphylococcus aureus




3045
S1M10000037G06


Staphylococcus aureus




3046
S1M10000037G07


Staphylococcus aureus




3047
S1M10000037G08


Staphylococcus aureus




3048
51M10000037G10


Staphylococcus aureus




3049
S1M10000037H02


Staphylococcus aureus




3050
S1M10000037H03


Staphylococcus aureus




3051
S1M10000037H05


Staphylococcus aureus




3052
S1M10000037H07


Staphylococcus aureus




3053
S1M10000037H08


Staphylococcus aureus




3054
S1M10000037H09


Staphylococcus aureus




3055
S1M10000037H11


Staphylococcus aureus




3056
S1M10000038A04


Staphylococcus aureus




3057
S1M10000038A07


Staphylococcus aureus




3058
S1M10000038A08


Staphylococcus aureus




3059
S1M10000038A09


Staphylococcus aureus




3060
S1M10000038A11


Staphylococcus aureus




3061
S1M10000038A12


Staphylococcus aureus




3062
S1M10000038B01


Staphylococcus aureus




3063
S1M10000038B03


Staphylococcus aureus




3064
S1M10000038B07


Staphylococcus aureus




3065
S1M10000038B08


Staphylococcus aureus




3066
S1M10000038B09


Staphylococcus aureus




3067
S1M10000038B12


Staphylococcus aureus




3068
S1M10000038C01


Staphylococcus aureus




3069
S1M10000038C02


Staphylococcus aureus




3070
S1M10000038C06


Staphylococcus aureus




3071
S1M10000038C08


Staphylococcus aureus




3072
S1M10000038C10


Staphylococcus aureus




3073
S1M10000038C11


Staphylococcus aureus




3074
S1M10000038C12


Staphylococcus aureus




3075
S1M10000038D02


Staphylococcus aureus




3076
S1M10000038D05


Staphylococcus aureus




3077
S1M10000038D07


Staphylococcus aureus




3078
S1M10000038D08


Staphylococcus aureus




3079
S1M10000038D09


Staphylococcus aureus




3080
S1M10000038D10


Staphylococcus aureus




3081
S1M10000038D11


Staphylococcus aureus




3082
S1M10000038D12


Staphylococcus aureus




3083
S1M10000038E01


Staphylococcus aureus




3084
S1M10000038E02


Staphylococcus aureus




3085
S1M10000038E03


Staphylococcus aureus




3086
S1M10000038E04


Staphylococcus aureus




3087
S1M10000038E05


Staphylococcus aureus




3088
S1M10000038E06


Staphylococcus aureus




3089
S1M10000038E07


Staphylococcus aureus




3090
S1M10000038E10


Staphylococcus aureus




3091
S1M10000038E12


Staphylococcus aureus




3092
S1M10000038F03


Staphylococcus aureus




3093
S1M10000038F04


Staphylococcus aureus




3094
S1M10000038F05


Staphylococcus aureus




3095
S1M10000038F06


Staphylococcus aureus




3096
S1M10000038F08


Staphylococcus aureus




3097
S1M10000038F09


Staphylococcus aureus




3098
S1M10000038F10


Staphylococcus aureus




3099
S1M10000038F11


Staphylococcus aureus




3100
S1M10000038F12


Staphylococcus aureus




3101
S1M10000038G01


Staphylococcus aureus




3102
S1M10000038G03


Staphylococcus aureus




3103
S1M10000038G04


Staphylococcus aureus




3104
S1M10000038G06


Staphylococcus aureus




3105
S1M10000038G08


Staphylococcus aureus




3106
S1M10000038G10


Staphylococcus aureus




3107
S1M10000038G11


Staphylococcus aureus




3108
S1M10000038G12


Staphylococcus aureus




3109
S1M10000038H03


Staphylococcus aureus




3110
S1M10000038H07


Staphylococcus aureus




3111
S1M10000038H09


Staphylococcus aureus




3112
S1M10000038H11


Staphylococcus aureus




3113
S1M10000039A02


Staphylococcus aureus




3114
S1M10000039A05


Staphylococcus aureus




3115
S1M10000039A07


Staphylococcus aureus




3116
S1M10000039A08


Staphylococcus aureus




3117
S1M10000039A11


Staphylococcus aureus




3118
S1M10000039A12


Staphylococcus aureus




3119
S1M10000039B02


Staphylococcus aureus




3120
S1M10000039B06


Staphylococcus aureus




3121
S1M10000039B07


Staphylococcus aureus




3122
S1M10000039B10


Staphylococcus aureus




3123
S1M10000039B12


Staphylococcus aureus




3124
S1M10000039C04


Staphylococcus aureus




3125
S1M10000039C06


Staphylococcus aureus




3126
S1M10000039C07


Staphylococcus aureus




3127
S1M10000039C08


Staphylococcus aureus




3128
S1M10000039C09


Staphylococcus aureus




3129
S1M10000039C10


Staphylococcus aureus




3130
S1M10000039C11


Staphylococcus aureus




3131
S1M10000039D02


Staphylococcus aureus




3132
S1M10000039D09


Staphylococcus aureus




3133
S1M10000039D10


Staphylococcus aureus




3134
S1M10000039E01


Staphylococcus aureus




3135
S1M10000039E08


Staphylococcus aureus




3136
S1M10000039E09


Staphylococcus aureus




3137
S1M10000039E10


Staphylococcus aureus




3138
S1M10000039E11


Staphylococcus aureus




3139
S1M10000039F02


Staphylococcus aureus




3140
S1M10000039F03


Staphylococcus aureus




3141
S1M10000039F05


Staphylococcus aureus




3142
S1M10000039F07


Staphylococcus aureus




3143
S1M10000039F08


Staphylococcus aureus




3144
S1M10000039F09


Staphylococcus aureus




3145
S1M10000039F10


Staphylococcus aureus




3146
S1M10000039F12


Staphylococcus aureus




3147
S1M10000039G03


Staphylococcus aureus




3148
S1M10000039G04


Staphylococcus aureus




3149
S1M10000039G07


Staphylococcus aureus




3150
S1M10000039G10


Staphylococcus aureus




3151
S1M10000039H02


Staphylococcus aureus




3152
S1M10000039H03


Staphylococcus aureus




3153
S1M10000039H04


Staphylococcus aureus




3154
S1M10000039H06


Staphylococcus aureus




3155
S1M10000039H07


Staphylococcus aureus




3156
S1M10000039H08


Staphylococcus aureus




3157
S1M10000040A04


Staphylococcus aureus




3158
S1M10000040A05


Staphylococcus aureus




3159
S1M10000040A07


Staphylococcus aureus




3160
S1M10000040A08


Staphylococcus aureus




3161
S1M10000040A10


Staphylococcus aureus




3162
S1M10000040A11


Staphylococcus aureus




3163
S1M10000040B01


Staphylococcus aureus




3164
S1M10000040B03


Staphylococcus aureus




3165
S1M10000040B07


Staphylococcus aureus




3166
S1M10000040B11


Staphylococcus aureus




3167
S1M10000040C03


Staphylococcus aureus




3168
S1M10000040C04


Staphylococcus aureus




3169
S1M10000040C05


Staphylococcus aureus




3170
S1M10000040C06


Staphylococcus aureus




3171
S1M10000040C07


Staphylococcus aureus




3172
S1M10000040C08


Staphylococcus aureus




3173
S1M10000040C10


Staphylococcus aureus




3174
S1M10000040C11


Staphylococcus aureus




3175
S1M10000040D01


Staphylococcus aureus




3176
S1M10000040D03


Staphylococcus aureus




3177
S1M10000040D08


Staphylococcus aureus




3178
S1M10000040D09


Staphylococcus aureus




3179
S1M10000040D11


Staphylococcus aureus




3180
S1M10000040E01


Staphylococcus aureus




3181
S1M10000040E02


Staphylococcus aureus




3182
S1M10000040E04


Staphylococcus aureus




3183
S1M10000040E05


Staphylococcus aureus




3184
S1M10000040E06


Staphylococcus aureus




3185
S1M10000040E07


Staphylococcus aureus




3186
S1M10000040E09


Staphylococcus aureus




3187
S1M10000040E10


Staphylococcus aureus




3188
S1M10000040E11


Staphylococcus aureus




3189
S1M10000040E12


Staphylococcus aureus




3190
S1M10000040F01


Staphylococcus aureus




3191
S1M10000040F02


Staphylococcus aureus




3192
S1M10000040F03


Staphylococcus aureus




3193
S1M10000040F04


Staphylococcus aureus




3194
S1M10000040F05


Staphylococcus aureus




3195
S1M10000040F06


Staphylococcus aureus




3196
S1M10000040F08


Staphylococcus aureus




3197
S1M10000040F09


Staphylococcus aureus




3198
S1M10000040F12


Staphylococcus aureus




3199
S1M10000040G01


Staphylococcus aureus




3200
S1M10000040G02


Staphylococcus aureus




3201
S1M10000040G04


Staphylococcus aureus




3202
S1M10000040G07


Staphylococcus aureus




3203
S1M10000040G08


Staphylococcus aureus




3204
S1M10000040G12


Staphylococcus aureus




3205
S1M10000040H02


Staphylococcus aureus




3206
S1M10000040H03


Staphylococcus aureus




3207
S1M10000040H04


Staphylococcus aureus




3208
S1M10000040H05


Staphylococcus aureus




3209
S1M10000040H07


Staphylococcus aureus




3210
S1M10000040H10


Staphylococcus aureus




3211
SIM10000041A03


Staphylococcus aureus




3212
S1M10000041B02


Staphylococcus aureus




3213
S1M10000041B03


Staphylococcus aureus




3214
S1M10000041B05


Staphylococcus aureus




3215
S1M10000041B06


Staphylococcus aureus




3216
S1M10000041B07


Staphylococcus aureus




3217
S1M10000041B12


Staphylococcus aureus




3218
S1M10000041C08


Staphylococcus aureus




3219
S1M10000041C10


Staphylococcus aureus




3220
S1M10000041C11


Staphylococcus aureus




3221
S1M10000041D06


Staphylococcus aureus




3222
S1M10000041D07


Staphylococcus aureus




3223
S1M10000041D08


Staphylococcus aureus




3224
S1M10000041D10


Staphylococcus aureus




3225
S1M10000041D12


Staphylococcus aureus




3226
S1M10000041E03


Staphylococcus aureus




3227
S1M10000041E06


Staphylococcus aureus




3228
S1M10000041E09


Staphylococcus aureus




3229
S1M10000041E12


Staphylococcus aureus




3230
S1M10000041F03


Staphylococcus aureus




3231
S1M10000041F11


Staphylococcus aureus




3232
S1M10000041F12


Staphylococcus aureus




3233
S1M10000041G01


Staphylococcus aureus




3234
S1M10000041G06


Staphylococcus aureus




3235
S1M10000041G08


Staphylococcus aureus




3236
S1M10000041G10


Staphylococcus aureus




3237
S1M10000041G11


Staphylococcus aureus




3238
S1M10000041H01


Staphylococcus aureus




3239
S1M10000041H04


Staphylococcus aureus




3240
S1M10000041H05


Staphylococcus aureus




3241
S1M10000041H07


Staphylococcus aureus




3242
S1M10000041H08


Staphylococcus aureus




3243
S1M10000041H09


Staphylococcus aureus




3244
S1M10000042A04


Staphylococcus aureus




3245
S1M10000042A05


Staphylococcus aureus




3246
S1M10000042A06


Staphylococcus aureus




3247
S1M10000042A07


Staphylococcus aureus




3248
S1M10000042A09


Staphylococcus aureus




3249
S1M10000042A11


Staphylococcus aureus




3250
S1M10000042A12


Staphylococcus aureus




3251
S1M10000042B02


Staphylococcus aureus




3252
S1M10000042B03


Staphylococcus aureus




3253
S1M10000042B06


Staphylococcus aureus




3254
S1M10000042B07


Staphylococcus aureus




3255
S1M10000042B08


Staphylococcus aureus




3256
S1M10000042B09


Staphylococcus aureus




3257
S1M10000042B10


Staphylococcus aureus




3258
S1M10000042B11


Staphylococcus aureus




3259
S1M10000042B12


Staphylococcus aureus




3260
S1M10000042C02


Staphylococcus aureus




3261
S1M10000042C06


Staphylococcus aureus




3262
S1M10000042C10


Staphylococcus aureus




3263
S1M10000042C11


Staphylococcus aureus




3264
S1M10000042D04


Staphylococcus aureus




3265
S1M10000042D07


Staphylococcus aureus




3266
S1M10000042D10


Staphylococcus aureus




3267
S1M10000042D11


Staphylococcus aureus




3268
S1M10000042E03


Staphylococcus aureus




3269
S1M10000042E06


Staphylococcus aureus




3270
S1M10000042E08


Staphylococcus aureus




3271
S1M10000042F01


Staphylococcus aureus




3272
S1M10000042F02


Staphylococcus aureus




3273
S1M10000042F05


Staphylococcus aureus




3274
S1M10000042F06


Staphylococcus aureus




3275
S1M10000042F08


Staphylococcus aureus




3276
S1M10000042F09


Staphylococcus aureus




3277
S1M10000042F10


Staphylococcus aureus




3278
S1M10000042F11


Staphylococcus aureus




3279
S1M10000042G01


Staphylococcus aureus




3280
S1M10000042G03


Staphylococcus aureus




3281
S1M10000042G08


Staphylococcus aureus




3282
S1M10000042G09


Staphylococcus aureus




3283
S1M10000042G12


Staphylococcus aureus




3284
S1M10000042H05


Staphylococcus aureus




3285
S1M10000042H07


Staphylococcus aureus




3286
S1M10000042H11


Staphylococcus aureus




3287
S1M10000043A02


Staphylococcus aureus




3288
S1M10000043A03


Staphylococcus aureus




3289
S1M10000043A04


Staphylococcus aureus




3290
S1M10000043A06


Staphylococcus aureus




3291
S1M10000043A07


Staphylococcus aureus




3292
S1M10000043A08


Staphylococcus aureus




3293
S1M10000043A10


Staphylococcus aureus




3294
S1M10000043A11


Staphylococcus aureus




3295
S1M10000043A12


Staphylococcus aureus




3296
S1M10000043B01


Staphylococcus aureus




3297
S1M10000043B02


Staphylococcus aureus




3298
S1M10000043B07


Staphylococcus aureus




3299
S1M10000043B08


Staphylococcus aureus




3300
S1M10000043B09


Staphylococcus aureus




3301
S1M10000043B10


Staphylococcus aureus




3302
S1M10000043B12


Staphylococcus aureus




3303
S1M10000043C02


Staphylococcus aureus




3304
S1M10000043C07


Staphylococcus aureus




3305
S1M10000043C11


Staphylococcus aureus




3306
S1M10000043C12


Staphylococcus aureus




3307
S1M10000043D01


Staphylococcus aureus




3308
S1M10000043D02


Staphylococcus aureus




3309
S1M10000043D04


Staphylococcus aureus




3310
S1M10000043D10


Staphylococcus aureus




3311
S1M10000043D12


Staphylococcus aureus




3312
S1M10000043E02


Staphylococcus aureus




3313
S1M10000043E03


Staphylococcus aureus




3314
S1M10000043E05


Staphylococcus aureus




3315
S1M10000043E07


Staphylococcus aureus




3316
S1M10000043E08


Staphylococcus aureus




3317
S1M10000043E10


Staphylococcus aureus




3318
S1M10000043E11


Staphylococcus aureus




3319
S1M10000043E12


Staphylococcus aureus




3320
S1M10000043F01


Staphylococcus aureus




3321
S1M10000043F05


Staphylococcus aureus




3322
S1M10000043F07


Staphylococcus aureus




3323
S1M10000043F08


Staphylococcus aureus




3324
S1M10000043F09


Staphylococcus aureus




3325
S1M10000043G01


Staphylococcus aureus




3326
S1M10000043G04


Staphylococcus aureus




3327
S1M10000043G05


Staphylococcus aureus




3328
S1M10000043G09


Staphylococcus aureus




3329
S1M10000043G10


Staphylococcus aureus




3330
S1M10000043H01


Staphylococcus aureus




3331
S1M10000043H03


Staphylococcus aureus




3332
S1M10000043H04


Staphylococcus aureus




3333
S1M10000043H05


Staphylococcus aureus




3334
S1M10000043H06


Staphylococcus aureus




3335
S1M10000043H09


Staphylococcus aureus




3336
S1M10000043H10


Staphylococcus aureus




3337
S1M10000043H11


Staphylococcus aureus




3338
S1M10000044A02


Staphylococcus aureus




3339
S1M10000044A06


Staphylococcus aureus




3340
S1M10000044A08


Staphylococcus aureus




3341
S1M10000044A09


Staphylococcus aureus




3342
S1M10000044A11


Staphylococcus aureus




3343
S1M10000044A12


Staphylococcus aureus




3344
S1M10000044B01


Staphylococcus aureus




3345
S1M10000044B02


Staphylococcus aureus




3346
S1M10000044B05


Staphylococcus aureus




3347
S1M10000044B06


Staphylococcus aureus




3348
S1M10000044B08


Staphylococcus aureus




3349
S1M10000044B11


Staphylococcus aureus




3350
S1M10000044B12


Staphylococcus aureus




3351
S1M10000044C04


Staphylococcus aureus




3352
S1M10000044C06


Staphylococcus aureus




3353
S1M10000044C07


Staphylococcus aureus




3354
S1M10000044C08


Staphylococcus aureus




3355
S1M10000044C11


Staphylococcus aureus




3356
S1M10000044C12


Staphylococcus aureus




3357
S1M10000044D01


Staphylococcus aureus




3358
S1M10000044D04


Staphylococcus aureus




3359
S1M10000044D06


Staphylococcus aureus




3360
S1M10000044D08


Staphylococcus aureus




3361
S1M10000044D09


Staphylococcus aureus




3362
S1M10000044D10


Staphylococcus aureus




3363
S1M10000044D11


Staphylococcus aureus




3364
S1M10000044D12


Staphylococcus aureus




3365
S1M10000044E01


Staphylococcus aureus




3366
S1M10000044E02


Staphylococcus aureus




3367
S1M10000044E06


Staphylococcus aureus




3368
S1M10000044E07


Staphylococcus aureus




3369
S1M10000044E09


Staphylococcus aureus




3370
S1M10000044E10


Staphylococcus aureus




3371
S1M10000044E11


Staphylococcus aureus




3372
S1M10000044F02


Staphylococcus aureus




3373
S1M10000044F06


Staphylococcus aureus




3374
S1M10000044F08


Staphylococcus aureus




3375
S1M10000044F10


Staphylococcus aureus




3376
S1M10000044G02


Staphylococcus aureus




3377
S1M10000044G05


Staphylococcus aureus




3378
S1M10000044G08


Staphylococcus aureus




3379
S1M10000044G10


Staphylococcus aureus




3380
S1M10000044G11


Staphylococcus aureus




3381
S1M10000044H06


Staphylococcus aureus




3382
S1M10000044H07


Staphylococcus aureus




3383
S1M10000044H08


Staphylococcus aureus




3384
S1M10000044H09


Staphylococcus aureus




3385
S1M10000044H10


Staphylococcus aureus




3386
S1M10000044H11


Staphylococcus aureus




3387
S1M10000045A02


Staphylococcus aureus




3388
S1M10000045A06


Staphylococcus aureus




3389
S1M10000045A07


Staphylococcus aureus




3390
S1M10000045A08


Staphylococcus aureus




3391
S1M10000045A12


Staphylococcus aureus




3392
S1M10000045B01


Staphylococcus aureus




3393
S1M10000045B02


Staphylococcus aureus




3394
S1M10000045B03


Staphylococcus aureus




3395
S1M10000045B07


Staphylococcus aureus




3396
S1M10000045B10


Staphylococcus aureus




3397
S1M10000045B11


Staphylococcus aureus




3398
S1M10000045B12


Staphylococcus aureus




3399
S1M10000045C02


Staphylococcus aureus




3400
S1M10000045C03


Staphylococcus aureus




3401
S1M10000045C04


Staphylococcus aureus




3402
S1M10000045C05


Staphylococcus aureus




3403
S1M10000045C07


Staphylococcus aureus




3404
S1M10000045C09


Staphylococcus aureus




3405
S1M10000045D01


Staphylococcus aureus




3406
S1M10000045D03


Staphylococcus aureus




3407
S1M10000045D07


Staphylococcus aureus




3408
S1M10000045D08


Staphylococcus aureus




3409
S1M10000045D09


Staphylococcus aureus




3410
S1M10000045D10


Staphylococcus aureus




3411
S1M10000045D11


Staphylococcus aureus




3412
S1M10000045D12


Staphylococcus aureus




3413
S1M10000045E04


Staphylococcus aureus




3414
S1M10000045E05


Staphylococcus aureus




3415
S1M10000045E08


Staphylococcus aureus




3416
S1M10000045E09


Staphylococcus aureus




3417
S1M10000045E10


Staphylococcus aureus




3418
S1M10000045E11


Staphylococcus aureus




3419
S1M10000045E12


Staphylococcus aureus




3420
S1M10000045F04


Staphylococcus aureus




3421
S1M10000045F05


Staphylococcus aureus




3422
S1M10000045F08


Staphylococcus aureus




3423
S1M10000045F11


Staphylococcus aureus




3424
S1M10000045F12


Staphylococcus aureus




3425
S1M10000045G03


Staphylococcus aureus




3426
S1M10000045G06


Staphylococcus aureus




3427
S1M10000045G07


Staphylococcus aureus




3428
S1M10000045G08


Staphylococcus aureus




3429
S1M10000045G10


Staphylococcus aureus




3430
S1M10000045G12


Staphylococcus aureus




3431
S1M10000045H06


Staphylococcus aureus




3432
S1M10000045H10


Staphylococcus aureus




3433
S1M10000045H11


Staphylococcus aureus




3434
S1M10000046A03


Staphylococcus aureus




3435
S1M10000046A04


Staphylococcus aureus




3436
S1M10000046A06


Staphylococcus aureus




3437
S1M10000046A08


Staphylococcus aureus




3438
S1M10000046A09


Staphylococcus aureus




3439
S1M10000046A11


Staphylococcus aureus




3440
S1M10000046A12


Staphylococcus aureus




3441
S1M10000046B01


Staphylococcus aureus




3442
S1M10000046B03


Staphylococcus aureus




3443
S1M10000046B04


Staphylococcus aureus




3444
S1M10000046B05


Staphylococcus aureus




3445
S1M10000046B07


Staphylococcus aureus




3446
S1M10000046B08


Staphylococcus aureus




3447
S1M10000046B09


Staphylococcus aureus




3448
S1M10000046B11


Staphylococcus aureus




3449
S1M10000046B12


Staphylococcus aureus




3450
S1M10000046C02


Staphylococcus aureus




3451
S1M10000046C04


Staphylococcus aureus




3452
S1M10000046C05


Staphylococcus aureus




3453
S1M10000046C06


Staphylococcus aureus




3454
S1M10000046C07


Staphylococcus aureus




3455
S1M10000046C08


Staphylococcus aureus




3456
S1M10000046C11


Staphylococcus aureus




3457
S1M10000046C12


Staphylococcus aureus




3458
S1M10000046D01


Staphylococcus aureus




3459
S1M10000046D02


Staphylococcus aureus




3460
S1M10000046D03


Staphylococcus aureus




3461
S1M10000046D04


Staphylococcus aureus




3462
S1M10000046D05


Staphylococcus aureus




3463
S1M10000046D08


Staphylococcus aureus




3464
S1M10000046D09


Staphylococcus aureus




3465
S1M10000046D10


Staphylococcus aureus




3466
S1M10000046D11


Staphylococcus aureus




3467
S1M10000046D12


Staphylococcus aureus




3468
S1M10000046E01


Staphylococcus aureus




3469
S1M10000046E02


Staphylococcus aureus




3470
S1M10000046E04


Staphylococcus aureus




3471
S1M10000046E07


Staphylococcus aureus




3472
S1M10000046E08


Staphylococcus aureus




3473
S1M10000046E10


Staphylococcus aureus




3474
S1M10000046F01


Staphylococcus aureus




3475
S1M10000046F02


Staphylococcus aureus




3476
S1M10000046F05


Staphylococcus aureus




3477
S1M10000046F06


Staphylococcus aureus




3478
S1M10000046F08


Staphylococcus aureus




3479
S1M10000046F09


Staphylococcus aureus




3480
S1M10000046F10


Staphylococcus aureus




3481
S1M10000046F12


Staphylococcus aureus




3482
S1M10000046G01


Staphylococcus aureus




3483
S1M10000046G02


Staphylococcus aureus




3484
S1M10000046G03


Staphylococcus aureus




3485
S1M10000046G04


Staphylococcus aureus




3486
S1M10000046G07


Staphylococcus aureus




3487
S1M10000046G09


Staphylococcus aureus




3488
S1M10000046G10


Staphylococcus aureus




3489
S1M10000046H01


Staphylococcus aureus




3490
S1M10000046H10


Staphylococcus aureus




3491
S1M10000047A03


Staphylococcus aureus




3492
S1M10000047A04


Staphylococcus aureus




3493
S1M10000047A05


Staphylococcus aureus




3494
S1M10000047A06


Staphylococcus aureus




3495
S1M10000047A07


Staphylococcus aureus




3496
S1M10000047A08


Staphylococcus aureus




3497
S1M10000047A09


Staphylococcus aureus




3498
S1M10000047A10


Staphylococcus aureus




3499
S1M10000047A11


Staphylococcus aureus




3500
S1M10000047A12


Staphylococcus aureus




3501
S1M10000047B02


Staphylococcus aureus




3502
S1M10000047B04


Staphylococcus aureus




3503
S1M10000047BOS


Staphylococcus aureus




3504
S1M10000047B06


Staphylococcus aureus




3505
S1M10000047B08


Staphylococcus aureus




3506
S1M10000047B09


Staphylococcus aureus




3507
S1M10000047B10


Staphylococcus aureus




3508
S1M10000047B12


Staphylococcus aureus




3509
S1M10000047C01


Staphylococcus aureus




3510
S1M10000047C02


Staphylococcus aureus




3511
S1M10000047C03


Staphylococcus aureus




3512
S1M10000047C04


Staphylococcus aureus




3513
S1M10000047C06


Staphylococcus aureus




3514
S1M10000047C08


Staphylococcus aureus




3515
S1M10000047C09


Staphylococcus aureus




3516
S1M10000047C11


Staphylococcus aureus




3517
S1M10000047C12


Staphylococcus aureus




3518
S1M10000047D02


Staphylococcus aureus




3519
S1M10000047D03


Staphylococcus aureus




3520
S1M10000047D04


Staphylococcus aureus




3521
S1M10000047D05


Staphylococcus aureus




3522
S1M10000047D09


Staphylococcus aureus




3523
S1M10000047D10


Staphylococcus aureus




3524
S1M10000047D11


Staphylococcus aureus




3525
S1M10000047D12


Staphylococcus aureus




3526
S1M10000047E01


Staphylococcus aureus




3527
S1M10000047E02


Staphylococcus aureus




3528
S1M10000047E03


Staphylococcus aureus




3529
S1M10000047E04


Staphylococcus aureus




3530
S1M10000047E05


Staphylococcus aureus




3531
S1M10000047E06


Staphylococcus aureus




3532
S1M10000047E08


Staphylococcus aureus




3533
S1M10000047E09


Staphylococcus aureus




3534
S1M10000047E10


Staphylococcus aureus




3535
S1M10000047E11


Staphylococcus aureus




3536
S1M10000047E12


Staphylococcus aureus




3537
S1M10000047F02


Staphylococcus aureus




3538
S1M10000047F03


Staphylococcus aureus




3539
S1M10000047F04


Staphylococcus aureus




3540
S1M10000047F05


Staphylococcus aureus




3541
S1M10000047F06


Staphylococcus aureus




3542
S1M10000047F07


Staphylococcus aureus




3543
S1M10000047F08


Staphylococcus aureus




3544
S1M10000047F09


Staphylococcus aureus




3545
S1M10000047F10


Staphylococcus aureus




3546
S1M10000047F11


Staphylococcus aureus




3547
S1M10000047F12


Staphylococcus aureus




3548
S1M10000047G01


Staphylococcus aureus




3549
S1M10000047G02


Staphylococcus aureus




3550
S1M10000047G04


Staphylococcus aureus




3551
S1M10000047G05


Staphylococcus aureus




3552
S1M10000047G06


Staphylococcus aureus




3553
S1M10000047G07


Staphylococcus aureus




3554
S1M10000047G08


Staphylococcus aureus




3555
S1M10000047G09


Staphylococcus aureus




3556
S1M10000047G10


Staphylococcus aureus




3557
S1M10000047H03


Staphylococcus aureus




3558
S1M10000047H04


Staphylococcus aureus




3559
S1M10000047H05


Staphylococcus aureus




3560
S1M10000047H06


Staphylococcus aureus




3561
S1M10000047H07


Staphylococcus aureus




3562
S1M10000047H08


Staphylococcus aureus




3563
S1M10000047H09


Staphylococcus aureus




3564
S1M10000047H11


Staphylococcus aureus




3565
S1M10000048A02


Staphylococcus aureus




3566
S1M10000048A03


Staphylococcus aureus




3567
S1M10000048A04


Staphylococcus aureus




3568
S1M10000048A05


Staphylococcus aureus




3569
S1M10000048A06


Staphylococcus aureus




3570
S1M10000048A07


Staphylococcus aureus




3571
S1M10000048A09


Staphylococcus aureus




3572
S1M10000048A10


Staphylococcus aureus




3573
S1M10000048A11


Staphylococcus aureus




3574
S1M10000048A12


Staphylococcus aureus




3575
S1M10000048B02


Staphylococcus aureus




3576
S1M10000048B05


Staphylococcus aureus




3577
S1M10000048B08


Staphylococcus aureus




3578
S1M10000048B10


Staphylococcus aureus




3579
S1M10000048B11


Staphylococcus aureus




3580
S1M10000048B12


Staphylococcus aureus




3581
S1M10000048C01


Staphylococcus aureus




3582
S1M10000048C02


Staphylococcus aureus




3583
S1M10000048C03


Staphylococcus aureus




3584
S1M10000048C05


Staphylococcus aureus




3585
S1M10000048C06


Staphylococcus aureus




3586
S1M10000048C07


Staphylococcus aureus




3587
S1M10000048C08


Staphylococcus aureus




3588
S1M10000048C09


Staphylococcus aureus




3589
S1M10000048C11


Staphylococcus aureus




3590
S1M10000048D02


Staphylococcus aureus




3591
S1M10000048D08


Staphylococcus aureus




3592
S1M10000048D09


Staphylococcus aureus




3593
S1M10000048D10


Staphylococcus aureus




3594
S1M10000048D12


Staphylococcus aureus




3595
S1M10000048E02


Staphylococcus aureus




3596
S1M10000048E03


Staphylococcus aureus




3597
S1M10000048E04


Staphylococcus aureus




3598
S1M10000048E06


Staphylococcus aureus




3599
S1M10000048E07


Staphylococcus aureus




3600
S1M10000048E08


Staphylococcus aureus




3601
S1M10000048E10


Staphylococcus aureus




3602
S1M10000048F02


Staphylococcus aureus




3603
S1M10000048F07


Staphylococcus aureus




3604
S1M10000048F08


Staphylococcus aureus




3605
S1M10000048F09


Staphylococcus aureus




3606
S1M10000048F11


Staphylococcus aureus




3607
S1M10000048F12


Staphylococcus aureus




3608
S1M10000048G02


Staphylococcus aureus




3609
S1M10000048G03


Staphylococcus aureus




3610
S1M10000048G04


Staphylococcus aureus




3611
S1M10000048G05


Staphylococcus aureus




3612
S1M10000048G07


Staphylococcus aureus




3613
S1M10000048G10


Staphylococcus aureus




3614
S1M10000048G11


Staphylococcus aureus




3615
S1M10000048H01


Staphylococcus aureus




3616
S1M10000048H02


Staphylococcus aureus




3617
S1M10000048H03


Staphylococcus aureus




3618
S1M10000048H04


Staphylococcus aureus




3619
S1M10000048H05


Staphylococcus aureus




3620
S1M10000048H07


Staphylococcus aureus




3621
S1M10000048H08


Staphylococcus aureus




3622
S1M10000048H09


Staphylococcus aureus




3623
S1M10000048H10


Staphylococcus aureus




3624
S1M10000048H11


Staphylococcus aureus




3625
S1M10000009E10


Staphylococcus aureus




3626
S1M10000001F01


Staphylococcus aureus




3627
S1M10000006B12


Staphylococcus aureus




3628
S1M10000003D09


Staphylococcus aureus




3629
S1M10000001D11


Staphylococcus aureus




3630
S1M10000003B07


Staphylococcus aureus




3631
S1M10000002A07


Staphylococcus aureus




3632
S1M10000003F11


Staphylococcus aureus




3633
S1M10000047C07


Staphylococcus aureus




3634
S1M10000013F10


Staphylococcus aureus




3635
S1M10000014D11


Staphylococcus aureus




3636
S1M10000015F05


Staphylococcus aureus




3637
S1M10000048D01


Staphylococcus aureus




3638
S1M10000011C03


Staphylococcus aureus




3639
S1M10000012F03


Staphylococcus aureus




3640
S1M10000002F07


Staphylococcus aureus




3641
S1M10000048G01


Staphylococcus aureus




3642
S1M10000009G12


Staphylococcus aureus




3643
S1M10000012D05


Staphylococcus aureus




3644
S1M10000014D07


Staphylococcus aureus




3645
S1M10000047C05


Staphylococcus aureus




3646
S1M10000018D08*


Staphylococcus aureus




3647
S1M10000047B01


Staphylococcus aureus




3648
S1M10000047H10


Staphylococcus aureus




3649
S1M10000001A04


Staphylococcus aureus




3650
S1M10000016E01


Staphylococcus aureus




3651
S1M10000017E12


Staphylococcus aureus




3652
S1M10000019B01


Staphylococcus aureus




3653
S1M10000048F03


Staphylococcus aureus




3654
S1M10000034A07


Staphylococcus aureus




3655
S1M10000023G01


Staphylococcus aureus




3656
S1M10000021G12


Staphylococcus aureus




3657
S1M10000024E04


Staphylococcus aureus




3658
S1M10000028H08


Staphylococcus aureus




3659
S1M10000022B07


Staphylococcus aureus




3660
S1M10000003A05


Staphylococcus aureus




3661
S1M10000003AO9


Staphylococcus aureus




3662
S1M10000003E01


Staphylococcus aureus




3663
S1M10000004C11


Staphylococcus aureus




3664
S1M10000007E08


Staphylococcus aureus




3665
S1M10000021G06


Staphylococcus aureus




3666
S1M10000024C06


Staphylococcus aureus




3667
S1M10000024D01


Staphylococcus aureus




3668
S1M10000027D07


Staphylococcus aureus




3669
S1M10000027E03


Staphylococcus aureus




3670
S1M10000027G01


Staphylococcus aureus




3671
S1M10000029A03


Staphylococcus aureus




3672
S1M10000032B10


Staphylococcus aureus




3673
S1M10000032C07


Staphylococcus aureus




3674
S1M10000038D04


Staphylococcus aureus




3675
S1M10000047D07


Staphylococcus aureus




3676
S1M10000048B03


Staphylococcus aureus




3677
S1M10000048B06


Staphylococcus aureus




3678
S1M10000048C10


Staphylococcus aureus




3679
S1M10000048F05


Staphylococcus aureus




3680
S4M10000001C01


Salmonella typhimurium




3681
S4M10000002B06


Salmonella typhimurium




3682
S4M10000002B09


Salmonella typhimurium




3683
S4M10000002G04


Salmonella typhimurium




3684
S4M10000002G08


Salmonella typhimurium




3685
S4M10000005G05


Salmonella typhimurium




3686
S4M10000005H02


Salmonella typhimurium




3687
S4M10000006A06


Salmonella typhimurium




3688
S4M10000006A08


Salmonella typhimurium




3689
S4M10000006C05


Salmonella typhimurium




3690
S4M10000006F08


Salmonella typhimurium




3691
S4M10000007G01


Salmonella typhimurium




3692
S4M10000008C08


Salmonella typhimurium




3693
S4M10000008H10


Salmonella typhimurium




3694
S4M10000009A05


Salmonella typhimurium




3695
S4M10000010B05


Salmonella typhimurium




3696
S4M10000010D04


Salmonella typhimurium




3697
S4M10000010H04


Salmonella typhimurium




3698
S4M10000011D08


Salmonella typhimurium




3699
S4M10000011E08


Salmonella typhimurium




3700
S4M10000012B06


Salmonella typhimurium




3701
S4M10000012B12


Salmonella typhimurium




3702
S4M10000012D02


Salmonella typhimurium




3703
S4M10000013H02


Salmonella typhimurium




3704
S4M10000014B05


Salmonella typhimurium




3705
S4M10000014D04


Salmonella typhimurium




3706
S4M10000014D07


Salmonella typhimurium




3707
S4M10000014H02


Salmonella typhimurium




3708
S4M10000015B11


Salmonella typhimurium




3709
S4M10000015E09


Salmonella typhimurium




3710
S4M10000016A02


Salmonella typhimurium




3711
S4M10000018D09


Salmonella typhimurium




3712
S4M10000018E10


Salmonella typhimurium




3713
S4M10000018F10


Salmonella typhimurium




3714
S4M10000018G03


Salmonella typhimurium




3715
S4M10000018H04


Salmonella typhimurium




3716
S4M10000019F05


Salmonella typhimurium




3717
S4M10000019G04


Salmonella typhimurium




3718
S4M10000019G05


Salmonella typhimurium




3719
S4M10000019H06


Salmonella typhimurium




3720
S4M10000020A04


Salmonella typhimurium




3721
S4M10000020F05


Salmonella typhimurium




3722
S4M10000020G10


Salmonella typhimurium




3723
S4M10000022D04


Salmonella typhimurium




3724
S4M10000022D12


Salmonella typhimurium




3725
S4M10000022E12


Salmonella typhimurium




3726
S4M10000022G07


Salmonella typhimurium




3727
S4M10000022H06


Salmonella typhimurium




3728
S4M10000023F01


Salmonella typhimurium




3729
S4M10000024B02


Salmonella typhimurium




3730
S4M10000024C06


Salmonella typhimurium




3731
S4M10000024C11


Salmonella typhimurium




3732
S4M10000024F08


Salmonella typhimurium




3733
S4M10000024G01


Salmonella typhimurium




3734
S4M10000024G04


Salmonella typhimurium




3735
S4M10000024G09


Salmonella typhimurium




3736
S4M10000024H02


Salmonella typhimurium




3737
S4M10000025A11


Salmonella typhimurium




3738
S4M10000025E02


Salmonella typhimurium




3739
S4M10000025E05


Salmonella typhimurium




3740
S4M10000025H07


Salmonella typhimurium




3741
S4M10000026C10


Salmonella typhimurium




3742
S4M10000026D04


Salmonella typhimurium




3743
S4M10000026E06


Salmonella typhimurium




3744
S4M10000026E12


Salmonella typhimurium




3745
S4M10000027C10


Salmonella typhimurium




3746
S4M10000027E02


Salmonella typhimurium




3747
S4M10000029B12


Salmonella typhimurium




3748
S4M10000029D12


Salmonella typhimurium




3749
S4M10000030D03


Salmonella typhimurium




3750
S4M10000030F07


Salmonella typhimurium




3751
S4M10000030G11


Salmonella typhimurium




3752
S4M10000032B12


Salmonella typhimurium




3753
S4M10000033F08


Salmonella typhimurium




3754
S4M10000033G05


Salmonella typhimurium




3755
S4M10000033G09


Salmonella typhimurium




3756
S4M10000034A02


Salmonella typhimurium




3757
S4M10000034A09


Salmonella typhimurium




3758
S4M10000034D06


Salmonella typhimurium




3759
S4M10000034H05


Salmonella typhimurium




3760
S4M10000034H09


Salmonella typhimurium




3761
S4M10000035B01


Salmonella typhimurium




3762
S4M10000035D01


Salmonella typhimurium




3763
S4M10000035D02


Salmonella typhimurium




3764
S4M10000035E03


Salmonella typhimurium




3765
S4M10000035F02


Salmonella typhimurium




3766
S4M10000035F09


Salmonella typhimurium




3767
S4M10000036D07


Salmonella typhimurium




3768
S4M10000036F07


Salmonella typhimurium




3769
S4M10000037A04


Salmonella typhimurium




3770
S4M10000037A10


Salmonella typhimurium




3771
S4M10000037E10


Salmonella typhimurium




3772
S4M10000037H09


Salmonella typhimurium




3773
S4M10000001H01


Salmonella typhimurium




3774
S4M10000002F06


Salmonella typhimurium




3775
S4M10000008D01


Salmonella typhimurium




3776
S4M10000009G11


Salmonella typhimurium




3777
S4M10000011F09


Salmonella typhimurium




3778
S4M10000020F08


Salmonella typhimurium




3779
S4M10000021E07


Salmonella typhimurium




3780
S4M10000022B05


Salmonella typhimurium




3781
S4M10000025H11


Salmonella typhimurium




3782
S4M10000026B10


Salmonella typhimurium




3783
S4M10000026E03


Salmonella typhimurium




3784
S4M10000029A03


Salmonella typhimurium




3785
S4M10000029C11


Salmonella typhimurium




3786
S4M10000030F06


Salmonella typhimurium




3787
S4M10000032F03


Salmonella typhimurium




3788
S4M10000032G01


Salmonella typhimurium




3789
S4M10000034C05


Salmonella typhimurium




3790
S4M10000034H04


Salmonella typhimurium




3791
S4M10000035A09


Salmonella typhimurium




3792
S4M10000035B06


Salmonella typhimurium




3793
S4M10000035F01


Salmonella typhimurium




3794
S4M10000037A08


Salmonella typhimurium




3795
S4M10000037E03


Salmonella typhimurium












[0879]

17










TABLE 1B













full length







ORF



Clone

Gene Seq ID

Protein Seq


Clone name
Seq ID
PathoSeq Locus
(protein)
Genemarked gene
ID




















E3M10000001A02
8
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000001A06
9
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000001B01
10
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000001B02
11
EFA100739
4888
EFA1c0022_orf_23p
10537


E3M10000001B02
11
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000001B02
11
EFA1025S1
5001
EFA1c0022_orf_25p
10539


E3M10000001B05
12
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000001B06
13
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000001B08
14
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000001B10
15
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000001C02
16
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000001C09
17
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000001D02
18
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000001D04
19
EFA100742
4891
EFA1c0022_orf_20p
10534


E3M10000001D04
19
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000001D04
19
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000001D05
20
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000001D05
20
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000001D09
21
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000001D09
21
EFA100211
4871
EFA1c0022_orf_10p
10523


B3M10000001E01
22
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000001E01
22
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000001E02
23
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000001E03
24
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000001E03
24
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000001E04
25
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000001E08
26
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000001E09
27
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000001E09
27
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000001F02
28
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000001F04
29
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000001F06
30
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000001F07
31
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000001G02
32
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000001G03
33
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000001G03
33
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000001G04
34
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000001G05
35
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000001H02
36
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000001H03
37
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000001H03
37
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000001H04
38
EFA100742
4891
EFA1c0022_orf_20p
10534


E3M10000001H04
38
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000001H04
38
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000004A04
39
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000004A04
39
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000004C03
40
EFA100478
4880
EFA1c0012_orf_2p
10486


E3M10000004D01
41
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000004D01
41
EFA101413
4938
#N/A
#N/A


E3M10000004D01
41
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000004D02
42
EFA102022
4974
EFA1c0044_orf_106p
10881


E3M10000004D02
42
EFA102023
4975
EFA1c0044_orf_107p
10882


E3M10000004D10
43
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000004D10
43
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000004E11
44
EFA101086
4910
EFA1c0240_orf_90p
10763


E3M10000004F08
45
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000004F08
45
EFA102551
5001
EFA1c0022_orf_25p
10539


B3M10000004F10
46
EFA101086
4910
EFA1c0040_orf_90p
10763


E3M10000004G01
47
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000004H11
48
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000004H11
48
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005A07
49
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000005B01
50
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000005B01
50
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000005B08
51
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000005B08
51
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005C01
52
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000005C03
53
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000005C04
54
EFA102186
4981
EFA1c0045_orf_94p
10949


E3M10000005C04
54
EFA102453
4993
EFA1c0045_orf_203p
10931


E3M10000005C04
54
EFA102728
5006
EFA1c0045_orf_93p
10948


E3M10000005D03
55
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000005D04
56
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000005D10
57
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000005D10
57
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005E01
58
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000005E01
58
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005E02
59
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000005E02
59
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005E03
60
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000005E08
61
EFA101403
4932
EFA1c0033_orf_54p
10662


E3M10000005F07
62
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000005F10
63
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000005F10
63
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005G05
64
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000005G05
64
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000005H04
65
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000006B03
66
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000006B03
66
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000006C01
67
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000006C01
67
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000006C12
68
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000006C12
68
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000006D03
69
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000006D03
69
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000006E11
70
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000006E11
70
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000006F04
71
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000006F04
71
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000006G04
72
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000006G04
72
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000006G12
73
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000006G12
73
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000006H09
74
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000007A02
75
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007A02
75
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000007B02
76
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007B02
76
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000007B03
77
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007B03
77
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000007C03
78
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000007C03
78
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000007C04
79
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000007D03
80
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007D03
80
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000007E05
81
EFA100742
4891
EFA1c0022_orf_20p
10534


E3M10000007E05
81
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000007E05
81
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000007F01
82
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007F01
82
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000007F06
83
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007F06
83
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000007G01
84
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000007G01
84
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000008C03
85
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000008C08
86
EFA101536
4946
EFA1c0042_orf_46p
10823


E3M10000008C09
87
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000008D08
88
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000008E02
89
EFA100783
4895
EFA1c0042_orf_141p
10811


E3M10000008G05
90
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000008G05
90
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000008G09
91
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000008G09
91
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000008H02
92
EFA101695
4954
EFA1c0031_orf_6p
10629


E3M10000009C07
93
EFA103508
5029
EFA1c0033_orf_95p
10672


E3M10000009C09
94
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000009D01
95
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000009E02
96
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000009E02
96
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000009E03
97
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000009E05
98
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000009G02
99
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000010C08
100
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000010D05
101
EFA100757
4894
EFA1c0044_orf_27p
10897


E3M10000010F01
102
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000010G05
103
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000010G07
104
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000010G09
105
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000010G10
106
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M1000200210H
107
EFA100194
4868
EFA1c0022_orf_26p
10540


E3M10000011A09
108
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000011B03
109
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000011B09
110
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000011C07
111
EFA101790
4959
EFA1c0042_orf_111p
10803


E3M10000011D03
112
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000011D03
112
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000011H02
113
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000011H05
114
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000012B01
115
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000012B02
116
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000012B07
117
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000012B07
117
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000012B07
117
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000012B08
118
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000012C01
119
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000012D10
120
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000012E08
121
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000012F05
122
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000012F06
123
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000012F07
124
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000012F07
124
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000012F10
125
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000012F10
125
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000012G02
126
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000012G07
127
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000012G07
127
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000013A06
128
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000013A07
129
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000013C05
130
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000013C05
130
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000013D02
131
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000013D08
132
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000013D10
133
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000013D10
133
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000013E02
134
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000013E08
135
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000013F05
136
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000013F12
137
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000013F12
137
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000013G10
138
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000013H03
139
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000013H05
140
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000013H10
141
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000014B12
142
EFA100739
4888
EFA1c0022_orf_23p
10537


E3M10000014B12
142
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000014B12
142
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000014E12
143
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000014E12
143
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000014G09
144
EFA100991
4905
EFA1c0035_orf_60p
10681


E3M10000014G09
144
EFA103033
5016
EFA1c0035_orf_60p
10681


E3M10000015B04
145
EFA100065
4863
EFA1c0042_orf_14p
10813


E3M10000015B12
146
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000015E12
147
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000015E12
147
EFA100211
4871
EFA1c0022_orf_10p
10523


E3M10000016A03
148
EFA101753
4957
EFA1c0022_orf_50p
10552


E3M10000016A04
149
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000016C11
150
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000016C11
150
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000016D03
151
EFA102774
5009
EFA1c0044_orf_25p
10896


E3M10000016F06
152
EFA102205
4983
EFA1c0041_orf_115p
10769


E3M10000016F10
153
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000016F10
153
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000016H05
154
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000016H10
155
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000017A09
156
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000017A09
156
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000017D09
157
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000018A07
158
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000018C02
159
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000018E01
160
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000018G09
161
EFA101583
4949
EFA1c0026_orf_23p
10593


E3M10000018H06
162
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000019B06
163
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000019D02
164
EFA102022
4974
EFA1c0044_orf_106p
10881


E3M10000019E03
165
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000019E03
165
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000019E04
166
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000020G04
167
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000020G04
167
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000020H05
168
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000021A08
169
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000021A08
169
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000021A11
170
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000021B10
171
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000021C03
172
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000021C04
173
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000021C08
174
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000021D04
175
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000021D04
175
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000021E10
176
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000021G04
177
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000021G10
178
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000021G11
179
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000021H11
180
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000022A04
181
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000022A11
182
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000022B04
183
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000022B05
184
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000022B05
184
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000022B07
185
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000022C05
186
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000022C05
186
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000022C06
187
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000022C09
188
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000022D04
189
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000022F05
190
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000022F06
191
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000022F06
191
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000022F08
192
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000022G02
193
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000022G12
194
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000023A03
195
EFA101413
4938
#N/A
#N/A


E3M10000023A06
196
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000023A07
197
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000023A09
198
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000023B02
199
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000023B02
199
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000023B06
200
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000023C03
201
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000023C03
201
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000023C04
202
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000023C06
203
EFA101413
4938
#N/A
#N/A


E3M10000023C08
204
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000023C09
205
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000023C09
205
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000023D02
206
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000023D04
207
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000023D10
208
EFA101413
4938
#N/A
#N/A


E3M10000023E04
209
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000023E07
210
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000023E09
211
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000023F02
212
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000023F10
213
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000023G02
214
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000023G04
215
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000023G10
216
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000023H08
217
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000024A03
218
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000024A04
219
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000024A08
220
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000024A08
220
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000024C06
221
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000025A06
222
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000025B01
223
EFA100194
4868
EFA1c0022_orf_26p
10540


E3M10000025B01
223
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000025B03
224
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000025B03
224
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000025B05
225
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000025B10
226
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000025C01
227
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000025C04
228
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000025C05
229
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000025C05
229
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000025C07
230
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000025C08
231
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000025C08
231
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000025C09
232
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000025C11
233
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000025D01
234
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000025D01
234
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000025D10
235
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000025E07
236
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000025E08
237
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000025E12
238
EFA102728
5006
EFA1c0045_orf_93p
10948


E3M10000025F04
239
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000025F04
239
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000025F06
240
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000025F06
240
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000025F06
240
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000025F08
241
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000025F09
242
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000025F10
243
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000025F11
244
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000025F12
245
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000025G02
246
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000025007
247
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000025G09
248
EFA102185
4980
EFA1c0045_orf_95p
10950


E3M10000027A02
249
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000027A07
250
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000027A09
251
EFA101413
4938
#N/A
#N/A


E3M10000027A09
251
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000027B07
252
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000027B08
253
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000027B09
254
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000027B09
254
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000027C02
255
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000027C03
256
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000027C08
257
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000027D03
258
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000027D03
258
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000027D05
259
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000027D08
260
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000027D10
261
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000027G01
262
EFA102186
4981
EFA1c0045_orf_94p
10949


E3M10000027G08
263
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000027H04
264
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000027H07
265
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000027H07
265
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000028A02
266
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000028A03
267
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000028A04
268
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000028A04
268
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000028A05
269
EFA101080
4909
#N/A
#N/A


E3M10000028A05
269
EFA102915
5014
EFA1c0032_orf_27p
10640


E3M10000028A06
270
EFA103210
5022
EFA1c0036_orf_119p
10688


E3M10000028A08
271
EFA101424
4943
EFA1c0041_orf_39p
10784


E3M10000028A08
271
EFA101425
4944
EFA1c0041_orf_40p
10785


E3M10000028B01
272
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000028B02
273
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000028B02
273
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000028B03
274
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000028B04
275
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000028B05
276
EFA101424
4943
EFA1c0041_orf_39p
10784


E3M10000028B05
276
EFA101425
4944
EFA1c0041_orf_40p
10785


E3M10000028B06
277
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000028B07
278
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000028B08
279
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000028C01
280
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000028C01
280
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000028C02
281
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000028C02
281
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000028C04
282
EFA101322
4927
EFA1c0030_orf_57p
10620


E3M10000028C05
283
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000028C06
284
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000028C07
285
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000028C08
286
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000028C08
286
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000028D01
287
EFA100194
4868
EFA1c0022_orf_26p
10540


E3M10000028D01
287
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000028D02
288
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000028D05
289
EFA101080
4909
#N/A
#N/A


E3M10000028D06
290
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000028D08
291
EFA103268
5023
EFA1c0010_orf_1p
10479


E3M10000028E01
292
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000028E04
293
EFA101370
4931
EFA1c0040_orf_103p
10738


E3M10000028E07
294
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000028F02
295
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000028F03
296
EFA100742
4891
EFA1c0022_orf_20p
10534


E3M10000028F03
296
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000028F03
296
EFA102554
5002
EFA1c0022_orf_19p
10532


E3M10000028F04
297
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000028F04
297
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000028F05
298
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000028F06
299
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000028F07
300
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000028G05
301
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000028G06
302
EFA100748
4892
EFA1c0011_orf_10p
10483


E3M10000028G07
303
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000028G07
303
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000028H04
304
EFA101409
4934
EFA1c0022_orf_11p
10524


E3M10000028H07
305
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000029A02
306
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000029A04
307
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000029A05
308
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000029A10
309
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000029A11
310
EFA101413
4938
#N/A
#N/A


E3M10000029B01
311
EFA103295
5024
EFA1c0032_orf_1p
10633


E3M10000029B02
312
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000029B05
313
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000029B06
314
EFA100914
4900
EFA1c0024_orf_9p
10579


E3M10000029B08
315
EFA102338
4987
EFA1c0032_orf_8p
10651


E3M10000029B11
316
EFA100397
4877
EFA1c0041_orf_148p
10773


E3M10000029B12
317
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000029C01
318
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000029C02
319
EFA102788
5011
EFA1c0033_orf_41p
10661


E3M10000029C03
320
EFA102253
4984
EFA1c0038_orf_85p
10727


E3M10000029C04
321
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000029C05
322
EFA100399
4878
EFA1c0041_orf_104p
10766


E3M10000029C06
323
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000029C06
323
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000029C07
324
EFA102352
4990
EFA1c0032_orf_21p
10635


E3M10000029C07
324
EFA102353
4991
EFA1c0032_orf_22p
10636


E3M10000029C08
325
EFA101868
4966
EFA1c0042_orf_69p
10829


E3M10000029C09
326
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000029C10
327
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000029C12
328
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000029D01
329
EFA101080
4909
#N/A
#N/A


E3M10000029D03
330
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000029D04
331
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000029D05
332
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000029D06
333
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000029D06
333
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000029D08
334
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000029D12
335
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000029E01
336
EFA101404
4933
EFA1c0033_orf_55p
10663


E3M10000029E02
337
EFA102051
4976
#N/A
#N/A


E3M10000029E03
338
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000029E05
339
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000029E07
340
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000029E08
341
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000029E09
342
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000029E12
343
EFA100397
4877
EFA1c0041_orf_148p
10773


E3M10000029F01
344
EFA100023
4862
EFA1c0017_orf_1p
10505


E3M10000029F05
345
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000029F06
346
EFA101795
4962
EFA1c0045_orf_165p
10922


E3M10000029F09
347
EFA100689
4886
EFA1c0038_orf_54p
10717


E3M10000029F10
348
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000029F11
349
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000029F12
350
EFA102282
4985
EFA1c0038_orf_89p
10729


E3M10000029G01
351
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000029G04
352
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000029G05
353
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000029G07
354
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000029G08
355
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000029G09
356
EFA102201
4982
#N/A
#N/A


E3M10000029G10
357
EFA101797
4963
EFA1c0045_orf_167p
10924


E3M10000029G11
358
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000029G12
359
EFA101541
4948
EFA1c0012_orf_5p
10488


E3M10000029H02
360
EFA101339
4928
EFA1c0040_orf_13p
10743


E3M10000029H02
360
EFA101340
4929
EFA1c0040_orf_15p
10745


E3M10000029H04
361
EFA102352
4990
EFA1c0032_orf_21p
10635


E3M10000029H04
361
EFA102353
4991
EFA1c0032_orf_22p
10636


E3M10000029H05
362
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000029H07
363
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000029H08
364
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000029H11
365
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000030A05
366
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000030A08
367
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000030A09
368
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000030A11
369
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000030B03
370
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000030B04
371
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000030B05
372
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000030B06
373
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000030B07
374
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000030B08
375
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000030B10
376
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000030B11
377
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000030B12
378
EFA102352
4990
EFA1c0032_orf_21p
10635


E3M10000030B12
378
EFA102353
4991
EFA1c0032_orf_22p
10636


E3M10000030C03
379
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000030C04
380
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000030C12
381
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000030D02
382
EFA102350
4988
EFA1c0032_orf_19p
10632


E3M10000030D05
383
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000030D08
384
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000030D09
385
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000030D10
386
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000030D12
387
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000030E01
388
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000030E01
388
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000030E02
389
EFA100329
4875
EFA1c0041_orf_35p
10782


E3M10000030E04
390
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000030E08
391
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000030E09
392
EFA103365
5026
EFA1c0022_orf_1p
10533


E3M10000030E10
393
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000030F01
394
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000030F04
395
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000030F06
396
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000030F07
397
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000030F10
398
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000030F12
399
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000030G01
400
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000030G03
401
EFA100023
4862
EFA1c0017_orf_1p
10505


E3M10000030G06
402
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000030G08
403
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000030G09
404
EFA103210
5022
EFA1c0036_orf_119p
10688


E3M10000030G12
405
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000030H03
406
EFA101258
4926
EFA1c0045_orf_160p
10918


E3M10000030H04
407
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000030H06
408
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000030H07
409
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000030H08
410
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000030H10
411
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000030H11
412
EFA100615
4881
EFA1c0016_orf_29p
10501


E3M10000031A02
413
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000031A06
414
EFA100970
4903
EFA1c0044_orf_98p
10906


E3M10000031A07
415
EFA102201
4982
#N/A
#N/A


E3M10000031A08
416
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000031B02
417
EFA100289
4872
EFA1c0042_orf_139p
10810


E3M10000031B03
418
EFA100426
4879
EFA1c0036_orf_59p
10702


E3M10000031B04
419
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000031B09
420
EFA102183
4979
EFA1c0045_orf_97p
10952


E3M10000031B10
421
EFA101253
4924
EFA1c0043_orf_178p
10852


E3M10000031B11
422
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000031B12
423
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000031C01
424
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000031C04
425
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000031C06
426
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000031C10
427
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000031C11
428
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000031C12
429
EFA100668
4885
EFA1c0035_orf_58p
10679


E3M10000031D03
430
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000031D04
431
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000031D08
432
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000031E03
433
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000031E09
434
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000031F02
435
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000031F02
435
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000031F04
436
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000031F07
437
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000031F09
438
EFA102764
5008
EFA1c0008_orf_3p
10478


E3M10000031F11
439
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000031F11
439
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000031G03
440
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000031G04
441
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000031G05
442
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000031G06
443
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000031G07
444
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000031G08
445
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000031G11
446
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000031H05
447
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000031H06
448
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000031H07
449
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000031H08
450
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000031H10
451
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000031H11
452
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000031H11
452
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000032A02
453
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000032A04
454
EFA101670
4950
EFA1c0019_orf_20p
10511


E3M10000032A06
455
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000032A07
456
EFA101670
4950
EFA1c0019_orf_20p
10511


E3M10000032A08
457
EFA100329
4875
EFA1c0041_orf_35p
10782


E3M10000032A09
458
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000032A10
459
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000032A11
460
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000032A11
460
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000032B03
461
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000032B04
462
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000032B07
463
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000032B08
464
EFA102698
5005
EFA1c0045_orf_115p
10909


E3M10000032B09
465
EFA102051
4976
#N/A
#N/A


E3M10000032B11
466
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000032B12
467
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000032C01
468
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000032C02
469
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000032C03
470
EFA103348
5025
EFA1c0043_orf_67p
10873


E3M10000032C04
471
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000032C06
472
EFA101150
4915
EFA1c0038_orf_57p
10719


E3M10000032C09
473
EFA100740
4889
EFA1c0022_orf_22p
10536


E3M10000032C11
474
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000032C12
475
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000032D01
476
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000032D02
477
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000032D03
478
EFA100399
4878
EFA1c0041_orf_104p
10766


E3M10000032D06
479
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000032D09
480
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000032D12
481
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000032E04
482
EFA101792
4961
EFA1c0042_orf_113p
10805


E3M10000032E04
482
EFA103786
5031
EFA1c0042_orf_114p
10806


E3M10000032E05
483
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000032E08
484
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000032E10
485
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000032E10
485
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000032E11
486
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000032E12
487
EFA102326
4986
#N/A
#N/A


E3M10000032F02
488
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000032F02
488
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000032F03
489
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000032F05
490
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000032F07
491
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000032F08
492
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000032F11
493
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000032F12
494
EFA102201
4982
#N/A
#N/A


E3M10000032G01
495
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000032G02
496
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000032G04
497
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000032G05
498
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000032G06
499
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000032G07
500
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000032H05
501
EFA100200
4869
EFA1c0041_orf_88p
10798


E3M10000032H06
502
EFA101833
4965
EFA1c0038_orf_62p
10720


E3M10000032H08
503
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000032H09
504
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000032H10
505
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000033A03
506
EFA101253
4924
EFA1c0043_orf_178p
10852


E3M10000033A04
507
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000033A05
508
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000033A06
509
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000033A07
510
EFA102774
5009
EFA1c0044_orf_25p
10896


E3M10000033A08
511
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000033A11
512
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000033B01
513
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000033B02
514
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000033B04
515
EFA101765
4958
EFA1c0025_orf_33p
10587


E3M10000033B05
516
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000033B06
517
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000033B08
518
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000033B09
519
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000033C01
520
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000033C02
521
EFA103174
5021
EFA1c0036_orf_120p
10689


E3M10000033C05
522
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000033C05
522
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000033C09
523
EFA100811
4898
EFA1c0022_orf_33p
10546


E3M10000033C10
524
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000033C10
524
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000033C11
525
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000033C12
526
EFA102389
4992
EFA1c0044_orf_83p
10904


E3M10000033D01
527
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000033D04
528
EFA101682
4951
EFA1c0041_orf_53p
10789


E3M10000033D05
529
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000033D06
530
EFA100641
4883
EFA1c0041_orf_57p
10793


E3M10000033D06
530
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000033D09
531
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000033D10
532
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000033D11
533
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000033E02
534
EFA101477
4945
EFA1c0043_orf_224p
10861


E3M10000033E03
535
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000033E03
535
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000033E04
536
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000033E05
537
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000033E07
538
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000033E08
539
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000033E09
540
EFA100617
4882
EFA1c0040_orf_93p
10764


E3M10000033E11
541
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000033F01
542
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000033F03
543
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000033F04
544
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000033F05
545
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000033F07
546
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000033F08
547
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000033F10
548
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000033F12
549
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000033F12
549
EFA102542
4999
EFA1c0028_orf_4p
10603


E3M10000033G01
550
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000033G02
551
EFA102813
5013
EFA1c0043_orf_9p
10878


E3M10000033G03
552
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000033G04
553
EFA102326
4986
#N/A
#N/A


E3M10000033G06
554
EFA101404
4933
EFA1c0033_orf_55p
10663


E3M10000033G07
555
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000033G08
556
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000033G09
557
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000033G12
558
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000033H02
559
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000033H04
560
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000033H05
561
EFA100741
4890
EFA1c0022_orf_21p
10535


E3M10000033H07
562
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000033H08
563
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000033H09
564
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000033H10
565
EFA101079
4908
#N/A
#N/A


E3M10000033H11
566
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000034A02
567
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000034A03
568
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000034A04
569
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000034B02
570
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000034B04
571
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000034C04
572
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000034D01
573
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000034D02
574
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000034E01
575
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000034E04
576
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000034F02
577
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000034F03
578
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000034F04
579
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000034G02
580
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000034G03
581
EFA100740
4889
EFA1c0022_orf_22p
10536


E3M10000034H02
582
EFA101257
4925
EFA1c0045_orf_159p
10917


E3M10000034H03
583
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000035A02
584
EFA103268
5023
EFA1c0010_orf_1p
10479


E3M10000035A04
585
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000035A05
586
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000035A06
587
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000035A08
588
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000035A09
589
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000035A11
590
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000035B01
591
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000035B03
592
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035B06
593
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000035B07
594
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000035B08
595
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000035B10
596
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000035B11
597
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000035B12
598
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000035C01
599
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035C03
600
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000035C04
601
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000035C05
602
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000035C06
603
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000035C07
604
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000035C08
605
EFA100741
4890
EFA1c0022_orf_21p
10535


E3M10000035C08
605
EFA100742
4891
EFA1c0022_orf_20p
10534


E3M10000035C09
606
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000035C11
607
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035C12
608
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035D02
609
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000035D03
610
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000035D04
611
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000035D05
612
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000035D10
613
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000035D11
614
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000035E03
615
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000035E04
616
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000035E05
617
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000035E07
618
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000035E08
619
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000035E09
620
EFA100312
4874
EFA1c0032_orf_28p
10641


E3M10000035E10
621
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000035E11
622
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000035E12
623
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035F01
624
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000035F02
625
EFA101925
4971
EFA1c0044_orf_19p
10893


E3M10000035F03
626
EFA100312
4874
EFA1c0032_orf_28p
10641


E3M10000035F06
627
EFA101080
4909
#N/A
#N/A


E3M10000035F07
628
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000035F08
629
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035F09
630
EFA101410
4935
EFA1c0022_orf_12p
10525


E3M10000035F09
630
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000035F11
631
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000035F12
632
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000035G02
633
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000035G02
633
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000035G04
634
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000035G05
635
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000035G08
636
EFA100642
4884
EFA1c00241_orf_56p
10792


E3M10000035G09
637
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000035G09
637
EFA103508
5029
EFA1c0033_orf_95p
10672


E3M10000035G10
638
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000035G11
639
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000035H03
640
EFA101080
4909
#N/A
#N/A


E3M10000035H06
641
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000035H09
642
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000035H11
643
EFA101257
4925
EFA1c0045_orf_159p
10917


E3M10000035H11
643
EFA101258
4926
EFA1c0045_orf_160p
10918


E3M10000036A03
644
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000036A04
645
EFA101416
4941
EFA1c0022_orf_17p
10530


B3M10000036A05
646
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000036A06
647
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000036A07
648
EFA103268
5023
EFA1c0010_orf_1p
10479


E3M10000036A08
649
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000036A09
650
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000036A10
651
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000036B01
652
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000036B03
653
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000036B06
654
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036B07
655
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000036B08
656
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000036B09
657
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000036B11
658
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000036B12
659
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036B12
659
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000036C01
660
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000036C03
661
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000036C06
662
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000036C07
663
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000036C08
664
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000036C09
665
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000036C10
666
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000036C11
667
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000036D03
668
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000036D04
669
EFA102201
4982
#N/A
#N/A


E3M10000036D06
670
EFA100740
4889
EFA1c0022_orf_22p
10536


E3M10000036D08
671
EFA101164
4921
EFA1c0022_orf_7p
10558


E3M10000036D09
672
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000036D10
673
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000036D11
674
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000036D12
675
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000036E01
676
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000036E04
677
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036E05
678
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000036E07
679
EFA101022
4906
EFA1c0043_orf_69p
10875


E3M10000036E08
680
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000036F03
681
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000036F04
682
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000036F05
683
EFA101792
4961
EFA1c0042_orf_113p
10805


E3M10000036F08
684
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000036F09
685
EFA101404
4933
EFA1c0033_orf_55p
10663


E3M10000036F10
686
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036F12
687
EFA101163
4920
EFA1c0022_orf_6p
10557


E3M10000036G01
688
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000036G01
688
EFA102551
5001
EFA1c0022_orf_25p
10539


E3M10000036G02
689
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000036G03
690
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000036G04
691
EFA102091
4977
EFA1c0010_orf_3p
10481


B3M10000036G06
692
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000036G10
693
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036H02
694
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000036H03
695
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000036H04
696
EFA103365
5026
EFA1c0022_orf_1p
10533


E3M10000036H05
697
EFA100194
4868
EFA1c0022_orf_26p
10540


E3M10000036H06
698
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036H07
699
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000036H08
700
EFA103210
5022
EFA1c0036_orf_119p
10688


E3M10000036H09
701
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000036H10
702
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000037A03
703
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000037A06
704
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000037A08
705
EFA103365
5026
EFA1c0022_orf_1p
10533


E3M10000037A09
706
EFA100756
4893
EFA1c0024_orf_39p
10575


E3M10000037A10
707
EFA103268
5023
EFA1c0010_orf_1p
10479


E3M10000037B02
708
EFA100641
4883
EFA1c0041_orf_57p
10793


E3M10000037B02
708
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000037B07
709
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000037B08
710
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000037B11
711
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000037C01
712
EFA101080
4909
#N/A
#N/A


E3M10000037C02
713
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000037C04
714
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000037C05
715
EFA102655
5003
EFA1c0039_orf_25p
10733


B3M10000037C07
716
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000037C07
716
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000037C11
717
EFA100615
4881
EFA1c0016_orf_29p
10501


E3M10000037C12
718
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000037D02
719
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000037D03
720
EFA100795
4896
EFA1c0043_orf_229p
10863


E3M10000037D03
720
EFA103081
5020
EFA1c0043_orf_28p
10862


E3M10000037D04
721
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000037D05
722
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000037D06
723
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000037D09
724
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000037D09
724
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000037D11
725
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000037E01
726
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000037E02
727
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000037E03
728
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000037E05
729
EFA101080
4909
#N/A
#N/A


E3M10000037E07
730
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000037E08
731
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000037E10
732
EFA101253
4924
EFA1c0043_orf_178p
10852


E3M10000037E12
733
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000037F01
734
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000037F02
735
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000037F06
736
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000037F07
737
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000037F12
738
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000037G01
739
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000037G02
740
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000037G03
741
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000037G05
742
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000037G06
743
EFA103295
5024
EFA1c0032_orf_1p
10633


E3M10000037G07
744
EFA101541
4948
EFA1c0012_orf_5p
10488


E3M10000037G08
745
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000037G10
746
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000037G11
747
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000037H02
748
EFA101413
4938
#N/A
#N/A


E3M10000037H05
749
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000037H07
750
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000037H10
751
EFA101080
4909
#N/A
#N/A


E3M10000037H11
752
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000038A02
753
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000038A03
754
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000038A05
755
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000038A06
756
EFA102549
5000
EFA1c0022_orf_24p
10538


E3M10000038A07
757
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000038A09
758
EFA102736
5007
EFA1c0022_orf_60p
10556


E3M10000038A10
759
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000038A11
760
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000038B02
761
EFA103210
5022
EFA1c0036_orf_119p
10688


E3M10000038B03
762
EFA102389
4992
EFA1c0044_orf_83p
10904


E3M10000038B04
763
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000038B05
764
EFA100795
4896
EFA1c0043_orf_229p
10863


E3M10000038B05
764
EFA103081
5020
EFA1c0043_orf_28p
10862


E3M10000038B07
765
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000038B08
766
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000038B09
767
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000038B11
768
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000038C02
769
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000038C03
770
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000038C05
771
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000038C07
772
EFA101963
4972
EFA1c0043_orf_162p
10848


E3M10000038C10
773
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000038C12
774
EFA101080
4909
#N/A
#N/A


E3M10000038D01
775
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000038D02
776
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000038D04
777
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000038D08
778
EFA101160
4917
EFA1c0022_orf_3p
10549


B3M10000038D10
779
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000038D11
780
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000038D12
781
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000038E02
782
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000038E03
783
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000038E04
784
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000038E05
785
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000038E07
786
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000038E08
787
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000038E11
788
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000038F02
789
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000038F04
790
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000038F05
791
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000038F05
791
EFA101161
4918
EFA1c0022_orf_4p
10551


E3M10000038F06
792
EFA103571
5030
EFA1c0044_orf_101p
10879


E3M10000038F07
793
EFA103210
5022
EFA1c0036_orf_119p
10688


E3M10000038F09
794
EFA102185
4980
EFA1c0045_orf_95p
10950


E3M10000038F10
795
EFA101080
4909
#N/A
#N/A


E3M10000038F11
796
EFA100740
4889
EFA1c0022_orf_22p
10536


E3M10000038G02
797
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000038G03
798
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000038G06
799
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000038G07
800
EFA102352
4990
EFA1c0032_orf_21p
10635


E3M10000038G07
800
EFA102353
4991
EFA1c0032_orf_22p
10636


E3M10000038G11
801
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000038H02
802
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000038H05
803
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000038H06
804
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000038H07
805
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000038H08
806
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000038H09
807
EFA102802
5012
EFA1c0043_orf_18p
10854


E3M10000038H10
808
EFA101541
4948
EFA1c0012_orf_5p
10488


E3M10000039A02
809
EFA101736
4955
EFA1c0041_orf_14p
10775


E3M10000039A02
809
EFA101737
4956
EFA1c0041_orf_15p
10778


E3M10000039A06
810
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000039A07
811
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000039A08
812
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000039A10
813
EFA101257
4925
EFA1c0045_orf_159p
10917


E3M10000039A11
814
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000039B01
815
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000039B03
816
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000039B04
817
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000039B04
817
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000039B06
818
EFA100870
4899
EFA1c0031_orf_36p
10627


E3M10000039B07
819
EFA102110
4978
EFA1c0042_orf_99p
10841


E3M10000039B08
820
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000039B09
821
EFA101792
4961
EFA1c0042_orf_113p
10805


E3M10000039B11
822
EFA101080
4909
#N/A
#N/A


E3M10000039C02
823
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000039C04
824
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000039C05
825
EFA100739
4888
EFA1c0022_orf_23p
10537


E3M10000039C06
826
EFA103504
5028
EFA1c0033_orf_94p
10671


E3M10000039C07
827
EFA101791
4960
EFA1c0042_orf_112p
10804


E3M10000039C07
827
EFA101792
4961
EFA1c0042_orf_113p
10805


E3M10000039C08
828
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000039C09
829
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000039C10
830
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000039D02
831
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000039D03
832
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000039D04
833
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000039D06
834
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000039E01
835
EFA102201
4982
#N/A
#N/A


E3M10000039E02
836
EFA101540
4947
EFA1c0012_orf_4p
10487


E3M10000039E03
837
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000039E05
838
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000039E07
839
EFA103295
5024
EFA1c0032_orf_1p
10633


E3M10000039E08
840
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000039F01
841
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000039F02
842
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000039F03
843
EFA102788
5011
EFA1c0033_orf_41p
10661


E3M10000039F03
843
EFA103375
5027
EFA1c0033_orf_40p
10660


E3M10000039F06
844
EFA100739
4888
EFA1c0022_orf_23p
10537


E3M10000039F07
845
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000039F08
846
EFA101162
4919
EFA1c0022_orf_5p
10555


E3M10000039G01
847
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000039G02
848
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000039G05
849
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000039G07
850
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000039G09
851
EFA102541
4998
EFA1c0028_orf_3p
10602


E3M10000039G10
852
EFA101682
4951
EFA1c0041_orf_53p
10789


E3M10000039H02
853
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000039H07
854
EFA101080
4909
#N/A
#N/A


E3M10000039H08
855
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000039H10
856
EFA101413
4938
#N/A
#N/A


E3M10000039H11
857
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000039H11
857
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000040A03
858
EFA101123
4913
EFA1c0040_orf_22p
10748


E3M10000040A05
859
EFA101080
4909
#N/A
#N/A


E3M10000040A07
860
EFA100157
4865
EFA1c0034_orf_63p
10673


E3M10000040A09
861
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000040A10
862
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000040A11
863
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000040B01
864
EFA102788
5011
EFA1c0033_orf_41p
10661


E3M10000040B02
865
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000040B05
866
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000040B05
866
EFA103268
5023
EFA1c0010_orf_1p
10479


E3M10000040B06
867
EFA102518
4997
EFA1c0032_orf_46p
10647


E3M10000040B08
868
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000040B09
869
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000040B10
870
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000040B11
871
EFA102764
5008
EFA1c0008_orf_3p
10478


E3M10000040B12
872
EFA100210
4870
EFA1c0022_orf_9p
10560


E3M10000040C02
873
EFA101080
4909
#N/A
#N/A


E3M10000040C05
874
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000040C06
875
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000040C07
876
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000040C08
877
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000040C09
878
EFA100165
4866
EFA1c0032_orf_23p
10637


E3M10000040C09
878
EFA102353
4991
EFA1c0032_orf_22p
10636


E3M10000040C10
879
EFA101686
4953
EFA1c0045_orf_63p
10940


B3M10000040C11
880
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000040C12
881
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000040D03
882
EFA102201
4982
#N/A
#N/A


E3M10000040D04
883
EFA101080
4909
#N/A
#N/A


E3M10000040D08
884
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000040D12
885
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000040E02
886
EFA102051
4976
#N/A
#N/A


E3M10000040E10
887
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000040E11
888
EFA103039
5018
EFA1c0043_orf_16p
10850


E3M10000040E12
889
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000040F01
890
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000040F03
891
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000040F08
892
EFA101080
4909
#N/A
#N/A


E3M10000040F09
893
EFA100919
4901
EFA1c0013_orf_12p
10491


E3M10000040F10
894
EFA102051
4976
#N/A
#N/A


E3M10000040G01
895
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000040G02
896
EFA101424
4943
EFA1c0041_orf_39p
10784


E3M10000040G02
896
EFA101425
4944
EFA1c0041_orf_40p
10785


E3M10000040G04
897
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000040G05
898
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000040G07
899
EFA101079
4908
#N/A
#N/A


E3M10000040G07
899
EFA101080
4909
#N/A
#N/A


E3M10000040G08
900
EFA102186
4981
EFA1c0045_orf_94p
10949


E3M10000040G09
901
EFA103021
5015
EFA1c0030_orf_16p
10612


E3M10000040G11
902
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000040H02
903
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000040H03
904
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000040H04
905
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000040H04
905
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000040H05
906
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000040H05
906
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000040H09
907
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000040H09
907
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000041A03
908
EFA100615
4881
EFA1c0016_orf_29p
10501


E3M10000041A05
909
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000041A08
910
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000041A09
911
EFA101354
4930
EFA1c0032_orf_69p
10648


E3M10000041A10
912
EFA10G001
4861
EFA1c0030_orf_3p
10618


E3M10000041A11
913
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000041A11
913
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000041B02
914
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000041B03
915
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000041B05
916
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000041B06
917
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000041B08
918
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000041B09
919
EFA101924
4970
EFA1c0044_orf_18p
10891


E3M10000041B09
919
EFA101925
4971
EFA1c0044_orf_19p
10893


E3M10000041B10
920
EFA101080
4909
#N/A
#N/A


E3M10000041B11
921
EFA101416
4941
EFA1c0022_orf_17p
10530


E3M10000041B11
921
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000041B12
922
EFA101411
4936
EFA1c0022_orf_13p
10526


E3M10000041C01
923
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000041C07
924
EFA100739
4888
EFA1c0022_orf_23p
10537


E3M10000041C08
925
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000041C09
926
EFA103365
5026
EFA1c0022_orf_1p
10533


E3M10000041C10
927
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000041C11
928
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000041C12
929
EFA100798
4897
EFA1c0042_orf_160p
10818


E3M10000041D02
930
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000041D03
931
EFA101060
4907
EFA1c0038_orf_73p
10722


E3M10000041D04
932
EFA100642
4884
EFA1c0041_orf_56p
10792


E3M10000041D04
932
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000041D05
933
EFA101080
4909
#N/A
#N/A


E3M10000041D06
934
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000041D08
935
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000041D09
936
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000041D10
937
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000041D11
938
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000041D12
939
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000041E02
940
EFA101797
4963
EFA1c0045_orf_167p
10924


E3M10000041E03
941
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000041E05
942
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000041E07
943
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000041E10
944
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000041E11
945
EFA100190
4867
EFA1c0010_orf_2p
10480


E3M10000041F03
946
EFA102503
4996
EFA1c0032_orf_32p
10643


E3M10000041F05
947
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000041F06
948
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000041F07
949
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000041F08
950
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000041F09
951
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000041F10
952
EFA101079
4908
#N/A
#N/A


E3M10000041F10
952
EFA101080
4909
#N/A
#N/A


E3M10000041F11
953
EFA101160
4917
EFA1c0022_orf_3p
10549


E3M10000041G02
954
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000041G03
955
EFA102253
4984
EFA1c0038_orf_85p
10727


E3M10000041G04
956
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000041G06
957
EFA100978
4904
EFA1c0022_orf_27p
10541


E3M10000041G07
958
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000041G08
959
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000041G09
960
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000041G10
961
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000041G12
962
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000041H04
963
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000041H05
964
EFA100329
4875
EFA1c0041_orf_35p
10782


E3M10000041H06
965
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000041H07
966
EFA103062
5019
EFA1c0030_orf_19p
10615


E3M10000041H08
967
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000041H09
968
EFA102788
5011
EFA1c0033_orf_41p
10661


E3M10000041H10
969
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000041H11
970
EFA102253
4984
EFA1c0038_orf_85p
10727


E3M10000042A03
971
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000042A03
971
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000042A08
972
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000042A10
973
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000042B01
974
EFA101404
4933
EFA1c0033_orf_55p
10663


E3M10000042B02
975
EFA100668
4885
EFA1c0035_orf_58p
10679


E3M10000042B04
976
EFA102186
4981
EFA1c0045_orf_94p
10949


E3M10000042B04
976
EFA102453
4993
EFA1c0045_orf_203p
10931


E3M10000042B08
977
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000042B09
978
EFA101797
4963
EFA1c0045_orf_167p
10924


E3M10000042B10
979
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000042B11
980
EFA101165
4922
EFA1c0022_orf_8p
10559


E3M10000042C02
981
EFA101150
4915
EFA1c0038_orf_57p
10719


E3M10000042C03
982
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000042C04
983
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000042C10
984
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000042C10
984
EFA100295
4873
EFA1c0021_orf_15p
10517


E3M10000042D01
985
EFA100615
4881
EFA1c0016_orf_29p
10501


E3M10000042D02
986
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000042D03
987
EFA100394
4876
EFA1c0034_orf_6p
10675


E3M10000042D06
988
EFA102091
4977
EFA1c0010_orf_3p
10481


E3M10000042D09
989
EFA101141
4914
EFA1c0030_orf_18p
10614


E3M10000042D11
990
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000042D12
991
EFA100795
4896
EFA1c0043_orf_229p
10863


E3M10000042E05
992
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000042E12
993
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000042F11
994
EFA101792
4961
EFA1c0042_orf_113p
10805


E3M10000042G01
995
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000042G05
996
EFA101685
4952
EFA1c0041_orf_55p
10791


E3M10000042G07
997
EFA101169
4923
EFA1c0024_orf_38p
10574


E3M10000042G08
998
EFA102780
5010
EFA1c0045_orf_101p
10908


E3M10000042G11
999
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000042G11
999
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000042G12
1000
EFA102501
4994
EFA1c0031_orf_35p
10626


E3M10000042H06
1001
EFA101799
4964
EFA1c0045_orf_169p
10926


E3M10000042H08
1002
EFA101120
4911
EFA1c0036_orf_113p
10687


E3M10000042H11
1003
EFA100668
4885
EFA1c0035_orf_58p
10679


E3M10000043A02
1004
EFA101799
4964
EFA1c0045_orf_169p
10926


E3M10000043A03
1005
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000043A05
1006
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000043A08
1007
EFA100689
4886
EFA1c0038_orf_54p
10717


E3M10000043A09
1008
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000043A09
1008
EFA101415
4940
EFA1c0022_orf_16p
10529


E3M10000043A10
1009
EFA101080
4909
#N/A
#N/A


E3M10000043A11
1010
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000043B01
1011
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000043B02
1012
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000043B03
1013
EFA103038
5017
EFA1c0030_orf_17p
10613


E3M10000043B06
1014
EFA101404
4933
EFA1c0033_orf_55p
10663


E3M10000043B08
1015
EFA101123
4913
EFA1c0040_orf_22p
10748


E3M10000043B09
1016
EFA101892
4969
EFA1c0017_orf_21p
10506


E3M10000043B10
1017
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000043B11
1018
EFA100704
4887
EFA1c0010_orf_4p
10482


E3M10000043B12
1019
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000043C01
1020
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000043C08
1021
EFA101412
4937
EFA1c0022_orf_14p
10527


E3M10000043C09
1022
EFA100151
4864
EFA1c0021_orf_14p
10516


E3M10000043D01
1023
EFA101417
4942
EFA1c0022_orf_18p
10531


E3M10000043D02
1024
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000043D09
1025
EFA102351
4989
EFA1c0032_orf_20p
10634


E3M10000043D10
1026
EFA101872
4967
EFA1c0042_orf_152p
10815


E3M10000043D10
1026
EFA101873
4968
EFA1c0042_orf_153p
10816


E3M10000043D12
1027
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000043E03
1028
EFA100397
4877
EFA1c0041_orf_148p
10773


E3M10000043E07
1029
EFA101339
4928
EFA1c0040_orf_13p
10743


E3M10000043E08
1030
EFA101872
4967
EFA1c0042_orf_152p
10815


E3M10000043E08
1030
EFA101873
4968
EFA1c0042_orf_153p
10816


E3M10000043E10
1031
EFA102656
5004
EFA1c0039_orf_26p
10734


E3M10000043E11
1032
EFA102813
5013
EFA1c0043_orf_9p
10878


E3M10000043F03
1033
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000043F04
1034
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000043F06
1035
EFA100615
4881
EFA1c0016_orf_29p
10501


E3M10000043F08
1036
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000043F10
1037
EFA101159
4916
EFA1c0022_orf_2p
10543


E3M10000043F12
1038
EFA101080
4909
#N/A
#N/A


E3M10000043G03
1039
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000043G04
1040
EFA102502
4995
EFA1c0031_orf_36p
10627


E3M10000043G05
1041
EFA101686
4953
EFA1c0045_orf_63p
10940


E3M10000043G07
1042
EFA100157
4865
EFA1c0034_orf_63p
10673


E3M10000043G08
1043
EFA101080
4909
#N/A
#N/A


E3M10000043G10
1044
EFA101792
4961
EFA1c0042_orf_113p
10805


E3M10000043G11
1045
EFA101080
4909
#N/A
#N/A


E3M10000043G12
1046
EFA101121
4912
EFA1c0036_orf_112p
10686


E3M10000043H02
1047
EFA101414
4939
EFA1c0022_orf_15p
10528


E3M10000043H05
1048
EFA101080
4909
#N/A
#N/A


E3M10000043H08
1049
EFA100615
4881
EFA1c0016_orf_29p
10501


E3M10000043H09
1050
EFA102006
4973
EFA1c0025_orf_17p
10580


E3M10000043H11
1051
EFA102655
5003
EFA1c0039_orf_25p
10733


E3M10000044C02
1052
EFA100955
4902
EFA1c0022_orf_28p
10542


E3M10000044E01
1053
EFA102091
4977
EFA1c0010_orf_3p
10481


K1M10000002F02
1054
KPN101750
5037
KPN1c1723_orf_1p
11652


K1M10000003C01
1055
KPN103882
5040
KPN1c2848_orf_1p
11716


K1M10000007F01
1057
KPN104183
5041
KPN1c1646_orf_2p
11650


K1M10000007F01
1057
KPN106659
5049
KPN1c1646_orf_1p
11649


K1M10000008C02
1058
KPN107626
5051
#N/A
#N/A


K1M10000008C10
1059
KPN101729
5036
KPN1c1566_orf_1p
11647


K1M10000008G10
1060
KPN106840
5050
KPN1c2087_orf_1p
11664


K1M10000009D04
1061
KPN107776
5052
KPN1c4041_orf_1p
11771


K1M10000013E04
1062
KPN105779
5047
KPN1c4012_orf_1p
11770


K1M10000020B02
1065
KPN101729
5036
KPN1c1566_orf_1p
11647


K1M10000022C10
1067
KPN100854
5033
KPN1c0845_orf_1p
11630


K1M10000030C07
1070
KPN104716
5045
KPN1c3094_orf_5p
11757


K1M10000030E07
1071
KPN104538
5044
KPN1c2918_orf_2p
11726


K1M10000032E11
1073
KPN101729
5036
KPN1c1566_orf_1p
11647


K1M10000033B02
1074
KPN101729
5036
KPN1c1566_orf_1p
11647


K1M10000033E01
1075
KPN100432
5032
KPN1c0331_orf_1p
11628


K1M10000036G08
1076
KPN106044
5048
#N/A
#N/A


K1M10000037D10
1077
KPN104281
5042
KPN1c3000_orf_3p
11742


K1M10000038H09
1078
KPN102057
5038
KPN1c1958_orf_1p
11661


K1M10000039H03
1079
KPN106840
5050
KPN1c2087_orf_1p
11664


K1M10000043D05
1081
KPN102638
5039
KPN1c2127_orf_1p
11667


K1M10000043H10
1082
KPN105722
5046
#N/A
#N/A


K1M10000044D08
1084
KPN104430
5043
#N/A
#N/A


K1M10000044G05
1086
KPN101026
5035
KPN1c0875_orf_1p
11631


K1M10000045A07
1087
KPN101022
5034
KPN1c1316_orf_3p
11642


K1M10000045D10
1088
KPN102638
5039
KPN1c2127_orf_1p
11667


P1M10000008C06
1092
PA2424
5107
#N/A
#N/A


P1M10000008G04
1093
PA0337
5060
#N/A
#N/A


P1M10000010C03
1094
PA4997
5202
#N/A
#N/A


P1M10000014H10
1095
PA4252
5168
#N/A
#N/A


P1M10000014H10
1095
PA4253
5169
#N/A
#N/A


P1M10000015C06
1096
PA0413
5064
#N/A
#N/A


P1M10000015C06
1096
PA0414
5065
#N/A
#N/A


P1M10000015C09
1097
PA3041
5124
#N/A
#N/A


P1M10000016C04
1098
PA2680
5117
#N/A
#N/A


P1M10000018B01
1099
PA4264
5177
#N/A
#N/A


P1M10000018C01
1100
PA4264
5177
#N/A
#N/A


P1M10000018E01
1101
PA4067
5151
#N/A
#N/A


P1M10000018G01
1102
PA4067
5151
#N/A
#N/A


P1M10000019F01
1103
PA4271
5180
#N/A
#N/A


P1M10000019F01
1103
PA4272
5181
#N/A
#N/A


P1M10000021G03
1104
PA4264
5177
#N/A
#N/A


P1M10000021G05
1105
PA4251
5167
#N/A
#N/A


P1M10000022D09
1106
PA5299
5211
#N/A
#N/A


P1M10000024D06
1107
PA3160
5130
#N/A
#N/A


P1M10000024E06
1108
PA4888
5200
#N/A
#N/A


P1M10000024H03
1109
PA2313
5105
#N/A
#N/A


P1M10000025A06
1110
PA2222
5104
#N/A
#N/A


P1M10000025G07
1111
PA3153
5128
#N/A
#N/A


P1M10000025H07
1112
PA3153
5128
#N/A
#N/A


P1M10000025H07
1112
PA3154
5129
#N/A
#N/A


P1M10000026E06
1113
PA0715
5074
#N/A
#N/A


P1M10000026F04
1114
PA2222
5104
#N/A
#N/A


P1M10000026G09
1115
PA3011
5122
#N/A
#N/A


P1M10000026H02
1116
PA3013
5123
#N/A
#N/A


P1M10000026H05
1117
PA3154
5129
#N/A
#N/A


P1M10000027A06
1118
PA4257
5172
#N/A
#N/A


P1M10000027B02
1119
PA3154
5129
#N/A
#N/A


P1M10000027G05
1120
PA2313
5105
#N/A
#N/A


P1M10000028A08
1121
PA0788
5075
#N/A
#N/A


P1M10000028B01
1122
PA4263
5176
#N/A
#N/A


P1M10000028E02
1123
PA2584
5112
#N/A
#N/A


P1M10000029A09
1124
PA3154
5129
#N/A
#N/A


P1M10000029G03
1125
PA1301
5083
#N/A
#N/A


P1M10000029H05
1126
PA0353
5061
#N/A
#N/A


P1M10000032F04
1127
PA0265
5058
#N/A
#N/A


P1M10000033A02
1128
PA3068
5126
#N/A
#N/A


P1M10000033B08
1129
PA4244
5160
#N/A
#N/A


P1M10000033E03
1130
PA3984
5147
#N/A
#N/A


P1M10000033F01
1131
PA1986
5095
#N/A
#N/A


P1M10000033G08
1132
PA2009
5096
#N/A
#N/A


P1M10000035A06
1133
PA4249
5165
#N/A
#N/A


P1M10000037B12
1134
PA4254
5170
#N/A
#N/A


P1M10000037G12
1135
PA5076
5204
#N/A
#N/A


P1M10000038B08
1136
PA4070
5152
#N/A
#N/A


P1M10000038C03
1137
PA3931
5146
#N/A
#N/A


P1M10000038C06
1138
PA2197
5103
#N/A
#N/A


P1M10000038F04
1139
PA5207
5208
#N/A
#N/A


P1M10000038G02
1140
PA4542
5192
#N/A
#N/A


P1M10000039G05
1141
PA3764
5141
#N/A
#N/A


P1M10000039G12
1142
PA5567
5220
#N/A
#N/A


P1M10000040C01
1143
PA4105
5154
#N/A
#N/A


P1M10000040C04
1144
PA1115
5081
#N/A
#N/A


P1M10000040D04
1145
PA0378
5062
#N/A
#N/A


P1M10000040D05
1146
PA5209
5209
#N/A
#N/A


P1M10000040E10
1147
PA2128
5100
#N/A
#N/A


P1M10000040H03
1148
PA1115
5081
#N/A
#N/A


P1M10000041A12
1149
PA4254
5170
#N/A
#N/A


P1M10000041B02
1150
PA2128
5100
#N/A
#N/A


P1M10000041E01
1151
PA2398
5106
#N/A
#N/A


P1M10000041F01
1152
PA4681
5196
#N/A
#N/A


P1M10000042B12
1153
PA0642
5072
#N/A
#N/A


P1M10000042E08
1154
PA4252
5168
#N/A
#N/A


P1M10000042E08
1154
PA4253
5169
#N/A
#N/A


P1M10000043A03
1155
PA3006
5121
#N/A
#N/A


P1M10000043D06
1156
PA3764
5141
#N/A
#N/A


P1M10000044F07
1157
PA4244
5160
#N/A
#N/A


P1M10000046B03
1158
PA1462
5087
#N/A
#N/A


P1M10000046C07
1159
PA2671
5116
#N/A
#N/A


P1M10000046C08
1160
PA0472
5069
#N/A
#N/A


P1M10000046C09
1161
PA3764
5141
#N/A
#N/A


P1M10000046G11
1162
PA1115
5081
#N/A
#N/A


P1M10000047B04
1163
PA3006
5121
#N/A
#N/A


P1M10000047E11
1164
PA2684
5118
#N/A
#N/A


P1M10000047F07
1165
PA4506
5190
#N/A
#N/A


P1M10000047G10
1166
PA4259
5174
#N/A
#N/A


P1M10000048A03
1167
PA4105
5154
#N/A
#N/A


P1M10000049E08
1168
PA4272
5181
#N/A
#N/A


P1M10000049G10
1169
PA4027
5149
#N/A
#N/A


P1M10000050G11
1170
PA4249
5165
#N/A
#N/A


P1M10000051D11
1171
PA1365
5085
#N/A
#N/A


P1M10000051F01
1172
PA1115
5081
#N/A
#N/A


P1M10000052C03
1173
PA0938
5078
#N/A
#N/A


P1M10000052C12
1174
PA5076
5204
#N/A
#N/A


P1M10000052E04
1175
PA1398
5086
#N/A
#N/A


P1M10000053B12
1176
PA5436
5215
#N/A
#N/A


P1M10000053C02
1177
PA0353
5061
#N/A
#N/A


P1M10000053E07
1178
PA4254
5170
#N/A
#N/A


P1M10000053F08
1179
PA1270
5082
#N/A
#N/A


P1M10000055A11
1180
PA5076
5204
#N/A
#N/A


P1M10000055C08
1181
PA1493
5088
#N/A
#N/A


P1M10000055E05
1182
PA5507
5219
#N/A
#N/A


P1M10000056C07
1183
PA1360
5084
#N/A
#N/A


P1M10000056F05
1184
PA4258
5173
#N/A
#N/A


P1M10000056F05
1184
PA4259
5174
#N/A
#N/A


P1M10000056F06
1185
PA2634
5114
#N/A
#N/A


P1M10000056G01
1186
PA5076
5204
#N/A
#N/A


P1M10000058B07
1187
PA5436
5215
#N/A
#N/A


P1M10000059B04
1188
PA4375
5186
#N/A
#N/A


P1M10000059B10
1189
PA4269
5179
#N/A
#N/A


P1M10000059B11
1190
PA0934
5077
#N/A
#N/A


P1M10000059D11
1191
PA4027
5149
#N/A
#N/A


P1M10000059H08
1192
PA4027
5149
#N/A
#N/A


P1M10000059H09
1193
PA4271
5180
#N/A
#N/A


P1M10000060E03
1194
PA0423
5067
#N/A
#N/A


P1M10000060H02
1195
PA0221
5057
#N/A
#N/A


P1M10000060H04
1196
PA4473
5189
#N/A
#N/A


P1M10000061B04
1197
PA2726
5119
#N/A
#N/A


P1M10000061E04
1198
PA4244
5160
#N/A
#N/A


P1M10000061F04
1199
PA3522
5136
#N/A
#N/A


P1M10000062A12
1200
PA4598
5194
#N/A
#N/A


P1M10000062C03
1201
PA0321
5059
#N/A
#N/A


P1M10000062C04
1202
PA4254
5170
#N/A
#N/A


P1M10000062C07
1203
PA4251
5167
#N/A
#N/A


P1M10000062C12
1204
PA5316
5212
#N/A
#N/A


P1M10000062D07
1205
PA4247
5163
#N/A
#N/A


P1M10000062D08
1206
PA0882
5076
#N/A
#N/A


P1M10000062E08
1207
PA4248
5164
#N/A
#N/A


P1M10000062E08
1207
PA4249
5165
#N/A
#N/A


P1M10000062F06
1208
PA0028
5053
#N/A
#N/A


P1M10000062G11
1209
PA4506
5190
#N/A
#N/A


P1M10000062H01
1210
PA3121
5127
#N/A
#N/A


P1M10000062H04
1211
PA4254
5170
#N/A
#N/A


P1M10000063F02
1212
PA2684
5118
#N/A
#N/A


P1M10000063G02
1213
PA4262
5175
#N/A
#N/A


P1M10000063H02
1214
PA4081
5153
#N/A
#N/A


P1M10000064A10
1215
PA4268
5178
#N/A
#N/A


P1M10000064C02
1216
PA0650
5073
#N/A
#N/A


P1M10000064C03
1217
PA5030
5203
#N/A
#N/A


P1M10000064D03
1218
PA0129
5055
#N/A
#N/A


P1M10000064E05
1219
PA4512
5191
#N/A
#N/A


P1M10000064G12
1220
PA2147
5101
#N/A
#N/A


P1M10000064H07
1221
PA1072
5080
#N/A
#N/A


P1M10000065A04
1222
PA3522
5136
#N/A
#N/A


P1M10000065B07
1223
PA4347
5184
#N/A
#N/A


P1M10000065C03
1224
PA4347
5184
#N/A
#N/A


P1M10000065C05
1225
PA0642
5072
#N/A
#N/A


P1M10000065D06
1226
PA4347
5184
#N/A
#N/A


P1M10000065F01
1227
PA2494
5111
#N/A
#N/A


P1M10000065G06
1228
PA0423
5067
#N/A
#N/A


P1M10000065H07
1229
PA1019
5079
#N/A
#N/A


P1M10000066A10
1230
PA4709
5197
#N/A
#N/A


P1M10000066A11
1231
PA2594
5113
#N/A
#N/A


P1M10000066F04
1232
PA4024
5148
#N/A
#N/A


P1M10000067A05
1233
PA3876
5144
#N/A
#N/A


P1M10000067A05
1233
PA3877
5145
#N/A
#N/A


P1M10000067A06
1234
PA0419
5066
#N/A
#N/A


P1M10000067A08
1235
PA0600
5071
#N/A
#N/A


P1M10000067C04
1236
PA3845
5142
#N/A
#N/A


P1M10000067C06
1237
PA4433
5188
#N/A
#N/A


P1M10000067D05
1238
PA3479
5134
#N/A
#N/A


P1M10000067F05
1239
PA3643
5137
#N/A
#N/A


P1M10000067G05
1240
PA5199
5207
#N/A
#N/A


P1M10000068A09
1241
PA0353
5061
#N/A
#N/A


P1M10000068D04
1242
PA5388
5213
#N/A
#N/A


P1M10000068F04
1243
PA4237
5158
#N/A
#N/A


P1M10000068F08
1244
PA5193
5206
#N/A
#N/A


P1M10000068G01
1245
PA3716
5140
#N/A
#N/A


P1M10000068H05
1246
PA4268
5178
#N/A
#N/A


P1M10000069D09
1247
PA4246
5162
#N/A
#N/A


P1M10000069G06
1248
PA4246
5162
#N/A
#N/A


P1M10000069H02
1249
PA4433
5188
#N/A
#N/A


P1M10000070A05
1250
PA2470
5109
#N/A
#N/A


P1M10000070B10
1251
PA5393
5214
#N/A
#N/A


P1M10000070C06
1252
PA4237
5158
#N/A
#N/A


P1M10000070D08
1253
PA4105
5154
#N/A
#N/A


P1M10000070E03
1254
PA4709
5197
#N/A
#N/A


P1M10000070G06
1255
PA3374
5133
#N/A
#N/A


P1M10000070G12
1256
PA3121
5127
#N/A
#N/A


P1M10000070H06
1257
PA3374
5133
#N/A
#N/A


P1M10000071A03
1258
PA4251
5167
#N/A
#N/A


P1M10000071C01
1259
PA4251
5167
#N/A
#N/A


P1M10000071E04
1260
PA3484
5135
#N/A
#N/A


P1M10000071F01
1261
PA0506
5070
#N/A
#N/A


P1M10000073A06
1262
PA4246
5162
#N/A
#N/A


P1M10000073B10
1263
PA5248
5210
#N/A
#N/A


P1M10000073D04
1264
PA1115
5081
#N/A
#N/A


P1M10000073D09
1265
PA1918
5094
#N/A
#N/A


P1M10000073G03
1266
PA5248
5210
#N/A
#N/A


P1M10000074B01
1267
PA4771
5199
#N/A
#N/A


P1M10000074B04
1268
PA1684
5091
#N/A
#N/A


P1M10000074E04
1269
PA0120
5054
#N/A
#N/A


P1M10000074E09
1270
PA3479
5134
#N/A
#N/A


P1M10000074F10
1271
PA1019
5079
#N/A
#N/A


P1M10000074G12
1272
PA4244
5160
#N/A
#N/A


P1M10000074G12
1272
PA4245
5161
#N/A
#N/A


P1M10000075A04
1273
PA3279
5131
#N/A
#N/A


P1M10000075A04
1273
PA3280
5132
#N/A
#N/A


P1M10000075B03
1274
PA4576
5193
#N/A
#N/A


P1M10000075F02
1275
PA4254
5170
#N/A
#N/A


P1M10000075G05
1276
PA3709
5139
#N/A
#N/A


P1M10000076D05
1277
PA1876
5093
#N/A
#N/A


P1M10000076D10
1278
PA1636
5090
#N/A
#N/A


P1M10000077A08
1279
PA3479
5134
#N/A
#N/A


P1M10000077C08
1280
PA1019
5079
#N/A
#N/A


P1M10000077E04
1281
PA3522
5136
#N/A
#N/A


P1M10000077H05
1282
PA4246
5162
#N/A
#N/A


P1M10000079A10
1283
PA4576
5193
#N/A
#N/A


P1M10000079B10
1284
PA4576
5193
#N/A
#N/A


P1M10000079C10
1285
PA4576
5193
#N/A
#N/A


P1M10000079D01
1286
PA1547
5089
#N/A
#N/A


P1M10000079D10
1287
PA5490
5217
#N/A
#N/A


P1M10000079F06
1288
PA3006
5121
#N/A
#N/A


P1M10000080B01
1289
PA3866
5143
#N/A
#N/A


P1M10000080B06
1290
PA4244
5160
#N/A
#N/A


P1M10000080B06
1290
PA4245
5161
#N/A
#N/A


P1M10000080C01
1291
PA0469
5068
#N/A
#N/A


P1M10000080C06
1292
PA4250
5166
#N/A
#N/A


P1M10000080E04
1293
PA4250
5166
#N/A
#N/A


P1M10000081D12
1294
PA3006
5121
#N/A
#N/A


P1M10000081G05
1295
PA4037
5150
#N/A
#N/A


P1M10000081H05
1296
PA4316
5182
#N/A
#N/A


P1M10000082A05
1297
PA0401
5063
#N/A
#N/A


P1M10000082B04
1298
PA3006
5121
#N/A
#N/A


P1M10000082C05
1299
PA4246
5162
#N/A
#N/A


P1M10000082D05
1300
PA4256
5171
#N/A
#N/A


P1M10000082E05
1301
PA4246
5162
#N/A
#N/A


P1M10000083A11
1302
PA3006
5121
#N/A
#N/A


P1M10000083B01
1303
PA4271
5180
#N/A
#N/A


P1M10000083B12
1304
PA4268
5178
#N/A
#N/A


P1M10000083C11
1305
PA4242
5159
#N/A
#N/A


P1M10000083C12
1306
PA3006
5121
#N/A
#N/A


P1M10000084A04
1307
PA4942
5201
#N/A
#N/A


P1M10000084D03
1308
PA3006
5121
#N/A
#N/A


P1M10000084E04
1309
PA5493
5218
#N/A
#N/A


P1M10000084B11
1310
PA2196
5102
#N/A
#N/A


P1M10000084F08
1311
PA4271
5180
#N/A
#N/A


P1M10000085D06
1312
PA3006
5121
#N/A
#N/A


P1M10000086A02
1313
PA4413
5187
#N/A
#N/A


P1M10000086B01
1314
PA4158
5157
#N/A
#N/A


P1M10000086D02
1315
PA2641
5115
#N/A
#N/A


P1M10000086E05
1316
PA3006
5121
#N/A
#N/A


P1M10000087A11
1317
PA4268
5178
#N/A
#N/A


P1M10000087C09
1318
PA2083
5097
#N/A
#N/A


P1M10000087E04
1319
PA4246
5162
#N/A
#N/A


P1M10000087F04
1320
PA0141
5056
#N/A
#N/A


P1M10000087F09
1321
PA4124
5155
#N/A
#N/A


P1M10000087F09
1321
PA4125
5156
#N/A
#N/A


P1M10000088A07
1322
PA2742
5120
#N/A
#N/A


P1M10000088D06
1323
PA2108
5099
#N/A
#N/A


P1M10000089C08
1324
PA3048
5125
#N/A
#N/A


P1M10000089D11
1325
PA4268
5178
#N/A
#N/A


P1M10000089G08
1326
PA2461
5108
#N/A
#N/A


P1M10000090B11
1327
PA3153
5128
#N/A
#N/A


P1M10000090F06
1328
PA2313
5105
#N/A
#N/A


P1M10000090F08
1329
PA4258
5173
#N/A
#N/A


P1M10000090F08
1329
PA4259
5174
#N/A
#N/A


P1M10000091D02
1330
PA3866
5143
#N/A
#N/A


P1M10000091E09
1331
PA5316
5212
#N/A
#N/A


P1M10000091G10
1332
PA2742
5120
#N/A
#N/A


P1M10000092B02
1333
PA2641
5115
#N/A
#N/A


P1M10000092B10
1334
PA4268
5178
#N/A
#N/A


P1M10000092D09
1335
PA2128
5100
#N/A
#N/A


P1M10000092E02
1336
PA4256
5171
#N/A
#N/A


P1M10000092F05
1337
PA0423
5067
#N/A
#N/A


P1M10000093A03
1338
PA5088
5205
#N/A
#N/A


P1M10000093B09
1339
PA3703
5138
#N/A
#N/A


P1M10000093C08
1340
PA1868
5092
#N/A
#N/A


P1M10000093E09
1341
PA4332
5183
#N/A
#N/A


P1M10000093F03
1342
PA2101
5098
#N/A
#N/A


P1M10000093H07
1343
PA4665
5195
#N/A
#N/A


P1M10000094F04
1344
PA4268
5178
#N/A
#N/A


P1M10000094H03
1345
PA4744
5198
#N/A
#N/A


P1M10000095C01
1346
PA2488
5110
#N/A
#N/A


P1M10000095C09
1347
PA5443
5216
#N/A
#N/A


P1M10000095E04
1348
PA4363
5185
#N/A
#N/A


P1M10000095G04
1349
PA4256
5171
#N/A
#N/A


P1M10000096E04
1350
PA0353
5061
#N/A
#N/A


P1M10000096E12
1351
PA4246
5162
#N/A
#N/A


S1M10000001A05
1354
SAU103232
5769
SAU1c0045_orf_341p
12697


S1M10000001A05
1354
SAU201508
5819
SAU2c0432_orf_19p
12947


S1M10000001A08
1355
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000001A09
1356
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000001A10
1357
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000001C06
1358
SAU102939
5747
#N/A
#N/A


S1M10000001D01
1359
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000001D02
1360
SAU100527
5285
SAU1c0037_orf_101p
12341


S1M10000001D02
1360
SAU100880
5346
SAU1c0037_orf_100p
12340


S1M10000001D06
1361
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000001D07
1362
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000001E02
1363
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000001E04
1364
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000001E04
1364
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000001E05
1365
SAU102939
5747
#N/A
#N/A


S1M10000001E09
1366
SAU201752
5832
SAU2c0436_orf_19p
12963


S1M10000001E10
1367
SAU103038
5757
#N/A
#N/A


S1M10000001E11
1368
SAU302513
5906
SAU3c1298_orf_1p
13085


S1M10000001F02
1369
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000001F04
1370
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000001F08
1371
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000001F09
1372
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000001F10
1373
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000001F11
1374
SAU102939
5747
#N/A
#N/A


S1M10000001G01
1375
SAU102939
5747
#N/A
#N/A


S1M10000001G07
1376
SAU102939
5747
#N/A
#N/A


S1M10000001G08
1377
SAU102939
5747
#N/A
#N/A


S1M10000001G10
1378
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000002A02
1379
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000002A09
1380
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000002A10
1381
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000002A10
1381
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000002A10
1381
SAU301148
5888
#N/A
#N/A


S1M10000002A12
1382
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000002A12
1382
SAU300455
5872
#N/A
#N/A


S1M10000002A12
1382
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000002B01
1383
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000002B03
1384
SAU101034
5371
SAU1c0044_orf_27p
12608


S1M10000002B04
1385
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000002B05
1386
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000002B06
1387
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000002B07
1388
SAU101389
5441
SAU1c0038_orf_54p
12387


S1M10000002B09
1389
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000002B09
1389
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000002B09
1389
SAU301148
5888
#N/A
#N/A


S1M10000002B11
1390
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000002C02
1391
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000002C02
1391
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000002C02
1391
SAU301148
5888
#N/A
#N/A


S1M10000002C09
1392
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000002C10
1393
SAU103077
5759
SAU1c0039_orf_44p
12408


S1M10000002C11
1394
SAU202267
5848
SAU2c0204_orf_2p
12727


S1M10000002C11
1394
SAU202781
5853
SAU2c0109_orf_2p
12718


S1M10000002C11
1394
SAU203001
5859
SAU2c0412_orf_15p
12894


S1M10000002C11
1394
SAU302698
5909
SAU3c1408_orf_2p
13114


S1M10000002C11
1394
SAU302699
5910
SAU3c1408_orf_3p
13115


S1M10000002C12
1395
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000002D01
1396
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000002D02
1397
SAU100741
5318
SAU1c0039_orf_48p
12409


S1M10000002D03
1398
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000002D05
1399
SAU202930
5856
SAU2c0396_orf_3p
12871


S1M10000002D07
1400
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000002D07
1400
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000002D08
1401
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000002D10
1402
SAU102939
5747
#N/A
#N/A


S1M10000002D12
1403
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000002E01
1404
SAU101616
5495
SAU1c0040_orf_32p
12432


S1M10000002E02
1405
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000002E07
1406
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000002E07
1406
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000002E07
1406
SAU301148
5888
#N/A
#N/A


S1M10000002E09
1407
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000002E11
1408
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000002E12
1409
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000002F01
1410
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000002F02
1411
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000002F04
1412
SAU102939
5747
#N/A
#N/A


S1M10000002F09
1413
SAU302513
5906
SAU3c1298_orf_1p
13085


S1M10000002F12
1414
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000002G01
1415
SAU102939
5747
#N/A
#N/A


S1M10000002G03
1416
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000002G05
1417
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000002G06
1418
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000002G07
1419
SAU103038
5757
#N/A
#N/A


S1M10000002G08
1420
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000002G09
1421
SAU102939
5747
#N/A
#N/A


S1M10000002G10
1422
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000002G11
1423
SAU102939
5747
#N/A
#N/A


S1M10000002G12
1424
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003A01
1425
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000003A01
1425
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000003A01
1425
SAU301148
5888
#N/A
#N/A


S1M10000003A02
1426
SAU101624
5497
SAU1c0040_orf_25p
12429


S1M10000003A03
1427
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000003A04
1428
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000003A06
1429
SAU101266
5408
SAU1c0042_orf_117p
12490


S1M10000003A07
1430
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003A08
1431
SAU102939
5747
#N/A
#N/A


S1M10000003A10
1432
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000003A11
1433
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000003B06
1434
SAU102007
5590
SAU1c0040_orf_108p
12428


S1M10000003B08
1435
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000003B09
1436
SAU100771
5325
SAU1c0043_orf_49p
12545


S1M10000003B12
1437
SAU302060
5905
SAU3c0879_orf_1p
13042


S1M10000003C06
1438
SAU102447
5672
SAU1c0045_orf_24p
12685


S1M10000003C07
1439
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000003C10
1440
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003C12
1441
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003D05
1442
SAU102939
5747
#N/A
#N/A


S1M10000003D06
1443
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000003D08
1444
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000003D10
1445
SAU102422
5666
SAU1c0030_orf_22p
12207


S1M10000003E07
1446
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000003E09
1447
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003E10
1448
SAU101674
5508
SAU1c0044_orf_226p
12594


S1M10000003E11
1449
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003F02
1450
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003F05
1451
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000003F06
1452
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000003F07
1453
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000003F08
1454
SAU102939
5747
#N/A
#N/A


S1M10000003F12
1455
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000003G03
1456
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000003G04
1457
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000003G04
1457
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000003G04
1457
SAU301148
5888
#N/A
#N/A


S1M10000003G08
1458
SAU102939
5747
#N/A
#N/A


S1M10000003G10
1459
SAU102939
5747
#N/A
#N/A


S1M10000004A04
1460
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000004A06
1461
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000004A07
1462
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000004A11
1463
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000004A12
1464
SAU102132
5605
SAU1c0027_orf_19p
12177


S1M10000004B03
1465
SAU102610
5714
SAU1c0041_orf_53p
12474


S1M10000004B04
1466
SAU102059
5597
SAU1c0034_orf_51p
1286


S1M10000004B06
1467
SAU102939
5747
#N/A
#N/A


S1M10000004B08
1468
SAU100272
5251
SAU1c0018_orf_7p
12141


S1M10000004B09
1469
SAU101476
5459
SAU1c0032_orf_69p
12254


S1M10000004B11
1470
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000004C01
1471
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000004C02
1472
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000004C02
1472
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000004C02
1472
SAU301148
5888
#N/A
#N/A


S1M10000004C03
1473
SAU102939
5747
#N/A
#N/A


S1M10000004C06
1474
SAU102883
5741
SAU1c0045_orf_38p
12702


S1M10000004C07
1475
SAU102939
5747
#N/A
#N/A


S1M10000004C08
1476
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000004C08
1476
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000004C09
1477
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000004C09
1477
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000004C09
1477
SAU301148
5888
#N/A
#N/A


S1M10000004C10
1478
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000004C10
1478
SAU101286
5413
SAU1c0034_orf_67p
12292


S1M10000004C10
1478
SAU302931
5913
SAU3c1507_orf_10p
13155


S1M10000004C12
1479
SAU102007
5590
SAU1c0040_orf_108p
12428


S1M10000004D01
1480
SAU101301
5416
SAU1c0044_orf_114p
12558


S1M10000004D01
1480
SAU101302
5417
SAU1c0044_orf_115p
12559


S1M10000004D03
1481
SAU102390
5657
SAU1c0033_orf_38p
12269


S1M10000004D03
1481
SAU201333
5810
SAU2c0418_orf_8p
12905


S1M10000004D04
1482
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000004D04
1482
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000004D06
1483
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000004D07
1484
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000004D07
1484
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000004D07
1484
SAU301148
5888
#N/A
#N/A


S1M10000004D08
1485
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000004D10
1486
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000004D12
1487
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000004D12
1487
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000004E03
1488
SAU101371
5435
SAU1c0033_orf_7p
12275


S1M10000004E04
1489
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000004E06
1490
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000004E07
1491
SAU101476
5459
SAU1c0032_orf_69p
12254


S1M10000004E11
1492
SAU102939
5747
#N/A
#N/A


S1M10000004E12
1493
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000004F01
1494
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000004F02
1495
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000004F06
1496
SAU201611
5825
SAU2c0440_orf_14p
12973


S1M10000004F07
1497
SAU102764
5734
SAU1c0044_orf_56p
12625


S1M10000004F08
1498
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000004F08
1498
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000004F09
1499
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000004F09
1499
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000004F09
1499
SAU301148
5888
#N/A
#N/A


S1M10000004F12
1500
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000004G01
1501
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000004G01
1501
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000004G01
1501
SAU301148
5888
#N/A
#N/A


S1M10000004G02
1502
SAU102939
5747
#N/A
#N/A


S1M10000004G03
1503
SAU102449
5674
SAU1c0045_orf_22p
12677


S1M10000004G05
1504
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000004G06
1505
SAU102939
5747
#N/A
#N/A


S1M10000004G07
1506
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000004G07
1506
SAU100965
5364
SAU1c0044_orf_57p
12642


S1M10000004G09
1507
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000004G12
1508
SAU100497
5280
SAU1c0018_orf_3p
12140


S1M10000005A01
1509
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000005A01
1509
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000005A01
1509
SAU301148
5888
#N/A
#N/A


S1M10000005A03
1510
SAU101090
5380
SAU1c0028_orf_8p
12191


S1M10000005A05
1511
SAU102939
5747
#N/A
#N/A


S1M10000005A06
1512
SAU102939
5747
#N/A
#N/A


S1M10000005A07
1513
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000005A08
1514
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000005A08
1514
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000005A08
1514
SAU301148
5888
#N/A
#N/A


S1M10000005A09
1515
SAU103038
5757
#N/A
#N/A


S1M10000005A10
1516
SAU101239
5402
SAU1c0044_orf_15p
12570


S1M10000005A10
1516
SAU101240
5403
SAU1c0044_orf_16p
12573


S1M10000005A11
1517
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000005B02
1518
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000005B04
1519
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000005B07
1520
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000005B07
1520
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000005B07
1520
SAU301148
5888
#N/A
#N/A


S1M10000005B08
1521
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000005B09
1522
SAU102422
5666
SAU1c0030_orf_22p
12207


S1M10000005B12
1523
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000005B12
1523
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000005C01
1524
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000005C01
1524
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000005C01
1524
SAU301148
5888
#N/A
#N/A


S1M10000005C05
1525
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000005C06
1526
SAU100885
5348
SAU1c0038_orf_38p
12376


S1M10000005C09
1527
SAU302513
5906
SAU3c1298_orf_1p
13085


S1M10000005C11
1528
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000005D01
1529
SAU103038
5757
#N/A
#N/A


S1M10000005D02
1530
SAU102007
5590
SAU1c0040_orf_108p
12428


S1M10000005D03
1531
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000005D04
1532
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000005D04
1532
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000005D05
1533
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000005D06
1534
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000005D06
1534
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000005D07
1535
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000005D08
1536
SAU101624
5497
SAU1c0040_orf_25p
12429


S1M10000005D09
1537
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000005D11
1538
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000005D12
1539
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000005E01
1540
SAU100542
5288
SAU1c0043_orf_210p
12532


S1M10000005E02
1541
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000005E05
1542
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000005E05
1542
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000005E05
1542
SAU301148
5888
#N/A
#N/A


S1M10000005E06
1543
SAU102939
5747
#N/A
#N/A


S1M10000005E07
1544
SAU102939
5747
#N/A
#N/A


S1M10000005E08
1545
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000005E08
1545
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000005E08
1545
SAU301148
5888
#N/A
#N/A


S1M10000005E10
1546
SAU102939
5747
#N/A
#N/A


S1M10000005E11
1547
SAU100381
5265
SAU1c0033_orf_9p
12276


S1M10000005E12
1548
SAU102939
5747
#N/A
#N/A


S1M10000005F02
1549
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000005F02
1549
SAU100965
5364
SAU1c0044_orf_87p
12642


S1M10000005F03
1550
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000005F03
1550
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000005F04
1551
SAU102044
5593
SAU1c0039_orf_65p
12414


S1M10000005F04
1551
SAU102046
5594
SAU1c0039_orf_66p
12415


S1M10000005F04
1551
SAU201961
5840
#N/A
#N/A


S1M10000006A03
1552
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006A03
1552
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006A03
1552
SAU301148
5888
#N/A
#N/A


S1M10000006A04
1553
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000006A05
1554
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000006A05
1554
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000006A07
1555
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000006A08
1556
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006A08
1556
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006A08
1556
SAU301148
5888
#N/A
#N/A


S1M10000006A10
1557
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006A10
1557
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006A10
1557
SAU301148
5888
#N/A
#N/A


S1M10000006A12
1558
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000006B02
1559
SAU100741
5318
SAU1c0039_orf_48p
12409


S1M10000006B03
1560
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000006B04
1561
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006B04
1561
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006B04
1561
SAU301148
5888
#N/A
#N/A


S1M10000006B07
1562
SAU102059
5597
SAU1c0034_orf_51p
1286


S1M10000006B10
1563
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000006B11
1564
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000006C02
1565
SAU102939
5747
#N/A
#N/A


S1M10000006C04
1566
SAU102287
5637
SAU1c0038_orf_7p
12398


S1M10000006C06
1567
SAU102486
5687
SAU1c0039_orf_93p
12420


S1M10000006C06
1567
SAU102487
5688
SAU1c0039_orf_92p
12419


S1M10000006C07
1568
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000006C08
1569
SAU102939
5747
#N/A
#N/A


S1M10000006C10
1570
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006C10
1570
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006C10
1570
SAU301148
5888
#N/A
#N/A


S1M10000006D03
1571
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000006D05
1572
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006D05
1572
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006D05
1572
SAU301148
5888
#N/A
#N/A


S1M10000006D06
1573
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006D06
1573
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006D06
1573
SAU301148
5888
#N/A
#N/A


S1M10000006D07
1574
SAU102936
5746
SAU1c0037_orf_57p
12356


S1M10000006D08
1575
SAU102939
5747
#N/A
#N/A


S1M10000006E02
1576
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006E02
1576
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006E02
1576
SAU301148
5888
#N/A
#N/A


S1M10000006E03
1577
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000006E04
1578
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000006E07
1579
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000006E07
1579
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000006E07
1579
SAU301148
5888
#N/A
#N/A


S1M10000006E08
1580
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000006F01
1581
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000006F02
1582
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000006F03
1583
SAU102294
5639
SAU1c0044_orf_288p
12610


S1M10000006F03
1583
SAU301080
5885
SAU3c1287_orf_1p
13083


S1M10000006F04
1584
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000006F06
1585
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000006G02
1586
SAU101833
5555
SAU1c0038_orf_34p
12373


S1M10000006G03
1587
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000006G05
1588
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000006G06
1589
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000006G07
1590
SAU101612
5493
SAU1c0044_orf_7p
12637


S1M10000006G07
1590
SAU202945
5857
SAU2c0394_orf_7p
12868


S1M10000006G09
1591
SAU102939
5747
#N/A
#N/A


S1M10000006G10
1592
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000006G11
1593
SAU101438
5450
SAU1c0038_orf_40p
12379


S1M10000007A02
1594
SAU102939
5747
#N/A
#N/A


S1M10000007A03
1595
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000007B02
1596
SAU102352
5650
SAU1c0040_orf_38p
12434


S1M10000007B02
1596
SAU202872
5854
SAU2c0393_orf_6p
12866


S1M10000007B11
1597
SAU101476
5459
SAU1c0032_orf_69p
12254


S1M10000007C02
1598
SAU102939
5747
#N/A
#N/A


S1M10000007C04
1599
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000007C05
1600
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000007C06
1601
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000007C07
1602
SAU101266
5408
SAU1c0042_orf_117p
12490


S1M10000007C08
1603
SAU101717
5513
SAU1c0016_orf_16p
12131


S1M10000007C09
1604
SAU102939
5747
4N/A
#N/A


S1M10000007D03
1605
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000007D03
1605
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000007D03
1605
SAU301148
5888
#N/A
#N/A


S1M10000007D06
1606
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000007D08
1607
SAU102939
5747
#N/A
#N/A


S1M10000007D10
1608
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000007D11
1609
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000007E04
1610
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000007E04
1610
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000007E04
1610
SAU301148
5888
#N/A
#N/A


S1M10000007E06
1611
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000007E07
1612
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000007F01
1613
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000007F02
1614
SAU101685
5512
SAU1c0023_orf_11p
12152


S1M10000007F04
1615
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000007F08
1616
SAU100794
5330
SAU1c0028_orf_53p
12189


S1M10000007F09
1617
SAU202930
5856
SAU2c0396_orf_3p
12871


S1M10000007F10
1618
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000007F11
1619
SAU102939
5747
#N/A
#N/A


S1M10000007F12
1620
SAU102939
5747
#N/A
#N/A


S1M10000007G02
1621
SAU101270
5410
SAU1c0037_orf_89p
12365


S1M10000007G03
1622
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000007G05
1623
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000007G07
1624
SAU102652
5725
SAU1c0045_orf_115p
12653


S1M10000007G08
1625
SAU103038
5757
#N/A
#N/A


S1M10000008A03
1626
SAU101476
5459
SAU1c0032_orf_69p
12254


S1M10000008A04
1627
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000008A05
1628
SAU102939
5747
#N/A
#N/A


S1M10000008A08
1629
SAU102905
5742
SAU1c0033_orf_45p
12273


S1M10000008A08
1629
SAU301869
5903
SAU3c1353_orf_1p
13093


S1M10000008A09
1630
SAU100741
5318
SAU1c0039_orf_48p
12409


S1M10000008A12
1631
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000008B03
1632
SAU103144
5761
SAU1c0045_orf_15p
12663


S1M10000008B04
1633
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000008B04
1633
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000008B04
1633
SAU301148
5888
#N/A
#N/A


S1M10000008B06
1634
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000008B08
1635
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000008B09
1636
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000008B10
1637
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000008C05
1638
SAU102939
5747
#N/A
#N/A


S1M10000008C06
1639
SAU102939
5747
#N/A
#N/A


S1M10000008C07
1640
SAU102939
5747
#N/A
#N/A


S1M10000008C08
1641
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000008C09
1642
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000008D05
1643
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000008D09
1644
SAU103038
5757
#N/A
#N/A


S1M10000008E05
1645
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000008E08
1646
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000008Eo9
1647
SAU101343
5425
SAU1c0044_orf_40p
12619


S1M10000008E10
1648
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000008F01
1649
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000008F01
1649
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000008F02
1650
SAU102007
5590
SAU1c0040_orf_108p
12428


S1M10000008F03
1651
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000008F06
1652
SAU100741
5318
SAU1c0039_orf_48p
12409


S1M10000008F08
1653
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000008F09
1654
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000008F09
1654
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000008F09
1654
SAU301148
5888
#N/A
#N/A


S1M10000008F10
1655
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000008F11
1656
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000008G02
1657
SAU201167
5803
SAU2c0407_orf_5p
12887


S1M10000008G03
1658
SAU101637
5500
SAU1c0029_orf_8p
12201


S1M10000008G05
1659
SAU102870
5738
SAU1c0026_orf_17p
12170


S1M10000009A02
1660
SAU101159
5387
SAU1c0036_orf_46p
12331


S1M10000009A04
1661
SAU102979
5750
SAU1c0043_orf_227p
12536


S1M10000009A07
1662
SAU101371
5435
SAU1c0033_orf_7p
12275


S1M10000009A08
1663
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000009A08
1663
SAU100659
5304
SAU1c0038_orf_60p
12390


S1M10000009A09
1664
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000009A10
1665
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000009A11
1666
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000009B01
1667
SAU201506
5818
SAU2c0432_orf_18p
12946


S1M10000009B02
1668
SAU101159
5387
SAU1c0036_orf_46p
12331


S1M10000009B03
1669
SAU201506
5818
SAU2c0432_orf_18p
12946


S1M10000009B04
1670
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000009B05
1671
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000009B06
1672
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000009B07
1673
SAU201952
5839
SAU2c0457_orf_10p
13020


S1M10000009B10
1674
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000009B10
1674
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000009B11
1675
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000009B12
1676
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000009C01
1677
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000009C01
1677
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000009C02
1678
SAU102418
5664
SAU1c0030_orf_18p
12205


S1M10000009C05
1679
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000009C06
1680
SAU102613
5715
SAU1c0041_orf_55p
12475


S1M10000009C07
1681
SAU102460
5678
SAU1c0026_orf_18p
12171


S1M10000009C08
1682
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000009C09
1683
SAU102129
5604
SAU1c0027_orf_17p
12176


S1M10000009C10
1684
SAU102336
5646
SAU1c0045_off_146p
12659


S1M10000009C11
1685
SAU102340
5647
SAU1c0045_orf_149p
12660


S1M10000009D01
1686
SAU102262
5627
SAU1c0032_orf_58p
12248


S1M10000009D02
1687
SAU100355
5263
SAU1c0023_orf_6p
12155


S1M10000009D03
1688
SAU102418
5664
SAU1c0030_orf_18p
12205


S1M10000009D04
1689
SAU102979
5750
SAU1c0043_orf_227p
12536


S1M10000009D05
1690
SAU100799
5331
SAU1c0045_orf_243p
12682


S1M10000009D07
1691
SAU200994
5802
SAU2c0428_orf_4p
12935


S1M10000009D09
1692
SAU101681
5510
SAU1c0044_orf_220p
12592


S1M10000009D09
1692
SAU101682
5511
SAU1c0044_orf_219p
12591


S1M10000009D11
1693
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000009D11
1693
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000009D11
1693
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000009E02
1694
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000009E02
1694
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000009E06
1695
SAU102059
5597
SAU1c0034_orf_51p
1286


S1M10000009E08
1696
SAU201539
5821
SAU2c0431_orf_15p
12943


S1M10000009E09
1697
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000009E11
1698
SAU101501
5541
#N/A
#N/A


S1M10000009E12
1699
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000009F01
1700
SAU101452
5455
SAU1c0045_orf_247p
12684


S1M10000009F02
1701
SAU101818
5553
SAU1c0038_orf_20p
12369


S1M10000009F03
1702
SAU101488
5463
SAU1c0025_orf_18p
12164


S1M10000009F05
1703
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000009F06
1704
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000009F07
1705
SAU102607
5712
SAU1c0041_orf_51p
12472


S1M10000009F07
1705
SAU102944
5749
SAU1c0041_orf_47p
12468


S1M10000009F09
1706
SAU202176
5846
SAU2c0412_orf_3p
12895


S1M10000009F09
1706
SAU302805
5911
SAU3c1458_orf_1p
13133


S1M10000009F10
1707
SAU102392
5658
SAU1c0033_orf_40p
12270


S1M10000009F10
1707
SAU201541
5822
SAU2c0431_orf_14p
12942


S1M10000009G02
1708
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000009G02
1708
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000009G03
1709
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000009G05
1710
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000009G06
1711
SAU102909
5743
SAU1c0036_orf_16p
12315


S1M10000009G07
1712
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000009G09
1713
SAU102693
5731
SAU1c0044_orf_58p
12627


S1M10000009G10
1714
SAU100646
5302
SAU1c0025_orf_5p
12168


S1M10000009G11
1715
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000009H01
1716
SAU201506
5818
SAU2c0432_orf_18p
12946


S1M10000009H02
1717
SAU102658
5726
SAU1c0045_orf_121p
12654


S1M10000009H03
1718
SAU201654
5829
SAU2c0442_orf_12p
12982


S1M10000009H05
1719
SAU100582
5292
SAU1c0042_orf_21p
12503


S1M10000009H05
1719
SAU102165
5610
SAU1c0041_orf_25p
12460


S1M10000009H05
1719
SAU201929
5838
SAU2c0451_orf_19p
13008


S1M10000009H07
1720
SAU102297
5640
SAU1c0045_orf_41p
12704


S1M10000009H09
1721
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000009H11
1722
SAU101801
5541
#N/A
#N/A


S1M10000011A02
1723
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000011A03
1724
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000011A04
1725
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000011A06
1726
SAU101574
5486
SAU1c0044_orf_213p
12588


S1M10000011A06
1726
SAU101575
5487
SAU1c0044_orf_214p
12589


S1M10000011B01
1727
SAU102881
5740
SAU1c0032_orf_4p
12242


S1M10000011B02
1728
SAU101541
5472
SAU1c0037_orf_128p
12344


S1M10000011B03
1729
SAU101849
5559
SAU1c0044_orf_148p
12567


S1M10000011B04
1730
SAU101574
5486
SAU1c0044_orf_213p
12588


S1M10000011B04
1730
SAU101575
5487
SAU1c0044_orf_214p
12589


S1M10000011B05
1731
SAU200934
5799
SAU2c0375_orf_9p
12842


S1M10000011C01
1732
SAU101447
5454
SAU1c0045_orf_244p
12683


S1M10000011C05
1733
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000011C05
1733
SAU202756
5852
SAU2c0470_orf_1p
13027


S1M10000011C06
1734
SAU102350
5649
SAU1c0040_orf_36p
12433


S1M10000011D01
1735
SAU101293
5414
SAU1c0044_orf_61p
12631


S1M10000011D02
1736
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000011D04
1737
SAU102280
5632
SAU1c0038_orf_3p
12378


S1M10000011D06
1738
SAU102942
5748
SAU1c0035_orf_103p
12296


S1M10000011E02
1739
SAU101966
5580
SAU1c0028_orf_41p
12186


S1M10000011E03
1740
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000011E04
1741
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000011F01
1742
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000011F03
1743
SAU102350
5649
SAU1c0040_orf_36p
12433


S1M10000011F04
1744
SAU101155
5385
SAU1c0036_orf_11p
12310


S1M10000011F06
1745
SAU101481
5460
SAU1c0015_orf_9p
12130


S1M10000011F06
1745
SAU101482
5461
SAU1c0015_orf_10p
12123


S1M10000011G01
1746
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000011G03
1747
SAU302626
5907
SAU3c1367_orf_3p
13105


S1M10000011G04
1748
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000011G05
1749
SAU102350
5649
SAU1c0040_orf_36p
12433


S1M10000011G06
1750
SAU102298
5641
SAU1c0045_orf_42p
12705


S1M10000011H01
1751
SAU201558
5823
SAU2c0434_orf_5p
12954


S1M10000011H03
1752
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000011H03
1752
SAU202756
5852
SAU2c0470_orf_1p
13027


S1M10000011H04
1753
SAU200934
5799
SAU2c0375_orf_9p
12842


S1M10000012A02
1754
SAU102533
5695
#N/A
#N/A


S1M10000012A02
1754
SAU102534
5696
#N/A
#N/A


S1M10000012A06
1755
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000012A08
1756
SAU101630
5498
SAU1c0039_orf_4p
12410


S1M10000012A08
1756
SAU300156
5867
SAU3c0609_orf_2p
13036


S1M10000012A09
1757
SAU102356
5652
SAU1c0040_orf_41p
12436


S1M10000012A10
1758
SAU101266
5408
SAU1c0042_orf_117p
12490


S1M10000012A11
1759
SAU100390
5267
#N/A
#N/A


S1M10000012A11
1759
SAU200028
5771
SAU2c0145_orf_1p
12721


S1M10000012B01
1760
SAU100751
5321
SAU1c0036_orf_59p
12335


S1M10000012B05
1761
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000012B06
1762
SAU102350
5649
SAU1c0040_orf_36p
12433


S1M10000012B07
1763
SAU101814
5551
SAU1c0032_orf_32p
12237


S1M10000012B07
1763
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000012B11
1764
SAU102551
5698
SAU1c0045_orf_206p
12672


S1M10000012C01
1765
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000012C03
1766
SAU100776
5327
SAU1c0041_orf_72p
12482


S1M10000012C04
1767
SAU100776
5327
SAU1c0041_orf_72p
12482


S1M10000012C05
1768
SAU201558
5823
SAU2c0434_orf_5p
12954


S1M10000012C06
1769
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000012C06
1769
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000012C11
1770
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000012C11
1770
SAU102881
5740
SAU1c0032_orf_4p
12242


S1M10000012C12
1771
SAU101781
5528
SAU1c0037_orf_43p
12353


S1M10000012D04
1772
SAU201952
5839
SAU2c0457_orf_10p
13020


S1M10000012D06
1773
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000012D07
1774
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000012D08
1775
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000012D09
1776
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000012D12
1777
SAU102620
5718
SAU1c0041_orf_62p
12479


S1M10000012D12
1777
SAU102621
5719
SAU1c0041_orf_63p
12480


S1M10000012D12
1777
SAU202006
5842
SAU2c0456_orf_20p
13018


S1M10000012E01
1778
SAU100733
5314
SAU1c0044_orf_254p
12602


S1M10000012E01
1778
SAU100734
5315
SAU1c0044_orf_255p
12603


S1M10000012E02
1779
SAU102485
5686
SAU1c0039_orf_95p
12421


S1M10000012E04
1780
SAU201486
5817
SAU2c0457_orf_34p
13023


S1M10000012E07
1781
SAU100390
5267
#N/A
#N/A


S1M10000012E07
1781
SAU200028
5771
SAU2c0145_orf_1p
12721


S1M10000012E08
1782
SAU101189
5392
SAU1c0033_orf_25p
12264


S1M10000012E12
1783
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000012E12
1783
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000012E12
1783
SAU301148
5888
#N/A
#N/A


S1M10000012F04
1784
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000012F07
1785
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000012F07
1785
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000012F08
1786
SAU101189
5392
SAU1c0033_orf_25p
12264


S1M10000012F09
1787
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000012F10
1788
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000012F11
1789
SAU101781
5528
SAU1c0037_orf_43p
12353


S1M10000012F12
1790
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000012F12
1790
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000012F12
1790
SAU301148
5888
#N/A
#N/A


S1M10000012G01
1791
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000012G02
1792
SAU301758
5900
SAU3c1508_orf_5p
13156


S1M10000012G03
1793
SAU201301
5809
SAU2c0416_orf_17p
12899


S1M10000012G06
1794
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000012G07
1795
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000012G07
1795
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000012G08
1796
SAU102593
5704
SAU1c0041_orf_39p
12463


S1M10000012G10
1797
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000012H05
1798
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000012H08
1799
SAU202186
5847
SAU2c0222_orf_1p
12731


S1M10000012H09
1800
SAU100227
5244
SAU1c0043_orf_188p
12525


S1M10000012H10
1801
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000012H10
1801
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000012H10
1801
SAU101751
5521
SAU1c0040_orf_86p
12448


S1M10000012H11
1802
SAU301118
5886
SAU3c1305_orf_3p
13086


S1M10000013A02
1803
SAU102674
5730
SAU1c0024_orf_12p
12156


S1M10000013A03
1804
SAU101006
5367
SAU1c0028_orf_59p
12190


S1M10000013A05
1805
SAU102450
5675
SAU1c0045_orf_21p
12675


S1M10000013A07
1806
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000013A08
1807
SAU101143
5383
SAU1c0042_orf_159p
12502


S1M10000013A09
1808
SAU101567
5481
SAU1c0022_orf_10p
12144


S1M10000013A09
1808
SAU200030
5772
SAU2c0282_orf_3p
12745


S1M10000013A10
1809
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000013A11
1810
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000013A12
1811
SAU100690
5309
#N/A
#N/A


S1M10000013B02
1812
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000013B03
1813
SAU201236
5808
SAU2c0409_orf_10p
12891


S1M10000013B04
1814
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000013B05
1815
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000013B06
1816
SAU100118
5229
SAU1c0015_orf_13p
12125


S1M10000013B07
1817
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000013B07
1817
SAU301148
5888
#N/A
#N/A


S1M10000013B09
1818
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000013B11
1819
SAU103042
5758
#N/A
#N/A


S1M10000013C03
1820
SAU101781
5528
SAU1c0037_orf_43p
12353


S1M10000013C05
1821
SAU101038
5372
SAU1c0043_orf_180p
12521


S1M10000013C07
1822
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000013C08
1823
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000013C09
1824
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000013C10
1825
SAU100736
5316
SAU1c0038_orf_64p
12391


S1M10000013C11
1826
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000013C12
1827
SAU103038
5757
#N/A
#N/A


S1M10000013D08
1828
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000013D09
1829
SAU102669
5728
SAU1c0024_orf_7p
12160


S1M10000013D09
1829
SAU302956
5915
SAU3c1513_orf_9p
13161


S1M10000013D11
1830
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000013E01
1831
SAU102674
5730
SAU1c0024_orf_12p
12156


S1M10000013E02
1832
SAU101184
5391
SAU1c0035_orf_80p
12305


S1M10000013E04
1833
SAU101802
5542
SAU1c0032_orf_22p
12227


S1M10000013E06
1834
SAU101833
5555
SAU1c0038_orf_34p
12373


S1M10000013E08
1835
SAU100831
5335
SAU1c0038_orf_93p
12403


S1M10000013E09
1836
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000013E10
1837
SAU101801
5541
#N/A
#N/A


S1M10000013F02
1838
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000013F03
1839
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000013F06
1840
SAU103038
5757
#N/A
#N/A


S1M10000013F07
1841
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000013F08
1842
SAU100961
5360
SAU1c0044_orf_83p
12638


S1M10000013F09
1843
SAU101398
5442
SAU1c0036_orf_33p
12324


S1M10000013F12
1844
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000013G01
1845
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000013G04
1846
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000013G05
1847
SAU102241
5617
SAU1c0043_orf_25p
12539


S1M10000013G05
1847
SAU102242
5618
SAU1c0043_orf_26p
12540


S1M10000013G06
1848
SAU102380
5654
SAU1c0033_orf_29p
12265


S1M10000013G07
1849
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000013G10
1850
SAU201539
5821
SAU2c0431_orf_15p
12943


S1M10000013G11
1851
SAU101890
5570
SAU1c0034_orf_29p
12280


S1M10000013G12
1852
SAU100843
5339
SAU1c0036_orf_40p
12328


S1M10000013H03
1853
SAU100690
5309
#N/A
#N/A


S1M10000013H04
1854
SAU102450
5675
SAU1c0045_orf_21p
12675


S1M10000013H05
1855
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000013H07
1856
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000013H09
1857
SAU100444
5275
SAU1c0038_orf_67p
12392


S1M10000013H09
1857
SAU200721
5791
SAU2c0339_orf_5p
12797


S1M10000013H10
1858
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000013H11
1859
SAU100690
5309
#N/A
#N/A


S1M10000014A02
1860
SAU200564
5784
SAU2c0324_orf_6p
12780


S1M10000014A03
1861
SAU101310
5418
SAU1c0044_orf_125p
12562


S1M10000014A05
1862
SAU101991
5582
SAU1c0040_orf_94p
12454


S1M10000014A07
1863
SAU101526
5470
SAU1c0027_orf_32p
12179


S1M10000014A08
1864
SAU103038
5757
#N/A
#N/A


S1M10000014A11
1865
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000014A12
1866
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000014B01
1867
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000014B02
1868
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000014B02
1868
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000014B03
1869
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000014B04
1870
SAU100778
5328
SAU1c0043_orf_140p
12514


S1M10000014B05
1871
SA1310476
5682
SAU1c0026_orf_33p
12175


S1M10000014B06
1872
SAU101199
5395
SAU1c0035_orf_62p
12302


S1M10000014B07
1873
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000014B08
1874
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000014B10
1875
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000014B11
1876
SAU102534
5696
#N/A
#N/A


S1M10000014B12
1877
SAU102534
5696
#N/A
#N/A


S1M10000014C01
1878
SAU101575
5487
SAU1c0044_orf_214p
12589


S1M10000014c05
1879
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000014C06
1880
SAU100305
5256
SAU1c0038_orf_77p
12397


S1M10000014C07
1881
SAU101801
5541
#N/A
#N/A


S1M10000014C09
1882
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000014C09
1882
SAU102881
5740
SAU1c0032_orf_4p
12242


S1M10000014C10
1883
SAU302901
5912
SAU3c1497_orf_8p
13146


S1M10000014C11
1884
SAU100514
5281
SAU1c0044_orf_57p
12626


S1M10000014C12
1885
SAU101814
5551
SAU1c0032_orf_32pf
12237


S1M10000014C12
1885
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000014D03
1886
SAU100885
5348
SAU1c0038_orf_38p
12376


S1M10000014D06
1887
SAU100305
5256
SAU1c0038_orf_77p
12397


S1M10000014D08
1888
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000014D09
1889
SAU100808
5332
SAU1c0037_orf_12p
12345


S1M10000014D10
1890
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000014E01
1891
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000014E01
1891
SAU101794
5535
#N/A
#N/A


S1M10000014E04
1892
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000014E05
1893
SAU101565
5480
SAU1c0022_orf_8p
12151


S1M10000014E07
1894
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000014E07
1894
SAU100659
5304
SAU1c0038_orf_60p
12390


S1M10000014E08
1895
SAU202176
5846
SAU2c0412_orf_3p
12895


S1M10000014E09
1896
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000014E09
1896
SAU300269
5869
#N/A
#N/A


S1M10000014E10
1897
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000014E12
1898
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000014E12
1898
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000014F02
1899
SAU100128
5231
#N/A
#N/A


S1M10000014F02
1899
SAU101549
5476
SAU1c0043_orf_64p
12549


S1M10000014F02
1899
SAU101576
5488
SAU1c0044_orf_105p
12554


S1M10000014F03
1900
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000014F03
1900
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000014F04
1901
SAU102449
5674
SAU1c0045_orf_22p
12677


S1M10000014F05
1902
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000014F08
1903
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000014F09
1904
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000014F09
1904
SAU300269
5869
#N/A
#N/A


S1M10000014F10
1905
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000014G02
1906
SAU102054
5596
SAU1c0039_orf_74p
12417


S1M10000014G04
1907
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000014G06
1908
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000014G07
1909
SAU201620
5827
#N/A
#N/A


S1M10000014G08
1910
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000014G12
1911
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000014H02
1912
SAU100242
5246
SAU1c0036_orf_5p
12336


S1M10000014H03
1913
SAU102264
5628
SAU1c0032_orf_60p
12250


S1M10000014H04
1914
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000014H05
1915
SAU102116
5602
SAU1c0027_orf_5p
12180


S1M10000014H06
1916
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000014H07
1917
SAU103038
5757
#N/A
#N/A


S1M10000014H08
1918
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000014H11
1919
SAU102534
5696
#N/A
#N/A


S1M10000015A02
1920
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000015A03
1921
SAU102388
5655
SAU1c0033_orf_35p
12267


S1M10000015A05
1922
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000015A06
1923
SAU101857
5560
SAU1c0044_orf_156p
12569


S1M10000015A09
1924
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000015A10
1925
SAU103038
5757
#N/A
#N/A


S1M10000015A11
1926
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000015A12
1927
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000015B02
1928
SAU102340
5647
SAU1c0045_orf_149p
12660


S1M10000015B05
1929
SAU103038
5757
#N/A
#N/A


S1M10000015B08
1930
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000015B08
1930
SAU101792
5533
SAU1c0032_orf_13p
12217


S1M10000015B09
1931
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000015B09
1931
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000015B09
1931
SAU302685
5908
SAU3c1403_orf_1p
13113


S1M10000015B10
1932
SAU102308
5642
SAU1c0045_orf_50p
12706


S1M10000015C01
1933
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000015C02
1934
SAU102340
5647
SAU1c0045_orf_149p
12660


S1M10000015C03
1935
SAU102390
5657
SAU1c0033_orf_38p
12269


S1M10000015C03
1935
SAU201333
5810
SAU2c0418_orf_8p
12905


S1M10000015C05
1936
SAU100690
5309
#N/A
#N/A


S1M10000015C06
1937
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000015C08
1938
SAU100133
5233
SAU1c0044_orf_170p
12574


S1M10000015C08
1938
SAU100323
5261
SAU1c0044_orf_171p
12575


S1M10000015C10
1939
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000015C12
1940
SAU100305
5256
SAU1c0038_orf_77p
12397


S1M10000015D02
1941
SAU100794
5330
SAU1c0028_orf_53p
12189


S1M10000015D03
1942
SAU102032
5591
SAU1c0029_orf_47p
12198


S1M10000015D04
1943
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000015D05
1944
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000015D06
1945
SAU100736
5316
SAU1c0038_orf_64p
12391


S1M10000015D12
1946
SAU101814
5551
SAU1c0032_orf_32p
12237


S1M10000015E02
1947
SAU102390
5657
SAU1c0033_orf_38p
12269


S1M10000015E02
1947
SAU201333
5810
SAU2c0418_orf_8p
12905


S1M10000015E03
1948
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000015E06
1949
SAU101320
5420
SAU1c0015_orf_16p
12128


S1M10000015E07
1950
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000015E09
1951
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000015E10
1952
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000015E11
1953
SAU102286
5636
SAU1c0038_orf_6p
12393


S1M10000015E11
1953
SAU102287
5637
SAU1c0038_orf_7p
12398


S1M10000015E12
1954
SAU102352
5650
SAU1c0040_orf_38p
12434


S1M10000015F01
1955
SAU100123
5230
SAU1c0043_orf_189p
12526


S1M10000015F01
1955
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000015F01
1955
SAU103159
5762
SAU1c0045_orf_204p
12670


S1M10000015F01
1955
SAU201827
5837
SAU2c0449_orf_21p
13002


S1M10000015F02
1956
SAU101561
5479
SAU1c0022_orf_4p
12149


S1M10000015F03
1957
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000015F04
1958
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000015F06
1959
SAU201385
5814
#N/A
#N/A


S1M10000015F07
1960
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000015F08
1961
SAU102102
5600
SAU1c0045_orf_340p
12696


S1M10000015F09
1962
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000015F09
1962
SAU101801
5541
#N/A
#N/A


S1M10000015F10
1963
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000015G01
1964
SAU102481
5685
SAU1c0039_orf_99p
12422


S1M10000015G02
1965
SAU200058
5773
SAU2c0134_orf_1p
12719


S1M10000015G02
1965
SAU200059
5774
SAU2c0134_orf_3p
12720


S1M10000015G03
1966
SAU101070
5376
SAU1c0034_orf_60p
12291


S1M10000015G04
1967
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000015G05
1968
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000015G06
1969
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000015G07
1970
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000015G08
1971
SAU101814
5551
SAU1c0032_orf_32p
12237


S1M10000015G09
1972
SAU102143
5607
SAU1c0041_orf_14p
12458


S1M10000015G09
1972
SAU102144
5608
SAU1c0041_orf_15p
12459


S1M10000015G10
1973
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000015G11
1974
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000015H04
1975
SAU101801
5541
#N/A
#N/A


S1M10000015H04
1975
SAU101802
5542
SAU1c0032_orf_22p
12227


S1M10000015H06
1976
SAU201385
5814
#N/A
#N/A


S1M10000016A03
1977
SAU101803
5543
SAU1c0032_orf_23p
1228


S1M10000016A03
1977
SAU101804
5544
#N/A
#N/A


S1M10000016A04
1978
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000016A04
1978
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000016A06
1979
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000016A07
1980
SAU100932
5356
SAU1c0044_orf_308p
12615


S1M10000016A09
1981
SAU101067
5375
SAU1c0034_orf_58p
12290


S1M10000016A09
1981
SAU300732
5877
SAU3c1116_orf_1p
13061


S1M10000016A10
1982
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000016A12
1983
SAU100522
5284
SAU1c0044_orf_249p
12599


S1M10000016B02
1984
SAU102449
5674
SAU1c0045_orf_22p
12677


S1M10000016B05
1985
SAU101320
5420
SAU1c0015_orf_16p
12128


S1M10000016B06
1986
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000016B06
1986
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000016B07
1987
SAU103077
5759
SAU1c0039_orf_44p
12408


S1M10000016B08
1988
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000016B09
1989
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000016B10
1990
SAU101006
5367
SAU1c0028_orf_59p
12190


S1M10000016B11
1991
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000016B12
1992
SAU101794
5535
#N/A
#N/A


S1M10000016B12
1992
SAU101795
5536
SAU1c0032_orf_15p
12219


S1M10000016C01
1993
SAU100845
5340
SAU1c0036_orf_41p
12329


S1M10000016C02
1994
SAU102049
5595
SAU1c0039_orf_68p
12416


S1M10000016C04
1995
SAU100921
5355
SAU1c0038_orf_76p
12396


S1M10000016C05
1996
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000016C06
1997
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000016C06
1997
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000016C06
1997
SAU301148
5888
#N/A
#N/A


S1M10000016C08
1998
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000016C09
1999
SAU102233
5616
SAU1c0043_orf_20p
12531


S1M10000016C10
2000
SAU201513
5820
SAU2c0432_orf_10p
12944


S1M10000016C10
2000
SAU203196
5861
SAU2c0432_orf_11p
12945


S1M10000016C11
2001
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000016C12
2002
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000016D01
2003
SAU102355
5651
SAU1c0040_orf_40p
12435


S1M10000016D02
2004
SAU200242
5777
SAU2c0250_orf_2p
12734


S1M10000016D04
2005
SAU100921
5355
SAU1c0038_orf_76p
12396


S1M10000016D05
2006
SAU100770
5324
#N/A
#N/A


S1M10000016D06
2007
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000016D08
2008
SAU101070
5376
SAU1c0034_orf_60p
12291


S1M10000016D09
2009
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000016D10
2010
SAU201513
5820
SAU2c0432_orf_10p
12944


S1M10000016D10
2010
SAU203196
5861
SAU2c0432_orf_11p
12945


S1M10000016D11
2011
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000016E04
2012
SAU101371
5435
SAU1c0033_orf_7p
12275


S1M10000016E05
2013
SAU101320
5420
SAU1c0015_orf_16p
12128


S1M10000016E06
2014
SAU102639
5724
#N/A
#N/A


S1M10000016E07
2015
SAU102636
5722
SAU1c0045_orf_101p
12650


S1MT0000016E07
2015
SAU102637
5723
SAU1c0045_orf_102p
12651


S1M10000016E08
2016
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000016E09
2017
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000016E10
2018
SAU102983
5751
SAU1c0045_orf_224p
12676


S1M10000016E11
2019
SAU102281
5633
SAU1c0038_orf_4p
12384


S1M10000016E12
2020
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000016F02
2021
SAU102113
5601
SAU1c0027_orf_2p
12178


S1M10000016F02
2021
SAU301223
5889
SAU3c1345_orf_3p
13090


S1M10000016F03
2022
SAU101864
5562
SAU1c0044_orf_163p
12572


S1M10000016F05
2023
SAU201168
5804
SAU2c0407_orf_8p
12889


S1M10000016F06
2024
SAU102407
5662
#N/A
#N/A


S1M10000016F08
2025
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000016F09
2026
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000016F11
2027
SAU102113
5601
SAU1c0027_orf_2p
12178


S1M10000016F11
2027
SAU301223
5889
SAU3c1345_orf_3p
13090


S1M10000016G01
2028
SAU102434
5669
SAU1c0045_orf_36p
12700


S1M10000016G03
2029
SAU101300
5415
SAU1c0044_orf_113p
12557


S1M10000016G03
2029
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000016G04
2030
SAU102450
5675
SAU1c0045_orf_21p
12675


S1M10000016G05
2031
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000016H03
2032
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000016H04
2033
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000016H08
2034
SAU101067
5375
SAU1c0034_orf_58p
12290


S1M10000016H08
2034
SAU300732
5877
SAU3c1116_orf_1p
13061


S1M10000016H10
2035
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000017A02
2036
SAU101866
5564
SAU1c0036_orf_21p
12319


S1M10000017A03
2037
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000017A03
2037
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000017A04
2038
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000017A08
2039
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000017A11
2040
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000017A12
2041
SAU301357
5893
SAU3c1394_orf_2p
13111


S1M10000017B02
2042
SAU102242
5618
SAU1c0043_orf_26p
12540


S1M10000017B05
2043
SAU302513
5906
SAU3c1298_orf_1p
13085


S1M10000017B07
2044
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000017B08
2045
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000017B09
2046
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000017B10
2047
SAU101754
5523
SAU1c0040_orf_84p
12446


S1M10000017B11
2048
SAU101754
5523
SAU1c0040_orf_84p
12446


S1M10000017B12
2049
SAU201375
5811
SAU2c0426_orf_4p
12926


S1M10000017C01
2050
SAU101224
5397
SAU1c0044_orf_98p
12647


S1M10000017C03
2051
SAU101910
5576
SAU1c0040_orf_76p
12440


S1M10000017C05
2052
SAU200657
5789
#N/A
#N/A


S1M10000017C08
2053
SAU101890
5570
SAU1c0034_orf_29p
12280


S1M10000017C09
2054
SAU101398
5442
SAU1c0036_orf_33p
12324


S1M10000017C10
2055
SAU102614
5716
SAU1c0041_orf_56p
12476


S1M10000017C10
2055
SAU102615
5717
SAU1c0041_orf_57p
12477


S1M10000017C11
2056
SAU101799
5539
SAU1c0032_orf_19p
12223


S1M10000017C11
2056
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000017C12
2057
SAU101782
5529
SAU1c0037_orf_44p
12354


S1M10000017C12
2057
SAU200994
5802
SAU2c0428_orf_4p
12935


S1M10000017D03
2058
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000017D09
2059
SAU101799
5539
SAU1c0032_orf_19p
12223


S1M10000017D09
2059
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000017D10
2060
SAU100633
5301
SAU1c0043_orf_147p
12515


S1M10000017E04
2061
SAU101801
5541
#N/A
#N/A


S1M10000017E05
2062
SAU102334
5645
SAU1c0045_orf_144p
12658


S1M10000017E08
2063
SAU101198
5394
SAU1c0035_orf_61p
12301


S1M10000017E11
2064
SAU102883
5741
SAU1c0045_orf_38p
12702


S1M10000017F01
2065
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000017F04
2066
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000017F04
2066
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000017F05
2067
SAU102541
5697
SAU1c0045_orf_195p
12668


S1M10000017F06
2068
SAU102356
5652
SAU1c0040_orf_41p
12436


S1M10000017F11
2069
SAU101463
5458
SAU1c0045_orf_232p
12679


S1M10000017G02
2070
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000017G05
2071
SAU102259
5624
SAU1c0032_orf_55p
12245


S1M10000017G06
2072
SAU200565
5785
SAU2c0324_orf_7p
12781


S1M10000018A03
2073
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000018A03
2073
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000018A04
2074
SAU102142
5606
SAU1c0041_orf_13p
12457


S1M10000018A05
2075
SAU100886
5349
SAU1c0018_orf_16p
12139


S1M10000018A05
2075
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000018A06
2076
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000018A08
2077
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000018A08
2077
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000018A09
2078
SAU102142
5606
SAU1c0041_orf_13p
12457


S1M10000018A10
2079
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000018A11
2080
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000018A11
2080
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000018B02
2081
SAU100886
5349
SAU1c0018_orf_16p
12139


S1M10000018B02
2081
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000018B03
2082
SAU101839
5556
SAU1c0042_orf_12p
12495


S1M10000018B05
2083
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000018B09
2084
SAU100836
5336
SAU1c0031_orf_13p
12212


S1M10000018B09
2084
SAU202731
5850
#N/A
#N/A


S1M10000018B10
2085
SAU100401
5268
SAU1c0044_orf_174p
12576


S1M10000018B10
2085
SAU300335
5870
#N/A
#N/A


S1M10000018B11
2086
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000018C01
2087
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000018C02
2088
SAU102447
5672
SAU1c0045_orf_24p
12685


S1M10000018C03
2089
SAU100778
5328
SAU1c0043_orf_140p
12514


S1M10000018C04
2090
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000018C05
2091
SAU103038
5757
#N/A
#N/A


S1M10000018C06
2092
SAU100684
5306
SAU1c0044_orf_68p
12632


S1M10000018C08
2093
SAU102256
5622
SAU1c0032_orf_52p
12243


S1M10000018C08
2093
SAU102257
5623
SAU1c0032_orf_53p
12244


S1M10000018C09
2094
SAU101065
5374
SAU1c0034_orf_56p
12289


S1M10000018C09
2094
SAU102068
5599
SAU1c0034_orf_55p
12288


S1M10000018C10
2095
SAU100112
5227
SAU1c0044_orf_70p
12634


S1M10000018C11
2096
SAU102663
5727
SAU1c0024_orf_2p
12158


S1M10000018C12
2097
SAU101948
5579
SAU1c0045_orf_69p
12709


S1M10000018D01
2098
SAU101452
5455
SAU1c0045_orf_247p
12684


S1M10000018D02
2099
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000018D02
2099
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000018D03
2100
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000018D04
2101
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000018D09
2102
SAU101067
5375
SAU1c0034_orf_58p
12290


S1M10000018D10
2103
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000018D11
2104
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000018D12
2105
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000018E01
2106
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000018E02
2107
SAU100265
5249
SAU1c0014_orf_11p
12122


S1M10000018E03
2108
SAU102420
5665
SAU1c0030_orf_20p
12206


S1M10000018E04
2109
SAU102035
5592
SAU1c0029_orf_50P
12199


S1M10000018E05
2110
SAU100596
5295
SAU1c0043_orf_63p
12548


S1M10000018E08
2111
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000018E09
2112
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000018E11
2113
SAU101799
5539
SAU1c0032_orf_19p
12223


S1M10000018E11
2113
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000018E12
2114
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000018F03
2115
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000018F04
2116
SAU102396
5660
SAU1c0033_orf_43p
12272


S1M10000018F04
2116
SAU301118
5886
SAU3c1305_orf_3p
13086


S1M10000018F07
2117
SAU102629
5720
SAU1c0041_orf_71p
12481


S1M10000018F09
2118
SAU101810
5549
SAU1c0032_orf_28p
12233


S1M10000018F09
2118
SAU300110
5865
SAU3c0533_orf_2p
13031


S1M10000018F10
2119
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000018F10
2119
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000018F12
2120
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000018G03
2121
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000018G05
2122
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000018G07
2123
SAU101727
5516
SAU1c0016_orf_6p
12133


S1M10000018G08
2124
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000018G08
2124
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000018G09
2125
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000018G09
2125
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000018G10
2126
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000018G10
2126
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000018G12
2127
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000018H01
2128
SAU101663
5506
SAU1c0033_orf_14p
12261


S1M10000018H02
2129
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000018H02
2129
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000018H07
2130
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000018H09
2131
SAU101622
5496
SAU1c0040_orf_27p
12430


S1M10000018H10
2132
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000019A02
2133
SAU103077
5759
SAU1c0039_orf_44p
12408


S1M10000019A03
2134
SAU102352
5650
SAU1c0400_orf_38p
12434


S1M10000019A05
2135
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000019A06
2136
SAU101311
5419
SAU1c0044_orf_126p
12563


S1M10000019A07
2137
SAU101727
5516
SAU1c0016_orf_6p
12133


S1M10000019A07
2137
SAU101728
5517
SAU1c0016_orf_5p
12132


S1M10000019A09
2138
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000019A11
2139
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000019A12
2140
SAU102693
5731
SAU1c0044_orf_58p
12627


S1M10000019A12
2140
SAU102694
5732
SAU1c0044_orf_59p
12628


S1M10000019B03
2141
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000019B04
2142
SAU100899
5351
SAU1c0034_orf_11p
12277


S1M10000019B04
2142
SAU100901
5352
SAU1c0034_orf_13p
12278


S1M10000019B07
2143
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000019B08
2144
SAU102422
5666
SAU1c0030_orf_22p
12207


S1M10000019B08
2144
SAU102423
5667
SAU1c0030_orf_23p
12208


S1M10000019B09
2145
SAU100182
5241
SAU1c0037_orf_82p
12362


S1M10000019B09
2145
SAU100251
5248
SAU1c0037_orf_83p
12363


S1M10000019B10
2146
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000019B11
2147
SAU100879
5345
SAU1c0041_orf_82p
12483


S1M10000019B12
2148
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000019C01
2149
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000019C04
2150
SAU103175
5764
SAU1c0045_orf_269p
12687


S1M10000019C04
2150
SAU301472
5897
SAU3c1431_orf_4p
13124


S1M10000019C05
2151
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000019C06
2152
SAU101790
5531
SAU1c0032_orf_11p
12215


S1M10000019C06
2152
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000019C07
2153
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000019C08
2154
SAU202126
5844
SAU2c0045_orf_1p
12714


S1M10000019C11
2155
SAU100301
5254
SAU1c0040_orf_91p
12452


S1M10000019C12
2156
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000019D01
2157
SAU102270
5631
SAU1c0032_orf_65p
12253


S1M10000019D02
2158
SAU101145
5384
SAU1c0035_orf_43p
12299


S1M10000019D04
2159
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000019D05
2160
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000019D06
2161
SAU102526
5692
SAU1c0045_orf_299p
12691


S1M10000019D07
2162
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000019D09
2163
SAU102639
5724
#N/A
#N/A


S1M10000019D12
2164
SAU101805
5545
SAU1c0032_orf_24p
12229


S1M10000019E01
2165
SAU100961
5360
SAU1c0044_orf_83p
12638


S1M10000019E01
2165
SAU100962
5361
SAU1c0044_orf_84p
12639


S1M10000019E02
2166
SAU101624
5497
SAU1c0040_orf_25p
12429


S1M10000019E07
2167
SAU102352
5650
SAU1c0040_orf_38p
12434


S1M10000019F01
2168
SAU102241
5617
SAU1c0043_orf_25p
12539


S1M10000019F05
2169
SAU101612
5493
SAU1c0044_orf_7p
12637


S1M10000019F05
2169
SAU202945
5857
SAU2c0394_orf_7p
12868


S1M10000019F06
2170
SAU101864
5562
SAU1c0044_orf_163p
12572


S1M10000019F08
2171
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000019F09
2172
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000019F11
2173
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000019G04
2174
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000019G07
2175
SAU100522
5284
SAU1c0044_orf_249p
12599


S1M10000019G09
2176
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000019G10
2177
SAU101235
5400
SAU1c0044_orf_11p
12561


S1M10000019G10
2177
SAU101236
5401
SAU1c0044_orf_12p
12564


S1M10000019G11
2178
SAU101802
5542
SAU1c0032_orf_22p
12227


S1M10000019H05
2179
SAU101802
5542
SAU1c0032_orf_22p
12227


S1M10000019H05
2179
SAU101803
5543
SAU1c0032_orf_23p
1228


S1M10000019H08
2180
SAU102449
5674
SAU1c0045_orf_22p
12677


S1M10000020A05
2181
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000020A06
2182
SAU101801
5541
#N/A
#N/A


S1M10000020A07
2183
SAU101567
5481
SAU1c0022_orf_10p
12144


S1M10000020A07
2183
SAU200030
5772
SAU2c0282_orf_3p
12745


S1M10000020A11
2184
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000020A12
2185
SAU101907
5574
SAU1c0040_orf_79p
12442


51M10000020B02
2186
SAU100475
5276
SAU1c0036_orf_61p
12337


S1M10000020B03
2187
SAU100059
5224
SAU1c0045_orf_10p
12652


S1M10000020B05
2188
SAU301133
5887
SAU3c1311_orf_3p
13087


S1M10000020B06
2189
SAU100747
5320
SAU1c0044_orf_235p
12597


S1M10000020B07
2190
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000020B09
2191
SAU101371
5435
SAU1c0033_orf_7p
12275


S1M10000020B12
2192
SAU102143
5607
SAU1c0041_orf_14p
12458


S1M10000020C09
2193
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000020C10
2194
SAU101799
5539
SAU1c0032_orf_19p
12223


S1M10000020C10
2194
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000020C11
2195
SAU101452
5455
SAU1c0045_orf_247p
12684


S1M10000020D03
2196
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000020D04
2197
SAU102481
5685
SAU1c0039_orf_99p
12422


S1M10000020D06
2198
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000020D07
2199
SAU100198
5243
SAU1c0009_orf_1p
12120


S1M10000020D08
2200
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000020D09
2201
SAU102939
5747
#N/A
#N/A


S1M10000020D12
2202
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000020E01
2203
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000020E03
2204
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000020E04
2205
SAU101805
5545
SAU1c0032_orf_24p
12229


S1M10000020E06
2206
SAU102162
5609
SAU1c0041_orf_27p
12462


S1M10000020E08
2207
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000020E11
2208
SAU101876
5567
SAU1c0025_orf_9p
12169


S1M10000020E12
2209
SAU200657
5789
#N/A
#N/A


S1M10000020F01
2210
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000020F05
2211
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000020F06
2212
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000020F06
2212
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000020F07
2213
SAU200731
5793
SAU2c0352_orf_2p
12808


S1M10000020F09
2214
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000020F11
2215
SAU101663
5506
SAU1c0033_orf_14p
12261


S1M10000020F11
2215
SAU101664
5507
SAU1c0033_orf_15p
12262


S1M10000020F12
2216
SAU100745
5319
SAU1c0044_orf_233p
12596


S1M10000020G01
2217
SAU102905
5742
SAU1c0033_orf_45p
12273


S1M10000020G05
2218
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000020G07
2219
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000020G08
2220
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000020G09
2221
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000020G10
2222
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000020G10
2222
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000020G11
2223
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000020G12
2224
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000020H01
2225
SAU202039
5843
SAU2c0452_orf_20p
13009


S1M10000020H02
2226
SAU101754
5523
SAU1c0040_orf_84p
12446


S1M10000020H04
2227
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000020H06
2228
SAU101541
5472
SAU1c0037_orf_128p
12344


S1M10000020H08
2229
SAU201558
5823
SAU2c0434_orf_5p
12954


S1M10000020H10
2230
SAU101754
5523
SAU1c0040_orf_84p
12446


S1M10000020H11
2231
SAU100053
5222
SAU1c0020_orf_1p
12143


S1M10000021A04
2232
SAU200752
5795
SAU2c0354_orf_5p
12809


S1M10000021A04
2232
SAU300975
5880
SAU3c1240_orf_3p
13075


S1M10000021A05
2233
SAU101408
5445
SAU1c0035_orf_93p
12308


S1M10000021A06
2234
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000021A07
2235
SAU100496
5279
SAU1c0041_orf_83p
12484


S1M10000021A07
2235
SAU301004
5882
SAU3c1255_orf_1p
13079


S1M10000021A08
2236
SAU101183
5390
SAU1c0035_orf_79p
12304


S1M10000021A09
2237
SAU102933
5744
SAU1c0039_orf_62p
12412


S1M10000021A09
2237
SAU201184
5805
SAU2c0351_orf_19p
12807


S1M10000021A10
2238
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000021B05
2239
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000021B05
2239
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000021B06
2240
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M1000001307
2241
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000021B10
2242
SAU101772
5526
SAU1c0037_orf_34p
12351


S1M10000021C04
2243
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000021C05
2244
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000021C07
2245
SAU202968
5858
SAU2c0407_orf_2p
12886


S1M10000021C08
2246
SAU102575
5700
SAU1c0044_orf_283p
12609


S1M10000021C10
2247
SAU101320
5420
SAU1c0015_orf_16p
12128


S1M10000021C11
2248
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000021C12
2249
SAU101726
5515
SAU1c0016_orf_7p
12134


S1M10000021D01
2250
SAU102503
5691
SAU1c0045_orf_274p
12690


S1M10000021D03
2251
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000021D03
2251
SAU101286
5413
SAU1c0034_orf_67p
12292


S1M10000021D04
2252
SAU100858
5341
SAU1c0038_orf_86p
12401


S1M10000021D04
2252
SAU100859
5342
SAU1c0038_orf_87p
12402


S1M10000021D06
2253
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000021D09
2254
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000021D10
2255
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000021E01
2256
SAU101655
5505
SAU1c0042_orf_125p
12494


S1M10000021E02
2257
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000021E02
2257
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000021E03
2258
SAU101857
5560
SAU1c0044_orf_156p
12569


S1M10000021E05
2259
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000021E06
2260
SAU102663
5727
SAU1c0024_orf_2p
12158


S1M10000021E09
2261
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000021E12
2262
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000021F02
2263
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000021F04
2264
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000021F04
2264
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000021F05
2265
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000021F06
2266
SAU101235
5400
SAU1c0044_orf_11p
12561


S1M10000021F07
2267
SAU101383
5438
SAU1c0022_orf_20p
12147


S1M10000021F09
2268
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000021F09
2268
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000021F11
2269
SAU101371
5435
SAU1c0033_orf_7p
12275


S1M10000021G01
2270
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000021G03
2271
SAU301357
5893
SAU3c1394_orf_2p
13111


S1M10000021G08
2272
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000021H04
2273
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000021H04
2273
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000021H05
2274
SAU300131
5866
SAU3c0560_orf_2p
13034


S1M10000021H07
2275
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000021H08
2276
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000021H11
2277
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000022A02
2278
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000022A02
2278
SAU301230
5890
SAU3c1347_orf_6p
13092


S1M10000022A03
2279
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000022A05
2280
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000022A08
2281
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000022A09
2282
SAU102939
5747
#N/A
#N/A


S1M10000022A12
2283
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000022B02
2284
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000022B02
2284
SAU301230
5890
SAU3c1347_orf_6p
13092


S1M10000022B03
2285
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000022B05
2286
SAU100920
5354
SAU1c0038_orf_75p
12395


S1M10000022B06
2287
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000022B08
2288
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000022B09
2289
SAU102939
5747
#N/A
#N/A


S1M10000022B10
2290
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000022B11
2291
SAU101726
5515
SAU1c0016_orf_7p
12134


S1M10000022B12
2292
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000022C02
2293
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000022C03
2294
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000022C04
2295
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000022C06
2296
SAU100246
5247
SAU1c0042_orf_130p
12496


S1M10000022C06
2296
SAU300998
5881
SAU3c1253_orf_3p
13077


S1M10000022C07
2297
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000022C08
2298
SAU100528
5286
SAU1c0042_orf_87p
12507


S1M10000022C08
2298
SAU103115
5760
SAU1c0042_orf_88p
12508


S1M10000022C11
2299
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000022D03
2300
SAU101805
5545
SAU1c0032_orf_24p
12229


S1M10000022D05
2301
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000022D06
2302
SAU100921
5355
SAU1c0038_orf_76p
12396


S1M10000022D07
2303
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000022D08
2304
SAU101189
5392
SAU1c0033_orf_25p
12264


S1M10000022D09
2305
SAU101726
5515
SAU1c0016_orf_7p
12134


S1M10000022D11
2306
SAU101447
5454
SAU1c0045_orf_244p
12683


S1M10000022E01
2307
SAU200601
5787
#N/A
#N/A


S1M10000022E03
2308
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000022E05
2309
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000022E09
2310
SAU101235
5400
SAU1c0044_orf_11p
12561


S1M10000022E09
2310
SAU101236
5401
SAU1c0044_orf_12p
12564


S1M10000022F04
2311
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000022F06
2312
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000022F07
2313
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000022F08
2314
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000022F11
2315
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000022G03
2316
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000022G04
2317
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000022G07
2318
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000022G08
2319
SAU100557
5291
SAU1c0044_orf_132p
12565


S1M10000022G12
2320
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000022H03
2321
SAU101006
5367
SAU1c0028_orf_59p
12190


S1M10000022H05
2322
SAU101814
5551
SAU1c0032_orf_32p
12237


S1M10000022H06
2323
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000022H07
2324
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000022H08
2325
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000022H11
2326
SAU101610
5492
SAU1c0044_orf_5p
12629


S1M10000023A05
2327
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000023A09
2328
SAU101340
5423
SAU1c0038_orf_82p
12400


S1M10000023A11
2329
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000023A12
2330
SAU101651
5502
SAU1c0042_orf_122p
12491


S1M10000023A12
2330
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000023B01
2331
SAU100886
5349
SAU1c0018_orf_16p
12139


S1M10000023B03
2332
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000023B03
2332
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000023B07
2333
SAU101857
5560
SAU1c0044_orf_156p
12569


S1M10000023B08
2334
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000023B08
2334
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000023B09
2335
SAU101340
5423
SAU1c0038_orf_82p
12400


S1M10000023B10
2336
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000023B11
2337
SAU102613
5715
SAU1c0041_orf_55p
12475


S1M10000023B12
2338
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000023B12
2338
SAU301148
5888
#N/A
#N/A


S1M10000023C02
2339
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000023C02
2339
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000023C10
2340
SAU102554
5699
SAU1c0045_orf_209p
12673


S1M10000023C11
2341
SAU102352
5650
SAU1c0040_orf_38p
12434


S1M10000023C12
2342
SAU100077
5226
SAU1c0043_orf_178p
12520


S1M10000023D01
2343
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000023D03
2344
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000023D04
2345
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000023D07
2346
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000023D08
2347
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000023D09
2348
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000023D10
2349
SAU100963
5362
SAU1c0044_orf_85p
12640


S1M10000023D12
2350
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000023E01
2351
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000023E04
2352
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000023E07
2353
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000023E10
2354
SAU203293
5862
SAU2c0441_orf_21p
12979


S1M10000023E11
2355
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000023F04
2356
SAU101736
5518
SAU1c0043_orf_166p
12519


S1M10000023F04
2356
SAU101737
5519
SAU1c0043_orf_165p
12518


S1M10000023F07
2357
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000023F08
2358
SAU102883
5741
SAU1c0045_orf_38p
12702


S1M10000023F10
2359
SAU102352
5650
SAU1c0040_orf_38p
12434


S1M10000023F11
2360
SAU100617
5300
SAU1c0035_orf_102p
12295


S1M10000023F12
2361
SAU102352
5650
SAU1c0040_orf_38p
12434


S1M10000023G02
2362
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000023G03
2363
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000023G06
2364
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000023G07
2365
SAU301054
5884
#N/A
#N/A


S1M10000023G08
2366
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000023G09
2367
SAU101968
5581
SAU1c0028_orf_43p
12187


S1M10000023G11
2368
SAU102613
5715
SAU1c0041_orf_55p
12475


S1M10000023H02
2369
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000023H06
2370
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000023H07
2371
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000023H09
2372
SAU101340
5423
SAU1c0038_orf_82p
12400


S1M10000023H10
2373
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000024A02
2374
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000024A04
2375
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000024A07
2376
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000024A08
2377
SAU101231
5399
SAU1c0035_orf_6p
12303


S1M10000024A11
2378
SAU103226
5768
SAU1c0045_orf_95p
12713


S1M10000024B05
2379
SAU102418
5664
SAU1c0030_orf_18p
12205


S1M10000024B06
2380
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000024B08
2381
SAU100601
5296
SAU1c0044_orf_313p
12616


S1M10000024B09
2382
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000024B10
2383
SAU101265
5407
#N/A
#N/A


S1M10000024C02
2384
SAU101197
5393
SAU1c0035_orf_60p
12300


S1M10000024C04
2385
SAU101862
5561
SAU1c0044_orf_161p
12571


S1M10000024C07
2386
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000024D02
2387
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000024D03
2388
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000024D10
2389
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000024D10
2389
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000024D11
2390
SAU101198
5394
SAU1c0035_orf_61p
12301


S1M10000024E03
2391
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000024E05
2392
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000024E05
2392
SAU101801
5541
#N/A
#N/A


S1M10000024E06
2393
SAU102418
5664
SAU1c0030_orf_18p
12205


S1M10000024E07
2394
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000024E08
2395
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000024F02
2396
SAU101447
5454
SAU1c0045_orf_244p
12683


S1M10000024F03
2397
SAU102992
5752
SAU1c0044_orf_60p
12630


S1M10000024F05
2398
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000024F08
2399
SAU101726
5515
SAU1c0016_orf_7p
12134


S1M10000024F10
2400
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000024G05
2401
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000024G05
2401
SAU101801
5541
#N/A
#N/A


S1M10000024G06
2402
SAU102418
5664
SAU1c0030_orf_18p
12205


S1M10000024G07
2403
SAU102334
5645
SAU1c0045_orf_144p
12658


S1M10000024G08
2404
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000024G10
2405
SAU202176
5846
SAU2c0412_orf_3p
12895


S1M10000024G12
2406
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000024H02
2407
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000024H04
2408
SAU100770
5324
#N/A
#N/A


S1M10000024H07
2409
SAU200725
5792
SAU2c0428_orf_20p
12933


S1M10000024H08
2410
SAU102002
5587
SAU1c0040_orf_103p
12425


S1M10000024H08
2410
SAU102003
5588
SAU1c0040_orf_104p
12426


S1M10000025A03
2411
SAU101247
5405
SAU1c0043_orf_136p
12512


S1M10000025A08
2412
SAU102766
5735
#N/A
#N/A


S1M10000025A08
2412
SAU201236
5808
SAU2c0409_orf_10p
12891


S1M10000025A08
2412
SAU300338
5871
#N/A
#N/A


S1M10000025A09
2413
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000025A10
2414
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000025A10
2414
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000025A10
2414
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000025B01
2415
SAU101655
5505
SAU1c0042_orf_125p
12494


S1M10000025B02
2416
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000025B03
2417
SAU101385
5439
SAU1c0038_orf_50p
12385


S1M10000025B05
2418
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000025B05
2418
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000025B05
2418
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000025B06
2419
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000025B09
2420
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000025B12
2421
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000025C01
2422
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000025C03
2423
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000025C05
2424
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000025C09
2425
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000025C09
2425
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000025C10
2426
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000025C11
2427
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000025D01
2428
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000025D03
2429
SAU101771
5525
SAU1c0037_orf_33p
12350


S1M10000025D03
2429
SAU101772
5526
SAU1c0037_orf_34p
12351


S1M10000025D04
2430
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000025D06
2431
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000025D08
2432
SAU102598
5705
SAU1c0041_orf_43p
12464


S1M10000025D08
2432
SAU102599
5706
SAU1c0041_orf_45p
12466


S1M10000025D08
2432
SAU103191
5765
SAU1c0041_orf_44p
12465


S1M10000025D09
2433
SAU100522
5284
SAU1c0044_orf_249p
12599


S1M10000025D10
2434
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000025D10
2434
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000025E01
2435
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000025E04
2436
SAU100389
5266
SAU1c0034_orf_14p
12279


S1M10000025E09
2437
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000025E11
2438
SAU102437
5670
SAU1c0045_orf_33p
12695


S1M10000025F03
2439
SAU102297
5640
SAU1c0045_orf_41p
12704


S1M10000025E05
2440
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000025F05
2440
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000025F08
2441
SAU200685
5790
SAU2c0344_orf_9p
12801


S1M10000025F09
2442
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000025F10
2443
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000025F12
2444
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000025F12
2444
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000025G04
2445
SAU300617
5874
SAU3c1046_orf_2p
13056


S1M10000025G06
2446
SAU300617
5874
SAU3c1046_orf_2p
13056


S1M10000025G10
2447
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000025H05
2448
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000025H06
2449
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000025H07
2450
SAU200752
5795
SAU2c0354_orf_5p
12809


S1M10000025H07
2450
SAU300975
5880
SAU3c1240_orf_3p
13075


S1M10000025H10
2451
SAU100590
5293
SAU1c0013_orf_5p
12121


S1M10000025H10
2451
SAU301268
5891
SAU3c1364_orf_2p
13102


S1M10000026A02
2452
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000026A04
2453
SAU102340
5647
SAU1c0045_orf_149p
12660


S1M10000026A05
2454
SAU200934
5799
SAU2c0375_orf_9p
12842


S1M10000026A06
2455
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000026A07
2456
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000026A08
2457
SAU100266
5250
SAU1c0032_orf_75p
12256


S1M10000026A09
2458
SAU102452
5676
SAU1c0045_orf_20p
12674


S1M10000026A09
2458
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000026A10
2459
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000026A11
2460
SAU102259
5624
SAU1c0032_orf_55p
12245


S1M10000026A11
2460
SAU102260
5625
SAU1c0032_orf_56p
12246


S1M10000026A11
2460
SAU102261
5626
SAU1c0032_orf_57p
12247


S1M10000026A11
2460
SAU300868
5879
#N/A
#N/A


S1M10000026B02
2461
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000026B03
2462
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000026B05
2463
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000026B06
2464
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000026B07
2465
SAU101341
5424
SAU1c0044_orf_38p
12618


S1M10000026B07
2465
SAU301275
5892
SAU3c1365_orf_2p
13103


S1M10000026B10
2466
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000026B11
2467
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000026B12
2468
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000026C01
2469
SAU100266
5250
SAU1c0032_orf_75p
12256


S1M10000026C06
2470
SAU101772
5526
SAU1c0037_orf_34p
12351


S1M10000026C07
2471
SAU101842
5557
SAU1c0042_orf_9p
12510


S1M10000026C08
2472
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000026C11
2473
SAU200657
5789
#N/A
#N/A


S1M10000026C12
2474
SAU101726
5515
SAU1c0016_orf_7p
12134


S1M10000026D04
2475
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000026D05
2476
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000026D06
2477
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000026D07
2478
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000026D08
2479
SAU100690
5309
#N/A
#N/A


S1M10000026D10
2480
SAU203296
5863
SAU2c0442_orf_18p
12983


S1M10000026D12
2481
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000026E01
2482
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000026E07
2483
SAU102939
5747
#N/A
#N/A


S1M10000026E09
2484
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000026E09
2484
SAU102002
5587
SAU1c0040_orf_103p
12425


S1M10000026E10
2485
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000026E11
2486
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000026E12
2487
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000026F01
2488
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000026F03
2489
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000026F03
2489
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000026F04
2490
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000026F05
2491
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000026F06
2492
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000026F07
2493
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000026F08
2494
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000026F09
2495
SAU102939
5747
#N/A
#N/A


S1M10000026F10
2496
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000026E11
2497
SAU102939
5747
#N/A
#N/A


S1M10000026F12
2498
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000026G01
2499
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000026G03
2500
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000026G04
2501
SAU100690
5309
#N/A
#N/A


S1M10000026G05
2502
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000026G06
2503
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000026G07
2504
SAU100886
5349
SAU1c0018_orf_16p
12139


S1M10000026G09
2505
SAU100542
5288
SAU1c0043_orf_210p
12532


S1M10000026G10
2506
SAU100613
5299
SAU1c0015_orf_14p
12126


S1M10000026G10
2506
SAU102812
5736
SAU1c0015_orf_15p
12127


S1M10000026G12
2507
SAU101551
5477
SAU1c0043_orf_67p
12550


S1M10000026H01
2508
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000026H02
2509
SAU102355
5651
SAU1c0040_orf_40p
12435


S1M10000026H03
2510
SAU101801
5541
#N/A
#N/A


S1M10000026H04
2511
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000026H04
2511
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000026H04
2511
SAU301148
5888
#N/A
#N/A


S1M10000026H05
2512
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000026H07
2513
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000026H07
2513
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000026H09
2514
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000026H09
2514
SAU301148
5888
#N/A
#N/A


S1M10000026H10
2515
SAU102479
5683
SAU1c0039_orf_101p
12405


S1M10000027A04
2516
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000027A05
2517
SAU101805
5545
SAU1c0032_orf_24p
12229


S1M10000027A08
2518
SAU101772
5526
SAU1c0037_orf_34p
12351


S1M10000027A11
2519
SAU101551
5477
SAU1c0043_orf_67p
12550


S1M10000027B04
2520
SAU102939
5747
#N/A
#N/A


S1M10000027B06
2521
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000027B07
2522
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000027B08
2523
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000027B09
2524
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000027B11
2525
SAU101265
5407
#N/A
#N/A


S1M10000027C02
2526
SAU101327
5421
SAU1c0044_orf_296p
12612


S1M10000027C04
2527
SAU201236
5808
SAU2c0409_orf_10p
12891


S1M10000027C05
2528
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000027C06
2529
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000027C08
2530
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000027C09
2531
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000027D02
2532
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000027D02
2532
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000027D03
2533
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000027D05
2534
SAU101554
5478
SAU1c0043_orf_70p
12551


S1M10000027D06
2535
SAU202708
5849
SAU2c0385_orf_1p
12855


S1M10000027D08
2536
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000027D09
2537
SAU203524
5864
SAU2c0435_orf_1p
12957


S1M10000027D10
2538
SAU102283
5634
SAU1c0006_orf_1p
12119


S1M10000027D11
2539
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000027E05
2540
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000027E05
2540
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000027E06
2541
SAU100690
5309
#N/A
#N/A


S1M10000027E07
2542
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000027E08
2543
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000027E09
2544
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000027E11
2545
SAU101551
5477
SAU1c0043_orf_67p
12550


S1M10000027F01
2546
SAU103038
5757
#N/A
4N/A


S1M10000027F02
2547
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000027F05
2548
SAU100882
5347
SAU1c0038_orf_35p
12374


S1M10000027F06
2549
SAU100690
5309
#N/A
#N/A


S1M10000027F08
2550
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000027F09
2551
SAU100858
5341
SAU1c0038_orf_86p
12401


S1M10000027G03
2552
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000027G04
2553
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000027G05
2554
SAU102526
5692
SAU1c0045_orf_299p
12691


S1M10000027G06
2555
SAU202708
5849
SAU2c0385_orf_1p
12855


S1M10000027G07
2556
SAU102265
5629
SAU1c0032_orf_61p
12251


S1M10000027G09
2557
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000027G11
2558
SAU102533
5695
#N/A
#N/A


S1M10000027G11
2558
SAU102534
5696
#N/A
#N/A


S1M10000027H02
2559
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000027H04
2560
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000027H05
2561
SAU102526
5692
SAU1c0045_orf_299p
12691


S1M10000027H06
2562
SAU100690
5309
#N/A
#N/A


S1M10000027H07
2563
SAU100542
5288
SAU1c0043_orf_210p
12532


S1M10000027H08
2564
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000027H09
2565
SAU101382
5437
SAU1c0022_orf_19p
12146


S1M10000027H10
2566
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000027H11
2567
SAU102533
5695
#N/A
#N/A


S1M10000027H11
2567
SAU102534
5696
#N/A
#N/A


S1M10000028A02
2568
SAU101085
5378
SAU1c0034_orf_42p
1284


S1M10000028A02
2568
SAU101086
5379
SAU1c0034_orf_43p
1285


S1M10000028A04
2569
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000028A06
2570
SAU100478
5277
SAU1c0044_orf_265p
12605


S1M10000028A06
2570
SAU100996
5366
SAU1c0044_orf_266p
12606


S1M10000028A08
2571
SAU102054
5596
SAU1c0039_orf_74p
12417


S1M10000028B01
2572
SAU101085
5378
SAU1c0034_orf_42p
12284


S1M10000028B01
2572
SAU101086
5379
SAU1c0034_orf_43p
12285


S1M10000028B02
2573
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000028B02
2573
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000028B03
2574
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000028B04
2575
SAU102764
5734
SAU1c0044_orf_56p
12625


S1M10000028B05
2576
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000028B06
2577
SAU201558
5823
SAU2c0434_orf_5p
12954


S1M10000028B08
2578
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000028B09
2579
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000028C02
2580
SAU203296
5863
SAU2c0442_orf_18p
12983


S1M10000028C04
2581
SAU101381
5436
SAU1c0022_orf_18p
12145


S1M10000028C05
2582
SAU100313
5259
SAU1c0045_orf_153p
12661


S1M10000028C05
2582
SAU100359
5264
SAU1c0032_orf_35p
12239


S1M10000028C05
2582
SAU200297
5778
SAU2c0274_orf_2p
12739


S1M10000028C06
2583
SAU103226
5768
SAU1c0045_orf_95p
12713


S1M10000028C08
2584
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000028D03
2585
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000028D04
2586
SAU101381
5436
SAU1c0022_orf_18p
12145


S1M10000028D06
2587
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000028D07
2588
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000028D08
2589
SAU100858
5341
SAU1c0038_orf_86p
12401


S1M10000028D09
2590
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000028E01
2591
SAU100062
5225
SAU1c0035_orf_98p
12309


S1M10000028E01
2591
SAU100231
5245
#N/A
#N/A


S1M10000028E03
2592
SAU100770
5324
#N/A
#N/A


S1M10000028E08
2593
SAU101865
5563
SAU1c0036_orf_20p
12318


S1M10000028F01
2594
SAU101085
5378
SAU1c0034_orf_42p
12284


S1M10000028F01
2594
SAU101086
5379
SAU1c0034_orf_43p
12285


S1M10000028F03
2595
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000028F04
2596
SAU100301
5254
SAU1c0040_orf_91p
12452


S1M10000028F04
2596
SAU100302
5255
SAU1c0040_orf_92p
12453


S1M10000028F05
2597
SAU100301
5254
SAU1c0040_orf_91p
12452


S1M10000028F05
2597
SAU100302
5255
SAU1c0040_orf_92p
12453


S1M10000028F06
2598
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000028F06
2598
SAU202756
5852
SAU2c0470_orf_1p
13027


S1M10000028F07
2599
SAU101006
5367
SAU1c0028_orf_59p
12190


S1M10000028G01
2600
SAU102554
5699
SAU1c0045_orf_209p
12673


S1M10000028G02
2601
SAU201236
5808
SAU2c0409_orf_10p
12891


S1M10000028G02
2601
SAU300338
5871
#N/A
#N/A


S1M10000028G03
2602
SAU101231
5399
SAU1c0035_orf_6p
12303


S1M10000028G04
2603
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000028G04
2603
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000028G05
2604
SAU100690
5309
#N/A
#N/A


S1M10000028G06
2605
SAU101865
5563
SAU1c0036_orf_20p
12318


S1M10000028G08
2606
SAU101341
5424
SAU1c0044_orf_38p
12618


S1M10000028G08
2606
SAU301275
5892
SAU3c1365_orf_2p
13103


S1M10000028H03
2607
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000028H04
2608
SAU103038
5757
#N/A
#N/A


S1M10000028H05
2609
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000029A02
2610
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000029A04
2611
SAU100489
5278
SAU1c0044_orf_133p
12566


S1M10000029A04
2611
SAU100557
5291
SAU1c0044_orf_132p
12565


S1M10000029A09
2612
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000029A10
2613
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000029A11
2614
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000029A12
2615
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000029B02
2616
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000029B03
2617
SAU201225
5807
SAU2c0412_orf_5p
12896


S1M10000029B04
2618
SAU201621
5828
SAU2c0437_orf_4p
12966


S1M10000029B05
2619
SAU100355
5263
SAU1c0023_orf_6p
12155


S1M10000029B06
2620
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000029B08
2621
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000029B10
2622
SAU101891
5571
SAU1c0034_orf_30p
12281


S1M10000029C02
2623
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000029C03
2624
SAU100690
5309
#N/A
#N/A


S1M10000029C05
2625
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000029C07
2626
SAU102222
5613
SAU1c0043_orf_12p
12511


S1M10000029C09
2627
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000029C10
2628
SAU101995
5583
SAU1c0040_orf_98p
12455


S1M10000029C12
2629
SAU100859
5342
SAU1c0038_orf_87p
12402


S1M10000029D02
2630
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000029D05
2631
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000029D09
2632
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000029D10
2633
SAU101891
5571
SAU1c0034_orf_30p
12281


S1M10000029D12
2634
SAU100056
5223
SAU1c0044_orf_176p
12577


S1M10000029E02
2635
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000029E05
2636
SAU100522
5284
SAU1c0044_orf_249p
12599


S1M10000029E10
2637
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000029E11
2638
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000029F01
2639
SAU101803
5543
SAU1c0032_orf_23p
1228


S1M10000029F01
2639
SAU101804
5544
#N/A
#N/A


S1M10000029F02
2640
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000029F02
2640
SAU101286
5413
SAU1c0034_orf_67p
12292


S1M10000029F04
2641
SAU102639
5724
#N/A
#N/A


S1M10000029F09
2642
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000029F09
2642
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000029F10
2643
SAU102621
5719
SAU1c0041_orf_63p
12480


S1M10000029F11
2644
SAU102883
5741
SAU1c0045_orf_38p
12702


S1M10000029F12
2645
SAU102603
5709
SAU1c0041_orf_48p
12469


S1M10000029F12
2645
SAU102609
5713
SAU1c0041_orf_52p
12473


S1M10000029G01
2646
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000029002
2647
SAU101622
5496
SAU1c0040_orf_27p
12430


S1M10000029G03
2648
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000029G05
2649
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000029G07
2650
SAU101622
5496
SAU1c0040_orf_27p
12430


S1M10000029G08
2651
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000029G12
2652
SAU101270
5410
SAU1c0037_orf_89p
12365


S1M10000029H01
2653
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000029H05
2654
SAU102613
5715
SAU1c0041_orf_55p
12475


S1M10000029H06
2655
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000029H08
2656
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000029H09
2657
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000029H10
2658
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000030A02
2659
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000030A05
2660
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000030A09
2661
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000030A10
2662
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000030A10
2662
SAU202882
5855
SAU2c0381_orf_3p
12848


S1M10000030A11
2663
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000030B02
2664
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000030B05
2665
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000030B07
2666
SAU101180
5389
SAU1c0045_orf_126p
12656


S1M10000030B09
2667
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000030C02
2668
SAU102531
5694
SAU1c0045_orf_186p
12667


S1M10000030C03
2669
SAU102629
5720
SAU1c0041_orf_71p
12481


S1M10000030C04
2670
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000030C05
2671
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000030C08
2672
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000030C09
2673
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000030C10
2674
SAU301592
5898
SAU3c1467_orf_2p
13137


S1M10000030C12
2675
SAU100961
5360
SAU1c0044_orf_83p
12638


S1M10000030C12
2675
SAU100962
5361
SAU1c0044_orf_84p
12639


S1M10000030D01
2676
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000030D02
2677
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000030D03
2678
SAU100731
5313
SAU1c0044_orf_252p
12601


S1M10000030D05
2679
SAU102222
5613
SAU1c0043_orf_12p
12511


S1M10000030D06
2680
SAU102392
5658
SAU1c0033_orf_40p
12270


S1M10000030D06
2680
SAU201541
5822
SAU2c0431_orf_14p
12942


S1M10000030D07
2681
SAU102392
5658
SAU1c0033_orf_40p
12270


S1M10000030D07
2681
SAU201541
5822
SAU2c0431_orf_14p
12942


S1M10000029F09
2642
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000029F09
2642
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000029F10
2643
SAU102621
5719
SAU1c0041_orf_63p
12480


S1M10000029F11
2644
SAU102883
5741
SAU1c0045_orf_38p
12702


S1M10000029F12
2645
SAU102603
5709
SAU1c0041_orf_48p
12469


S1M10000029F12
2645
SAU102609
5713
SAU1c0041_orf_52p
12473


S1M10000029G01
2646
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000029G02
2647
SAU101622
5496
SAU1c0040_orf_27p
12430


S1M10000029G03
2648
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000029G05
2649
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000029G07
2650
SAU101622
5496
SAU1c0040_orf_27p
12430


S1M10000029G08
2651
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000029G12
2652
SAU101270
5410
SAU1c0037_orf_89p
12365


S1M10000029H01
2653
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000029H05
2654
SAU102613
5715
SAU1c0041_orf_55p
12475


S1M10000029H06
2655
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000029H08
2656
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000029H09
2657
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000029H10
2658
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000030A02
2659
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000030A05
2660
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000030A09
2661
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000030A10
2662
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000030A10
2662
SAU202882
5855
SAU2c0381_orf_3p
12848


S1M10000030A11
2663
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000030B02
2664
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000030B05
2665
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000030B07
2666
SAU101180
5389
SAU1c0045_orf_126p
12656


S1M10000030B09
2667
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000030C02
2668
SAU102531
5694
SAU1c0045_orf_186p
12667


S1M10000030C03
2669
SAU102629
5720
SAU1c0041_orf_71p
12481


S1M10000030C04
2670
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000030C05
2671
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000030C08
2672
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000030C09
2673
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000030C10
2674
SAU301592
5898
SAU3c1467_orf_2p
13137


S1M10000030C12
2675
SAU100961
5360
SAU1c0044_orf_83p
12638


S1M10000030C12
2675
SAU100962
5361
SAU1c0044_orf_84p
12639


S1M10000030D01
2676
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000030D02
2677
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000030D03
2678
SAU100731
5313
SAU1c0044_orf_252p
12601


S1M10000030D05
2679
SAU102222
5613
SAU1c0043_orf_12p
12511


S1M10000030D06
2680
SAU102392
5658
SAU1c0033_orf_40p
12270


S1M10000030D06
2680
SAU201541
5822
SAU2c0431_orf_14p
12942


S1M10000030D07
2681
SAU102392
5658
SAU1c0033_orf_40p
12270


S1M10000030D07
2681
SAU201541
5822
SAU2c0431_orf_14p
12942


S1M10000030D09
2682
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000030D10
2683
SAU100313
5259
SAU1c0045_orf_153p
12661


S1M10000030D10
2683
SAU100359
5264
SAU1c0032_orf_35p
12239


S1M10000030D11
2684
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000030E02
2685
SAU100731
5313
SAU1c0044_orf_252p
12601


S1M10000030E06
2686
SAU102909
5743
SAU1c0036_orf_16p
12315


S1M10000030E07
2687
SAU102939
5747
#N/A
#N/A


S1M10000030E11
2688
SAU101790
5531
SAU1c0032_orf_11p
12215


S1M10000030E12
2689
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000030F01
2690
SAU100731
5313
SAU1c0044_orf_252p
12601


S1M10000030F07
2691
SAU102939
5747
#N/A
#N/A


S1M10000030F08
2692
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000030F08
2692
SAU101801
5541
#N/A
#N/A


S1M10000030F09
2693
SAU101266
5408
SAU1c0042_orf_117p
12490


S1M10000030F10
2694
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000030G03
2695
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000030G05
2696
SAU102246
5619
SAU1c0043_orf_30p
12542


S1M10000030G05
2696
SAU102247
5620
SAU1c0043_orf_31p
12543


S1M10000030G07
2697
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000030G08
2698
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000030G09
2699
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000030G10
2700
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000030G11
2701
SAU101529
5471
SAU1c0043_orf_39p
12544


S1M10000030G12
2702
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000030H01
2703
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000030H02
2704
SAU200392
5780
SAU2c0298_orf_3p
12755


S1M10000030H03
2705
SAU102162
5609
SAU1c0041_orf_27p
12462


S1M10000030H05
2706
SAU102380
5654
SAU1c0033_orf_29p
12265


S1M10000030H07
2707
SAU100123
5230
SAU1c0043_orf_189p
12526


S1M10000030H07
2707
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000030H07
2707
SAU103159
5762
SAU1c0045_orf_204p
12670


S1M10000030H07
2707
SAU201827
5837
SAU2c0449_orf_21p
13002


S1M10000030H09
2708
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000031A03
2709
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000031A08
2710
SAU101641
5501
SAU1c0029_orf_12p
12193


S1M10000031A10
2711
SAU102242
5618
SAU1c0043_orf_26p
12540


S1M10000031B01
2712
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000031B02
2713
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000031B04
2714
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000031B11
2715
SAU101262
5406
SAU1c0042_orf_113p
12488


S1M10000031B12
2716
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000031C04
2717
SAU100062
5225
SAU1c0035_orf_98p
12309


S1M10000031C04
2717
SAU100231
5245
#N/A
#N/A


S1M10000031C07
2718
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000031C09
2719
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000031C11
2720
SAU102935
5745
#N/A
#N/A


S1M10000031D06
2721
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000031D07
2722
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000031D08
2723
SAU101891
5571
SAU1c0034_orf_30p
12281


S1M10000031D09
2724
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000031E02
2725
SAU101350
5429
SAU1c0042_orf_109p
12487


S1M10000031E03
2726
SAU101267
5409
SAU1c0037_orf_86p
12364


S1M10000031E03
2726
SAU300719
5876
SAU3c1108_orf_3p
13059


S1M10000031E04
2727
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000031E07
2728
SAU102449
5674
SAU1c0045_orf_22p
12677


S1M10000031E08
2729
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000031E10
2730
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000031E12
2731
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000031F02
2732
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000031F02
2732
SAU101801
5541
#N/A
4N/A


S1M10000031F03
2733
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000031F04
2734
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000031F04
2734
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000031F05
2735
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000031F08
2736
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000031F10
2737
SAU102593
5704
SAU1c0041_orf_39p
12463


S1M10000031F11
2738
SAU102469
5679
SAU1c0026_orf_25p
12172


S1M10000031F12
2739
SAU102593
5704
SAU1c0041_orf_39p
12463


S1M10000031002
2740
SAU101797
5537
SAU1c0032_orf_17p
12221


S1M10000031003
2741
SAU101679
5509
SAU1c0044_orf_222p
12593


S1M10000031G04
2742
SAU103198
5766
#N/A
#N/A


S1M10000031006
2743
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000031G09
2744
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000031G10
2745
SAU100077
5226
SAU1c0043_orf_178p
12520


S1M10000031G11
2746
SAU100118
5229
SAU1c0015_orf_13p
12125


S1M10000031H01
2747
SAU103144
5761
SAU1c0045_orf_15p
12663


S1M10000031H02
2748
SAU100886
5349
SAU1c0018_orf_16p
12139


S1M10000031H06
2749
SAU100690
5309
#N/A
#N/A


S1M10000031H09
2750
SAU201743
5831
#N/A
#N/A


S1M10000031H11
2751
SAU100077
5226
SAU1c0043_orf_178p
12520


S1M10000032A03
2752
SAU202039
5843
SAU2c0452_orf_20p
13009


S1M10000032A05
2753
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000032A06
2754
SAU100610
5298
SAU1c0034_orf_71p
12294


S1M10000032A07
2755
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000032A08
2756
SAU102142
5606
SAU1c0041_orf_13p
12457


S1M10000032A08
2756
SAU102143
5607
SAU1c0041_orf_14p
12458


S1M10000032A10
2757
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000032B01
2758
SAU301898
5904
SAU3c1079_orf_1p
13057


S1M10000032B05
2759
SAU102607
5712
SAU1c0041_orf_51p
12472


S1M10000032B05
2759
SAU102944
5749
SAU1c0041_orf_47p
12468


S1M10000032B07
2760
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000032B08
2761
SAU100175
5240
SAU1c0044_orf_204p
12582


S1M10000032B11
2762
SAU100944
5357
SAU1c0042_orf_5p
12505


S1M10000032B12
2763
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000032C01
2764
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000032C03
2765
SAU102241
5617
SAU1c0043_orf_25p
12539


S1M10000032C04
2766
SAU102241
5617
SAU1c0043_orf_25p
12539


S1M10000032C05
2767
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000032C09
2768
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000032C10
2769
SAU201615
5826
SAU2c0440_orf_10p
12972


S1M10000032C11
2770
SAU102863
5737
#N/A
#N/A


S1M10000032C12
2771
SAU102863
5737
#N/A
#N/A


S1M10000032D03
2772
SAU100613
5299
SAU1c0015_orf_14p
12126


S1M10000032D06
2773
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000032D07
2774
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000032D09
2775
SAU100128
5231
#N/A
#N/A


S1M10000032D09
2775
SAU101549
5476
SAU1c0043_orf_64p
12549


S1M10000032D09
2775
SAU101576
5488
SAU1c0044_orf_105p
12554


S1M10000032D11
2776
SAU100128
5231
#N/A
#N/A


S1M10000032D11
2776
SAU101549
5476
SAU1c0043_orf_64p
12549


S1M10000032D11
2776
SAU101576
5488
SAU1c0044_orf_105p
12554


S1M10000032E02
2777
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000032E03
2778
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000032E04
2779
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000032E06
2780
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000032E08
2781
SAU102281
5633
SAU1c0038_orf_4p
12384


S1M10000032E09
2782
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000032E10
2783
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000032E11
2784
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000032E12
2785
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000032F01
2786
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000032F01
2786
SAU102002
5587
SAU1c0040_orf_103p
12425


S1M10000032F04
2787
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000032F05
2788
SAU101339
5422
SAU1c0038_orf_81p
12399


S1M10000032F10
2789
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000032F10
2789
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000032F11
2790
SAU101189
5392
SAU1c0033_orf_25p
12264


S1M10000032F12
2791
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000032G02
2792
SAU100710
5311
SAU1c0043_orf_54p
12546


S1M10000032G02
2792
SAU200628
5788
SAU2c0334_orf_4p
12790


S1M10000032G03
2793
SAU100813
5334
SAU1c0036_orf_29p
12322


S1M10000032G04
2794
SAU101904
5573
SAU1c0044_orf_36p
12617


S1M10000032G06
2795
SAU101509
5469
SAU1c0039_orf_81p
12418


S1M10000032G08
2796
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000032G10
2797
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000032G12
2798
SAU101084
5377
SAU1c0034_orf_41p
12283


S1M10000032H01
2799
SAU101445
5452
SAU1c0038_orf_47p
12382


S1M10000032H01
2799
SAU101446
5453
SAU1c0038_orf_48p
12383


S1M10000032H04
2800
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000032H07
2801
SAU101797
5537
SAU1c0032_orf_17p
12221


S1M10000032H07
2801
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000032H09
2802
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000032H11
2803
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000032H11
2803
SAU301148
5888
#N/A
#N/A


S1M100000323A0
2804
SAU201775
5835
SAU2c0446_orf_4p
12996


S1M100000323A0
2804
SAU301080
5885
SAU3c1287_orf_1p
13083


S1M10000033A07
2805
SAU200949
5800
SAU2c0380_orf_11p
12846


S1M10000033A08
2806
SAU101231
5399
SAU1c0035_orf_6p
12303


S1M10000033A10
2807
SAU202039
5843
SAU2c0452_orf_20p
13009


S1M10000033B02
2808
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000033B07
2809
SAU102044
5593
SAU1c0039_orf_65p
12414


S1M10000033B08
2810
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000033B11
2811
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000033B11
2811
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000033B12
2812
SAU101104
5382
SAU1c0029_orf_20p
12195


S1M10000033B12
2812
SAU103010
5753
SAU1c0029_orf_19p
12194


S1M10000033C04
2813
SAU102933
5744
SAU1c0039_orf_62p
12412


S1M10000033D02
2814
SAU102333
5644
SAU1c0045_orf_143p
12657


S1M10000033D03
2815
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000033D04
2816
SAU100745
5319
SAU1c0044_orf_233p
12596


S1M10000033D05
2817
5AV100301
5254
SAU1c0040_orf_91p
12452


S1M10000033D06
2818
SAU102113
5601
SAU1c0027_orf_2p
12178


S1M10000033D10
2819
SAU100813
5334
SAU1c0036_orf_29p
12322


S1M10000033D12
2820
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000033E04
2821
SAU102318
5643
SAU1c0045_orf_60p
12707


S1M10000033E10
2822
SAU100162
5239
SAU1c0044_orf_206p
12583


S1M10000033E12
2823
SAU100770
5324
#N/A
#N/A


S1M10000033F02
2824
SAU101724
5514
SAU1c0016_orf_9p
12136


S1M10000033F03
2825
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000033F06
2826
SAU102449
5674
SAU1c0045_orf_22p
12677


S1M10000033F07
2827
SAU102044
5593
SAU1c0039_orf_65p
12414


S1M10000033F09
2828
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000033F11
2829
SAU100689
5308
SAU1c0036_orf_2p
12323


S1M10000033G05
2830
SAU101904
5573
SAU1c0044_orf_36p
12617


S1M10000033G07
2831
SAU101824
5554
SAU1c0038_orf_26p
12371


S1M10000033G09
2832
SAU102380
5654
SAU1c0033_orf_29p
12265


S1M10000033G10
2833
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000033G10
2833
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000033G11
2834
SAU101968
5581
SAU1c0028_orf_43p
12187


S1M10000033G12
2835
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000033H01
2836
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000033H02
2837
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000033H03
2838
SAU101833
5555
SAU1c0038_orf_34p
12373


S1M10000033H07
2839
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000033H08
2840
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000033H09
2841
SAU100710
5311
SAU1c0043_orf_54p
12546


S1M10000033H10
2842
SAU100690
5309
#N/A
#N/A


S1M10000033H11
2843
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000034A02
2844
SAU101197
5393
SAU1c0035_orf_60p
12300


S1M10000034A03
2845
SAU102939
5747
#N/A
#N/A


S1M10000034A04
2846
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000034A05
2847
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000034A08
2848
SAU101020
5368
SAU1c0045_orf_86p
12710


S1M10000034A09
2849
SAU100773
5326
SAU1c0038_orf_39p
12377


S1M10000034A11
2850
SAU102389
5656
SAU1c0033_orf_36p
12268


S1M10000034A12
2851
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000034B03
2852
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000034B05
2853
SAU101630
5498
SAU1c0039_orf_4p
12410


S1M10000034B06
2854
SAU102607
5712
SAU1c0041_orf_51p
12472


S1M10000034B06
2854
SAU102944
5749
SAU1c0041_orf_47p
12468


S1M10000034B07
2855
SAU100077
5226
SAU1c0043_orf_178p
12520


S1M10000034B08
2856
SAU101341
5424
SAU1c0044_orf_38p
12618


S1M10000034B09
2857
SAU101909
5575
SAU1c0040_orf_77p
12441


S1M10000034B10
2858
SAU101882
5569
SAU1c0025_orf_15p
12163


S1M10000034B12
2859
SAU200593
5786
SAU2c0327_orf_1p
12784


S1M10000034C02
2860
SAU100557
5291
SAU1c0044_orf_132p
12565


S1M10000034C06
2861
SAU200157
5776
#N/A
#N/A


S1M10000034C07
2862
SAU101343
5425
SAU1c0044_orf_40p
12619


S1M10000034C09
2863
SAU102281
5633
SAU1c0038_orf_4p
12384


S1M10000034C12
2864
SAU100859
5342
SAU1c0038_orf_87p
12402


S1M10000034D01
2865
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000034D05
2866
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000034D06
2867
SAU200157
5776
#N/A
#N/A


S1M10000034D07
2868
SAU100745
5319
SAU1c0044_orf_233p
12596


S1M10000034D08
2869
SAU102284
5635
SAU1c0038_orf_5p
12389


S1M10000034D08
2869
SAU201469
5816
SAU2c0438_orf_6p
12967


S1M10000034D10
2870
SAU102474
5681
SAU1c0026_orf_31p
12174


S1M10000034D11
2871
SAU101881
5568
SAU1c0025_orf_14p
12162


S1M10000034D12
2872
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000034E01
2873
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000034E02
2874
SAU100557
5291
SAU1c0044_orf_132p
12565


S1M10000034E04
2875
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000034E05
2876
SAU100738
5317
SAU1c0044_orf_52p
12624


S1M10000034E06
2877
SAU100347
5262
SAU1c0036_orf_56p
12334


S1M10000034E06
2877
SAU100443
5274
SAU1c0036_orf_55p
12333


S1M10000034E07
2878
SAU100617
5300
SAU1c0035_orf_102p
12295


S1M10000034E10
2879
SAU102401
5661
SAU1c0030_orf_4p
12209


S1M10000034E11
2880
SAU101881
5568
SAU1c0025_orf_14p
12162


S1M10000034E12
2881
SAU200960
5801
SAU2c0377_orf_5p
12843


S1M10000034F01
2882
SAU202731
5850
#N/A
#N/A


S1M10000034F02
2883
SAU201621
5828
SAU2c0437_orf_4p
12966


S1M10000034F03
2884
SAU201971
5841
SAU2c0455_orf_17p
13015


S1M10000034F03
2884
SAU301363
5894
#N/A
#N/A


S1M10000034F04
2885
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000034F05
2886
SAU101630
5498
SAU1c0039_orf_4p
12410


S1M10000034F07
2887
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000034F08
2888
SAU202736
5851
SAU2c0426_orf_7p
12927


S1M10000034F09
2889
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000034F10
2890
SAU102350
5649
SAU1c0040_orf_36p
12433


S1M10000034F12
2891
SAU100522
5284
SAU1c0044_orf_249p
12599


S1M10000034G02
2892
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000034G03
2893
SAU101198
5394
SAU1c0035_orf_61p
12301


S1M10000034G06
2894
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000034G07
2895
SAU102380
5654
SAU1c0033_orf_29p
12265


S1M10000034G08
2896
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000034G09
2897
SAU102294
5639
SAU1c0044_orf_288p
12610


S1M10000034G09
2897
SAU201775
5835
SAU2c0446_orf_4p
12996


S1M10000034G11
2898
SAU200558
5782
SAU2c0322_orf_5p
12777


S1M10000034G12
2899
SAU100557
5291
SAU1c0044_orf_132p
12565


S1M10000034H01
2900
SAU101293
5414
SAU1c0044_orf_61p
12631


S1M10000034H02
2901
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000034H03
2902
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000034H06
2903
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000034H07
2904
SAU100077
5226
SAU1c0043_orf_178p
12520


S1M10000034H08
2905
SAU200740
5794
SAU2c0340_orf_3p
12798


S1M10000034H09
2906
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000034H10
2907
SAU102422
5666
SAU1c0030_orf_22p
12207


S1M10000035A03
2908
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000035A08
2909
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000035A09
2910
SAU101350
5429
SAU1c0042_orf_109p
12487


S1M10000035A09
2910
SAU101351
5430
SAU1c0042_orf_108p
12486


S1M10000035A10
2911
SAU203296
5863
SAU2c0442_orf_18p
12983


S1M10000035A11
2912
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000035A12
2913
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000035A12
2913
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000035A12
2913
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000035B01
2914
SAU102584
5702
SAU1c0043_orf_239p
12537


S1M10000035B03
2915
SAU102246
5619
SAU1c0043_orf_30p
12542


S1M10000035B04
2916
SAU102246
5619
SAU1c0043_orf_30p
12542


S1M10000035B08
2917
SAU103232
5769
SAU1c0045_orf_341p
12697


S1M10000035B11
2918
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000035C01
2919
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000035C02
2920
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000035C04
2921
SAU100214
5228
SAU1c0043_orf_225p
12535


S1M10000035C06
2922
SAU101497
5468
SAU1c0037_orf_66p
12361


S1M10000035C11
2923
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000035D01
2924
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000035D04
2925
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000035D06
2926
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000035D09
2927
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000035D12
2928
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000035E02
2929
SAU102883
5741
SAU1c0045_orf_38p
12702


S1M10000035E03
2930
SAU102447
5672
SAU1c0045_orf_24p
12685


S1M10000035E04
2931
SAU103025
5755
SAU1c00229_orf_9p
12202


S1M10000035E08
2932
SAU100690
5309
#N/A
#N/A


S1M10000035E09
2933
SAU101197
5393
SAU1c0035_orf_60p
12300


S1M10000035E12
2934
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000035F03
2935
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000035E03
2935
SAU202882
5855
SAU2c0381_orf_3p
12848


S1M10000035F04
2936
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000035F09
2937
SAU203296
5863
SAU2c0442_orf_18p
12983


S1M10000035F12
2938
SAU101427
5447
SAU1c0042_orf_144p
12500


S1M10000035F12
2938
SAU103204
5767
SAU1c0042_orf_143p
12499


S1M10000035G02
2939
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000035G09
2940
SAU203296
5863
SAU2c0442_orf_18p
12983


S1M10000035G11
2941
SAU101344
5426
SAU1c0044_orf_41p
12620


S1M10000035G12
2942
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000035H01
2943
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000035H07
2944
SAU100313
5259
SAU1c0045_orf_153p
12661


S1M10000035H07
2944
SAU100359
5264
SAU1c0032_orf_35p
12239


S1M10000035H07
2944
SAU200297
5778
SAU2c0274_orf_2p
12739


S1M10000035H08
2945
SAU101772
5526
SAU1c0037_orf_34p
12351


S1M10000035H09
2946
SAU100496
5279
SAU1c0041_orf_83p
12484


S1M10000035H09
2946
SAU301004
5882
SAU3c1255_orf_1p
13079


S1M10000035H10
2947
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000035H11
2948
SAU101344
5426
SAU1c0044_orf_41p
12620


S1M10000036A02
2949
SAU102447
5672
SAU1c0045_orf_24p
12685


S1M10000036A03
2950
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000036A04
2951
SAU200994
5802
SAU2c0428_orf_4p
12935


S1M10000036A05
2952
SAU101810
5549
SAU1c0032_orf_28p
12233


S1M10000036A05
2952
SAU101811
5550
SAU1c0032_orf_29p
12234


S1M10000036A05
2952
SAU300110
5865
SAU3c0533_orf_2p
13031


S1M10000036A08
2953
SAU101220
5396
SAU1c0044_orf_94p
12645


S1M10000036A11
2954
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000036A12
2955
SAU100813
5334
SAU1c0036_orf_29p
12322


S1M10000036B04
2956
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000036B04
2956
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000036B06
2957
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000036B07
2958
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000036B08
2959
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000036B11
2960
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000036B12
2961
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000036C01
2962
SAU100242
5246
SAU1c0036_orf_5p
12336


S1M10000036C03
2963
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000036C04
2964
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000036C05
2965
SAU100497
5280
SAU1c0018_orf_3p
12140


S1M10000036C06
2966
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000036C07
2967
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000036C07
2967
SAU101801
5541
#N/A
#N/A


S1M10000036C09
2968
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000036C09
2968
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000036C09
2968
SAU302685
5908
SAU3c1403_orf_1p
13113


S1M10000036C10
2969
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000036C10
2969
SAU101751
5521
SAU1c0040_orf_86p
12448


S1M10000036D02
2970
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000036D03
2971
SAU103038
5757
#N/A
#N/A


S1M10000036D06
2972
SAU103024
5754
SAU1c0029_orf_6p
12200


S1M10000036D08
2973
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000036D10
2974
SAU102933
5744
SAU1c0039_orf_62p
12412


S1M10000036D11
2975
SAU101197
5393
SAU1c0035_orf_60p
12300


S1M10000036D11
2975
SAU101198
5394
SAU1c0035_orf_61p
12301


S1M10000036D12
2976
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000036E06
2977
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000036E06
2977
SAU202756
5852
SAU2c0470_orf_1p
13027


S1M10000036E08
2978
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000036E11
2979
SAU101343
5425
SAU1c0044_orf_40p
12619


S1M10000036F06
2980
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000036F07
2981
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000036F08
2982
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000036F09
2983
SAU100532
5287
SAU1c0044_orf_198p
12580


S1M10000036F10
2984
SAU101586
5489
SAU1c0044_orf_242p
12598


S1M10000036F11
2985
SAU201506
5818
SAU2c0432_orf_18p
12946


S1M10000036G03
2986
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000036G07
2987
SAU102355
5651
SAU1c0040_orf_40p
12435


S1M10000036G08
2988
SAU102336
5646
SAU1c0045_orf_146p
12659


S1M10000036G11
2989
SAU101340
5423
SAU1c0038_orf_82p
12400


S1M10000036H01
2990
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000036H02
2991
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000036H03
2992
SAU102909
5743
SAU1c0036_orf_16p
12315


S1M10000036H04
2993
SAU102909
5743
SAU1c0036_orf_16p
12315


S1M10000036H05
2994
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000036H06
2995
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000036H08
2996
SAU102909
5743
SAU1c0036_orf_16p
12315


S1M10000036H11
2997
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000037A02
2998
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000037A02
2998
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000037A03
2999
SAU100128
5231
#N/A
#N/A


S1M10000037A03
2999
SAU101549
5476
SAU1c0043_orf_64p
12549


S1M10000037A03
2999
SAU101576
5488
SAU1c0044_orf_105p
12554


S1M10000037A06
3000
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000037A08
3001
SAU102669
5728
SAU1c0024_orf_7p
12160


S1M10000037A09
3002
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000037A09
3002
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000037A11
3003
SAU101436
5449
SAU1c0028_orf_23p
12183


S1M10000037A12
3004
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000037B03
3005
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000037B04
3006
SAU100767
5323
SAU1c0044_orf_192p
12579


S1M10000037B05
3007
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000037B06
3008
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000037B06
3008
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000037B07
3009
SAU101915
5577
SAU1c0040_orf_72p
12439


S1M10000037B08
3010
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000037B10
3011
SAU101346
5427
SAU1c0044_orf_43p
12621


S1M10000037B11
3012
SAU101399
5443
SAU1c0036_orf_34p
12325


S1M10000037B12
3013
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000037C05
3014
SAU101482
5461
SAU1c0015_orf_10p
12123


S1M10000037C06
3015
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000037C07
3016
SAU101641
5501
SAU1c0029_orf_12p
12193


S1M10000037C08
3017
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000037C09
3018
SAU101818
5553
SAU1c0038_orf_20p
12369


S1M10000037C10
3019
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000037D04
3020
SAU102283
5634
SAU1c0006_orf_1p
12119


S1M10000037D05
3021
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000037D06
3022
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000037D09
3023
SAU102246
5619
SAU1c0043_orf_30p
12542


S1M10000037D12
3024
SAU101999
5585
SAU1c0040_orf_101p
12423


S1M10000037E02
3025
SAU102447
5672
SAU1c0045_orf_24p
12685


S1M10000037E02
3025
SAU102448
5673
SAU1c0045_orf_23p
12681


S1M10000037E03
3026
SAU100813
5334
SAU1c0036_orf_29p
12322


S1M10000037E06
3027
SAU100921
5355
SAU1c0038_orf_76p
12396


S1M10000037E08
3028
SAU100139
5234
SAU1c0032_orf_6p
12255


S1M10000037E08
3028
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000037E09
3029
SAU102049
5595
SAU1c0039_orf_68p
12416


S1M10000037E10
3030
SAU101444
5451
SAU1c0038_orf_46p
12381


S1M10000037E11
3031
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000037E12
3032
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000037F02
3033
SAU100776
5327
SAU1c0041_orf_72p
12482


S1M10000037F03
3034
SAU101339
5422
SAU1c0038_orf_81p
12399


S1M10000037F04
3035
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000037F05
3036
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000037F06
3037
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000037F06
3037
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000037F07
3038
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000037F07
3038
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000037F08
3039
SAU203001
5859
SAU2c0412_orf_15p
12894


S1M10000037F08
3039
SAU203007
5860
SAU2c0412_orf_10p
12893


S1M10000037F09
3040
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000037F10
3041
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000037G01
3042
SAU102502
5690
SAU1c0045_orf_273p
12689


S1M10000037G01
3042
SAU102503
5691
SAU1c0045_orf_274p
12690


S1M10000037G02
3043
SAU100658
5303
SAU1c0038_orf_59p
12388


S1M10000037G03
3044
SAU101344
5426
SAU1c0044_orf_41p
12620


S1M10000037G06
3045
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000037G07
3046
SAU103038
5757
#N/A
#N/A


S1M10000037G08
3047
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000037G10
3048
SAU100062
5225
SAU1c0035_orf_98p
12309


S1M10000037H02
3049
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000037H03
3050
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000037H05
3051
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000037H07
3052
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000037H08
3053
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000037H09
3054
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000037H11
3055
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000038A04
3056
SAU101275
5412
SAU1c0044_orf_257p
12604


S1M10000038A07
3057
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000038A08
3058
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000038A09
3059
SAU100307
5257
SAU1c0036_orf_134p
12313


S1M10000038A11
3060
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000038A12
3061
SAU101799
5539
SAU1c0032_orf_19p
12223


S1M10000038B01
3062
SAU101483
5462
SAu1c0015_orf_11p
12124


S1M10000038B03
3063
SAU101360
5431
SAU1c0044_orf_109p
12555


S1M10000038B07
3064
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000038B08
3065
SAU100308
5258
SAU1c0036_orf_133p
12312


S1M10000038B09
3066
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000038B09
3066
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000038B12
3067
SAU102764
5734
SAU1c0044_orf_56p
12625


S1M10000038C01
3068
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000038C02
3069
SAU200657
5789
#N/A
#N/A


S1M10000038C06
3070
SAU101320
5420
SAU1c0015_orf_16p
12128


S1M10000038C08
3071
SAU102132
5605
SAU1c0027_orf_19p
12177


S1M10000038C10
3072
SAU101346
5427
SAU1c0044_orf_43p
12621


S1M10000038C10
3072
SAU101347
5428
SAU1c0044_orf_44p
12622


S1M10000038C11
3073
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000038C12
3074
SAU101792
5533
SAU1c0032_orf_13p
12217


S1M10000038D02
3075
SAU101842
5557
SAU1c0042_orf_9p
12510


S1M10000038D05
3076
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000038D07
3077
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000038D08
3078
SAU101341
5424
SAU1c0044_orf_38p
12618


S1M10000038D08
3078
SAU301275
5892
SAU3c1365_orf_2p
13103


S1M10000038D09
3079
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000038D10
3080
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000038D11
3081
SAU101300
5415
SAU1c0044_orf_113p
12557


S1M10000038D11
3081
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000038D12
3082
SAU100752
5322
SAU1c0043_orf_183p
12524


S1M10000038D12
3082
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000038E01
3083
SAU101814
5551
SAU1c0032_orf_32p
12237


S1M10000038E02
3084
SAU101842
5557
SAU1c0042_orf_9p
12510


S1M10000038E03
3085
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000038E04
3086
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000038E05
3087
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000038E06
3088
SAU102231
5614
SAU1c0043_orf_18p
12527


S1M10000038E06
3088
SAU102232
5615
SAU1c0043_orf_19p
12530


S1M10000038E07
3089
SAU200593
5786
SAU2c0327_orf_1p
12784


S1M10000038E10
3090
SAU201558
5823
SAU2c0434_orf_5p
12954


S1M10000038E12
3091
SAU100838
5337
SAU1c0031_orf_12p
12211


S1M10000038E12
3091
SAU100839
5338
SAU1c0031_orf_11p
12210


S1M10000038F03
3092
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000038F04
3093
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000038F04
3093
SAU100965
5364
SAU1c0044_orf_87p
12642


S1M10000038F05
3094
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000038F05
3094
SAU100965
5364
SAU1c0044_orf_87p
12642


S1M10000038F06
3095
SAU101189
5392
SAU1c0033_orf_25p
12264


S1M10000038F08
3096
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000038F09
3097
SAU201666
5830
SAU2c0442_orf_11p
12981


S1M10000038F10
3098
SAU101197
5393
SAU1c0035_orf_60p
12300


S1M10000038F11
3099
SAU100747
5320
SAU1c0044_orf_235p
12597


S1M10000038F12
3100
SAU202039
5843
SAU2c0452_orf_20p
13009


S1M10000038G01
3101
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000038G03
3102
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000038G04
3103
SAU100475
5276
SAU1c0036_orf_61p
12337


S1M10000038G06
3104
SAU101189
5392
SAU1c0033_orf_25p
12264


S1M10000038G08
3105
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000038G10
3106
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000038G11
3107
SAU100123
5230
SAU1c0043_orf_189p
12526


S1M10000038G11
3107
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000038G12
3108
SAU101184
5391
SAU1c0035_orf_80p
12305


S1M10000038H03
3109
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000038H07
3110
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000038H09
3111
SAU102340
5647
SAU1c0045_orf_149p
12660


S1M10000038H11
3112
SAU101452
5455
SAU1c0045_orf_247p
12684


S1M10000039A02
3113
SAU100496
5279
SAU1c0041_orf_83p
12484


S1M10000039A02
3113
SAU301004
5882
SAU3c1255_orf_1p
13079


S1M10000039A05
3114
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000039A05
3114
SAU100965
5364
SAU1c0044_orf_87p
12642


S1M10000039A07
3115
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000039A08
3116
SAU100522
5284
SAU1c0044_orf_249p
12599


S1M10000039A11
3117
SAU100613
5299
SAU1c0015_orf_14p
12126


S1M10000039A12
3118
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000039B02
3119
SAU101455
5456
SAU1c0045_orf_250p
12686


S1M10000039B02
3119
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000039B06
3120
SAU102350
5649
SAU1c0040_orf_36p
12433


S1M10000039B07
3121
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000039B10
3122
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000039B12
3123
SAU301118
5886
SAU3c1305_orf_3p
13086


S1M10000039C04
3124
SAU102252
5621
SAU1c0032_orf_48p
12241


S1M10000039C06
3125
SAU100633
5301
SAU1c0043_orf_147p
12515


S1M10000039C07
3126
SAU200657
5789
#N/A
#N/A


S1M10000039C08
3127
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000039C09
3128
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000039C10
3129
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000039C11
3130
SAU200657
5789
#N/A
#N/A


S1M10000039D02
3131
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000039D09
3132
SAU102294
5639
SAU1c0044_orf_288p
12610


S1M10000039D09
3132
SAU301080
5885
SAU3c1287_orf_1p
13083


S1M10000039D10
3133
SAU100323
5261
SAU1c0044_orf_171p
12575


S1M10000039E01
3134
SAU102264
5628
SAU1c0032_orf_60p
12250


S1M10000039E08
3135
SAU100412
5269
SAU1c0029_orf_38p
12197


S1M10000039E09
3136
SAU100056
5223
SAU1c0044_orf_176p
12577


S1M10000039E10
3137
SAU102394
5659
SAU1c0033_orf_41p
12271


S1M10000039E10
3137
SAU301118
5886
SAU3c1305_orf_3p
13086


S1M10000039E11
3138
SAU102473
5680
SAU1c0026_orf_30p
12173


S1M10000039F02
3139
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000039F03
3140
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000039F05
3141
SAU100118
5229
SAU1c0015_orf_13p
12125


S1M10000039F07
3142
SAU102531
5694
SAU1c0045_orf_186p
12667


S1M10000039F08
3143
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000039F09
3144
SAU200157
5776
#N/A
#N/A


S1M10000039F10
3145
SAU100059
5224
SAU1c0045_orf_10p
12652


S1M10000039F12
3146
SAU101565
5480
SAU1c0022_orf_8p
12151


S1M10000039G03
3147
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000039G04
3148
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000039G07
3149
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000039G07
3149
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000039G10
3150
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000039H02
3151
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000039H02
3151
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000039H03
3152
SAU100313
5259
SAU1c0045_orf_153p
12661


S1M10000039H03
3152
SAU100359
5264
SAU1c0032_orf_35p
12239


S1M10000039H03
3152
SAU200297
5778
SAU2c0274_orf_2p
12739


S1M10000039H04
3153
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000039H06
3154
SAU102283
5634
SAU1c0006_orf_1p
12119


S1M10000039H07
3155
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000039H07
3155
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000039H08
3156
SAU102440
5671
SAU1c0045_orf_30p
12692


S1M10000040A04
3157
SAU100040
5221
SAU1c0043_orf_217p
12533


S1M10000040A05
3158
SAU102671
5729
SAU1c0024_orf_9p
12161


S1M10000040A07
3159
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000040A08
3160
SAU200157
5776
#N/A
#N/A


S1M10000040A10
3161
SAU103038
5757
#N/A
#N/A


S1M10000040A11
3162
SAU101801
5541
#N/A
#N/A


S1M10000040B01
3163
SAU101461
5457
SAU1c0045_orf_234p
12680


S1M10000040B03
3164
SAU102102
5600
SAU1c0045_orf_340p
12696


S1M10000040B07
3165
SAU101432
5448
SAU1c0028_orf_27p
12184


S1M10000040B11
3166
SAU101198
5394
SAU1c0035_orf_61p
12301


S1M10000040C03
3167
SAU201971
5841
SAU2c0455_orf_17p
13015


S1M10000040C03
3167
SAU301363
5894
#N/A
#N/A


S1M10000040C04
3168
SAU102551
5698
SAU1c0045_orf_206p
12672


S1M10000040C05
3169
SAU102534
5696
#N/A
#N/A


S1M10000040C06
3170
SAU101247
5405
SAU1c0043_orf_136p
12512


S1M10000040C07
3171
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000040C08
3172
SAU101197
5393
SAU1c0035_orf_60p
12300


S1M10000040C10
3173
SAU201810
5836
SAU2c0308_orf_2p
12769


S1M10000040C10
3173
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000040C10
3173
SAU301148
5888
#N/A
#N/A


S1M10000040C11
3174
SAU101869
5566
SAU1c0036_orf_24p
12321


S1M10000040D01
3175
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000040D01
3175
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000040D03
3176
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000040D03
3176
SAU102201
5612
SAU1c0045_orf_169p
12666


S1M10000040D08
3177
SAU100633
5301
SAU1c0043_orf_147p
12515


S1M10000040D09
3178
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000040D11
3179
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000040E01
3180
SAU100916
5353
SAU1c0038_orf_71p
12394


S1M10000040E02
3181
SAU101845
5558
SAU1c0042_orf_7p
12506


S1M10000040E04
3182
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000040E05
3183
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000040E06
3184
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000040E07
3185
SAU101006
5367
SAU1c0028_orf_59p
12190


S1M10000040E09
3186
SAU102605
5710
SAU1c0041_orf_49p
12470


S1M10000040E10
3187
SAU100714
5312
SAU1c0044_orf_74p
12635


S1M10000040E11
3188
SAU101226
5398
SAU1c0035_orf_2p
12298


S1M10000040E12
3189
SAU102503
5691
SAU1c0045_orf_274p
12690


S1M10000040E12
3189
SAU201380
5812
SAU2c0426_orf_11p
12922


S1M10000040F01
3190
SAU101226
5398
SAU1c0035_orf_2p
12298


S1M10000040F02
3191
SAU101614
5494
SAU1c0044_orf_9p
12649


S1M10000040F03
3192
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000040F04
3193
SAU100123
5230
SAU1c0043_orf_189p
12526


S1M10000040F04
3193
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000040F04
3193
SAU103159
5762
SAU1c0045_orf_204p
12670


S1M10000040F04
3193
SAU201827
5837
SAU2c0449_orf_21p
13002


S1M10000040F05
3194
SAU102232
5615
SAU1c0043_orf_19p
12530


S1M10000040F06
3195
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000040F08
3196
SAU300713
5875
SAU3c1104_orf_1p
13058


S1M10000040F09
3197
SAU101610
5492
SAU1c0044_orf_5p
12629


S1M10000040F12
3198
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000040G01
3199
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000040G02
3200
SAU200561
5783
SAU2c0324_orf_3p
12779


S1M10000040G02
3200
SAU301773
5901
SAU3c1509_orf_2p
13157


S1M10000040G04
3201
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000040G07
3202
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000040G08
3203
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000040G12
3204
SAU101421
5446
SAU1c0042_orf_138p
12498


S1M10000040H02
3205
SAU100773
5326
SAU1c0038_orf_39p
12377


S1M10000040H03
3206
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000040H04
3207
SAU200914
5796
SAU2c0373_orf_2p
12837


S1M10000040H05
3208
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000040H07
3209
SAU100921
5355
SAU1c0038_orf_76p
12396


S1M10000040H10
3210
SAU202039
5843
SAU2c0452_orf_20p
13009


S1M10000041A03
3211
SAU102054
5596
SAU1c0039_orf_74p
12417


S1M10000041B02
3212
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000041B03
3213
SAU101592
5490
SAU1c0039_orf_37p
12406


S1M10000041B05
3214
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000041B06
3215
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000041B07
3216
SAU101145
5384
SAU1c0035_orf_43p
12299


S1M10000041B12
3217
SAU102725
5733
SAU1c0036_orf_68p
12338


S1M10000041C08
3218
SAU102607
5712
SAU1c0041_orf_51p
12472


S1M10000041C08
3218
SAU102944
5749
SAU1c0041_orf_47p
12468


S1M10000041C10
3219
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000041C11
3220
SAU101570
5482
SAU1c0044_orf_209p
12584


S1M10000041D06
3221
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000041D07
3222
SAU102639
5724
#N/A
#N/A


S1M10000041D08
3223
SAU200030
5772
SAU2c0282_orf_3p
12745


S1M10000041D10
3224
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000041D12
3225
SAU102658
5726
SAU1c0045_orf_121p
12654


S1M10000041E03
3226
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000041E06
3227
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000041E09
3228
SAU201236
5808
SAU2c0409_orf_10p
12891


S1M10000041E12
3229
SAU100952
5358
SAU1c0043_orf_182p
12523


S1M10000041F03
3230
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000041F03
3230
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000041F11
3231
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000041E12
3232
SAU102480
5684
SAU1c0039_orf_100p
12404


S1M10000041F12
3232
SAU102481
5685
SAU1c0039_orf_99p
12422


S1M10000041G01
3233
SAU100532
5287
SAU1c0044_orf_198p
12580


S1M10000041G06
3234
SAU102345
5648
SAU1c0045_orf_125p
12655


S1M10000041G08
3235
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000041G10
3236
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000041G11
3237
SAU101802
5542
SAU1c0032_orf_22p
12227


S1M10000041H01
3238
SAU101198
5394
SAU1c0035_orf_61p
12301


S1M10000041H04
3239
SAU100497
5280
SAU1c0018_orf_3p
12140


S1M10000041H05
3240
SAU100242
5246
SAU1c0036_orf_5p
12336


S1M10000041H07
3241
SAU102486
5687
SAU1c0039_orf_93p
12420


S1M10000041H07
3241
SAU102487
5688
SAU1c0039_orf_92p
12419


S1M10000041H08
3242
SAU301133
5887
SAU3c1311_orf_3p
13087


S1M10000041H09
3243
SAU103169
5763
SAU1c0045_orf_230p
12678


S1M10000042A04
3244
SAU201236
5808
SAU2c0409_orf_10p
12891


S1M10000042A05
3245
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000042A06
3246
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000042A07
3247
SAU100633
5301
SAU1c0043_orf_147p
12515


S1M10000042A09
3248
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000042A11
3249
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000042A12
3250
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000042B02
3251
SAU202736
5851
SAU2c0426_orf_7p
12927


S1M10000042B03
3252
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000042B06
3253
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000042B07
3254
SAU101343
5425
SAU1c0044_orf_40p
12619


S1M10000042B08
3255
SAU100443
5274
SAU1c0036_orf_55p
12333


S1M10000042B09
3256
SAU101802
5542
SAU1c0032_orf_22p
12227


S1M10000042B10
3257
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000042B10
3257
SAU102527
5693
SAU1c0032_orf_9p
12260


S1M10000042B11
3258
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000042B12
3259
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000042C02
3260
SAU100617
5300
SAU1c0035_orf_102p
12295


S1M10000042C06
3261
SAU102032
5591
SAU1c0029_orf_47p
12198


S1M10000042C10
3262
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000042C11
3263
SAU103037
5756
SAU1c0044_orf_303p
12613


S1M10000042D04
3264
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000042D07
3265
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000042D10
3266
SAU203296
5863
SAU2c0442_orf_18p
12983


S1M10000042D11
3267
SAU102663
5727
SAU1c0024_orf_2p
12158


S1M10000042E03
3268
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000042E06
3269
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000042E08
3270
SAU103198
5766
#N/A
#N/A


S1M10000042F01
3271
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000042F02
3272
SAU101891
5571
SAU1c0034_orf_30p
12281


S1M10000042F05
3273
SAU101652
5503
SAU1c0042_orf_123p
12492


S1M10000042F06
3274
SAU100773
5326
SAU1c0038_orf_39p
12377


S1M10000042F08
3275
SAU100162
5239
SAU1c0044_orf_206p
12583


S1M10000042F09
3276
SAU100246
5247
SAU1c0042_orf_130p
12496


S1M10000042F09
3276
SAU300998
5881
SAU3c1253_orf_3p
13077


S1M10000042F10
3277
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000042F11
3278
SAU101653
5504
SAU1c0042_orf_124p
12493


S1M10000042G01
3279
SAU100140
5235
SAU1c0032_orf_7p
12258


S1M10000042G03
3280
SAU101220
5396
SAU1c0044_orf_94p
12645


S1M10000042G08
3281
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000042G09
3282
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000042G12
3283
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000042H05
3284
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000042H07
3285
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000042H11
3286
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000043A02
3287
SAU203001
5859
SAU2c0412_orf_15p
12894


S1M10000043A03
3288
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000043A04
3289
SAU200088
5775
SAU2c0159_orf_1p
12724


S1M10000043A06
3290
SAU100077
5226
SAU1c0043_orf_178p
12520


S1M10000043A07
3291
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000043A08
3292
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000043A10
3293
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000043A11
3294
SAU100865
5343
SAU1c0044_orf_99p
12648


S1M10000043A12
3295
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000043B01
3296
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000043B02
3297
SAU100059
5224
SAU1c0045_orf_10p
12652


S1M10000043B07
3298
SAU101922
5578
SAU1c0040_orf_66p
12438


S1M10000043B07
3298
SAU200345
5779
SAU2c0292_orf_3p
12751


S1M10000043B08
3299
SAU100313
5259
SAU1c0045_orf_153p
12661


S1M10000043B08
3299
SAU100359
5264
SAU1c0032_orf_35p
12239


S1M10000043B08
3299
SAU200297
5778
SAU2c0274_orf_2p
12739


S1M10000043B09
3300
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000043B10
3301
SAU100436
5273
SAU1c0023_orf_20p
12154


S1M10000043B12
3302
SAU102142
5606
SAU1c0041_orf_13p
12457


S1M10000043C02
3303
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000043C07
3304
SAU101784
5530
SAU1c0037_orf_46p
12355


S1M10000043C11
3305
SAU201403
5815
SAU2c0423_orf_3p
12913


S1M10000043C12
3306
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000043D01
3307
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000043D02
3308
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000043D04
3309
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000043D10
3310
SAU102631
5721
SAU1c0045_orf_94p
12712


S1M10000043D12
3311
SAU100496
5279
SAU1c0041_orf_83p
12484


S1M10000043D12
3311
SAU301004
5882
SAU3c1255_orf_1p
13079


S1M10000043E02
3312
SAU100793
5329
SAU1c0028_orf_52p
12188


S1M10000043E02
3312
SAU301433
5895
SAU3c1420_orf_2p
13118


S1M10000043E03
3313
SAU102032
5591
SAU1c0029_orf_47p
12198


S1M10000043E05
3314
SAU102067
5598
SAU1c0034_orf_54p
12287


S1M10000043E07
3315
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000043E08
3316
SAU101344
5426
SAU1c0044_orf_41p
12620


S1M10000043E10
3317
SAU100186
5242
SAU1c0036_orf_19p
12317


S1M10000043E11
3318
SAU102498
5689
SAU1c0045_orf_270p
12688


S1M10000043E11
3318
SAU201381
5813
SAU2c0426_orf_16p
12923


S1M10000043E12
3319
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000043F01
3320
SAU101797
5537
SAU1c0032_orf_17p
12221


S1M10000043F01
3320
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000043F05
3321
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000043F07
3322
SAU102447
5672
SAU1c0045_orf_24p
12685


S1M10000043F07
3322
SAU102448
5673
SAU1c0045_orf_23p
12681


S1M10000043F08
3323
SAU101344
5426
SAU1c0044_orf_41p
12620


S1M10000043F09
3324
SAU101801
5541
#N/A
#N/A


S1M10000043G01
3325
SAU100059
5224
SAU1c0045_orf_10p
12652


S1M10000043G04
3326
SAU102423
5667
SAU1c0030_orf_23p
12208


S1M10000043G05
3327
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000043G09
3328
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000043G09
3328
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000043G10
3329
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000043H01
3330
SAU101797
5537
SAU1c0032_orf_17p
12221


S1M10000043H01
3330
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000043H03
3331
SAU101803
5543
SAU1c0032_orf_23p
12228


S1M10000043H03
3331
SAU101804
5544
#N/A
#N/A


S1M10000043H04
3332
SAU100128
5231
#N/A
#N/A


S1M10000043H04
3332
SAU101549
5476
SAU1c0043_orf_64p
12549


S1M10000043H04
3332
SAU101576
5488
SAU1c0044_orf_105p
12554


S1M10000043H05
3333
SAU200058
5773
SAU2c0134_orf_1p
12719


S1M10000043H05
3333
SAU200059
5774
SAU2c0134_orf_3p
12720


S1M10000043H06
3334
SAU102417
5663
SAU1c0030_orf_17p
12204


S1M10000043H06
3334
SAU102863
5737
#N/A
#N/A


S1M10000043H09
3335
SAU302950
5914
SAU3c1512_orf_12p
13160


S1M10000043H10
3336
SAU101024
5369
SAU1c0045_orf_90p
12711


S1M10000043H11
3337
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000044A02
3338
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000044A06
3339
SAU101777
5527
SAU1c0037_orf_39p
12352


S1M10000044A08
3340
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000044A09
3341
SAU102292
5638
SAU1c0038_orf_10p
12368


S1M10000044A11
3342
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000044A12
3343
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000044B01
3344
SAU102268
5630
SAU1c0032_orf_63p
12252


S1M10000044B02
3345
SAU101968
5581
SAU1c0028_orf_43p
12187


S1M10000044B05
3346
SAU100690
5309
#N/A
#N/A


S1M10000044B06
3347
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000044B06
3347
SAU102881
5740
SAU1c0032_orf_4p
12242


S1M10000044B08
3348
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000044B11
3349
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000044B12
3350
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000044C04
3351
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000044C06
3352
SAU101614
5494
SAU1c0044_orf_9p
12649


S1M10000044C07
3353
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000044C07
3353
SAU100965
5364
SAU1c0044_orf_87p
12642


S1M10000044C08
3354
SAU102909
5743
SAU1c0036_orf_16p
12315


S1M10000044C11
3355
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000044C12
3356
SAU102280
5632
SAU1c0038_orf_3p
12378


S1M10000044D01
3357
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000044D01
3357
SAU102880
5739
SAU1c0032_orf_1p
12224


S1M10000044D04
3358
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000044D06
3359
SAU101300
5415
SAU1c0044_orf_113p
12557


S1M10000044D06
3359
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000044D08
3360
SAU102270
5631
SAU1c0032_orf_65p
12253


S1M10000044D09
3361
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000044D10
3362
SAU201197
5806
SAU2c0429_orf_2p
12938


S1M10000044D11
3363
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000044D12
3364
SAU102231
5614
SAU1c0043_orf_18p
12527


S1M10000044D12
3364
SAU102232
5615
SAU1c0043_orf_19p
12530


S1M10000044E01
3365
SAU101371
5435
SAU1c0033_orf_7p
12275


S1M10000044E02
3366
SAU102283
5634
SAU1c0006_orf_1p
12119


S1M10000044E06
3367
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000044E07
3368
SAU301829
5902
SAU3c1515_orf_7p
13162


S1M10000044E09
3369
SAU101320
5420
SAU1c0015_orf_16p
12128


S1M10000044E10
3370
SAU100497
5280
SAU1c0018_orf_3p
12140


S1M10000044E11
3371
SAU101270
5410
SAU1c0037_orf_89p
12365


S1M10000044E02
3372
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000044F06
3373
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000044F08
3374
SAU101262
5406
SAU1c0042_orf_113p
12488


S1M10000044F10
3375
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000044F10
3375
SAU202882
5855
SAU2c0381_orf_3p
12848


S1M10000044G02
3376
SAU102933
5744
SAU1c0039_orf_62p
12412


S1M10000044G05
3377
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000044G08
3378
SAU102601
5707
SAU1c0041_orf_46p
12467


S1M10000044G08
3378
SAU102606
5711
SAU1c0041_orf_50p
12471


S1M10000044G10
3379
SAU101092
5381
SAU1c0028_orf_9p
12192


S1M10000044G10
3379
SAU202882
5855
SAU2c0381_orf_3p
12848


S1M10000044G11
3380
SAU101546
5475
SAU1c0037_orf_133p
12349


S1M10000044H06
3381
SAU100964
5363
SAU1c0044_orf_86p
12641


S1M10000044H06
3381
SAU100965
5364
SAU1c0044_orf_87p
12642


S1M10000044H07
3382
SAU100595
5294
SAU1c0043_orf_62p
12547


S1M10000044H08
3383
SAU101543
5473
SAU1c0037_orf_130p
12346


S1M10000044H09
3384
SAU100886
5349
SAU1c0018_orf_16p
12139


S1M10000044H09
3384
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000044H10
3385
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000044H11
3386
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000045A02
3387
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000045A06
3388
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000045A07
3389
SAU102378
5653
SAU1c0040_orf_61p
12437


S1M10000045A08
3390
SAU102336
5646
SAU1c0045_orf_146p
12659


S1M10000045A12
3391
SAU201765
5833
SAU2c0309_orf_5p
12770


S1M10000045B01
3392
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000045B02
3393
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000045B03
3394
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000045B07
3395
SAU101803
5543
SAU1c0032_orf_23p
12228


S1M10000045B10
3396
SAU200468
5781
SAU2c0429_orf_19p
12937


S1M10000045B11
3397
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000045B12
3398
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000045C02
3399
SAU100690
5309
#N/A
#N/A


S1M10000045C03
3400
SAU100887
5350
SAU1c0018_orf_15p
12138


S1M10000045C04
3401
SAU102286
5636
SAU1c0038_orf_6p
12393


S1M10000045C04
3401
SAU102287
5637
SAU1c0038_orf_7p
12398


S1M10000045C05
3402
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000045C07
3403
SAU101573
5485
SAU1c0044_orf_212p
12587


S1M10000045C09
3404
SAU101744
5520
SAU1c0037_orf_94p
12367


S1M10000045C09
3404
SAU300191
5868
SAU3c0672_orf_1p
13037


S1M10000045D01
3405
SAU101893
5572
SAU1c0034_orf_32p
12282


S1M10000045D03
3406
SAU101599
5491
SAU1c0041_orf_5p
12478


S1M10000045D07
3407
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000045D08
3408
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000045D09
3409
SAU101572
5484
SAU1c0044_orf_211p
12586


S1M10000045D10
3410
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000045D11
3411
SAU101492
5465
SAU1c0025_orf_21p
12166


S1M10000045D11
3411
SAU101493
5466
SAU1c0025_orf_22p
12167


S1M10000045D12
3412
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000045D12
3412
SAU101801
5541
#N/A
#N/A


S1M10000045E04
3413
SAU102132
5605
SAU1c0027_orf_19p
12177


S1M10000045E05
3414
SAU101491
5464
SAU1c0025_orf_20p
12165


S1M10000045E08
3415
SAU201752
5832
SAU2c0436_orf_19p
12963


S1M10000045E09
3416
SAU101794
5535
#N/A
#N/A


S1M10000045E10
3417
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000045E11
3418
SAU100970
5365
SAU1c0043_orf_197p
12529


S1M10000045E12
3419
SAU100547
5290
SAU1c0032_orf_3p
12240


S1M10000045F04
3420
SAU102241
5617
SAU1c0043_orf_25p
12539


S1M10000045F05
3421
SAU100114
5228
SAU1c0043_orf_225p
12535


S1M10000045F08
3422
SAU200657
5789
#N/A
#N/A


S1M10000045F11
3423
SAU102117
5603
SAU1c0027_orf_6p
12181


S1M10000045F12
3424
SAU101806
5546
SAU1c0032_orf_25p
12230


S1M10000045G03
3425
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000045G06
3426
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000045G07
3427
SAU101561
5479
SAU1c0022_orf_4p
12149


S1M10000045G08
3428
SAU100690
5309
#N/A
#N/A


S1M10000045G10
3429
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000045G12
3430
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000045H06
3431
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000045H10
3432
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000045H11
3433
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000046A03
3434
SAU202731
5850
#N/A
#N/A


S1M10000046A04
3435
SAU100062
5225
SAU1c0035_orf_98p
12309


S1M10000046A04
3435
SAU100231
5245
#N/A
#N/A


S1M10000046A06
3436
SAU101383
5438
SAU1c0022_orf_20p
12147


S1M10000046A08
3437
SAU200994
5802
SAU2c0428_orf_4p
12935


S1M10000046A09
3438
SAU100315
5260
SAU1c0037_orf_62p
12358


S1M10000046A11
3439
SAU100432
5271
SAU1c0040_orf_88p
12450


S1M10000046A11
3439
SAU100433
5272
SAU1c0040_orf_87p
12449


S1M10000046A12
3440
SAU101814
5551
SAU1c0032_orf_32p
12237


S1M10000046B01
3441
SAU102334
5645
SAU1c0045_orf_144p
12658


S1M10000046B03
3442
SAU101039
5373
SAU1c0043_orf_181p
12522


S1M10000046B04
3443
SAU101797
5537
SAU1c0032_orf_17p
12221


S1M10000046B05
3444
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000046B07
3445
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000046B08
3446
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000046B09
3447
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000046B11
3448
SAU102541
5697
SAU1c0045_orf_195p
12668


S1M10000046B12
3449
SAU101400
5444
SAU1c0036_orf_35p
12326


S1M10000046C02
3450
SAU200601
5787
#N/A
#N/A


S1M10000046C04
3451
SAU100118
5229
SAU1c0015_orf_13p
12125


S1M10000046C05
3452
SAU101159
5387
SAU1c0036_orf_46p
12331


S1M10000046C06
3453
SAU102585
5703
SAU1c0044_orf_289p
12611


S1M10000046C06
3453
SAU201773
5834
SAU2c0446_orf_4p
12996


S1M10000046C07
3454
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000046C08
3455
SAU100414
5270
SAU1c0022_orf_24p
12148


S1M10000046C11
3456
SAU102144
5608
SAU1c0041_orf_15p
12459


S1M10000046C12
3457
SAU100313
5259
SAU1c0045_orf_153p
12661


S1M10000046C12
3457
SAU100359
5264
SAU1c0032_orf_35p
12239


S1M10000046D01
3458
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000046D02
3459
SAU102144
5608
SAU1c0041_orf_15p
12459


S1M10000046D03
3460
SAU101857
5560
SAU1c0044_orf_156p
12569


S1M10000046D04
3461
SAU102433
5668
SAU1c0045_orf_37p
12701


S1M10000046D05
3462
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000046D08
3463
SAU101495
5467
SAU1c0037_orf_65p
12360


S1M10000046D09
3464
SAU100679
5305
SAU1c0018_orf_14p
12137


S1M10000046D10
3465
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000046D11
3466
SAU100496
5279
SAU1c0041_orf_83p
12484


S1M10000046D11
3466
SAU301004
5882
SAU3c1255_orf_1p
13079


S1M10000046D12
3467
SAU100496
5279
SAU1c0041_orf_83p
12484


S1M10000046D12
3467
SAU301004
5882
SAU3c1255_orf_1p
13079


S1M10000046E01
3468
SAU101610
5492
SAU1c0044_orf_5p
12629


S1M10000046E02
3469
SAU101857
5560
SAU1c0044_orf_156p
12569


S1M10000046E04
3470
SAU101800
5540
SAU1c0032_orf_20p
12225


S1M10000046E04
3470
SAU101801
5541
#N/A
#N/A


S1M10000046E07
3471
SAU100521
5283
SAU1c0044_orf_250p
12600


S1M10000046E08
3472
SAU102283
5634
SAU1c0006_orf_1p
12119


S1M10000046E10
3473
SAU102283
5634
SAU1c0006_orf_1p
12119


S1M10000046F01
3474
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000046F02
3475
SAU100546
5289
SAU1c0032_orf_2p
12235


S1M10000046F02
3475
SAU102880
5739
SAU1c0032_orf_1p
12224


S1M10000046F05
3476
SAU102671
5729
SAU1c0024_orf_9p
12161


S1M10000046F06
3477
SAU100702
5310
SAU1c0029_orf_34p
12196


S1M10000046F06
3477
SAU300825
5878
SAU3c1171_orf_1p
13068


S1M10000046F08
3478
SAU102297
5640
SAU1c0045_orf_41p
12704


S1M10000046F09
3479
SAU100517
5282
#N/A
#N/A


S1M10000046F10
3480
SAU102059
5597
SAU1c0034_orf_51p
12286


S1M10000046F12
3481
SAU101365
5432
SAU1c0044_orf_112p
12556


S1M10000046G01
3482
SAU200752
5795
SAU2c0354_orf_5p
12809


S1M10000046G01
3482
SAU300975
5880
SAU3c1240_orf_3p
13075


S1M10000046G02
3483
SAU101571
5483
SAU1c0044_orf_210p
12585


S1M10000046G03
3484
SAU100773
5326
SAU1c0038_orf_39p
12377


S1M10000046G04
3485
SAU100436
5273
SAU1c0023_orf_20p
12154


S1M10000046G07
3486
SAU101866
5564
SAU1c0036_orf_21p
12319


S1M10000046G09
3487
SAU102663
5727
SAU1c0024_orf_2p
12158


S1M10000046G10
3488
SAU101756
5524
SAU1c0040_orf_82p
12445


S1M10000046H01
3489
SAU101445
5452
SAU1c0038_orf_47p
12382


S1M10000046H01
3489
SAU101446
5453
SAU1c0038_orf_48p
12383


S1M10000046H10
3490
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000047A03
3491
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000047A04
3492
SAU300572
5873
SAU3c1019_orf_1p
13051


S1M10000047A05
3493
SAU101805
5545
SAU1c0032_orf_24p
12229


S1M10000047A06
3494
SAU201775
5835
SAU2c0446_orf_4p
12996


S1M10000047A06
3494
SAU301030
5883
SAU3c1268_orf_1p
13080


S1M10000047A07
3495
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000047A08
3496
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000047A09
3497
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000047A10
3498
SAU100751
5321
SAU1c0036_orf_59p
12335


S1M10000047A11
3499
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000047A12
3500
SAU100300
5253
SAU1c0040_orf_90p
12451


S1M10000047B02
3501
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000047B04
3502
SAU101366
5433
SAU1c0033_orf_2p
12266


S1M10000047B05
3503
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000047B06
3504
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000047B08
3505
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000047B09
3506
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000047B10
3507
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000047B12
3508
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000047C01
3509
SAU100275
5252
SAU1c0036_orf_15p
12314


S1M10000047C02
3510
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000047C03
3511
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000047C04
3512
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000047C06
3513
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000047C08
3514
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000047C09
3515
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000047C11
3516
SAU201775
5835
SAU2c0446_orf_4p
12996


S1M10000047C11
3516
SAU301030
5883
SAU3c1268_orf_1p
13080


S1M10000047C12
3517
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000047D02
3518
SAU101387
5440
SAU1c0038_orf_52p
12386


S1M10000047D03
3519
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000047D04
3520
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000047D05
3521
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000047D09
3522
SAU100921
5355
SAU1c0038_orf_76p
12396


S1M10000047D10
3523
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000047D11
3524
SAU103038
5757
#N/A
#N/A


S1M10000047D12
3525
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000047E01
3526
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000047E02
3527
SAU100131
5232
SAU1c0043_orf_156p
12517


S1M10000047E03
3528
SAU102452
5676
SAU1c0045_orf_20p
12674


S1M10000047E04
3529
SAU101996
5584
SAU1c0040_orf_99p
12456


S1M10000047E05
3530
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000047E06
3531
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000047E08
3532
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000047E09
3533
SAU100810
5333
SAU1c0037_orf_11p
12343


S1M10000047E10
3534
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000047E11
3535
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000047E12
3536
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000047F02
3537
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000047F03
3538
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000047F04
3539
SAU300572
5873
SAU3c1019_orf_1p
13051


S1M10000047F05
3540
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000047F06
3541
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000047F07
3542
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000047F08
3543
SAU101242
5404
SAU1c0044_orf_18p
12578


S1M10000047F09
3544
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000047F10
3545
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000047F11
3546
SAU101805
5545
SAU1c0032_orf_24p
12229


S1M10000047F12
3547
SAU101808
5548
SAU1c0032_orf_27p
12232


S1M10000047G01
3548
SAU101369
5434
SAU1c0033_orf_5p
12274


S1M10000047G02
3549
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000047G04
3550
SAU101341
5424
SAU1c0044_orf_38p
12618


S1M10000047G05
3551
SAU100684
5306
SAU1c0044_orf_68p
12632


S1M10000047G05
3551
SAU100685
5307
SAU1c0044_orf_69p
12633


S1M10000047G06
3552
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000047G07
3553
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000047G08
3554
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000047G09
3555
SAU100810
5333
SAU1c0037_orf_11p
12343


S1M10000047G10
3556
SAU102607
5712
SAU1c0041_orf_51p
12472


S1M10000047H03
3557
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000047H04
3558
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000047H05
3559
SAU102452
5676
SAU1c0045_orf_20p
12674


S1M10000047H06
3560
SAU103038
5757
#N/A
#N/A


S1M10000047H07
3561
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000047H08
3562
SAU101798
5538
SAU1c0032_orf_18p
12222


S1M10000047H09
3563
SAU102578
5701
SAU1c0039_orf_61p
12411


S1M10000047H11
3564
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000048A02
3565
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000048A03
3566
SAU100866
5344
SAU1c0044_orf_100p
12553


S1M10000048A04
3567
SAU103038
5757
#N/A
#N/A


S1M10000048A05
3568
SAU101868
5565
SAU1c0036_orf_23p
12320


S1M10000048A06
3569
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000048A07
3570
SAU101156
5386
SAU1c0036_orf_12p
12311


S1M10000048A09
3571
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000048A10
3572
SAU201571
5824
SAU2c0447_orf_17p
12997


S1M10000048A11
3573
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000048A12
3574
SAU101271
5411
SAU1c0037_orf_90p
12366


S1M10000048B02
3575
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000048B05
3576
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000048B08
3577
SAU102452
5676
SAU1c0045_orf_20p
12674


S1M10000048B10
3578
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000048B11
3579
SAU103038
5757
#N/A
#N/A


S1M10000048B12
3580
SAU200916
5797
SAU2c0373_orf_4p
12838


S1M10000048B12
3580
SAU301620
5899
SAU3c1478_orf_2p
13140


S1M10000048C01
3581
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000048C02
3582
SAU301465
5896
SAU3c1429_orf_4p
13121


S1M10000048C03
3583
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000048C05
3584
SAU300998
5881
SAU3c1253_orf_3p
13077


S1M10000048C06
3585
SAU100684
5306
SAU1c0044_orf_68p
12632


S1M10000048C06
3585
SAU100685
5307
SAU1c0044_orf_69p
12633


S1M10000048C07
3586
SAU102452
5676
SAU1c0045_orf_20p
12674


S1M10000048C08
3587
SAU101632
5499
SAU1c0039_orf_3p
12407


S1M10000048C09
3588
SAU101907
5574
SAU1c0040_orf_79p
12442


S1M10000048C11
3589
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000048D02
3590
SAU100123
5230
SAU1c0043_orf_189p
12526


S1M10000048D02
3590
SAU102001
5586
SAU1c0040_orf_102p
12424


S1M10000048D02
3590
SAU103159
5762
SAU1c0045_orf_204p
12670


S1M10000048D02
3590
SAU201827
5837
SAU2c0449_orf_21p
13002


S1M10000048D08
3591
SAU300572
5873
SAU3c1019_orf_1p
13051


S1M10000048D09
3592
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000048D10
3593
SAU302950
5914
SAU3c1512_orf_12p
13160


S1M10000048D12
3594
SAU102599
5706
SAU1c0041_orf_45p
12466


S1M10000048D12
3594
SAU103191
5765
SAU1c00241_orf_44p
12465


S1M10000048E02
3595
SAU101028
5370
SAU1c0043_orf_7p
12552


S1M10000048E03
3596
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000048E04
3597
SAU101545
5474
SAU1c0037_orf_132p
12348


S1M10000048E06
3598
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000048E07
3599
SAU100959
5359
SAU1c0042_orf_102p
12485


S1M10000048E08
3600
SAU101807
5547
SAU1c0032_orf_26p
12231


S1M10000048E10
3601
SAU302950
5914
SAU3c1512_orf_12p
13160


S1M10000048F02
3602
SAU101387
5440
SAU1c0038_orf_52p
12386


S1M10000048F07
3603
SAU101175
5388
SAU1c0031_orf_1p
12213


S1M10000048F08
3604
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000048F09
3605
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000048F11
3606
SAU202174
5845
SAU2c0412_orf_3p
12895


S1M10000048F11
3606
SAU301148
5888
#N/A
#N/A


S1M10000048F12
3607
SAU103038
5757
#N/A
#N/A


S1M10000048G02
3608
SAU102453
5677
SAU1c0045_orf_19p
12669


S1M10000048G03
3609
SAU200928
5798
SAU2c0365_orf_5p
12815


S1M10000048G04
3610
SAU102602
5708
SAU1c0032_orf_5p
12249


S1M10000048G05
3611
SAU101752
5522
SAU1c0040_orf_85p
12447


S1M10000048G07
3612
SAU102006
5589
SAU1c0040_orf_107p
12427


S1M10000048G07
3612
SAU102007
5590
SAU1c0040_orf_108p
12428


S1M10000048G10
3613
SAU101793
5534
SAU1c0032_orf_14p
12218


S1M10000048G11
3614
SAU200006
5770
SAU2c0157_orf_1p
12723


S1M10000048H01
3615
SAU100608
5297
SAU1c0034_orf_69p
12293


S1M10000048H02
3616
SAU100158
5238
SAU1c0040_orf_80p
12443


S1M10000048H03
3617
SAU101815
5552
SAU1c0032_orf_33p
12238


S1M10000048H04
3618
SAU102200
5611
SAU1c0045_orf_168p
12665


S1M10000048H05
3619
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000048H07
3620
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000048H08
3621
SAU100141
5236
SAU1c0032_orf_8p
12259


S1M10000048H09
3622
SAU100157
5237
SAU1c0040_orf_81p
12444


S1M10000048H10
3623
SAU101791
5532
SAU1c0032_orf_12p
12216


S1M10000048H11
3624
SAU101271
5411
SAU1c0037_orf_90p
12366


K1M10000037D10
1077
ECO100078
10023
#N/A
#N/A


K1M10000002F02
1054
ECO100252
10052
#N/A
#N/A


K1M10000007F01
1057
ECO100397
10064
#N/A
#N/A


K1M10000007F01
1057
ECO100398
10065
#N/A
#N/A


K1M10000004F06
1056
ECO100990
10120
#N/A
#N/A


K1M10000019D06
1064
ECO100990
10120
#N/A
#N/A


K1M10000030C07
1070
ECO102108
10214
#N/A
#N/A


K1M10000044G05
1086
ECO102262
10228
#N/A
#N/A


K1M10000036G08
1076
ECO102447
10247
#N/A
#N/A


K1M10000033E01
1075
ECO102539
10258
#N/A
#N/A


K1M10000043D05
1081
ECO102620
10266
#N/A
#N/A


K1M10000045D10
1088
ECO102620
10266
#N/A
#N/A


K1M10000003C01
1055
ECO103101
10315
#N/A
#N/A


K1M10000030E07
1071
ECO104120
10462
#N/A
#N/A


K1M10000045A07
1087
ECO104268
10475
#N/A
#N/A


S4M10000020F05
3721
ECO100449
#N/A
#N/A
#N/A


S4M10000026D04
3742
ECO100676
#N/A
#N/A
#N/A


S4M10000014D07
3706
ECO100757
#N/A
#N/A
#N/A


S4M10000015B11
3708
ECO100757
#N/A
#N/A
#N/A


S4M10000016A02
3710
ECO100757
#N/A
#N/A
#N/A


S4M10000022E12
3725
ECO100757
#N/A
#N/A
#N/A


S4M10000026E12
3744
ECO100757
#N/A
#N/A
#N/A


S4M10000035E03
3764
ECO100757
#N/A
#N/A
#N/A


S4M10000008H10
3693
ECO100758
10101
#N/A
#N/A


S4M10000014B05
3704
ECO100758
10101
#N/A
#N/A


S4M10000014D07
3706
ECO100758
10101
#N/A
#N/A


S4M10000015B11
3708
ECO100758
10101
#N/A
#N/A


S4M10000015E09
3709
ECO100758
10101
#N/A
#N/A


S4M10000016A02
3710
ECO100758
10101
#N/A
#N/A


S4M10000022E12
3725
ECO100758
10101
#N/A
#N/A


S4M10000029B12
3747
ECO100758
10101
#N/A
#N/A


S4M10000020G10
3722
ECO100796
10105
#N/A
#N/A


S4M10000023F01
3728
ECO101916
#N/A
#N/A
#N/A


S4M10000014H02
3707
ECO102028
#N/A
#N/A
#N/A


S4M10000012B06
3700
ECO102066
#N/A
#N/A
#N/A


S4M10000035D01
3762
ECO102066
#N/A
#N/A
#N/A


S4M10000024C06
3730
ECO102189
10224
#N/A
#N/A


S4M10000006C05
3689
ECO102282
#N/A
#N/A
#N/A


S4M10000037H09
3772
ECO102296
#N/A
#N/A
#N/A


S4M10000030G11
3751
ECO102302
#N/A
#N/A
#N/A


S4M10000026C10
3741
ECO102416
10245
#N/A
#N/A


34M10000026E06
3743
ECO102416
10245
#N/A
#N/A


S4M10000036F07
3768
ECO102416
10245
#N/A
#N/A


S4M10000034A02
3756
ECO102526
#N/A
#N/A
#N/A


S4M10000006F08
3690
ECO102541
10259
#N/A
#N/A


S4M10000002G08
3684
ECO102730
#N/A
#N/A
#N/A


S4M10000026C10
3741
ECO102870
#N/A
#N/A
#N/A


S4M10000026E06
3743
ECO102870
#N/A
#N/A
#N/A


S4M10000036F07
3768
ECO102870
#N/A
#N/A
#N/A


S4M10000034H05
3759
ECO102900
#N/A
#N/A
#N/A


S4M10000006A08
3688
ECO102944
#N/A
#N/A
#N/A


S4M10000014D04
3705
ECO102986
10301
#N/A
#N/A


S4M10000022D12
3724
ECO103238
10354
#N/A
#N/A


S4M10000033F08
3753
ECO103238
10354
#N/A
#N/A


S4M10000033G09
3755
ECO103238
10354
#N/A
#N/A


S4M10000001C01
3680
ECO103265
10365
#N/A
#N/A


S4M10000024B02
3729
ECO103280
#N/A
#N/A
#N/A


S4M10000020A04
3720
ECO103461
#N/A
#N/A
#N/A


S4M10000002B06
3681
ECO103666
#N/A
#N/A
#N/A


S4M10000019H06
3719
ECO103738
#N/A
#N/A
#N/A


S4M10000024H02
3736
ECO103738
#N/A
#N/A
#N/A


S4M10000030F07
3750
ECO103738
#N/A
#N/A
#N/A


S4M10000034H09
3760
ECO103738
#N/A
#N/A
#N/A


S4M10000032B12
3752
ECO103935
#N/A
#N/A
#N/A


S4M10000002B09
3682
ECO103936
#N/A
#N/A
#N/A


S4M10000037A10
3770
ECO103951
#N/A
#N/A
#N/A


S4M10000018D09
3711
ECO104080
#N/A
#N/A
#N/A


S4M10000035F09
3766
EFA101301
#N/A
EFA1c0040_orf_173p
#N/A


S4M10000035F09
3766
EFA102170
#N/A
EFA1c0040_orf_121p
#N/A


S4M10000001C01
3680
EFA103268
#N/A
EFA1c0010_orf_1p
10479


S4M10000036F07
3768
HPY200334
#N/A
#N/A
#N/A


S4M10000001C01
3680
HPY201116
11570
#N/A
#N/A


S4M10000037A10
3770
KPN100467
#N/A
KPN1c0583_orf_2p
#N/A


S4M10000030G11
3751
KPN101078
#N/A
KPN1c1190_orf_1p
#N/A


S4M10000024B02
3729
KPN101160
#N/A
KPN1c1224_orf_1p
#N/A


S4M10000032B12
3752
KPN101846
#N/A
KPN1c1681_orf_2p
#N/A


S4M10000006C05
3689
KPN102011
#N/A
KPN1c1862_orf_4p
#N/A


S4M10000035B01
3761
KPN102014
#N/A
KPN1c1786_orf_1p
11654


S4M10000012B06
3700
KPN102524
#N/A
#N/A
#N/A


S4M10000035D01
3762
KPN102524
#N/A
#N/A
#N/A


S4M10000002G04
3683
KPN102558
#N/A
KPN1c1982_orf_3p
#N/A


S4M10000002G08
3684
KPN102558
#N/A
KPN1c1982_orf_3p
#N/A


S4M10000008H10
3693
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000014B05
3704
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000014D07
3706
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000015B11
3708
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000015E09
3709
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000016A02
3710
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000022E12
3725
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000026E12
3744
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000035E03
3764
KPN103640
#N/A
KPN1c2761_orf_1p
#N/A


S4M10000008H10
3693
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000014B05
3704
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000014D07
3706
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000015B11
3708
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000015E09
3709
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000016A02
3710
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000022E12
3725
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000029B12
3747
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000035E03
3764
KPN103641
#N/A
KPN1c2761_orf_2p
11705


S4M10000026C10
3741
KPN103871
#N/A
KPN1c2844_orf_2p
#N/A


S4M10000026E06
3743
KPN103871
#N/A
KPN1c2844_orf_2p
#N/A


S4M10000036F07
3768
KPN103871
#N/A
KPN1c2844_orf_2p
#N/A


S4M10000019H06
3719
KPN104321
#N/A
KPN1c3011_orf_1p
#N/A


S4M10000024H02
3736
KPN104321
#N/A
KPN1c3011_orf_1p
#N/A


S4M10000030E07
3750
KPN104321
#N/A
KPN1c3011_orf_1p
#N/A


S4M10000034H09
3760
KPN104321
#N/A
KPN1c3011_orf_1p
#N/A


S4M10000035F02
3765
KPN104321
#N/A
KPN1c3011_orf_1p
#N/A


S4M10000002B06
3681
KPN104608
#N/A
KPN1c3070_orf_3p
#N/A


S4M10000018D09
3711
KPN105957
#N/A
KPN1c3587_orf_1p
#N/A


S4M10000024C06
3730
KPN106468
#N/A
KPN1c1186_orf_1p
11638


S4M10000009A05
3694
KPN106681
#N/A
#N/A
#N/A


S4M10000010D04
3696
KPN106681
#N/A
#N/A
#N/A


S4M10000011E08
3699
KPN106681
#N/A
#N/A
#N/A


S4M10000020A04
3720
KPN106813
#N/A
KPN1c2010_orf_1p
#N/A


S4M10000005G05
3685
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000006F08
3690
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000007G01
3691
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000008C08
3692
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000018E10
3712
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000018E10
3713
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000019G04
3717
KPN106840
#N/A
KPN1c2087_orf_1p
11664


S4M10000001C01
3680
SAU101756
#N/A
SAU1c0040_orf_82p
12445


S4M10000001C01
3680
SAU200931
#N/A
SAU2c0151_orf_1p
12722


S4M10000001C01
3680
SPN102008
#N/A
SPN1c0007_orf_92p
#N/A


S4M10000001C01
3680
SPN202419
#N/A
SPN2c0592_orf_1p
#N/A


S4M10000019H06
3719
STY000068
#N/A
STYc00048_orf_26p
#N/A


S4M10000024H02
3736
STY000068
#N/A
STYc00048_orf_26p
#N/A


S4M10000030F07
3750
STY000068
#N/A
STYc00048_orf_26p
#N/A


S4M10000034H09
3760
STY000068
#N/A
STYc00048_orf_26p
#N/A


S4M10000035F02
3765
STY000068
#N/A
STYc00048_orf_26p
#N/A


S4M10000026C10
3741
STY000225
#N/A
STYc00041_orf_40p
13740


S4M10000026E06
3743
STY000225
#N/A
STYc00041_orf_40p
13740


S4M10000036F07
3768
STY000225
#N/A
STYc00041_orf_40p
13740


S4M10000026D04
3742
STY000244
#N/A
STYc00041_orf_11p
#N/A


S4M10000034H05
3759
STY000244
#N/A
STYc00041_orf_11p
#N/A


S4M10000027E02
3746
STY000409
#N/A
STYc00053_orf_110p
#N/A


S4M10000025E02
3738
STY000498
#N/A
STYc00072_orf_46p
#N/A


S4M10000034A02
3756
STY000498
#N/A
STYc00072_orf_46p
#N/A


S4M10000034D06
3758
STY000625
#N/A
STYc00062_orf_63p
13784


S4M10000014D04
3705
STY000737
#N/A
STYc00054_orf_108p
13759


S4M10000013H02
3703
STY000753
#N/A
STYc00054_orf_91p
#N/A


S4M10000006A08
3688
STY000817
#N/A
STYc00054_orf_145p
#N/A


S4M10000036D07
3767
STY000817
#N/A
STYc00054_orf_145p
#N/A


S4M10000018D09
3711
STY000848
#N/A
STYc00101_orf_23p
#N/A


S4M10000014H02
3707
STY000968
#N/A
STYc00086_orf_86p
#N/A


S4M10000024G04
3734
STY000986
#N/A
#N/A
#N/A


S4M10000025H07
3740
STY000986
#N/A
#N/A
#N/A


S4M10000029D12
3748
STY000986
#N/A
#N/A
#N/A


S4M10000037A10
3770
STY001009
#N/A
STYc00080_orf_144p
#N/A


S4M10000035F09
3766
STY001185
#N/A
STYc00098_orf_2p
#N/A


S4M10000026D04
3742
STY001220
#N/A
STYc00123_orf_17p
#N/A


S4M10000022H06
3727
STY001285
#N/A
#N/A
#N/A


S4M10000030D03
3749
STY001285
#N/A
#N/A
#N/A


S4M10000037E10
3771
STY001363
#N/A
STYc00034_orf_126p
#N/A


S4M10000002B06
3681
STY001380
#N/A
STYc00119_orf_3p
#N/A


S4M10000011D08
3698
STY001534
#N/A
#N/A
#N/A


S4M10000024C11
3731
STY001582
#N/A
#N/A
#N/A


S4M10000025A11
3737
STY001582
#N/A
#N/A
#N/A


S4M10000035F09
3766
STY001619
#N/A
#N/A
#N/A


S4M10000022D12
3724
STY001777
#N/A
STYc00187_orf_4p
13970


S4M10000033F08
3753
STY001777
#N/A
STYc00187_orf_4p
13970


S4M10000033G09
3755
STY001777
#N/A
STYc00187_orf_4p
13970


S4M10000001C01
3680
STY001790
#N/A
STYc00187_orf_14p
13967


S4M10000026C10
3741
STY001853
#N/A
STYc00180_orf_22p
#N/A


S4M10000026E06
3743
STY001853
#N/A
STYc00180_orf_22p
#N/A


S4M10000036F07
3768
STY001853
#N/A
STYc00180_orf_22p
#N/A


S4M10000020A04
3720
STY002064
#N/A
STYc00074_orf_163p
#N/A


S4M10000020A04
3720
STY002066
#N/A
#N/A
#N/A


S4M10000024B02
3729
STY002145
#N/A
STYc00074_orf_17p
#N/A


S4M10000010B05
3695
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000012B12
3701
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000022D04
3723
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000022G07
3726
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000024G01
3733
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000024G09
3735
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000025E05
3739
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000027C10
3745
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000034A09
3757
STY002525
#N/A
STYc00114_orf_159p
#N/A


S4M10000037H09
3772
STY002590
#N/A
STYc00114_orf_104p
#N/A


S4M10000002G04
3683
STY002623
#N/A
STYc00114_orf_90p
#N/A


S4M10000002G08
3684
STY002623
#N/A
STYc00114_orf_90p
#N/A


S4M10000033G05
3754
STY002638
#N/A
STYc00114_orf_15p
13870


S4M10000006A06
3687
STY002672
#N/A
STYc00114_orf_136p
#N/A


S4M10000010H04
3697
STY002711
#N/A
STYc00223_orf_1p
#N/A


S4M10000005H02
3686
STY002738
#N/A
STYc00223_orf_17p
#N/A


S4M10000012B06
3700
STY002826
#N/A
STYc00152_orf_12p
#N/A


S4M10000035D01
3762
STY002826
#N/A
STYc00152_orf_12p
#N/A


S4M10000018G03
3714
STY002889
#N/A
#N/A
#N/A


S4M10000018H04
3715
STY002889
#N/A
#N/A
#N/A


S4M10000019F05
3716
STY002889
#N/A
#N/A
#N/A


S4M10000019G05
3718
STY002889
#N/A
#N/A
#N/A


S4M10000037E10
3771
STY002959
#N/A
STYc00215_orf_11p
14011


S4M10000002B09
3682
STY003082
#N/A
STYc00238_orf_12p
#N/A


S4M10000032B12
3752
STY003084
#N/A
STYc00238_orf_13p
#N/A


S4M10000024C06
3730
STY003375
#N/A
STYc00183_orf_19p
13957


S4M10000012D02
3702
STY003377
#N/A
#N/A
#N/A


S4M10000030G11
3751
STY003384
#N/A
STYc00183_orf_130p
#N/A


S4M10000006F08
3690
STY003460
#N/A
STYc00339_orf_20p
14087


S4M10000024F08
3732
STY003664
#N/A
#N/A
#N/A


S4M10000020G10
3722
STY004048
#N/A
STYc00207_orf_161p
13999


S4M10000008H10
3693
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000014B05
3704
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000015E09
3709
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000016A02
3710
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000022E12
3725
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000029B12
3747
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000035E03
3764
STY004152
#N/A
STYc00207_orf_194p
14003


S4M10000008H10
3693
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000014B05
3704
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000014D07
3706
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000015B11
3708
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000015E09
3709
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000016A02
3710
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000022E12
3725
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000026E12
3744
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000035E03
3764
STY004154
#N/A
STYc00207_orf_195p
#N/A


S4M10000005G05
3685
STY004239
#N/A
#N/A
#N/A


S4M10000007G01
3691
STY004239
#N/A
#N/A
#N/A


S4M10000008C08
3692
STY004239
#N/A
#N/A
#N/A


S4M10000018E10
3712
STY004239
#N/A
#N/A
#N/A


S4M10000018F10
3713
STY004239
#N/A
#N/A
#N/A


S4M10000019G04
3717
STY004239
#N/A
#N/A
#N/A


S4M10000037A04
3769
STY005016
#N/A
#N/A
#N/A


K1M10000007F01
1057
SAU100968
#N/A
SAU1c0044_orf_90p
12643


K1M10000007E01
1057
SAU201145
#N/A
SAU2c0405_orf_7p
12884


K1M10000007F01
1057
SPN101971
#N/A
SPN1c0209_orf_54p
#N/A


K1M10000007F01
1057
SPN201024
#N/A
SPN2c0417_orf_4p
#N/A


K1M10000003C01
1055
STY000773
#N/A
STYc00054_orf_16p
13764


K1M10000023E09
1068
STY000886
#N/A
#N/A
#N/A


K1M10000023E10
1069
STY000886
#N/A
#N/A
#N/A


K1M10000007F01
1057
STY001430
#N/A
STYc00148_orf_11p
13915


K1M10000007F01
1057
STY001433
#N/A
STYc00148_orf_12p
13916


K1M10000036G08
1076
STY001867
#N/A
STYc00180_orf_50p
13948


K1M10000030C07
1070
STY002768
#N/A
#N/A
#N/A


K1M10000037D10
1077
STY002995
#N/A
STYc00215_orf_67p
14018


K1M10000044G05
1086
STY003357
#N/A
STYc00183_orf_91p
13963










[0880]

18









TABLE IC











PathoSeq Gene Locus
Nucleotide SeqID
Protein SeqID









EFA100001
3806
4861



EFA100023
3807
4862



EFA100065
3808
4863



EFA100151
3809
4864



EFA100157
3810
4865



EFA100165
3811
4866



EFA100190
3812
4867



EFA100194
3813
4868



EFA100200
3814
4869



EFA100210
3815
4870



EFA100211
3816
4871



EFA100289
3817
4872



EFA100295
3818
4873



EFA100312
3819
4874



EFA100329
3820
4875



EFA100394
3821
4876



EFA100397
3822
4877



EFA100399
3823
4878



EFA100426
3824
4879



EFA100478
3825
4880



EFA100615
3826
4881



EFA100617
3827
4882



EFA100641
3828
4883



EFA100642
3829
4884



EFA100668
3830
4885



EFA100689
3831
4886



EFA100704
3832
4887



EFA100739
3833
4888



EFA100740
3834
4889



EFA100741
3835
4890



EFA100742
3836
4891



EFA100748
3837
4892



EFA100756
3838
4893



EFA100757
3839
4894



EFA100783
3840
4895



EFA100795
3841
4896



EFA100798
3842
4897



EFA100811
3843
4898



EFA100870
3844
4899



EFA100914
3845
4900



EFA100919
3846
4901



EFA100955
3847
4902



EFA100970
3848
4903



EFA100978
3849
4904



EFA100991
3850
4905



EFA101022
3851
4906



EFA101060
3852
4907



EFA101079
3853
4908



EFA101080
3854
4909



EFA101086
3855
4910



EFA101120
3856
4911



EFA101121
3857
4912



EFA101123
3858
4913



EFA101141
3859
4914



EFA101150
3860
4915



EFA101159
3861
4916



EFA101160
3862
4917



EFA101161
3863
4918



EFA101162
3864
4919



EFA101163
3865
4920



EFA101164
3866
4921



EFA101165
3867
4922



EFA101169
3868
4923



EFA101253
3869
4924



EFA101257
3870
4925



EFA101258
3871
4926



EFA101322
3872
4927



EFA101339
3873
4928



EFA101340
3874
4929



EFA101354
3875
4930



EFA101370
3876
4931



EFA101403
3877
4932



EFA101404
3878
4933



EFA101409
3879
4934



EFA101410
3880
4935



EFA101411
3881
4936



EFA101412
3882
4937



EFA101413
3883
4938



EFA101414
3884
4939



EFA101415
3885
4940



EFA101416
3886
4941



EFA101417
3887
4942



EFA101424
3888
4943



EFA101425
3889
4944



EFA101477
3890
4945



EFA101536
3891
4946



EFA101540
3892
4947



EFA101541
3893
4948



EFA101583
3894
4949



EFA101670
3895
4950



EFA101682
3896
4951



EFA101685
3897
4952



EFA101686
3898
4953



EFA101695
3899
4954



EFA101736
3900
4955



EFA101737
3901
4956



EFA101753
3902
4957



EFA101765
3903
4958



EFA101790
3904
4959



EFA101791
3905
4960



EFA101792
3906
4961



EFA101795
3907
4962



EFA101797
3908
4963



EFA101799
3909
4964



EFA101833
3910
4965



EFA101868
3911
4966



EFA101872
3912
4967



EFA101873
3913
4968



EFA101892
3914
4969



EFA101924
3915
4970



EFA101925
3916
4971



EFA101963
3917
4972



EFA102006
3918
4973



EFA102022
3919
4974



EFA102023
3920
4975



EFA102051
3921
4976



EFA102091
3922
4977



EFA102110
3923
4978



EFA102183
3924
4979



EFA102185
3925
4980



EFA102186
3926
4981



EFA102201
3927
4982



EFA102205
3928
4983



EFA102253
3929
4984



EFA102282
3930
4985



EFA102326
3931
4986



EFA102338
3932
4987



EFA102350
3933
4988



EFA102351
3934
4989



EFA102352
3935
4990



EFA102353
3936
4991



EFA102389
3937
4992



EFA102453
3938
4993



EFA102501
3939
4994



EFA102502
3940
4995



EFA102503
3941
4996



EFA102518
3942
4997



EFA102541
3943
4998



EFA102542
3944
4999



EFA102549
3945
5000



EFA102551
3946
5001



EFA102554
3947
5002



EFA102655
3948
5003



EFA102656
3949
5004



EFA102698
3950
5005



EFA102728
3951
5006



EFA102736
3952
5007



EFA102764
3953
5008



EFA102774
3954
5009



EFA102780
3955
5010



EFA102788
3956
5011



EFA102802
3957
5012



EFA102813
3958
5013



EFA102915
3959
5014



EFA103021
3960
5015



EFA103033
3961
5016



EFA103038
3962
5017



EFA103039
3963
5018



EFA103062
3964
5019



EFA103081
3965
5020



EFA103174
3966
5021



EFA103210
3967
5022



EFA103268
3968
5023



EFA103295
3969
5024



EFA103348
3970
5025



EFA103365
3971
5026



EFA103375
3972
5027



EFA103504
3973
5028



EFA103508
3974
5029



EFA103571
3975
5030



EFA103786
3976
5031



KPN100432
3977
5032



KPN100854
3978
5033



KPN101022
3979
5034



KPN101026
3980
5035



KPN101729
3981
5036



KPN101750
3982
5037



KPN102057
3983
5038



KPN102638
3984
5039



KPN103882
3985
5040



KPN104183
3986
5041



KPN104281
3987
5042



KPN104430
3988
5043



KPN104538
3989
5044



KPN104716
3990
5045



KPN105722
3991
5046



KPN105779
3992
5047



KPN106044
3993
5048



KPN106659
3994
5049



KPN106840
3995
5050



KPN107626
3996
5051



KPN107776
3997
5052



PA0028
3998
5053



PA0120
3999
5054



PA0129
4000
5055



PA0141
4001
5056



PA0221
4002
5057



PA0265
4003
5058



PA0321
4004
5059



PA0337
4005
5060



PA0353
4006
5061



PA0378
4007
5062



PA0401
4008
5063



PA0413
4009
5064



PA0414
4010
5065



PA0419
4011
5066



PA0423
4012
5067



PA0469
4013
5068



PA0472
4014
5069



PA0506
4015
5070



PA0600
4016
5071



PA0642
4017
5072



PA0650
4018
5073



PA0715
4019
5074



PA0788
4020
5075



PA0882
4021
5076



PA0934
4022
5077



PA0938
4023
5078



PA1019
4024
5079



PA1072
4025
5080



PA1115
4026
5081



PA1270
4027
5082



PA1301
4028
5083



PA1360
4029
5084



PA1365
4030
5085



PA1398
4031
5086



PA1462
4032
5087



PA1493
4033
5088



PA1547
4034
5089



PA1636
4035
5090



PA1684
4036
5091



PA1868
4037
5092



PA1876
4038
5093



PA1918
4039
5094



PA1986
4040
5095



PA2009
4041
5096



PA2083
4042
5097



PA2101
4043
5098



PA2108
4044
5099



PA2128
4045
5100



PA2147
4046
5101



PA2196
4047
5102



PA2197
4048
5103



PA2222
4049
5104



PA2313
4050
5105



PA2398
4051
5106



PA2424
4052
5107



PA2461
4053
5108



PA2470
4054
5109



PA2488
4055
5110



PA2494
4056
5111



PA2584
4057
5112



PA2594
4058
5113



PA2634
4059
5114



PA2641
4060
5115



PA2671
4061
5116



PA2680
4062
5117



PA2684
4063
5118



PA2726
4064
5119



PA2742
4065
5120



PA3006
4066
5121



PA3011
4067
5122



PA3013
4068
5123



PA3041
4069
5124



PA3048
4070
5125



PA3068
4071
5126



PA3121
4072
5127



PA3153
4073
5128



PA3154
4074
5129



PA3160
4075
5130



PA3279
4076
5131



PA3280
4077
5132



PA3374
4078
5133



PA3479
4079
5134



PA3484
4080
5135



PA3522
4081
5136



PA3643
4082
5137



PA3703
4083
5138



PA3709
4084
5139



PA3716
4085
5140



PA3764
4086
5141



PA3845
4087
5142



PA3866
4088
5143



PA3876
4089
5144



PA3877
4090
5145



PA3931
4091
5146



PA3984
4092
5147



PA4024
4093
5148



PA4027
4094
5149



PA4037
4095
5150



PA4067
4096
5151



PA4070
4097
5152



PA4081
4098
5153



PA4105
4099
5154



PA4124
4100
5155



PA4125
4101
5156



PA4158
4102
5157



PA4237
4103
5158



PA4242
4104
5159



PA4244
4105
5160



PA4245
4106
5161



PA4246
4107
5162



PA4247
4108
5163



PA4248
4109
5164



PA4249
4110
5165



PA4250
4111
5166



PA4251
4112
5167



PA4252
4113
5168



PA4253
4114
5169



PA4254
4115
5170



PA4256
4116
5171



PA4257
4117
5172



PA4258
4118
5173



PA4259
4119
5174



PA4262
4120
5175



PA4263
4121
5176



PA4264
4122
5177



PA4268
4123
5178



PA4269
4124
5179



PA4271
4125
5180



PA4272
4126
5181



PA4316
4127
5182



PA4332
4128
5183



PA4347
4129
5184



PA4363
4130
5185



PA4375
4131
5186



PA4413
4132
5187



PA4433
4133
5188



PA4473
4134
5189



PA4506
4135
5190



PA4512
4136
5191



PA4542
4137
5192



PA4576
4138
5193



PA4598
4139
5194



PA4665
4140
5195



PA4681
4141
5196



PA4709
4142
5197



PA4744
4143
5198



PA4771
4144
5199



PA4888
4145
5200



PA4942
4146
5201



PA4997
4147
5202



PA5030
4148
5203



PA5076
4149
5204



PA5088
4150
5205



PA5193
4151
5206



PA5199
4152
5207



PA5207
4153
5208



PA5209
4154
5209



PA5248
4155
5210



PA5299
4156
5211



PA5316
4157
5212



PA5388
4158
5213



PA5393
4159
5214



PA5436
4160
5215



PA5443
4161
5216



PA5490
4162
5217



PA5493
4163
5218



PA5507
4164
5219



PA5567
4165
5220



SAU100040
4166
5221



SAU100053
4167
5222



SAU100056
4168
5223



SAU100059
4169
5224



SAU100062
4170
5225



SAU100077
4171
5226



SAU100112
4172
5227



SAU100114
4173
5228



SAU100118
4174
5229



SAU100123
4175
5230



SAU100128
4176
5231



SAU100131
4177
5232



SAU100133
4178
5233



SAU100139
4179
5234



SAU100140
4180
5235



SAU100141
4181
5236



SAU100157
4182
5237



SAU100158
4183
5238



SAU100162
4184
5239



SAU100175
4185
5240



SAU100182
4186
5241



SAU100186
4187
5242



SAU100198
4188
5243



SAU100227
4189
5244



SAU100231
4190
5245



SAU100242
4191
5246



SAU100246
4192
5247



SAU100251
4193
5248



SAU100265
4194
5249



SAU100266
4195
5250



SAU100272
4196
5251



SAU100275
4197
5252



SAU100300
4198
5253



SAU100301
4199
5254



SAU100302
4200
5255



SAU100305
4201
5256



SAU100307
4202
5257



SAU100308
4203
5258



SAU100313
4204
5259



SAU100315
4205
5260



SAU100323
4206
5261



SAU100347
4207
5262



SAU100355
4208
5263



SAU100359
4209
5264



SAU100381
4210
5265



SAU100389
4211
5266



SAU100390
4212
5267



SAU100401
4213
5268



SAU100412
4214
5269



SAU100414
4215
5270



SAU100432
4216
5271



SAU100433
4217
5272



SAU100436
4218
5273



SAU100443
4219
5274



SAU100444
4220
5275



SAU100475
4221
5276



SAU100478
4222
5277



SAU100489
4223
5278



SAU100496
4224
5279



SAU100497
4225
5280



SAU100514
4226
5281



SAU100517
4227
5282



SAU100521
4228
5283



SAU100522
4229
5284



SAU100527
4230
5285



SAU100528
4231
5286



SAU100532
4232
5287



SAU100542
4233
5288



SAU100546
4234
5289



SAU100547
4235
5290



SAU100557
4236
5291



SAU100582
4237
5292



SAU100590
4238
5293



SAU100595
4239
5294



SAU100596
4240
5295



SAU100601
4241
5296



SAU100608
4242
5297



SAU100610
4243
5298



SAU100613
4244
5299



SAU100617
4245
5300



SAU100633
4246
5301



SAU100646
4247
5302



SAU100658
4248
5303



SAU100659
4249
5304



SAU100679
4250
5305



SAU100684
4251
5306



SAU100685
4252
5307



SAU100689
4253
5308



SAU100690
4254
5309



SAU100702
4255
5310



SAU100710
4256
5311



SAU100714
4257
5312



SAU100731
4258
5313



SAU100733
4259
5314



SAU100734
4260
5315



SAU100736
4261
5316



SAU100738
4262
5317



SAU100741
4263
5318



SAU100745
4264
5319



SAU100747
4265
5320



SAU100751
4266
5321



SAU100752
4267
5322



SAU100767
4268
5323



SAU100770
4269
5324



SAU100771
4270
5325



SAU100773
4271
5326



SAU100776
4272
5327



SAU100778
4273
5328



SAU100793
4274
5329



SAU100794
4275
5330



SAU100799
4276
5331



SAU100808
4277
5332



SAU100810
4278
5333



SAU100813
4279
5334



SAU100831
4280
5335



SAU100836
4281
5336



SAU100838
4282
5337



SAU100839
4283
5338



SAU100843
4284
5339



SAU100845
4285
5340



SAU100858
4286
5341



SAU100859
4287
5342



SAU100865
4288
5343



SAU100866
4289
5344



SAU100879
4290
5345



SAU100880
4291
5346



SAU100882
4292
5347



SAU100885
4293
5348



SAU100886
4294
5349



SAU100887
4295
5350



SAU100899
4296
5351



SAU100901
4297
5352



SAU100916
4298
5353



SAU100920
4299
5354



SAU100921
4300
5355



SAU100932
4301
5356



SAU100944
4302
5357



SAU100952
4303
5358



SAU100959
4304
5359



SAU100961
4305
5360



SAU100962
4306
5361



SAU100963
4307
5362



SAU100964
4308
5363



SAU100965
4309
5364



SAU100970
4310
5365



SAU100996
4311
5366



SAU101006
4312
5367



SAU101020
4313
5368



SAU101024
4314
5369



SAU101028
4315
5370



SAU101034
4316
5371



SAU101038
4317
5372



SAU101039
4318
5373



SAU101065
4319
5374



SAU101067
4320
5375



SAU101070
4321
5376



SAU101084
4322
5377



SAU101085
4323
5378



SAU101086
4324
5379



SAU101090
4325
5380



SAU101092
4326
5381



SAU101104
4327
5382



SAU101143
4328
5383



SAU101145
4329
5384



SAU101155
4330
5385



SAU101156
4331
5386



SAU101159
4332
5387



SAU101175
4333
5388



SAU101180
4334
5389



SAU101183
4335
5390



SAU101184
4336
5391



SAU101189
4337
5392



SAU101197
4338
5393



SAU101198
4339
5394



SAU101199
4340
5395



SAU101220
4341
5396



SAU101224
4342
5397



SAU101226
4343
5398



SAU101231
4344
5399



SAU101235
4345
5400



SAU101236
4346
5401



SAU101239
4347
5402



SAU101240
4348
5403



SAU101242
4349
5404



SAU101247
4350
5405



SAU101262
4351
5406



SAU101265
4352
5407



SAU101266
4353
5408



SAU101267
4354
5409



SAU101270
4355
5410



SAU101271
4356
5411



SAU101275
4357
5412



SAU101286
4358
5413



SAU101293
4359
5414



SAU101300
4360
5415



SAU101301
4361
5416



SAU101302
4362
5417



SAU101310
4363
5418



SAU101311
4364
5419



SAU101320
4365
5420



SAU101327
4366
5421



SAU101339
4367
5422



SAU101340
4368
5423



SAU101341
4369
5424



SAU101343
4370
5425



SAU101344
4371
5426



SAU101346
4372
5427



SAU101347
4373
5428



SAU101350
4374
5429



SAU101351
4375
5430



SAU101360
4376
5431



SAU101365
4377
5432



SAU101366
4378
5433



SAU101369
4379
5434



SAU101371
4380
5435



SAU101381
4381
5436



SAU101382
4382
5437



SAU101383
4383
5438



SAU101385
4384
5439



SAU101387
4385
5440



SAU101389
4386
5441



SAU101398
4387
5442



SAU101399
4388
5443



SAU101400
4389
5444



SAU101408
4390
5445



SAU101421
4391
5446



SAU101427
4392
5447



SAU101432
4393
5448



SAU101436
4394
5449



SAU101438
4395
5450



SAU101444
4396
5451



SAU101445
4397
5452



SAU101446
4398
5453



SAU101447
4399
5454



SAU101452
4400
5455



SAU101455
4401
5456



SAU101461
4402
5457



SAU101463
4403
5458



SAU101476
4404
5459



SAU101481
4405
5460



SAU101482
4406
5461



SAU101483
4407
5462



SAU101488
4408
5463



SAU101491
4409
5464



SAU101492
4410
5465



SAU101493
4411
5466



SAU101495
4412
5467



SAU101497
4413
5468



SAU101509
4414
5469



SAU101526
4415
5470



SAU101529
4416
5471



SAU101541
4417
5472



SAU101543
4418
5473



SAU101545
4419
5474



SAU101546
4420
5475



SAU101549
4421
5476



SAU101551
4422
5477



SAU101554
4423
5478



SAU101561
4424
5479



SAU101565
4425
5480



SAU101567
4426
5481



SAU101570
4427
5482



SAU101571
4428
5483



SAU101572
4429
5484



SAU101573
4430
5485



SAU101574
4431
5486



SAU101575
4432
5487



SAU101576
4433
5488



SAU101586
4434
5489



SAU101592
4435
5490



SAU101599
4436
5491



SAU101610
4437
5492



SAU101612
4438
5493



SAU101614
4439
5494



SAU101616
4440
5495



SAU101622
4441
5496



SAU101624
4442
5497



SAU101630
4443
5498



SAU101632
4444
5499



SAU101637
4445
5500



SAU101641
4446
5501



SAU101651
4447
5502



SAU101652
4448
5503



SAU101653
4449
5504



SAU101655
4450
5505



SAU101663
4451
5506



SAU101664
4452
5507



SAU101674
4453
5508



SAU101679
4454
5509



SAU101681
4455
5510



SAU101682
4456
5511



SAU101685
4457
5512



SAU101717
4458
5513



SAU101724
4459
5514



SAU101726
4460
5515



SAU101727
4461
5516



SAU101728
4462
5517



SAU101736
4463
5518



SAU101737
4464
5519



SAU101744
4465
5520



SAU101751
4466
5521



SAU101752
4467
5522



SAU101754
4468
5523



SAU101756
4469
5524



SAU101771
4470
5525



SAU101772
4471
5526



SAU101777
4472
5527



SAU101781
4473
5528



SAU101782
4474
5529



SAU101784
4475
5530



SAU101790
4476
5531



SAU101791
4477
5532



SAU101792
4478
5533



SAU101793
4479
5534



SAU101794
4480
5535



SAU101795
4481
5536



SAU101797
4482
5537



SAU101798
4483
5538



SAU101799
4484
5539



SAU101800
4485
5540



SAU101801
4486
5541



SAU101802
4487
5542



SAU101803
4488
5543



SAU101804
4489
5544



SAU101805
4490
5545



SAU101806
4491
5546



SAU101807
4492
5547



SAU101808
4493
5548



SAU101810
4494
5549



SAU101811
4495
5550



SAU101814
4496
5551



SAU101815
4497
5552



SAU101818
4498
5553



SAU101824
4499
5554



SAU101833
4500
5555



SAU101839
4501
5556



SAU101842
4502
5557



SAU101845
4503
5558



SAU101849
4504
5559



SAU101857
4505
5560



SAU101862
4506
5561



SAU101864
4507
5562



SAU101865
4508
5563



SAU101866
4509
5564



SAU101868
4510
5565



SAU101869
4511
5566



SAU101876
4512
5567



SAU101881
4513
5568



SAU101882
4514
5569



SAU101890
4515
5570



SAU101891
4516
5571



SAU101893
4517
5572



SAU101904
4518
5573



SAU101907
4519
5574



SAU101909
4520
5575



SAU101910
4521
5576



SAU101915
4522
5577



SAU101922
4523
5578



SAU101948
4524
5579



SAU101966
4525
5580



SAU101968
4526
5581



SAU101991
4527
5582



SAU101995
4528
5583



SAU101996
4529
5584



SAU101999
4530
5585



SAU102001
4531
5586



SAU102002
4532
5587



SAU102003
4533
5588



SAU102006
4534
5589



SAU102007
4535
5590



SAU102032
4536
5591



SAU102035
4537
5592



SAU102044
4538
5593



SAU102046
4539
5594



SAU102049
4540
5595



SAU102054
4541
5596



SAU102059
4542
5597



SAU102067
4543
5598



SAU102068
4544
5599



SAU102102
4545
5600



SAU102113
4546
5601



SAU102116
4547
5602



SAU102117
4548
5603



SAU102129
4549
5604



SAU102132
4550
5605



SAU102142
4551
5606



SAU102143
4552
5607



SAU102144
4553
5608



SAU102162
4554
5609



SAU102165
4555
5610



SAU102200
4556
5611



SAU102201
4557
5612



SAU102222
4558
5613



SAU102231
4559
5614



SAU102232
4560
5615



SAU102233
4561
5616



SAU102241
4562
5617



SAU102242
4563
5618



SAU102246
4564
5619



SAU102247
4565
5620



SAU102252
4566
5621



SAU102256
4567
5622



SAU102257
4568
5623



SAU102259
4569
5624



SAU102260
4570
5625



SAU102261
4571
5626



SAU102262
4572
5627



SAU102264
4573
5628



SAU102265
4574
5629



SAU102268
4575
5630



SAU102270
4576
5631



SAU102280
4577
5632



SAU102281
4578
5633



SAU102283
4579
5634



SAU102284
4580
5635



SAU102286
4581
5636



SAU102287
4582
5637



SAU102292
4583
5638



SAU102294
4584
5639



SAU102297
4585
5640



SAU102298
4586
5641



SAU102308
4587
5642



SAU102318
4588
5643



SAU102333
4589
5644



SAU102334
4590
5645



SAU102336
4591
5646



SAU102340
4592
5647



SAU102345
4593
5648



SAU102350
4594
5649



SAU102352
4595
5650



SAU102355
4596
5651



SAU102356
4597
5652



SAU102378
4598
5653



SAU102380
4599
5654



SAU102388
4600
5655



SAU102389
4601
5656



SAU102390
4602
5657



SAU102392
4603
5658



SAU102394
4604
5659



SAU102396
4605
5660



SAU102401
4606
5661



SAU102407
4607
5662



SAU102417
4608
5663



SAU102418
4609
5664



SAU102420
4610
5665



SAU102422
4611
5666



SAU102423
4612
5667



SAU102433
4613
5668



SAU102434
4614
5669



SAU102437
4615
5670



SAU102440
4616
5671



SAU102447
4617
5672



SAU102448
4618
5673



SAU102449
4619
5674



SAU102450
4620
5675



SAU102452
4621
5676



SAU102453
4622
5677



SAU102460
4623
5678



SAU102469
4624
5679



SAU102473
4625
5680



SAU102474
4626
5681



SAU102476
4627
5682



SAU102479
4628
5683



SAU102480
4629
5684



SAU102481
4630
5685



SAU102485
4631
5686



SAU102486
4632
5687



SAU102487
4633
5688



SAU102498
4634
5689



SAU102502
4635
5690



SAU102503
4636
5691



SAU102526
4637
5692



SAU102527
4638
5693



SAU102531
4639
5694



SAU102533
4640
5695



SAU102534
4641
5696



SAU102541
4642
5697



SAU102551
4643
5698



SAU102554
4644
5699



SAU102575
4645
5700



SAU102578
4646
5701



SAU102584
4647
5702



SAU102585
4648
5703



SAU102593
4649
5704



SAU102598
4650
5705



SAU102599
4651
5706



SAU102601
4652
5707



SAU102602
4653
5708



SAU102603
4654
5709



SAU102605
4655
5710



SAU102606
4656
5711



SAU102607
4657
5712



SAU102609
4658
5713



SAU102610
4659
5714



SAU102613
4660
5715



SAU102614
4661
5716



SAU102615
4662
5717



SAU102620
4663
5718



SAU102621
4664
5719



SAU102629
4665
5720



SAU102631
4666
5721



SAU102636
4667
5722



SAU102637
4668
5723



SAU102639
4669
5724



SAU102652
4670
5725



SAU102658
4671
5726



SAU102663
4672
5727



SAU102669
4673
5728



SAU102671
4674
5729



SAU102674
4675
5730



SAU102693
4676
5731



SAU102694
4677
5732



SAU102725
4678
5733



SAU102764
4679
5734



SAU102766
4680
5735



SAU102812
4681
5736



SAU102863
4682
5737



SAU102870
4683
5738



SAU102880
4684
5739



SAU102881
4685
5740



SAU102883
4686
5741



SAU102905
4687
5742



SAU102909
4688
5743



SAU102933
4689
5744



SAU102935
4690
5745



SAU102936
4691
5746



SAU102939
4692
5747



SAU102942
4693
5748



SAU102944
4694
5749



SAU102979
4695
5750



SAU102983
4696
5751



SAU102992
4697
5752



SAU103010
4698
5753



SAU103024
4699
5754



SAU103025
4700
5755



SAU103037
4701
5756



SAU103038
4702
5757



SAU103042
4703
5758



SAU103077
4704
5759



SAU103115
4705
5760



SAU103144
4706
5761



SAU103159
4707
5762



SAU103169
4708
5763



SAU103175
4709
5764



SAU103191
4710
5765



SAU103198
4711
5766



SAU103204
4712
5767



SAU103226
4713
5768



SAU103232
4714
5769



SAU200006
4715
5770



SAU200028
4716
5771



SAU200030
4717
5772



SAU200058
4718
5773



SAU200059
4719
5774



SAU200088
4720
5775



SAU200157
4721
5776



SAU200242
4722
5777



SAU200297
4723
5778



SAU200345
4724
5779



SAU200392
4725
5780



SAU200468
4726
5781



SAU200558
4727
5782



SAU200561
4728
5783



SAU200564
4729
5784



SAU200565
4730
5785



SAU200593
4731
5786



SAU200601
4732
5787



SAU200628
4733
5788



SAU200657
4734
5789



SAU200685
4735
5790



SAU200721
4736
5791



SAU200725
4737
5792



SAU200731
4738
5793



SAU200740
4739
5794



SAU200752
4740
5795



SAU200914
4741
5796



SAU200916
4742
5797



SAU200928
4743
5798



SAU200934
4744
5799



SAU200949
4745
5800



SAU200960
4746
5801



SAU200994
4747
5802



SAU201167
4748
5803



SAU201168
4749
5804



SAU201184
4750
5805



SAU201197
4751
5806



SAU201225
4752
5807



SAU201236
4753
5808



SAU201301
4754
5809



SAU201333
4755
5810



SAU201375
4756
5811



SAU201380
4757
5812



SAU201381
4758
5813



SAU201385
4759
5814



SAU201403
4760
5815



SAU201469
4761
5816



SAU201486
4762
5817



SAU201506
4763
5818



SAU201508
4764
5819



SAU201513
4765
5820



SAU201539
4766
5821



SAU201541
4767
5822



SAU201558
4768
5823



SAU201571
4769
5824



SAU201611
4770
5825



SAU201615
4771
5826



SAU201620
4772
5827



SAU201621
4773
5828



SAU201654
4774
5829



SAU201666
4775
5830



SAU201743
4776
5831



SAU201752
4777
5832



SAU201765
4778
5833



SAU201773
4779
5834



SAU201775
4780
5835



SAU201810
4781
5836



SAU201827
4782
5837



SAU201929
4783
5838



SAU201952
4784
5839



SAU201961
4785
5840



SAU201971
4786
5841



SAU202006
4787
5842



SAU202039
4788
5843



SAU202126
4789
5844



SAU202174
4790
5845



SAU202176
4791
5846



SAU202186
4792
5847



SAU202267
4793
5848



SAU202708
4794
5849



SAU202731
4795
5850



SAU202736
4796
5851



SAU202756
4797
5852



SAU202781
4798
5853



SAU202872
4799
5854



SAU202882
4800
5855



SAU202930
4801
5856



SAU202945
4802
5857



SAU202968
4803
5858



SAU203001
4804
5859



SAU203007
4805
5860



SAU203196
4806
5861



SAU203293
4807
5862



SAU203296
4808
5863



SAU203524
4809
5864



SAU300110
4810
5865



SAU300131
4811
5866



SAU300156
4812
5867



SAU300191
4813
5868



SAU300269
4814
5869



SAU300335
4815
5870



SAU300338
4816
5871



SAU300455
4817
5872



SAU300572
4818
5873



SAU300617
4819
5874



SAU300713
4820
5875



SAU300719
4821
5876



SAU300732
4822
5877



SAU300825
4823
5878



SAU300868
4824
5879



SAU300975
4825
5880



SAU300998
4826
5881



SAU301004
4827
5882



SAU301030
4828
5883



SAU301054
4829
5884



SAU301080
4830
5885



SAU301118
4831
5886



SAU301133
4832
5887



SAU301148
4833
5888



SAU301223
4834
5889



SAU301230
4835
5890



SAU301268
4836
5891



SAU301275
4837
5892



SAU301357
4838
5893



SAU301363
4839
5894



SAU301433
4840
5895



SAU301465
4841
5896



SAU301472
4842
5897



SAU301592
4843
5898



SAU301620
4844
5899



SAU301758
4845
5900



SAU301773
4846
5901



SAU301829
4847
5902



SAU301869
4848
5903



SAU301898
4849
5904



SAU302060
4850
5905



SAU302513
4851
5906



SAU302626
4852
5907



SAU302685
4853
5908



SAU302698
4854
5909



SAU302699
4855
5910



SAU302805
4856
5911



SAU302901
4857
5912



SAU302931
4858
5913



SAU302950
4859
5914



SAU302956
4860
5915











[0881]


Claims
  • 1. A purified or isolated nucleic acid sequence comprising a nucleotide sequence consisting essentially of one of SEQ ID NOs: 8-3795, wherein expression of said nucleic acid inhibits proliferation of a cell.
  • 2. A purified or isolated nucleic acid comprising a fragment of one of SEQ ID NOs.: 8-3795, said fragment selected from the group consisting of fragments comprising at least 10, at least 20, at least 25, at least 30, at least 50 and more than 50 consecutive nucleotides of one of SEQ ID NOs: 8-3795.
  • 3. A purified or isolated antisense nucleic acid comprising a nucleotide sequence complementary to at least a portion of an intragenic sequence, intergenic sequence, sequences spanning at least a portion of two or more genes, 5′ noncoding region, or 3′ noncoding region within an operon comprising a proliferation-required gene whose activity or expression is inhibited by an antisense nucleic acid comprising the nucleotide sequence of one of SEQ ID NOs.: 8-3795.
  • 4. A purified or isolated nucleic acid comprising a nucleotide sequence having at least 70% identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795, the nucleotide sequences complementary to SEQ ID NOs.: 8-3795 and the sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795 as determined using BLASTN version 2.0 with the default parameters.
  • 5. A vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795.
  • 6. A purified or isolated polypeptide comprising a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795, or a fragment selected from the group consisting of fragments comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of one of the said polypeptides.
  • 7. A purified or isolated polypeptide comprising a polypeptide having at least 25% amino acid identity to a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or at least 25% amino acid identity to a fragment comprising at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 as determined using FASTA version 3.0t78 with the default parameters.
  • 8. A method of producing a polypeptide, comprising introducing a vector comprising a promoter operably linked to a nucleic acid comprising a nucleotide sequence encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising one of SEQ ID NOs.: 8-3795 into a cell.
  • 9. A method of inhibiting proliferation of a cell in an individual comprising inhibiting the activity or reducing the amount of a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product.
  • 10. A method for identifying a compound which influences the activity of a gene product required for proliferation, said gene product comprising a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising: contacting said gene product with a candidate compound; and determining whether said compound influences the activity of said gene product.
  • 11. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising: (a) contacting a target gene or RNA encoding said gene product with a candidate compound or nucleic acid; and (b) measuring an activity of said target.
  • 12. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising the steps of: (a) providing a sublethal level of an antisense nucleic acid comprising a nucleotide sequence complementary to a nucleic acid comprising a nucleotide sequence encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell; (b) contacting said sensitized cell with a compound; and (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
  • 13. A method for inhibiting cellular proliferation comprising introducing an effective amount of a compound with activity against a gene whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a compound with activity against the product of said gene into a population of cells expressing said gene.
  • 14. A composition comprising an effective concentration of an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof in a pharmaceutically acceptable carrier.
  • 15. A method for inhibiting the activity or expression of a gene in an operon required for proliferation wherein the activity or expression of at least one gene in said operon is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising contacting a cell in a cell population with an antisense nucleic acid complementary to at least a portion of said operon.
  • 16. A method for identifying a gene which is required for proliferation of a cell comprising: (a) contacting a cell with an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, wherein said cell is a cell other than the organism from which said nucleic acid was obtained; (b) determining whether said nucleic acid inhibits proliferation of said cell; and (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.
  • 17. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising: (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 in a test cell, wherein said test cell is not the cell from which said nucleic acid was obtained; (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell; (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell; (d) contacting the sensitized cell of step (c) with a compound; and (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said inhibitory nucleic acid.
  • 18. A method of identifying a compound having the ability to inhibit proliferation comprising: (a) contacting a test cell with a sublethal level of a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, thus sensitizing said test cell; (b) contacting the sensitized test cell of step (a) with a compound; and (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said nucleic acid.
  • 19. A method for identifying a compound having activity against a biological pathway required for proliferation comprising: (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, in said cell to reduce the activity or amount of said gene product; (b) contacting the sensitized cell with a compound; and (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
  • 20. A method for identifying a compound having the ability to inhibit cellular proliferation comprising: (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795; (b) contacting said cell with a compound; and (c) determining whether said compound reduces proliferation of said contacted cell by acting on said gene product.
  • 21. A method for identifying the biological pathway in which a proliferation-required gene or its gene product lies, wherein said gene or gene product comprises a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising: (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity of said proliferation-required gene or gene product in a test cell; (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and (c) determining the degree to which said proliferation of said test cell is inhibited relative to a cell which was not contacted with said compound.
  • 22. A method for determining the biological pathway on which a test compound acts comprising: (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a first cell, wherein the activity or expression of said proliferation-required nucleic acid is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795 and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required nucleic acid lies is known, (b) contacting said first cell with said test compound; and (c) determining the degree to which said test compound inhibits proliferation of said first cell relative to a cell which does not contain said antisense nucleic acid.
  • 23. A purified or isolated nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795.
  • 24. A compound which interacts with a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.
  • 25. A compound which interacts with a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.
  • 26. A method for manufacturing an antibiotic comprising the steps of: screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795; and manufacturing the compound so identified.
  • 27. A purified or isolated nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the nucleotide sequences complementary to SEQ ID NOs.:3796-3800, 3806-4860, 5916-10012, and the nucleotide sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 as determined using BLASTN version 2.0 with the default parameters.
  • 28. A method of inhibiting proliferation of a cell comprising inhibiting the activity or reducing the amount of a gene product in said cell or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in said cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795.
  • 29. A method for identifying a compound which influences the activity of a gene product required for proliferation comprising: contacting a candidate compound with a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and determining whether said candidate compound influences the activity of said gene product.
  • 30. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation comprising: (a) providing a target that is a gene or RNA, wherein said target comprises a nucleic acid that encodes a gene product selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; (b) contacting said target with a candidate compound or nucleic acid; and (c) measuring an activity of said target.
  • 31. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell comprising: (a) providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; (b) contacting said sensitized cell with a compound; and (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
  • 32. A method for inhibiting cellular proliferation comprising introducing a compound with activity against a gene product or a compound with activity against a gene encoding said gene product into a population of cells expressing said gene product, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
  • 33. A preparation comprising an effective concentration of an antisense nucleic acid in a pharmaceutically acceptable carrier wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid comprising a sequence having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions.
  • 34. A method for inhibiting the activity or expression of a gene in an operon which encodes a gene product required for proliferation comprising contacting a cell in a cell population with an antisense nucleic acid comprising at least a proliferation-inhibiting portion of said operon in an antisense orientation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
  • 35. A method for identifying a gene which is required for proliferation of a cell comprising: (a) contacting a cell with an antisense nucleic acid selected from the group consisting of a nucleic acid at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, wherein said cell is a cell other than the organism from which said nucleic acid was obtained; (b) determining whether said nucleic acid inhibits proliferation of said cell; and (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.
  • 36. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising: (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by an antisense nucleic acid in a test cell, wherein said test cell is not the microorgaism from which the antisense nucleic acid was obtained, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions; (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell; (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell; (d) contacting the sensitized cell of step (c) with a compound; and (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not express said inhibitory nucleic acid.
  • 37. A method of identifying a compound having the ability to inhibit proliferation comprising: (a) sensitizing a test cell by contacting said test cell with a sublethal level of an antisense nucleic acid, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditionst; (b) contacting the sensitized test cell of step (a) with a compound; and (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said antisense nucleic acid.
  • 38. A method for identifying a compound having activity against a biological pathway required for proliferation comprising: (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; (b) contacting the sensitized cell with a compound; and (c) determining the extent to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
  • 39. A method for identifying a compound having the ability to inhibit cellular proliferation comprising: (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; (b) contacting said cell with a compound; and (c) determining the degree to which said compound reduces proliferation of said contacted cell relative to a cell which was not contacted with said agent.
  • 40. A method for identifying the biological pathway in which a proliferation-required gene product or a gene encoding a proliferation-required gene product lies comprising: (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity or reduces the level of said gene encoding a proliferation-required gene product or said said proliferation-required gene product in a test cell, wherein said proliferation-required gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and (c) determining the degree to which said compound inhibits proliferation of said test cell relative to a cell which does not contain said antisense nucleic acid.
  • 41. A method for determining the biological pathway on which a test compound acts comprising: (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a cell, thereby producing a sensitized cell, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795 or a proliferation-inhibiting portion thereof,a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required polypeptide lies is known, (b) contacting said cell with said test compound; and (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
  • 42. A compound which inhibits proliferation by interacting with a gene encoding a gene product required for proliferation or with a gene product required for proliferation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an anti sense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
  • 43. A method for manufacturing an antibiotic comprising the steps of: screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and manufacturing the compound so identified.
  • 44. A method for inhibiting proliferation of a cell in a subject comprising administering an effective amount of a compound that reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
RELATED APPLICATIONS

[0001] This application claims priority from U.S. Provisional Patent Application Ser. No. 60/191,078, filed Mar. 21, 2000, U.S. Provisional Patent Application Ser. No. 60/206,848, filed May 23, 2000, U.S. Provisional Patent Application Ser. No. 60/207,727, filed May 26, 2000, U.S. Provisional Patent Application Ser. No. 60/242,578, filed Oct. 23, 2000, U.S. Provisional Patent Application Ser. No. 60/253,625, filed Nov. 27, 2000, U.S. Provisional Patent Application Ser. No. 60/257,931, filed Dec. 22, 2000, and U.S. Provisional Patent Application Ser. No. 60/269,308, filed Feb. 16, 2001 the disclosures of which are incorporated herein by reference in their entireties.

Provisional Applications (7)
Number Date Country
60191078 Mar 2000 US
60206848 May 2000 US
60207727 May 2000 US
60242578 Oct 2000 US
60253625 Nov 2000 US
60257931 Dec 2000 US
60269308 Feb 2001 US