The invention relates to a device for detecting rain on a pane by means of a lighting source and a camera.
In U.S. Pat. No. 7,259,367 B2, rain sensing by means of a camera is proposed, said rain sensing providing extensive lighting of the passing-through window of the camera aperture angle with the pane by means of an infrared diode. The camera focus is set to almost infinite and can thus be simultaneously used for driver assistance applications. Due to the imaging on the remote range raindrops are only noticeable as disturbances in the image, which are detected by complex differential measurements of the images recorded with infrared light pulsed or modulated in synchronization with the pixel clock.
A device and a method for detecting rain are described in WO 2012/092911 A1. A camera is disposed behind a pane, in particular in the interior of a vehicle behind a windshield, and focused onto a remote region that lies in front of the pane. Alighting source for generating at least one light beam that is directed at the pane directs the at least one light beam towards the pane such that at least one beam that is reflected from the outer face of the pane impinges on the camera as an external light reflex or external reflex. The light quantity of the at least one beam or light reflex that impinges on the camera can be measured by the camera. One or more light-emitting diodes optionally with a light guide or a light band are indicated as the lighting source. If the aperture angle of the illumination is large enough, the lighting source can also be located inside the camera, e.g. on a circuit board of the camera system.
The sensitivity of the rain detection hereby substantially depends on the configuration of the illumination.
An object of at least one embodiment of this invention is to indicate optimized illumination for camera-based rain detection, which guarantees high sensitivity.
The invention is based on the following basic considerations: the sensitivity of the rain detection depends on the lighting intensity and the area of the detection area on the windshield. An area corresponding to the image of the LEDs reflected on the windshield is covered with LEDs as the lighting source. This covered area is frequently not sufficient for efficient rain detection. The use of a light guide is, in addition, associated with a loss of the light intensity emitted by the lighting source.
A device for detecting rain on a pane according to the invention comprises a camera, a lighting source for emitting light and a diffusion element. The light emitted by the lighting source emerges as a light sheet from the diffusion element. The camera, the lighting source and the diffusion element are designed and arranged in such a way that the camera can detect a signal from the light or an imaging of the light sheet which is emitted by the lighting source, impinges through the diffusion element on the pane and is reflected by the pane. In particular, in this case, the signal detected by the camera or the light sheet(s) correlate(s) with light from the lighting source, which is reflected or scattered at the inner face or outer face of the pane and/or at the raindrop.
The diffusion element can also be described as a diffuser and can, in particular, be a diffusion filter or a diffusion layer. The light emitted by the lighting source, e.g. a row of light-emitting diodes, is advantageously dispersed by the diffusion element, which results in a uniformly illuminated exit face of the diffusion element, i.e. in the formation of a light sheet.
Diffusion elements are available in differing densities and with different dispersion angles (angle at which the intensity scattered is half the maximum intensity). Diffusion elements having a higher density (of diffusive/dispersing components) produce a greater dispersion which is associated with a greater loss of transmitted light. The greater dispersion results in a greater detection area of the pane being illuminated. The dispersion angle of different diffusion elements is also variable. A greater angle also allows a larger detection area, but weakens the light intensity.
As a rule, selecting a suitable diffusion element requires a reasonable compromise between transmission losses or reduction of intensity and the size of the detection area.
The configuration and arrangement of the diffusion element advantageously takes account of these relationships.
The camera preferably comprises an image sensor, for example a CCD or CMOS sensor, and a lens or imaging system for focusing electromagnetic radiation from one or more areas onto the image sensor.
The lighting source can, in particular, be configured as one or more organic light-emitting diodes (OLEDs).
The lighting source generates uniformly flat illumination (light sheet) of an area of the pane, together with the diffusion element.
Rain is preferably detected on the outer face of the pane in that the camera is arranged behind the pane and is focused onto a remote region in front of the pane.
The advantage of the device according to the invention is that inexpensive lighting is used, which makes it possible to detect rain in a sound and reliable manner. Both the material and the production costs for a device according to the invention are low compared to known camera-based devices with comparably varied areas of application and comparable effectiveness or sensitivity of the rain detection.
The camera, the lighting source and the diffusion element are advantageously designed and arranged in such a way that the camera can detect a first mirror image of the light sheet reflected at the inner face of the pane and a second mirror image of the light sheet reflected at the outer face of the pane. In designing the elements of the device, properties of the pane such as e.g. angle of inclination, refractive index and thickness should, in particular, be taken into consideration.
In this case, the camera, the lighting source and the diffusion element are preferably designed and arranged in such a way that the first and the second mirror images which can be detected by the camera do not overlap with one another, they can be adjacent to one another in this case. The first mirror image is not dependent on the presence of raindrops in the illuminated area of the pane, whilst the second mirror image is modified or attenuated if raindrops are present in the illuminated area of the pane, as parts of the light intensity are decoupled from the pane by the raindrops and are not reflected to the camera.
According to an advantageous embodiment, the light sheet is limited by an aperture formed at or on or in front of the diffusion element. The aperture can be formed by means of a black or non-reflective and impermeable limiting device on the exit face of the diffusion element. In particular, the aperture can be formed as a seal between the diffusion element and a receiving device for the diffusion element. As a consequence, it is possible to limit or adjust the light sheet.
In a preferred embodiment, the diffusion element is a diffusion film. Diffusion films can be used inexpensively in an extremely wide range of configurations.
The camera is advantageously focused by means of a lens onto a remote region, so that the mirror image(s) of the light sheet is/are shown as (a) blurred image(s) by the camera. As a result, the camera can be used as a multifunctional sensor for one or more additional driver assistance functions which are based on an evaluation of the remote region imaged in a focused manner such as e.g. Lane Departure Warning (LDW), Lane Keeping Assistance/System (LKA/LKS), Traffic Sign Recognition (TSR), Intelligent Headlamp Control (IHC), Forward Collision Warning (FCW), Adaptive Cruise Control (ACC), parking assistance and Emergency Brake Assist (EBA) or Emergency Steering Assist (ESA).
According to a preferred embodiment, the lighting source is arranged in a housing and the diffusion element is arranged in a recess of the housing. The housing can in particular be produced from metal. The aperture can be formed from a seal between the diffusion element and the recess of the housing.
The lighting source is advantageously arranged on a circuit board, wherein the circuit board is an integral part or carrier of the camera electronics. The circuit board can, in addition, be arranged inside the housing.
The camera advantageously comprises a view funnel or a view shield or a lens hood, which particularly restricts the field of vision of the camera (downwards) and ideally minimizes stray and scattered light reflexes. The diffusion element is arranged on the view funnel or is integrated into the view funnel. In order to achieve a compact design of the camera with integrated lighting, the lighting source can preferably be arranged under the view funnel. To this end, the diffusion element can advantageously be integrated into the view funnel in such a way that it “replaces” the view funnel in this area. Alternatively, the view funnel can have an area made of material which is permeable to light and the diffusion film can, in particular, be arranged thereon.
The invention will be explained in more detail below, with reference to figures and embodiment examples, wherein:
The portion (r1) of the light beam (h) reflected at the air-pane interface (or inner face of the pane (2.1)) can serve as a reference beam. Of the portion which is transmitted into the pane, that portion is used as a measurement beam (r2) which is reflected at the pane-air/raindrop interface (or outer face of the pane (2.2)) and impinges on the camera (1). Not shown is that portion of the beam which is repeatedly reflected inside the pane (2) (on the pane-air inner face (2.1) after having been reflected at the pane-raindrops outer face (2.2)). The beam paths (h, r1, r2) and light distributions (o, p) are shown schematically.
If, in the event of rain, the outer face (2.2) of the windshield (2) is wetted, the majority of the light transmitted through the inner face (2.1) into the pane is decoupled, so that the reflected portion (r2) is weaker than it is in the case of a dry pane (not shown). The beam (r1) reflected from the inner face (2.1) is unaffected by wetting of the outer face of the pane (2.2).
By comparing the measured light reflexes of both beams (r1 to r2), the reduced signal in the event of rain can therefore be easily measured and a windshield wiper can be activated accordingly.
The lighting source (3) preferably comprises a plurality of LEDs having a wide beam angle which are arranged in a row, only one of which is shown in
The area of the windshield (2) illuminated by the LEDs, which can be used to detect rain, is very small, e.g. of the order of a few mm2. Raindrops, which are located on the outer face of the pane, are only illuminated by LEDs in this (detection) area. The sensitivity of the rain detection depends on the light intensity and the size of the detection area on the windshield. With LEDs as a lighting source (3), the detection area corresponds to the mirror image which is generated by reflection of the LED emission surfaces at the pane. The (detection) area covered as a result is not sufficient for effective rain detection.
Diffusion films have differing densities and scattering angles (angle at which the intensity scattered is half the maximum intensity). Diffusion films having a higher density (of diffusive/dispersing components) produce a greater dispersion which is associated with a greater loss of transmitted light. The greater dispersion results in a greater (detection) area of the windscreen (2) being illuminated. The scattering angle of different diffusion elements or films is also variable. A greater angle also allows a larger detection area, but weakens the light intensity.
In order to select a suitable diffusion element (6), a reasonable compromise has to be found between transmission losses or reduction of intensity and the size of the detection area. The intensity of the light from the light source (3), which can be detected by the camera (1) must, in this case, be sufficient for effective rain detection.
The mirror images or virtual images of the light sheet(s) produced by the inner face (i1) or outer face (i2) of the pane are visible to the camera (1).
Depending on the size of the illuminated area(s), the nature (refractive index and thickness) of the windshield, the angles between the illuminated area(s) and the windshield (2) as well as between the windshield (2) and the optical axis of the camera (1), overlapping of the first (i1) and second (i2) mirror images can occur in the camera image. This overlapping area cannot be used or can only be used with difficulty for effectively detecting rain. An overlapping of the first (i1) and second (i2) mirror images in the camera image should preferably be avoided.
Mounting a non-reflective and impermeable limiting device on the exit face of the diffusion element (6), in order to limit the illuminated face(s), represents one possible measure for avoiding this overlapping. Following the integration of the diffusion element (6) into an opening of the (metallic) housing (5), a black seal can be used to cover the surroundings of the diffusion element. As a result, an aperture is formed. The black seal prevents unwanted emission of stray light to the surroundings and unwanted stray light entering the diffusion element (6) from the surroundings of the same.
In order to adapt the device for various vehicles having various angles of inclination of the windshield (2), the diffusion element (6) can be arranged at a predefined, fixed angle and optionally also at a fixed, predefined distance from the respective windshield (2). To this end, the diffusion element (6) can, in particular, be arranged in such away that it is impinged on at a corresponding tilting angle. As a result, the covering or illumination of a similar detection area on the respective windshield (2) is possible for different windshield inclinations in different types of vehicles.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 225 155 | Dec 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2014/200196 | 5/5/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/081934 | 6/11/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5923027 | Stam | Jul 1999 | A |
6020704 | Buschur | Feb 2000 | A |
7253898 | Saikalis et al. | Aug 2007 | B2 |
7259367 | Reime | Aug 2007 | B2 |
7855353 | Blaesing et al. | Dec 2010 | B2 |
8792174 | Schmaelzle et al. | Jul 2014 | B2 |
9120464 | Pack et al. | Sep 2015 | B2 |
9335264 | Kroekel et al. | May 2016 | B2 |
20020148987 | Hochstein | Oct 2002 | A1 |
20050178954 | Yukawa | Aug 2005 | A1 |
20050206511 | Heenan et al. | Sep 2005 | A1 |
20060076477 | Ishikawa | Apr 2006 | A1 |
20060076478 | Johnson | Apr 2006 | A1 |
20080129206 | Stam et al. | Jun 2008 | A1 |
20100053613 | Taoka | Mar 2010 | A1 |
20100208060 | Kobayashi et al. | Aug 2010 | A1 |
20110031921 | Han | Feb 2011 | A1 |
20110204206 | Taoka | Aug 2011 | A1 |
20110273564 | Seger et al. | Nov 2011 | A1 |
20120026318 | Huelsen et al. | Feb 2012 | A1 |
20120026330 | Huelsen et al. | Feb 2012 | A1 |
20120169877 | Heenan | Jul 2012 | A1 |
20130027557 | Hirai | Jan 2013 | A1 |
20140029008 | Hirai et al. | Jan 2014 | A1 |
20140303853 | Itoh | Oct 2014 | A1 |
20150034827 | Kroekel et al. | Feb 2015 | A1 |
20150276982 | Kroekel et al. | Oct 2015 | A1 |
20150321644 | Kosubek et al. | Nov 2015 | A1 |
20160305873 | Bix | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
202004015345 | May 2005 | DE |
102006008274 | Aug 2007 | DE |
102010028347 | Nov 2011 | DE |
1 580 092 | Sep 2005 | EP |
1 923 695 | May 2008 | EP |
2010-096604 | Apr 2010 | JP |
2010-210374 | Sep 2010 | JP |
2010-223685 | Oct 2010 | JP |
WO 2012092911 | Jul 2012 | WO |
WO 2014108123 | Jul 2014 | WO |
Entry |
---|
International Search Report of the International Searching Authority for International Application PCT/DE2014/200196, dated Aug. 7, 2014, 3 pages, European Patent Office, HV Rijswijk, Netherlands. |
PCT International Preliminary Report on Patentability including English Translation of PCT Written Opinion of the International Searching Authority for International Application PCT/DE2014/200196, dated Jun. 7, 2016, 6 pages, International Bureau of WIPO, Geneva, Switzerland. |
German Search Report for German Patent Application No. 10 2013 225 155.6, dated Dec. 16, 2013, 5 pages, Muenchen, Germany, with English translation, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20160339873 A1 | Nov 2016 | US |