Illumination optical apparatus, exposure apparatus, and device manufacturing method

Information

  • Patent Grant
  • 9097981
  • Patent Number
    9,097,981
  • Date Filed
    Monday, October 13, 2008
    15 years ago
  • Date Issued
    Tuesday, August 4, 2015
    9 years ago
Abstract
An illumination optical apparatus guides exposure light emitted from an exposure light source, to an illumination target object. The illumination optical apparatus has a plurality of spatial light modulation members arranged in an array form, and each spatial light modulation member is so configured that a plurality of reflecting optical elements each including a movable reflecting surface are arranged in an array form. At least one of the spatial light modulation members is arranged in an optical path of the light emitted from the light source.
Description
BACKGROUND OF THE INVENTION

1. Field


The present invention relates to an illumination optical apparatus for illuminating an illumination target object, an exposure apparatus having the illumination optical apparatus, and a device manufacturing method using the exposure apparatus.


2. Description of the Related Art


The conventional exposure apparatus, for example, described in Japanese Patent Application Laid-open No. 2002-353105 was proposed as an exposure apparatus to be used in manufacture of micro devices such as semiconductor integrated circuits. This exposure apparatus has an illumination optical apparatus for illuminating a mask such as a reticle on which a predetermined pattern is formed; and a projection optical apparatus for projecting a pattern image formed by illumination of the mask with the illumination optical apparatus, onto a substrate such as a wafer or a glass plate coated with a photosensitive material.


The illumination optical apparatus has a spatial light modulation member for adjusting a pupil luminance distribution on an illumination target surface of the mask. This spatial light modulation member has a plurality of reflecting optical elements arranged in an array form, and a reflecting surface of each reflecting optical element is coated with a reflecting film. Each reflecting optical element is so configured that exposure light from a light source is reflected toward the mask by the reflecting surface thereof.


SUMMARY

Embodiments of the present invention provide an illumination optical apparatus, an exposure apparatus, and a device manufacturing method capable of contributing to increase in manufacture efficiency of devices with increase in output of the light source even in the case where the spatial light modulation member is arranged in the optical path of the light emitted from the light source.


For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessary achieving other advantages as may be taught or suggested herein.


An illumination optical apparatus according to an embodiment of the present invention is an illumination optical apparatus which guides light emitted from a light source and traveling along a predetermined optical path, to an illumination target object, the illumination optical apparatus comprising: a plurality of spatial light modulation members in which a plurality of reflecting optical elements each including a movable reflecting surface are arranged in an array form; wherein at least one of the spatial light modulation members is arranged in the optical path.





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.



FIG. 1 is a schematic configuration diagram showing an exposure apparatus in the first embodiment.



FIG. 2 is a schematic perspective view showing a movable multi-mirror in the first embodiment.



FIG. 3 is a schematic perspective view showing an array form of mirror elements forming a movable multi-mirror.



FIG. 4 is a schematic perspective view showing a configuration of a drive unit to drive a mirror element.



FIG. 5 is a schematic configuration diagram showing a part of an illumination optical apparatus in the second embodiment.



FIG. 6 is a schematic configuration diagram showing a part of an illumination optical apparatus in the third embodiment.



FIG. 7 is a schematic configuration diagram showing a part of an illumination optical apparatus in the fourth embodiment.



FIG. 8 is a schematic configuration diagram showing a part of an illumination optical apparatus in the fifth embodiment.



FIG. 9 is a flowchart of a manufacture example of devices.



FIG. 10 is a detailed flowchart about processing of a substrate in the case of semiconductor devices.





DESCRIPTION
First Embodiment

The first embodiment as a specific example of the present invention will be described below on the basis of FIGS. 1 to 4.


As shown in FIG. 1, an exposure apparatus 11 of the present embodiment is composed of an illumination optical apparatus 13 to which exposure light EL from an exposure light source 12 is supplied, a reticle stage 14 holding a reticle R (which may be a photomask) on which a predetermined pattern is formed, a projection optical device 15, and a wafer stage 16 holding a wafer W having a surface coated with a photosensitive material such as a resist. The exposure light source 12 consists of, for example, an ArF excimer laser light source. The exposure light EL emitted from the exposure light source 12 passes through the illumination optical apparatus 13 to be so adjusted as to evenly illuminate the pattern on the reticle R.


The reticle stage 14 is arranged on the object plane side of the projection optical device 15 described later, so that a mounting surface of the reticle R is approximately perpendicular to the direction of the optical axis of the projection optical device 15. This projection optical device 15 has a barrel 17 internally filled with an inert gas such as nitrogen, and a plurality of lenses not shown are disposed along the optical path of the exposure light EL in this barrel 17. An image of the pattern on the reticle R illuminated with the exposure light EL is projected and transferred in a reduced state at a predetermined reducing rate through the projection optical device 15, onto the wafer W on the wafer stage 16. The optical path herein refers to a path in which light is intended to pass in a use state.


The illumination optical apparatus 13 of the present embodiment will be described below on the basis of FIG. 1.


The illumination optical apparatus 13 is provided with a relay optical system 18 into which the exposure light EL emitted from the exposure light source 12 is incident. This relay optical system 18 is typically composed of a first positive lens 19, a negative lens 20, and a second positive lens 21 arranged along the optical axis AX1 in the order named from the exposure light source 12 side. The exposure light EL incident from the exposure light source 12 into the relay optical system 18 is emitted in an enlarged state of its sectional shape to the opposite side to the exposure light source 12.


In the illumination optical apparatus 13, a reflecting optical system 23 has a configuration in which a plurality of movable multi-mirrors 22 (only fifteen of which are illustrated in FIG. 2) are arranged in an array form, as shown in FIGS. 1 and 2, and is disposed in an unmovable state on the opposite side to the exposure light source 12 with respect to the relay optical system 18. This reflecting optical system 23 has a base 24 of a planar plate shape and, mirror rows in each of which three movable multi-mirrors 22 are juxtaposed in the X-direction, are formed in five lines in the Y-direction on the base 24. Each movable multi-mirror 22 is provided with an effective region 25 of a nearly rectangular shape capable of reflecting the exposure light EL and the exposure light EL impinges upon each of the effective regions 25 of all the movable multi-mirrors 22. The above-described arrangement of movable multi-mirrors 22 (i.e., three in the X-direction and five in the Y-direction) is just an example, and the arrangement and number of movable multi-mirrors 22 may be those different from the above-described arrangement.


The exposure light EL reflected on each movable multi-mirror 22 travels through a condenser optical system (distribution forming optical system) 26 arranged along the optical axis AX2 making a predetermined angle with the optical axis AX1 on the entrance side of each movable multi-mirror 22, into an optical integrator (fly's eye lens in the present embodiment) 27. The front focal point of the condenser optical system 26 is located near an arrangement plane P1 where each mirror element in each movable multi-mirror 22 is located, and the rear focal point of the condenser optical system 26 is located on a plane P2 near an entrance surface of the optical integrator 27. This optical integrator 27 has a configuration in which a plurality of lens elements 28 (only five of which are shown in FIG. 1) are two-dimensionally arranged. The exposure light EL incident into the optical integrator 27 is split into a plurality of beams by the lens elements 28. As a consequence, a large number of light source images are formed on the right side plane (or image plane) in FIG. 1 of the optical integrator 27.


The exposure light EL emitted from the optical integrator 27, which consists of beams emitted from the large number of light source images, travels through a condenser optical system 29 to illuminate a mask blind 30 in a superposedly condensed state. The exposure light EL having passed through an aperture 31 of the mask blind 30 travels through a condenser optical system 32 to illuminate a reticle R. A pupil luminance distribution in an illumination region illuminated with the exposure light EL on the reticle R is appropriately adjusted.


In the present embodiment, the reticle R arranged on an illumination target surface of the illumination optical system IL is illuminated by Köhler illumination, using the secondary light source formed by the optical integrator 27, as a light source. For this reason, a position P3 where the secondary light source is formed is optically conjugate with a position P4 of an aperture stop AS of the projection optical system PL and the forming plane P3 of the secondary light source can be called an illumination pupil plane of the illumination optical system IL. Typically, the illumination target surface (a plane where the mask M is arranged, or a plane where the wafer W is arranged in the case where the illumination optical system is considered to include the projection optical system PL) is an optical Fourier transform plane of the illumination pupil plane.


In the present embodiment, a splitting mirror for reflecting part of the exposure light EL is provided on the exit side of the optical integrator 27 and an exposure amount sensor SE is provided so as to receive light reflected by the splitting mirror. The exposure amount can be controlled by monitoring the output of the exposure amount sensor SE1.


In the present embodiment, the wafer stage 16 is provided with a pupil luminance distribution detector SE2 for monitoring the pupil luminance distribution of exposure light arriving at the wafer W. The configuration of this pupil intensity distribution detector is disclosed, for example, in Japanese Patent Application Laid-open No. 2006-59834 and U.S. Pat. Published Application No. 2008/0030707 corresponding thereto. U.S. Pat Published Application No. 2008/0030707 is incorporated herein by reference.


The configuration of movable multi-mirror 22 will be described below on the basis of FIGS. 2 to 4.


As shown in FIGS. 2 and 3, the movable multi-mirror 22 has a plurality of mirror elements 33 of a square shape on their plan view with a reflecting surface 34 coated with a reflecting film, and the mirror elements 33 are arranged in an array form. In order to reduce a loss in light quantity in the reflecting optical system 23, these mirror elements 33 are arranged with a gap as small as possible between mirror elements 33 adjacent to each other. Each mirror element 33 is movable to change an angle of inclination to the optical path of exposure light EL. In the description hereinafter, the “angle of inclination of the mirror element 33 to the optical path of exposure light EL” will be referred to simply as an “inclination angle of mirror element 33.” As shown in FIG. 1, the mirror elements of the movable multi-mirrors 22 are arranged along the arrangement plane P1 located on the XY plane.


The reflecting optical system 23 of the present embodiment is composed of plural types (two types in the present embodiment) of movable multi-mirrors 22A, 22B. Specifically, the mirror row located on the nearest side in the Y-direction in FIG. 2, the mirror row located in the middle among the mirror rows, and the mirror row located on the farthest side each are composed of first movable multi-mirrors 22A, while the other mirror rows each are composed of second movable multi-mirrors 22B. The first movable multi-mirror 22A is composed of a plurality of mirror elements 33 rotatable around a first axis S1, as shown in FIG. 4. On the other hand, the second movable multi-mirror 22B is composed of a plurality of mirror elements 33 rotatable around a second axis S2 nearly perpendicular to the first axis S1. The first axis S1 is an axis corresponding to a first diagonal line among the two diagonal lines of the mirror element 33 and the second axis S2 is an axis corresponding to a second diagonal line perpendicular to the first diagonal line.


A drive unit for the mirror element 33 forming the first movable multi-mirror 22A will be described below on the basis of FIG. 4. Since a drive unit for the mirror element 33 forming the second movable multi-mirror 22B has the same configuration as the drive unit for the mirror element 33 forming the first movable multi-mirror 22A except that the mirror element 33 is rotated around the second axis S2, the description thereof is omitted herein.


As shown in FIG. 4, the drive unit 35 for the mirror element 33 forming the first movable multi-mirror 22A is provided with a base member 36 of a square plate shape corresponding to the shape of the mirror element 33, and support members 37 stand at two corners located on the first axis S1 out of the four corners of the base member 36. The drive unit 35 is provided with a hinge member 38 extending in the extending direction of the first axis S1, and the hinge member 38 is supported in a rotatable state around the first axis S1 on the support members 37. A projection 39 projecting in the Z-direction is provided in the central part in the longitudinal direction of the hinge member 38 and the mirror element 33 is fixed through the projection 39 to the hinge member 38.


First electrode portions 40 extending in two directions perpendicular to the first axis S1 from the hinge member 38 are formed on the first end side and on the second end side, respectively, in the longitudinal direction of the hinge member 38. Second electrode portions 41 are also provided at respective positions corresponding to the four first electrode portions 40, on the base member 36. When a potential difference is made between each pair of first electrode portion 40 and second electrode portion 41 in a mutually corresponding relation, the hinge member 38 rotates around the first axis S1 because of electrostatic forces acting based on these potential differences, whereby the mirror element 33 rotates around the first axis S1. Namely, the inclination angle of mirror element 33 can be controlled by adjusting each of the potential differences between each of the pairs of electrode portions 40, 41 in the mutually corresponding relation.


The exposure light EL incident to each of the movable multi-mirrors 22A, 22B is folded into a direction corresponding to the inclination angle of each mirror element 33 to which the light is incident. Since the condenser optical system 26 which can be regarded as a distribution forming optical system has a function to convert the angle information of incident light into position information, the sectional shape of exposure light EL on the plane P2 near the entrance surface of the optical integrator 27 is changed into any size and shape by individually adjusting the inclination angles of the respective mirror elements 33. This condenser optical system 26 superimposes part of the exposure light EL having passed via the movable multi-mirrors 22A, and part of the exposure light having passed via the movable multi-mirrors 22B, at least in part on the plane P2. Since the exposure light beams from the plurality of movable multi-mirrors 22A, 22B are superimposed, it is feasible to enhance evenness of light intensity in the superimposed region.


In other words, the light spatially angle-modulated by the movable multi-mirrors 22A, 22B is converted into the spatially modulated light by the condenser optical system 26, to form the pupil intensity distribution as a desired light intensity distribution on the plane P2.


The pupil intensity distribution is a light intensity distribution (luminance distribution) on the illumination pupil plane of the illumination optical system or on a plane optically conjugate with the illumination pupil plane. When the number of wavefront divisions by the optical integrator 27 is relatively large, a high correlation is demonstrated between the overall light intensity distribution formed on the plane P2 near the entrance surface of the optical integrator 27 and the overall light intensity distribution (pupil intensity distribution) of the entire secondary light source. For this reason, light intensity distributions on the entrance surface of the optical integrator 27 and on the planes P3, P4 optically conjugate with the entrance surface can also be called pupil intensity distributions.


In this manner, the secondary light source with the light intensity distribution approximately equal to the exposure light EL with the sectional shape modified in the desired size and shape is formed on the plane P3 which is also the rear focal plane of the optical integrator 27. Furthermore, a light intensity distribution corresponding to the pupil intensity distribution formed on the plane P3 is also formed at other illumination pupil positions optically conjugate with the rear focal plane of the optical integrator 27, i.e., at the pupil position of the condenser optical system 32 and at the pupil position of the projection optical system PL.


The pupil intensity distribution can be, for example, a light intensity distribution of an annular shape or a multi-polar shape (dipolar, quadrupolar, or other shape). It is feasible to implement annular illumination with formation of the annular pupil intensity distribution, or to implement multi-polar illumination with formation of the multi-polar pupil intensity distribution.


In recent years, there are strong desires for increase in power of exposure light for achieving increase in efficiency of projection of the pattern image onto the substrate and enhancement of accuracy. It is, however, very difficult to coat the reflecting surface of each reflecting optical element forming the spatial light modulation member, with a reflecting film having relatively high durability. Therefore, the reflecting surface is coated with a reflecting film having relatively low durability. For this reason, the life of the spatial light modulation member becomes shorter because the reflecting film deteriorates earlier with increase in the intensity of the exposure light emitted from the light source and because a larger quantity of light reaches a drive portion of each reflecting optical element so as to cause breakage of the drive portion. The spatial light modulation member may be replaced earlier when the intensity of the exposure light is relatively high, than when the intensity of the exposure light is relatively low.


In the exposure apparatus of the configuration as described in Japanese Patent Application Laid-open No. 2002-353105, however, the spatial light modulation member may be replaced in a state in which the drive of the exposure apparatus is temporarily suspended. Therefore, the higher the intensity of the exposure light emitted from the light source, the earlier the timing of replacement of the spatial light modulation member; there was thus the concern of decrease in efficiency of manufacture of micro devices due to the increase in output of the light source in the exposure apparatus in which the spatial light modulation member was arranged in the optical path of the exposure light.


Therefore, the present embodiment achieves the effects described below.


(1) The exposure light EL emitted from the exposure light source 12 is reflected toward the condenser optical system 26 by all the movable multi-mirrors 22A, 22B forming the reflecting optical system 23 and guided to the reticle R. For this reason, even when the exposure light EL from the exposure light source 12 has a higher power, the intensity of exposure light EL incident to each movable multi-mirror 22A, 22B is lower than in the conventional case where the entire exposure light EL emitted from the exposure light source 12 is incident to one movable multi-mirror 22. As a consequence, deterioration of the reflecting film over the reflecting surface of each mirror element 33 to which the exposure light EL is incident becomes slower than in the conventional case, so as to lengthen the lives of the movable multi-mirrors 22A, 22B. Namely, the timing of replacement of the movable multi-mirrors 22A, 22B can be delayed. Therefore, a contribution can be made to increase in manufacture efficiency of semiconductor devices with increase in output of the exposure light source 12 even in the case where the movable multi-mirrors 22A, 22B are arranged in the optical path of exposure light EL emitted from the exposure light source 12.


(2) The rotating direction of the mirror elements 33 forming the first movable multi-mirrors 22A is different from the rotating direction of the mirror elements 33 forming the second movable multi-mirrors 22B. For this reason, degrees of freedom can be higher in change in the size and shape of exposure light EL to illuminate the reticle R, than in the case where the reflecting optical system 23 is composed of only one type of movable multi-mirrors 22 (e.g., the first movable multi-mirrors 22A).


(3) Since the angle α between the arrangement plane P1 and the entrance-side optical axis AX1 and the angle β between the arrangement plane P1 and the exit-side optical axis AX2 are so set as to direct zero-order reflected light N from the portions other than the mirror elements 33 of the movable multi-mirrors 22A, 22B (typically, gaps between mirror elements 33) and from the regions other than the effective regions 25 of the movable multi-mirrors 22A, 22B in the plane along the arrangement plane P1, toward the region outside the entrance pupil of the condenser optical system 26, it is feasible to prevent the zero-order reflected light from affecting the pupil luminance distribution and, typically, to prevent the zero-order reflected light from forming a light spot at a position near the optical axis AX2.


Second Embodiment

The second embodiment of the present invention will be described next according to FIG. 5. The second embodiment is different in the optical element arranged between the exposure light source 12 and the reflecting optical system 23, from the first embodiment. Therefore, only the differences from the first embodiment will be mainly explained in the description below and the components identical or equivalent to those in the first embodiment will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 5, a truncated pyramid axicon pair 50 arranged along the optical axis AX1 is provided between the exposure light source 12 and the reflecting optical system 23 and this truncated pyramid axicon pair 50 is composed of a first prism member 51 arranged on the exposure light source 12 side and a second prism member 52 arranged on the reflecting optical system 23 side. In the first prism member 51, a plane perpendicular to the optical axis of the exposure light EL is formed on the exposure light source 12 side and a refracting surface 51a of a concave shape is formed on the reflecting optical system 23 side. This refracting surface 51a is composed of a center part of a planar shape perpendicular to the optical axis of the exposure light EL, and a peripheral pyramid part corresponding to side faces of a rectangular pyramid centered on the optical axis.


In the second prism member 52, a plane perpendicular to the optical axis of the exposure light EL is formed on the reflecting optical system 23 side and a refracting surface 52a of a convex shape corresponding to the shape of the refracting surface 51a of the first prism member 51 is formed on the first prism member 51 side. This refracting surface 52a is composed of a center part of a planar shape perpendicular to the optical axis of the exposure light EL, and a peripheral pyramid part corresponding to side faces of a rectangular pyramid centered on the optical axis.


When the prism members 51, 52 are arranged with a space of a predetermined distance h between them in the optical path of exposure light EL, the exposure light EL incident from the exposure light source 12 into the truncated pyramid axicon pair 50 is split into a plurality of beams. The predetermined distance h is so adjusted that the effective regions 25 of the movable multi-mirrors 22 are located in traveling directions of the respective beams. For this reason, the beams split by the truncated pyramid axicon pair 50 are reflected toward the condenser optical system 26 on the respective effective regions 25 of the movable multi-mirrors 22 arranged in the array form.


Therefore, the present embodiment achieves the effects described below, in addition to the effects (1) and (2) in the first embodiment.


(3) The effective regions of the movable multi-mirrors 22 are located in the traveling directions of the respective beams split by the truncated pyramid axicon pair 50. For this reason, the exposure light EL is scarcely incident to the positions other than the locations of the movable multi-mirrors 22 in the reflecting optical system 23 and to the portions other than the effective regions 25 of the movable multi-mirrors 22. Therefore, a loss in light quantity can be reduced in the reflecting optical system 23. Furthermore, it is feasible to restrain promotion of deterioration of the movable multi-mirrors 22 due to increase in temperature based on illumination with the exposure light EL in the positions other than the locations of the movable multi-mirrors 22 in the reflecting optical system 23 and the portions other than the effective regions 25 of the movable multi-mirrors 22.


(4) Since no member with power (inverse of the focal length) is arranged in the optical path between the truncated pyramid axicon pair 50, which can be regarded as a beam splitter, and the movable multi-mirrors 22a, 22b, 22c, the beams that can be regarded as parallel beams are incident to the mirror elements of the movable multi-mirrors, which can enhance controllability of the pupil luminance distribution on the plane P2. On the other hand, when the beams incident to the mirror elements have an angle distribution, a light spot formed on the plane P2 by the light from the mirror elements through the condenser optical system 26 will become spread, which will make control of the pupil luminance distribution difficult.


In the present embodiment, the above-described structure can be regarded as a configuration wherein the entrance-side optical axis AX1 being an axis of the optical path of the light emitted from the light source 12 is interposed between the first position where the movable multi-mirror 22a is arranged and the second position where another movable multi-mirror 22c is arranged among the plurality of movable multi-mirrors 22. Furthermore, it can also be regarded as a configuration wherein the truncated pyramid axicon pair 50 (beam splitter) splits the beam in a plane including the optical axis AX1 (i.e., in the XY plane in the drawing).


Third Embodiment

The third embodiment of the present invention will be described below according to FIG. 6. The third embodiment is different in the optical element for splitting the exposure light EL into a plurality of optical paths, from the second embodiment. Therefore, only the differences from each of the above embodiments will be mainly explained in the description hereinafter and the components identical or equivalent to those in the above embodiments will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 6, a diffractive optical element 55 for multi-polar illumination (e.g., for quadrupolar illumination) is provided between the exposure light source 12 and the reflecting optical system 23. This diffractive optical element 55 is a transmission type diffractive optical element and is made by forming level differences at the pitch approximately equal to the wavelength of the exposure light EL in a transparent substrate. This diffractive optical element 55 is so configured that when parallel exposure light EL is incident thereto, it splits the exposure light EL into a plurality of (e.g., four) beams. As a result, multi-polar (e.g., quadrupolar) illumination regions are formed on the reflecting optical system 23. The arrangement of the diffractive optical element 55 is so adjusted that the effective regions 25 of the movable multi-mirrors 22 are located in the respective beams formed by splitting the incident exposure light EL.


The diffractive optical element 55 has a plurality of wavefront division regions in the plane of the diffractive optical element 55, in order to form an approximately even illumination region in each of the plurality of regions separated by a predetermined distance. Wavefront division regions belonging to a first set among the plurality of wavefront division regions direct the exposure light EL incident thereto, toward a first illumination region out of the plurality of illumination regions.


This causes the first illumination region to be superposedly illuminated by a plurality of beams having passed via the wavefront division regions belonging to the first set, and to have an even illuminance distribution. Similarly, wavefront division regions belonging to a second set different from the first set among the plurality of wavefront division regions direct the exposure light EL incident thereto, toward a second illumination region different from the first illumination region out of the plurality of illumination regions. This causes the second illumination region to be superposedly illuminated by a plurality of beams having passed via the wavefront division regions belonging to the second set, and to have an even illuminance distribution.


For example, the diffractive optical element 55 of the present embodiment can be the one disclosed in U.S. Pat. No. 5,850,300. U.S. Pat. No. 5,850,300 is incorporated herein by reference.


Therefore, the present embodiment achieves the effect described below, in addition to the effects (1) to (4) in the second embodiment.


(5) Since the diffractive optical element 55 makes the light intensity distribution even, the plurality of movable multi-mirrors 22 are illuminated with light of the even intensity distribution even when the intensity distribution is uneven in the cross section of the light EL emitted from the light source 12. For this reason, it is feasible to enhance the controllability of the pupil luminance distribution formed on the plane P2. On the other hand, when the movable multi-mirrors 22 are illuminated with light of an uneven intensity distribution, this unevenness of the intensity distribution will affect the pupil luminance distribution and each mirror element of the movable multi-mirrors 22 can be controlled in consideration of this unevenness. Therefore, the control becomes complicated.


Fourth Embodiment

The fourth embodiment of the present invention will be described below according to FIG. 7. The fourth embodiment is different in the optical element for splitting the exposure light EL into a plurality of optical paths, from the second and third embodiments. Therefore, only the differences from each of the above embodiments will be mainly explained in the description below and the components identical or equivalent to those in the embodiments will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 7, a fly's eye lens 60 is provided between the exposure light source 12 and the reflecting optical system 23 and the fly's eye lens 60 is composed of a plurality of lens elements 61 (only four of which are shown in FIG. 7) as arranged two-dimensionally. A relay optical system 18A is disposed between the fly's eye lens 60 and the reflecting optical system 23 and the relay optical system 18A refocuses a plurality of beams split by the fly's eye lens 60, in respective effective regions 25 of the movable multi-mirrors 22.


In the reflecting optical system 23 of the present embodiment, the movable multi-mirrors 22 are arranged so as to positionally correspond to the respective lens elements 61 of the fly's eye lens 60. For example, in a case where the fly's eye lens 60 is one in which four lens elements are arrayed in the X-direction, the reflecting optical system 23 is so configured that four movable multi-mirrors 22 are arrayed along the X-direction. This configuration achieves the same operational effects as in each of the aforementioned second and third embodiments.


The exposure light EL incident to each movable multi-mirror 22 is mostly reflected toward the condenser optical system 26, but part of the rest (which will be referred to hereinafter as “return light”) can be reflected toward the fly's eye lens 60. This return light is restrained from entering the fly's eye lens 60, by the relay optical system 18A arranged between the reflecting optical system 23 and the fly's eye lens 60. For this reason, the large number of light source images formed on the image plane of the fly's eye lens 60 can be prevented from being disturbed by the return light. As described above, the relay optical system can be regarded as a restraining member which restrains the return light from each movable multi-mirror 22 from entering the beam splitter.


Fifth Embodiment

The fifth embodiment of the present invention will be described below according to FIG. 8. The fifth embodiment is different from the first embodiment in that the exposure light EL impinges upon only some movable multi-mirrors 22 out of the movable multi-mirrors 22 forming the reflecting optical system 23. Therefore, only the differences from the first embodiment will be mainly explained in the description hereinafter and the components identical or equivalent to those in the first embodiment will be denoted by the same reference symbols, without redundant description.


As shown in FIG. 8, the illumination optical apparatus 13 of the present embodiment is provided with a moving mechanism 65 for moving the reflecting optical system 23 along the X-direction. In the reflecting optical system 23, a plurality of movable multi-mirrors 22 (only five of which are shown in FIG. 8) are arranged along the X-direction. The exposure light EL emitted from the exposure light source 12 is incident to some movable multi-mirrors 22 (e.g., two movable multi-mirrors 22) out of these movable multi-mirrors 22, while the exposure light EL is not incident to the other movable multi-mirrors 22.


When the intensity of the exposure light EL for forming the pattern image on the wafer W becomes lowered or when the pupil luminance distribution on the wafer W becomes disturbed, based on a secular change in characteristics of the movable multi-mirrors 22 to which the exposure light EL is incident (e.g., based on deterioration of the reflecting film or deterioration of the drive unit 35 for the mirror element 33), the moving mechanism 65 is actuated to guide the exposure light EL onto the movable multi-mirrors 22 to which the exposure light EL has not been guided heretofore.


For example, in a case where the output of the exposure amount sensor SE1 monitored becomes lowered, or in a case where a deviation of the pupil luminance distribution measured by the pupil luminance distribution detector SE2, from a target value becomes off a permissible range, the control unit 66 sends a control signal to instruct replacement of the movable multi-mirrors 22, to the moving mechanism 65.


As described above, the exposure apparatus 11 of the present embodiment allows the movable multi-mirrors 22 to which the exposure light EL emitted from the exposure light source 12 is incident, to be replaced with others, without temporary suspension of drive of the exposure apparatus 11. Therefore, a contribution can be made to increase in manufacture efficiency of semiconductor devices with increase in output of the exposure light source 12, even in the case where the movable multi-mirrors 22 are arranged in the optical path of the exposure light EL emitted from the exposure light source 12.


Each of the above embodiments may be modified into another embodiment as described below.


In each embodiment, the reflecting optical system 23 may be one composed of three or more types of movable multi-mirrors 22, 22A, 22B. For example, the reflecting optical system 23 may have a configuration having third movable multi-mirrors consisting of mirror elements 33 rotatable around a third axis (e.g., an axis extending in the X-direction) intersecting with the first axis S1 and the second axis S2, in addition to the first movable multi-mirrors 22A and the second movable multi-mirrors 22B.


In each embodiment, the first movable multi-mirrors 22A may be those having mirror elements 33 rotatable around an axis parallel to the first axis S1. Similarly, the second movable multi-mirrors 22B may be those having mirror elements 33 rotatable around an axis parallel to the second axis S2.


In each embodiment, the first axis S1 does not have to be one extending along a diagonal line of each mirror element 33, but may be, for example, an axis extending along the X-direction. In this case, the second axis S2 may be an axis extending along the Y-direction.


In each embodiment, the reflecting optical system 23 may be one consisting of one type of movable multi-mirrors 22 (e.g., the first movable multi-mirrors 22A).


In the fifth embodiment, the movable multi-mirrors 22 to which the exposure light EL is incident may be switched at intervals of a predetermined time.


In the fifth embodiment, the number of movable multi-mirrors 22 to which the exposure light EL is incident, may be an arbitrary number except for two (e.g., one or three).


In the fifth embodiment, where the movable multi-mirrors 22 to which the exposure light EL is incident are switched, the apparatus may be so configured as to switch at least only one of them to which the exposure light EL is incident.


In each embodiment, the movable multi-mirrors 22 may be those having mirror elements 33 rotatable around mutually orthogonal axes (those having two degrees of freedom for inclination). The spatial light modulation members of this type can be selected, for example, from those disclosed in Japanese Patent Application Laid-open (Translation of PCT Application) No. 10-503300 and European Patent Application Publication EP 779530 corresponding thereto, Japanese Patent Application Laid-open No. 2004-78136 and U.S. Pat. No. 6,900,915 corresponding thereto, Japanese Patent Application Laid-open (Translation of PCT Application) No. 2006-524349 and U.S. Pat. No. 7,095,546 corresponding thereto, and Japanese Patent Application Laid-open No. 2006-113437. European Patent Application Publication EP 779530, U.S. Pat. No. 6,900,915, and U.S. Pat. No. 7,095,546 are incorporated herein by reference.


In each embodiment, the movable multi-mirrors 22 were those in which the orientations (inclinations) of the mirror elements arranged two-dimensionally could be individually controlled, but it is also possible, for example, to use spatial light modulation members in which heights (positions) of reflecting surfaces arranged two-dimensionally can be individually controlled. Such spatial light modulation members can be, for example, those disclosed in Japanese Patent Application Laid-open No. 6-281869 and U.S. Pat. No. 5,312,513 corresponding thereto, and in FIG. 1d in Japanese Patent Application Laid-open (Translation of PCT Application) No. 2004-520618 and U.S. Pat. No. 6,885,493 corresponding thereto. These spatial light modulation members are able to apply the same action as a diffracting surface, to incident light through formation of a two-dimensional height distribution. U.S. Pat. No. 5,312,513 and U.S. Pat. No. 6,885,493 are incorporated herein by reference.


In each embodiment, the movable multi-mirrors 22 may be modified, for example, according to the disclosure in Japanese Patent Application Laid-open (Translation of PCT Application) No. 2006-513442 and U.S. Pat. No. 6,891,655 corresponding thereto or according to the disclosure in Japanese Patent Application Laid-open (Translation of PCT Application) No. 2005-524112 and U.S. Pat. Published Application No. 2005/0095749 corresponding thereto. U.S. Pat. No. 6,891,655 and U.S. Pat. Published Application No. 2005/0095749 are incorporated herein by reference.


In each embodiment, the exposure apparatus 11 may be an exposure apparatus which transfers a circuit pattern from a mother reticle onto a glass substrate, a silicon wafer, or the like, in order to manufacture a reticle or a mask to be used in photo exposure apparatus, EUV exposure apparatus, X-ray exposure apparatus, electron beam exposure apparatus, and so on, as well as the micro devices such as the semiconductor devices. The exposure apparatus 11 may also be an exposure apparatus used in manufacture of displays including liquid-crystal display devices (LCDs) and others, to transfer a device pattern onto a glass plate, an exposure apparatus used in manufacture of thin-film magnetic heads or the like to transfer a device pattern onto a ceramic wafer or the like, or an exposure apparatus used in manufacture of imaging devices such as CCDs.


The illumination optical apparatus 13 in each of the embodiments can be mounted on a scanning stepper configured to transfer a pattern of an illumination target object onto a substrate in a state in which the illumination target object and the substrate are relatively moved, and to successively move the substrate stepwise, and can also be mounted on a stepper of the step-and-repeat method configured to transfer a pattern of an illumination target object onto a substrate in a state in which the illumination target object and the substrate are stationary, and to successively move the substrate stepwise.


In each embodiment, the exposure light source 12 may be, for example, an exposure light source capable of supplying the g-line (436 nm), the i-line (365 nm), the KrF excimer laser (248 nm), the F2 laser (157 nm), the Kr2 laser (146 nm), the Ar2 laser (126 nm), or the like. The exposure light source 12 may also be an exposure light source capable of supplying a harmonic obtained by amplifying a single-wavelength laser beam in the infrared region or in the visible region lased from a DFB semiconductor laser or a fiber laser, for example, by a fiber amplifier doped with erbium (or with both of erbium and ytterbium), and converting the wavelength into ultraviolet light with a nonlinear optical crystal.


In each embodiment, it is also possible to apply the so-called polarized illumination method disclosed in U.S. Pat. Published Application Nos. 2006/0203214, 2006/0170901, and 2007/0146676. Teachings of the U.S. Pat. Published Application Nos. 2006/0203214, 2006/0170901, and 2007/0146676 are incorporated herein by reference.


The below will describe an embodiment of a manufacture method of micro devices using the device manufacturing method with the exposure apparatus 11 of the embodiments of the present invention in the lithography process. FIG. 9 is a drawing showing a flowchart of a manufacture example of micro devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).


The first block S101 (design block) is to design the function and performance of micro devices (e.g., design the circuitry for semiconductor devices or the like) and to design a pattern for realizing the function. The subsequent block S102 (mask production block) is to produce a mask (reticle R or the like) on which the designed circuit pattern is formed. On the other hand, block S103 (substrate production block) is to produce a substrate of a material such as silicon, glass, or ceramics (which becomes a wafer W where a silicon material is used).


The next block S104 (substrate processing block) is to form an actual circuit and others on the substrate by the lithography technology and others, as described below, using the mask and the substrate prepared in the blocks S101-S103. The next block S105 (device assembly block) is to assemble devices using the substrate processed in block S104. This block S105 includes such blocks as a dicing block, a bonding block, and a packaging block (chip encapsulation) as occasion may demand. The final block 8106 (inspection block) is to perform such inspections as an operation check test and a durability test of the micro devices fabricated in block S105. After completion of these blocks, the micro devices are completed and shipped.



FIG. 10 is a drawing showing an example of detailed blocks in the block 8104 in the case of semiconductor devices.


Block S111 (oxidation block) is to oxidize the surface of the substrate. Block S112 (CVD block) is to form an insulating film on the surface of the substrate. Block S113 (electrode forming block) is to form electrodes on the substrate by evaporation. Block S114 (ion implantation block) is to implant ions into the substrate. Each of the above blocks S111-S114 constitutes a preprocessing block in each stage of substrate processing and is executed as selected according to a process necessary in each stage.


After completion of the above-described preprocessing blocks in the stages of the substrate processing, post-processing blocks are executed as described below. In the post-processing blocks, the first block S115 (resist forming block) is to apply a photosensitive material onto the substrate. The subsequent block S116 (exposure block) is to transfer the circuit pattern of the mask onto the wafer by the above-described lithography system (exposure apparatus 11). The next block S117 (development block) is to develop the substrate exposed in block S116, to form a mask layer consisting of the circuit pattern on the surface of the substrate. In block S118 (etching block) subsequent thereto, the exposed member is removed by etching from the portions other than the resist-remaining portions. The following block S119 (resist removal block) is to remove the photosensitive material unnecessary after the etching. Namely, the blocks S118 and S119 are to process the surface of the substrate through the mask layer. By repeatedly carrying out these preprocessing blocks and post-processing blocks, circuit patterns are multiply formed on the substrate.


Namely, as mentioned above, according to embodiments of the present invention, the light emitted from the light source is guided to the illumination target object by the plurality of spatial light modulation members arranged in the array form. For this reason, the timing of replacement of the spatial light modulation member with temporary suspension of drive of the exposure apparatus can be delayed by increase in the number of spatial light modulation members used, when compared with the conventional case where the light emitted from the light source is guided to the illumination target object with the use of one spatial light modulation member. Therefore, a contribution can be made to increase in manufacture efficiency of devices with increase in output of the light source, even in the case where the spatial light modulation member is arranged in the optical path of the light emitted from the light source.


Embodiments of the present invention successfully achieve the contribution to increase in manufacture efficiency of devices with increase in output of the light source.


In the above-described embodiments, the light source 12 can be, for example, an ArF excimer laser light source which supplies pulsed laser light at the wavelength of 193 nm, or a KrF excimer laser light source which supplies pulsed laser light at the wavelength of 248 nm. Without having to be limited to these, it is also possible, for example, to use another appropriate light source such as an F2 laser light source or an ultrahigh pressure mercury lamp. The exposure apparatus of the above-described embodiments can be used as scanning exposure apparatus performing exposure while moving the reticle (mask) and the wafer (photosensitive substrate) relative to the projection optical system, or as exposure apparatus of the one-shot exposure type performing projection exposure in a state in which the reticle (mask) and the wafer (photosensitive substrate) are stationary relative to the projection optical system.


In the foregoing embodiment, it is also possible to apply a technique of filling the interior of the optical path between the projection optical system and the photosensitive substrate with a medium having the refractive index larger than 1.1 (typically, a liquid), which is so called a liquid immersion method. In this case, it is possible to adopt one of the following techniques as a technique of filling the interior of the optical path between the projection optical system and the photosensitive substrate with the liquid: the technique of locally filling the optical path with the liquid as disclosed in International Publication WO99/49504; the technique of moving a stage holding the substrate to be exposed, in a liquid bath as disclosed in Japanese Patent Application Laid-open No. 6-124873; the technique of forming a liquid bath of a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-open No. 10-303114, and so on. The teachings in WO99/49504, Japanese Patent Application Laid-open No. 6-124873, and Japanese Patent Application Laid-open No. 10-303114 are incorporated herein by reference.


The invention is not limited to the fore going embodiments but various changes and modifications of its components may be made without departing from the scope of the present invention. Also, the components disclosed in the embodiments may be assembled in any combination for embodying the present invention. For example, some of the components may be omitted from all components disclosed in the embodiments. Further, components in different embodiments may be appropriately combined.

Claims
  • 1. An illumination optical system which illuminates a plane to be illuminated with illumination light from a light source, the illumination optical system comprising, in order from the light source side: an optical element having a plurality of optical surfaces for splitting the illumination light into a plurality of beams;a first optical system which condenses the plurality of the beams and guides the condensed plurality of the beams to a predetermined plane, the first optical system refocusing the plurality of beams split by the optical element such that first paths of the plurality of beams prior to entering the first optical system are different from second paths of the plurality of beams after exiting the first optical system;a spatial optical modulator arranged on the predetermined plane and having a plurality of reflecting optical elements each of which has a movable reflection surface arranged to receive a respective beam of the plurality of beams traversing the second paths; anda second optical system arranged to distribute a plurality of light beams from the movable reflection surface of each of the reflecting optical elements at a pupil position of the illumination optical system or a position optically conjugate with the pupil position and to form a spatial light distribution at the pupil position or the position optically conjugate with the pupil position.
  • 2. The illumination optical system according to claim 1, wherein the second optical system has an optical plane array having a plurality of optical surfaces two-dimensionally arranged.
  • 3. The illumination optical system according to claim 2, wherein the plurality of the optical surfaces of the optical plane array is arranged along a plane crossing an optical path adjacent to the pupil position or adjacent to the position optically conjugate with the pupil position.
  • 4. The illumination optical apparatus according to claim 2, wherein the second optical system comprises a condenser optical system arranged between the spatial optical modulator and the optical plane array.
  • 5. The illumination optical apparatus according to claim 4, wherein the condenser optical system converts angle information of an incident light into a position information thereof.
  • 6. The illumination optical system according to claim 4, wherein a back focal position of the condenser optical system is positioned near a plane on which the optical plane array is arranged.
  • 7. The illumination optical system according to claim 2, wherein the optical plane array has a plurality of lens surfaces two-dimensionally arranged.
  • 8. The illumination optical system according to claim 1, further comprising a third optical system arranged between the second optical system and the plane to be illuminated, which performs Kohler illumination to the plane to be illuminated with light distributed at the pupil position or at the position optically conjugate with the pupil position by the second optical system.
  • 9. The illumination optical system according to claim 1, wherein the illumination optical system is used with a projection optical system which forms a pattern image arranged in the plane to be illuminated on a substrate, and the pupil position is optically conjugate with a pupil plane of the projection optical system.
  • 10. The illumination optical system according to claim 1, wherein the optical element has a plurality of lens surfaces arranged in a plane crossing an optical path of the illumination light.
  • 11. The illumination optical system according to claim 1, wherein an optical axis of the second optical system intersects with the predetermined plane at a non-perpendicular angle.
  • 12. The illumination optical system according to claim 1, wherein a plane containing the plurality of optical surfaces of the optical element is parallel with the predetermined plane.
  • 13. The illumination optical system according to claim 1, wherein the first optical system includes a relay optical system.
  • 14. An illumination method of illuminating a plane to be illuminated with illumination light from a light source, the method comprising: splitting the illumination light into a plurality of beams by using an optical element having a plurality of optical surfaces;condensing the plurality of the beams from the plurality of the optical surfaces by using a first optical system, the first optical system refocusing the plurality of beams split by the optical element such that first paths of the plurality of beams prior to entering the first optical system are different from second paths of the plurality of beams after exiting the first optical system, and the first optical system further guiding the plurality of beams to a predetermined plane;giving an angle distribution of the light from a spatial light modulator arranged on the predetermined plane by using the spatial light modulator having a plurality of reflecting optical elements each of which has a movable reflection surface arranged to receive a respective beam of the plurality of beams traversing the second paths;distributing a plurality of light beams from the movable reflection surface of each of the reflecting optical elements at a pupil position of an illumination optical system or a position optically conjugate with the pupil position; andforming a spatial light distribution at the pupil position or the position optically conjugate with the pupil position on the basis of the plurality of light beams.
  • 15. A device manufacturing method comprising: illuminating a pattern with illumination light from a light source by using the illumination method according to claim 14;exposing a photosensitive substrate with light from the pattern;after developing the photosensitive substrate on which the pattern is transferred, forming a mask layer having a shape corresponding to the pattern on a surface of the photosensitive substrate; andprocessing the surface of the photosensitive substrate through the mask layer.
Priority Claims (1)
Number Date Country Kind
2007-266691 Oct 2007 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the benefit of priorities from Japanese Patent Application No. 2007-266691, filed on Oct. 12, 2007 and U.S. Provisional Application No. 60/996,035, filed on Oct. 25, 2007, the entire contents of which are incorporated herein by reference.

US Referenced Citations (114)
Number Name Date Kind
4346164 Tabarelli et al. Aug 1982 A
5153428 Ellis Oct 1992 A
5216541 Takesue et al. Jun 1993 A
5251222 Hester et al. Oct 1993 A
5312513 Florence et al. May 1994 A
5383000 Michaloski et al. Jan 1995 A
5461410 Venkateswar et al. Oct 1995 A
5850300 Kathman et al. Dec 1998 A
5850310 Schweizer Dec 1998 A
5991009 Nishi et al. Nov 1999 A
6406148 Marshall et al. Jun 2002 B1
6466304 Smith Oct 2002 B1
6577379 Boettiger et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6665119 Kurtz et al. Dec 2003 B1
6737662 Mulder et al. May 2004 B2
6819490 Sandstrom et al. Nov 2004 B2
6829090 Katsumata et al. Dec 2004 B2
6844927 Stokowski et al. Jan 2005 B2
6885493 Ljungblad et al. Apr 2005 B2
6891655 Grebinski et al. May 2005 B2
6900915 Nanjyo et al. May 2005 B2
6958806 Mulder et al. Oct 2005 B2
6958867 Ohmori et al. Oct 2005 B2
6960035 Okazaki et al. Nov 2005 B2
6961116 Den Boef et al. Nov 2005 B2
6977718 LaFontaine Dec 2005 B1
7015491 Eurlings et al. Mar 2006 B2
7030962 Iizuka et al. Apr 2006 B2
7061226 Dürr Jun 2006 B2
7095481 Morohoshi Aug 2006 B2
7095546 Mala et al. Aug 2006 B2
7095921 Okazaki et al. Aug 2006 B2
7116403 Troost et al. Oct 2006 B2
7121740 Okazaki et al. Oct 2006 B2
7130021 Kobayashi Oct 2006 B2
7130120 Katsumata et al. Oct 2006 B2
7148952 Eurlings et al. Dec 2006 B2
7177012 Bleeker et al. Feb 2007 B2
7193684 Iizuka et al. Mar 2007 B2
7259827 Dierichs Aug 2007 B2
7289276 Ohmori et al. Oct 2007 B2
7400382 Baba-Ali et al. Jul 2008 B2
7423731 Tanitsu et al. Sep 2008 B2
7508492 Sekigawa et al. Mar 2009 B2
7525642 Mulder et al. Apr 2009 B2
7532378 Tanaka et al. May 2009 B2
7542129 Sandstrom Jun 2009 B2
7551261 Fiolka Jun 2009 B2
7573052 Inoue et al. Aug 2009 B2
7573564 Ruff et al. Aug 2009 B2
7580559 Latypov et al. Aug 2009 B2
7605386 Singer et al. Oct 2009 B2
7701555 Arai Apr 2010 B2
7714983 Koehler et al. May 2010 B2
7965380 Bleeker et al. Jun 2011 B2
8018589 MacKinnon et al. Sep 2011 B2
20030071204 Sandstrom et al. Apr 2003 A1
20030098959 Hagiwara et al. May 2003 A1
20030214571 Ishikawa et al. Nov 2003 A1
20040053148 Morohoshi Mar 2004 A1
20040057034 Zinn et al. Mar 2004 A1
20040100629 Stokowski et al. May 2004 A1
20040108467 Eurlings et al. Jun 2004 A1
20040130775 Grebinski Jul 2004 A1
20040160582 Lof et al. Aug 2004 A1
20040207386 Durr Oct 2004 A1
20050024612 Hirukawa et al. Feb 2005 A1
20050041232 Yamada et al. Feb 2005 A1
20050094122 Hagiwara et al. May 2005 A1
20050095749 Krellmann et al. May 2005 A1
20050141583 Sandstrom Jun 2005 A1
20050168790 Latypov et al. Aug 2005 A1
20050213068 Ishii et al. Sep 2005 A1
20050231703 Kobayashi Oct 2005 A1
20050270515 Troost et al. Dec 2005 A1
20050281516 Okazaki et al. Dec 2005 A1
20060001855 Lof et al. Jan 2006 A1
20060050261 Brotsack Mar 2006 A1
20060055834 Tanitsu et al. Mar 2006 A1
20060114446 Gui Jun 2006 A1
20060138349 Bleeker et al. Jun 2006 A1
20060170901 Tanitsu et al. Aug 2006 A1
20060175556 Yabuki Aug 2006 A1
20060176452 Kim et al. Aug 2006 A1
20060203214 Shiraishi Sep 2006 A1
20060232841 Toishi et al. Oct 2006 A1
20060245033 Baba-Ali et al. Nov 2006 A1
20070013888 Flagello et al. Jan 2007 A1
20070146676 Tanitsu et al. Jun 2007 A1
20070165202 Koehler et al. Jul 2007 A1
20070201338 Yaoita et al. Aug 2007 A1
20070273852 Arai Nov 2007 A1
20070273853 Bleeker et al. Nov 2007 A1
20080021948 Wilson et al. Jan 2008 A1
20080030707 Tanaka et al. Feb 2008 A1
20080079930 Klarenbeek Apr 2008 A1
20080095531 Yeo et al. Apr 2008 A1
20080239268 Mulder et al. Oct 2008 A1
20080259304 Dierichs Oct 2008 A1
20090021656 Ozaki Jan 2009 A1
20090033902 Mulder et al. Feb 2009 A1
20090073411 Tanitsu Mar 2009 A1
20090091730 Tanaka Apr 2009 A1
20090097007 Tanaka Apr 2009 A1
20090097094 Tanaka Apr 2009 A1
20090109417 Tanitsu Apr 2009 A1
20090128886 Hirota May 2009 A1
20090147247 Endo et al. Jun 2009 A1
20090174877 Mulder et al. Jul 2009 A1
20090263736 Inoue et al. Oct 2009 A1
20100195077 Koehler et al. Aug 2010 A1
20120202157 Tanitsu Aug 2012 A1
20120236284 Tanaka Sep 2012 A1
Foreign Referenced Citations (862)
Number Date Country
1501175 Jun 2004 CN
1573571 Feb 2005 CN
1576908 Feb 2005 CN
1601322 Mar 2005 CN
1879062 Dec 2006 CN
206 607 Feb 1984 DE
221 563 Apr 1985 DE
224 448 Jul 1985 DE
242 880 Feb 1987 DE
196 35 792 Apr 1997 DE
100 29 938 Jul 2001 DE
10343333 Apr 2005 DE
0 023 231 Feb 1981 EP
0 208 552 Jan 1987 EP
0 656 555 Jun 1995 EP
0 764 858 Mar 1997 EP
0 779 530 Jun 1997 EP
1 109 067 Jun 2001 EP
1 211 561 Jun 2002 EP
1 262 836 Dec 2002 EP
1 280 007 Jan 2003 EP
1 395 049 Mar 2004 EP
1 489 462 Dec 2004 EP
1674935 Jun 2006 EP
1 798 758 Jun 2007 EP
1 882 895 Jan 2008 EP
1 993 120 Nov 2008 EP
2 474 708 Jul 1981 FR
A-44-4993 Feb 1969 JP
A-52666 Jan 1981 JP
A-57-117238 Jul 1982 JP
A-57-152129 Sep 1982 JP
A-57-153433 Sep 1982 JP
A-58-49932 Mar 1983 JP
U-58-45502 Mar 1983 JP
A-58-115945 Jul 1983 JP
A-58-202448 Nov 1983 JP
A-59-19912 Feb 1984 JP
A-59-155843 Sep 1984 JP
A-59-226317 Dec 1984 JP
A-61-44429 Mar 1986 JP
A-61-45923 Mar 1986 JP
A-61-91662 May 1986 JP
U-61-94342 Jun 1986 JP
A-61-156736 Jul 1986 JP
A-61-196532 Aug 1986 JP
A-61-217434 Sep 1986 JP
A-61-251025 Nov 1986 JP
A-61-270049 Nov 1986 JP
A-62-2539 Jan 1987 JP
A-62-2540 Jan 1987 JP
A-62-17705 Jan 1987 JP
A-62-65326 Mar 1987 JP
A-62-100161 May 1987 JP
A-62-120026 Jun 1987 JP
A-62-121417 Jun 1987 JP
A-62-122215 Jun 1987 JP
A-62-153710 Jul 1987 JP
A-62-183522 Aug 1987 JP
A-62-188316 Aug 1987 JP
A-62-203526 Sep 1987 JP
A-63-12134 Jan 1988 JP
A-63-36526 Feb 1988 JP
A-63-73628 Apr 1988 JP
A-63-128713 Jun 1988 JP
A-63-131008 Jun 1988 JP
A-63-141313 Jun 1988 JP
A-63-157419 Jun 1988 JP
A-63-160192 Jul 1988 JP
A-63-231217 Sep 1988 JP
A-63-275912 Nov 1988 JP
A-63-292005 Nov 1988 JP
A-64-18002 Jan 1989 JP
A-64-26704 Feb 1989 JP
A-64-68926 Mar 1989 JP
A-1-91419 Apr 1989 JP
A-1-115033 May 1989 JP
A-1-147516 Jun 1989 JP
A-1-202833 Aug 1989 JP
A-1-214042 Aug 1989 JP
U-1-127379 Aug 1989 JP
A-1-255404 Oct 1989 JP
A-1-258550 Oct 1989 JP
A-1-276043 Nov 1989 JP
A-1-278240 Nov 1989 JP
A-1-286478 Nov 1989 JP
A-1-292343 Nov 1989 JP
A-1-314247 Dec 1989 JP
A-1-319964 Dec 1989 JP
A-2-42382 Feb 1990 JP
A-2-65149 Mar 1990 JP
A-2-65222 Mar 1990 JP
A-2-97239 Apr 1990 JP
A-2-106917 Apr 1990 JP
A-2-116115 Apr 1990 JP
A-2-139146 May 1990 JP
A-2-166717 Jun 1990 JP
A-2-261073 Oct 1990 JP
A-2-264901 Oct 1990 JP
A-2-285320 Nov 1990 JP
A-2-287308 Nov 1990 JP
A-2-298431 Dec 1990 JP
A-2-311237 Dec 1990 JP
A-3-41399 Feb 1991 JP
A-3-64811 Mar 1991 JP
A-3-72298 Mar 1991 JP
A-3-94445 Apr 1991 JP
A-3-132663 Jun 1991 JP
A-3-134341 Jun 1991 JP
A-3-167419 Jul 1991 JP
A-3-168640 Jul 1991 JP
A-3-211812 Sep 1991 JP
A-3-263810 Nov 1991 JP
A-4-11613 Jan 1992 JP
A-4-32154 Feb 1992 JP
A-4-065603 Mar 1992 JP
A-4-96315 Mar 1992 JP
A-4-101148 Apr 1992 JP
A-4-130710 May 1992 JP
A-4-132909 May 1992 JP
A-4-133414 May 1992 JP
A-4-152512 May 1992 JP
A-4-179115 Jun 1992 JP
A-4-186244 Jul 1992 JP
U-4-80052 Jul 1992 JP
A-4-211110 Aug 1992 JP
A-4-225357 Aug 1992 JP
A-4-235558 Aug 1992 JP
A-4-265805 Sep 1992 JP
A-4-273245 Sep 1992 JP
A-4-273427 Sep 1992 JP
A-4-280619 Oct 1992 JP
A-4-282539 Oct 1992 JP
A-4-296092 Oct 1992 JP
A-4-297030 Oct 1992 JP
A-4-305915 Oct 1992 JP
A-4-305917 Oct 1992 JP
U-4-117212 Oct 1992 JP
A-4-330961 Nov 1992 JP
A-4-343307 Nov 1992 JP
A-4-350925 Dec 1992 JP
A-5-13292 Jan 1993 JP
A-5-21314 Jan 1993 JP
A-5-45886 Feb 1993 JP
A-5-62877 Mar 1993 JP
A-5-90128 Apr 1993 JP
A-5-109601 Apr 1993 JP
A-5-127086 May 1993 JP
A-5-129184 May 1993 JP
A-5-134230 May 1993 JP
A-5-160002 Jun 1993 JP
A-5-175098 Jul 1993 JP
A-5-199680 Aug 1993 JP
A-5-217837 Aug 1993 JP
A-5-217840 Aug 1993 JP
A-5-241324 Sep 1993 JP
A-5-243364 Sep 1993 JP
A-5-259069 Oct 1993 JP
A-5-283317 Oct 1993 JP
A-5-304072 Nov 1993 JP
A-5-319774 Dec 1993 JP
A-5-323583 Dec 1993 JP
A-5-326370 Dec 1993 JP
A-6-29204 Feb 1994 JP
A-6-42918 Feb 1994 JP
A-6-53120 Feb 1994 JP
A-6-97269 Apr 1994 JP
A-6-104167 Apr 1994 JP
A-6-120110 Apr 1994 JP
B2-6-29102 Apr 1994 JP
6-124873 May 1994 JP
A-6-36054 May 1994 JP
A-6-124126 May 1994 JP
A-6-124872 May 1994 JP
A-6-124873 May 1994 JP
A-6-140306 May 1994 JP
A-6-148399 May 1994 JP
A-6-163350 Jun 1994 JP
A-6-168866 Jun 1994 JP
A-6-177007 Jun 1994 JP
A-6-181157 Jun 1994 JP
A-6-186025 Jul 1994 JP
A-6-188169 Jul 1994 JP
A-6-196388 Jul 1994 JP
A-6-204113 Jul 1994 JP
A-6-204121 Jul 1994 JP
A-6-229741 Aug 1994 JP
A-6-241720 Sep 1994 JP
A-6-244082 Sep 1994 JP
A-6-267825 Sep 1994 JP
6-291023 Oct 1994 JP
A-6-283403 Oct 1994 JP
A-06-291023 Oct 1994 JP
A-6-310399 Nov 1994 JP
A-6-325894 Nov 1994 JP
A-6-326174 Nov 1994 JP
A-6-349701 Dec 1994 JP
A-7-69621 Mar 1995 JP
A-7-92424 Apr 1995 JP
A-7-122469 May 1995 JP
A-7-132262 May 1995 JP
A-7-134955 May 1995 JP
A-7-135158 May 1995 JP
A-7-135165 May 1995 JP
A-7-147223 Jun 1995 JP
A-7-167998 Jul 1995 JP
A-7-168286 Jul 1995 JP
A-7-174974 Jul 1995 JP
A-7-176468 Jul 1995 JP
A-7-183201 Jul 1995 JP
A-7-183214 Jul 1995 JP
A-7-190741 Jul 1995 JP
A-7-201723 Aug 1995 JP
A-7-220989 Aug 1995 JP
A-7-220990 Aug 1995 JP
A-7-220995 Aug 1995 JP
A-7-221010 Aug 1995 JP
A-7-239212 Sep 1995 JP
A-7-243814 Sep 1995 JP
A-7-245258 Sep 1995 JP
A-7-263315 Oct 1995 JP
A-7-283119 Oct 1995 JP
A-7-297272 Nov 1995 JP
A-7-307268 Nov 1995 JP
A-7-318847 Dec 1995 JP
A-7-335748 Dec 1995 JP
A-8-10971 Jan 1996 JP
A-8-17709 Jan 1996 JP
A-8-22948 Jan 1996 JP
A-8-37149 Feb 1996 JP
A-8-37227 Feb 1996 JP
A-8-46751 Feb 1996 JP
A-8-63231 Mar 1996 JP
A-8-115868 May 1996 JP
A-8-136475 May 1996 JP
A-8-151220 Jun 1996 JP
A-8-162397 Jun 1996 JP
A-8-166475 Jun 1996 JP
A-8-171054 Jul 1996 JP
A-8-195375 Jul 1996 JP
A-8-203803 Aug 1996 JP
A-8-279549 Oct 1996 JP
8-313842 Nov 1996 JP
A-8-288213 Nov 1996 JP
A-8-297699 Nov 1996 JP
A-8-316125 Nov 1996 JP
A-8-316133 Nov 1996 JP
A-8-330224 Dec 1996 JP
A-8-334695 Dec 1996 JP
A-8-335552 Dec 1996 JP
A-9-7933 Jan 1997 JP
A-9-15834 Jan 1997 JP
A-9-22121 Jan 1997 JP
A-9-61686 Mar 1997 JP
A-9-82626 Mar 1997 JP
A-9-83877 Mar 1997 JP
A-9-92593 Apr 1997 JP
A-9-108551 Apr 1997 JP
A-9-115794 May 1997 JP
A-9-134870 May 1997 JP
A-9-148406 Jun 1997 JP
A-9-151658 Jun 1997 JP
A-9-160004 Jun 1997 JP
A-9-160219 Jun 1997 JP
A-9-162106 Jun 1997 JP
A-9-178415 Jul 1997 JP
A-9-184787 Jul 1997 JP
A-9-184918 Jul 1997 JP
A-9-186082 Jul 1997 JP
A-9-190969 Jul 1997 JP
A-9-213129 Aug 1997 JP
A-9-219358 Aug 1997 JP
A-9-215208 Sep 1997 JP
A-9-227294 Sep 1997 JP
A-9-232213 Sep 1997 JP
A-9-243892 Sep 1997 JP
A-9-246672 Sep 1997 JP
A-9-281077 Oct 1997 JP
A-9-325255 Dec 1997 JP
A-9-326338 Dec 1997 JP
A-10-002865 Jan 1998 JP
A-10-3039 Jan 1998 JP
A-10-20195 Jan 1998 JP
A-10-32160 Feb 1998 JP
A-10-38517 Feb 1998 JP
A-10-38812 Feb 1998 JP
A-10-55713 Feb 1998 JP
A-10-62305 Mar 1998 JP
A-10-64790 Mar 1998 JP
A-10-79337 Mar 1998 JP
A-10-82611 Mar 1998 JP
A-10-92735 Apr 1998 JP
A-10-97969 Apr 1998 JP
A-10-104427 Apr 1998 JP
A-10-116760 May 1998 JP
A-10-116778 May 1998 JP
A-10-135099 May 1998 JP
A-H10-116779 May 1998 JP
A-H10-125572 May 1998 JP
A-H10-134028 May 1998 JP
A-10-163099 Jun 1998 JP
A-10-163302 Jun 1998 JP
A-10-169249 Jun 1998 JP
A-10-189427 Jul 1998 JP
A-10-189700 Jul 1998 JP
A-10-206714 Aug 1998 JP
A-10-208993 Aug 1998 JP
A-10-209018 Aug 1998 JP
A-10-214783 Aug 1998 JP
A-10-228661 Aug 1998 JP
A-10-255319 Sep 1998 JP
10-303114 Nov 1998 JP
A-10-294268 Nov 1998 JP
A-10-303114 Nov 1998 JP
A-10-340846 Dec 1998 JP
11-003849 Jan 1999 JP
A-11-3849 Jan 1999 JP
A-11-3856 Jan 1999 JP
A-11-8194 Jan 1999 JP
A-11-14876 Jan 1999 JP
A-11-16816 Jan 1999 JP
A-11-40657 Feb 1999 JP
A-11-54426 Feb 1999 JP
A-11-74185 Mar 1999 JP
A-11-87237 Mar 1999 JP
A-11-111601 Apr 1999 JP
A-11-111818 Apr 1999 JP
A-11-111819 Apr 1999 JP
A-11-121328 Apr 1999 JP
A-11-135400 May 1999 JP
A-11-142556 May 1999 JP
A-11-150062 Jun 1999 JP
A-11-159571 Jun 1999 JP
A-11-162831 Jun 1999 JP
A-11-163103 Jun 1999 JP
A-11-164543 Jun 1999 JP
A-11-166990 Jun 1999 JP
A-11-98 Jul 1999 JP
A-11-176727 Jul 1999 JP
A-11-176744 Jul 1999 JP
A-11-195602 Jul 1999 JP
A-11-204390 Jul 1999 JP
A-11-218466 Aug 1999 JP
A-11-219882 Aug 1999 JP
A-11-233434 Aug 1999 JP
A-11-238680 Aug 1999 JP
A-11-239758 Sep 1999 JP
A-11-260686 Sep 1999 JP
A-11-260791 Sep 1999 JP
A-11-264756 Sep 1999 JP
A-11-283903 Oct 1999 JP
A-11-288879 Oct 1999 JP
A-11-307610 Nov 1999 JP
A-11-312631 Nov 1999 JP
A-11-354624 Dec 1999 JP
A-2000-3874 Jan 2000 JP
A-2000-12453 Jan 2000 JP
A-2000-21742 Jan 2000 JP
A-2000-21748 Jan 2000 JP
A-2000-29202 Jan 2000 JP
A-2000-32403 Jan 2000 JP
A-2000-36449 Feb 2000 JP
A-2000-58436 Feb 2000 JP
A-2000-81320 Mar 2000 JP
A-2000-92815 Mar 2000 JP
A-2000-97616 Apr 2000 JP
A-2000-106340 Apr 2000 JP
A-2000-114157 Apr 2000 JP
A-2000-121491 Apr 2000 JP
A-2000-121498 Apr 2000 JP
A-2000-147346 May 2000 JP
A-2000-154251 Jun 2000 JP
A-2000-180371 Jun 2000 JP
A-2000-206279 Jul 2000 JP
A-2000-208407 Jul 2000 JP
A-2000-240717 Sep 2000 JP
A-2000-243684 Sep 2000 JP
A-2000-252201 Sep 2000 JP
A-2000-283889 Oct 2000 JP
A-2000-286176 Oct 2000 JP
A-2000-311853 Nov 2000 JP
A-2000-323403 Nov 2000 JP
A-2001-7015 Jan 2001 JP
A-2001-20951 Jan 2001 JP
A-2001-23996 Jan 2001 JP
A-2001-37201 Feb 2001 JP
A-2001-44097 Feb 2001 JP
A-2001-74240 Mar 2001 JP
A-2001-83472 Mar 2001 JP
A-2001-85307 Mar 2001 JP
A-2001-97734 Apr 2001 JP
A-2001-110707 Apr 2001 JP
A-2001-118773 Apr 2001 JP
A-2001-135560 May 2001 JP
A-2001-144004 May 2001 JP
A-2001-167996 Jun 2001 JP
A-2001-176766 Jun 2001 JP
A-2001-203140 Jul 2001 JP
A-2001-218497 Aug 2001 JP
A-2001-228401 Aug 2001 JP
A-2001-228404 Aug 2001 JP
A-2001-230323 Aug 2001 JP
A-2001-242269 Sep 2001 JP
A-2001-265581 Sep 2001 JP
A-2001-267227 Sep 2001 JP
A-2001-272764 Oct 2001 JP
A-2001-274083 Oct 2001 JP
A-2001-282526 Oct 2001 JP
A-2001-296105 Oct 2001 JP
A-2001-297976 Oct 2001 JP
A-2001-304332 Oct 2001 JP
A-2001-307982 Nov 2001 JP
A-2001-307983 Nov 2001 JP
A-2001-313250 Nov 2001 JP
A-2001-338868 Dec 2001 JP
A-2001-345262 Dec 2001 JP
A-2002-14005 Jan 2002 JP
A-2002-15978 Jan 2002 JP
A-2002-16124 Jan 2002 JP
A-2002-43213 Feb 2002 JP
A-2002-57097 Feb 2002 JP
A-2002-66428 Mar 2002 JP
A-2002-71513 Mar 2002 JP
A-2002-75816 Mar 2002 JP
A-2002-91922 Mar 2002 JP
A-2002-93686 Mar 2002 JP
A-2002-93690 Mar 2002 JP
A-2002-100561 Apr 2002 JP
A-2002-118058 Apr 2002 JP
A-2002-141270 May 2002 JP
A-2002-158157 May 2002 JP
A-2002-170495 Jun 2002 JP
A-2002-190438 Jul 2002 JP
A-2002-195912 Jul 2002 JP
A-2002-198284 Jul 2002 JP
A-2002-202221 Jul 2002 JP
A-2002-203763 Jul 2002 JP
A-2002-208562 Jul 2002 JP
A-2002-520810 Jul 2002 JP
A-2002-222754 Aug 2002 JP
A-2002-227924 Aug 2002 JP
A-2002-231619 Aug 2002 JP
A-2002-258487 Sep 2002 JP
A-2002-261004 Sep 2002 JP
A-2002-263553 Sep 2002 JP
A-2002-277742 Sep 2002 JP
A-2002-289505 Oct 2002 JP
A-2002-305140 Oct 2002 JP
A-2002-323658 Nov 2002 JP
A-2002-324743 Nov 2002 JP
A-2002-329651 Nov 2002 JP
A-2002-334836 Nov 2002 JP
2002-353105 Dec 2002 JP
A-2002-353105 Dec 2002 JP
A-2002-357715 Dec 2002 JP
A-2002-359174 Dec 2002 JP
A-2002-362737 Dec 2002 JP
A-2002-365783 Dec 2002 JP
A-2002-367523 Dec 2002 JP
A-2002-367886 Dec 2002 JP
A-2002-373849 Dec 2002 JP
A-2003-15040 Jan 2003 JP
A-2003-17003 Jan 2003 JP
A-2003-17404 Jan 2003 JP
A-2003-28673 Jan 2003 JP
A-2003-35822 Feb 2003 JP
A-2003-43223 Feb 2003 JP
A-2003-45219 Feb 2003 JP
A-2003-45712 Feb 2003 JP
A-2003-59286 Feb 2003 JP
A-2003-59803 Feb 2003 JP
A-2003-59821 Feb 2003 JP
A-2003-68600 Mar 2003 JP
A-2003-75703 Mar 2003 JP
A-2003-81654 Mar 2003 JP
A-2003-84445 Mar 2003 JP
A-2003-98651 Apr 2003 JP
A-2003-100597 Apr 2003 JP
A-2003-114387 Apr 2003 JP
A-2003-124095 Apr 2003 JP
A-2003-130132 May 2003 JP
A-2003-149363 May 2003 JP
A-2003-151880 May 2003 JP
A-2003-161882 Jun 2003 JP
A-2003-163158 Jun 2003 JP
A-2003-166856 Jun 2003 JP
A2003-173957 Jun 2003 JP
A-2003-188087 Jul 2003 JP
A-2003-195223 Jul 2003 JP
A-2003-224961 Aug 2003 JP
A-2003-229347 Aug 2003 JP
A-2003-233001 Aug 2003 JP
A-2003-238577 Aug 2003 JP
A-2003-240906 Aug 2003 JP
A-2003-249443 Sep 2003 JP
A-2003-258071 Sep 2003 JP
A-2003-262501 Sep 2003 JP
A-2003-263119 Sep 2003 JP
A-2003-272837 Sep 2003 JP
A-2003-273338 Sep 2003 JP
A-2003-279889 Oct 2003 JP
A-2003-282423 Oct 2003 JP
A-2003-297727 Oct 2003 JP
A-2003-532281 Oct 2003 JP
A-2003-532282 Oct 2003 JP
A-2003-311923 Nov 2003 JP
A-2004-006440 Jan 2004 JP
A-2004-7417 Jan 2004 JP
A-2004-14642 Jan 2004 JP
A-2004-14876 Jan 2004 JP
A-2004-15187 Jan 2004 JP
A-2004-22708 Jan 2004 JP
A-2004-38247 Feb 2004 JP
A-2004-39952 Feb 2004 JP
A-2004-40039 Feb 2004 JP
A-2004-45063 Feb 2004 JP
A-2004-63847 Feb 2004 JP
A-2004-71851 Mar 2004 JP
A-2004-85612 Mar 2004 JP
A-2004-87987 Mar 2004 JP
A-2004-093624 Mar 2004 JP
A-2004-95653 Mar 2004 JP
U-3102327 Mar 2004 JP
A-2004-98012 Apr 2004 JP
A-2004-101362 Apr 2004 JP
A-2004-103674 Apr 2004 JP
A-2004-111569 Apr 2004 JP
A-2004-111579 Apr 2004 JP
A-2004-119497 Apr 2004 JP
A-2004-119717 Apr 2004 JP
A-2004-128307 Apr 2004 JP
A-2004-134682 Apr 2004 JP
A-2004-140145 May 2004 JP
A-2004-145269 May 2004 JP
A-2004-146702 May 2004 JP
A-2004-152705 May 2004 JP
A-2004-153064 May 2004 JP
A-2004-153096 May 2004 JP
A-2004-163555 Jun 2004 JP
A-2004-165249 Jun 2004 JP
A-2004-165416 Jun 2004 JP
A-2004-172471 Jun 2004 JP
A-2004-177468 Jun 2004 JP
A-2004-179172 Jun 2004 JP
A-2004-187401 Jul 2004 JP
A-2004-193252 Jul 2004 JP
A-2004-193425 Jul 2004 JP
A-2004-198748 Jul 2004 JP
A-2004-205698 Jul 2004 JP
A-2004-207696 Jul 2004 JP
A-2004-207711 Jul 2004 JP
A-2004-260115 Jul 2004 JP
A-2004-221253 Aug 2004 JP
A-2004-224421 Aug 2004 JP
A-2004-228497 Aug 2004 JP
A-2004-233897 Aug 2004 JP
A-2004-241666 Aug 2004 JP
A-2004-247527 Sep 2004 JP
A-2004-259828 Sep 2004 JP
A-2004-259966 Sep 2004 JP
A-2004-259985 Sep 2004 JP
A-2004-260043 Sep 2004 JP
A-2004-260081 Sep 2004 JP
A-2004-294202 Oct 2004 JP
A-2004-301825 Oct 2004 JP
A-2004-302043 Oct 2004 JP
A-2004-303808 Oct 2004 JP
A-2004-304135 Oct 2004 JP
A-2004-307264 Nov 2004 JP
A-2004-307265 Nov 2004 JP
A-2004-307266 Nov 2004 JP
A-2004-307267 Nov 2004 JP
A-2004-319724 Nov 2004 JP
A-2004-320017 Nov 2004 JP
A-2004-327660 Nov 2004 JP
A-2004-335808 Nov 2004 JP
A-2004-335864 Nov 2004 JP
A-2004-336922 Nov 2004 JP
A-2004-342987 Dec 2004 JP
A-2004-349645 Dec 2004 JP
A-2004-356410 Dec 2004 JP
A-2005-5295 Jan 2005 JP
A-2005-5395 Jan 2005 JP
A-2005-5521 Jan 2005 JP
A-2005-11990 Jan 2005 JP
A-2005-12228 Jan 2005 JP
A-2005-018013 Jan 2005 JP
A-2005-19628 Jan 2005 JP
A-2005-19864 Jan 2005 JP
A-2005-26634 Jan 2005 JP
A-2005-503018 Jan 2005 JP
A-2005-032909 Feb 2005 JP
A-2005-51147 Feb 2005 JP
A-2005-55811 Mar 2005 JP
A-2005-64210 Mar 2005 JP
A-2005-64391 Mar 2005 JP
A-2005-79222 Mar 2005 JP
A-2005-79584 Mar 2005 JP
A-2005-79587 Mar 2005 JP
A-2005-86148 Mar 2005 JP
A-2005-91023 Apr 2005 JP
A-2005-93324 Apr 2005 JP
A-2005-93948 Apr 2005 JP
A-2005-97057 Apr 2005 JP
A-2005-108934 Apr 2005 JP
A-2005-114882 Apr 2005 JP
A-2005-116570 Apr 2005 JP
A-2005-116571 Apr 2005 JP
A-2005-116831 Apr 2005 JP
A-2005-123586 May 2005 JP
A-2005-127460 May 2005 JP
A-2005-136404 May 2005 JP
A-2005-136422 May 2005 JP
A-2005-140999 Jun 2005 JP
A-2005-150759 Jun 2005 JP
A-2005-156592 Jun 2005 JP
A-2005-166871 Jun 2005 JP
A-2005-175176 Jun 2005 JP
A-2005-175177 Jun 2005 JP
A-2005-191344 Jul 2005 JP
A-2005-203483 Jul 2005 JP
A-2005-209705 Aug 2005 JP
A-2005-209706 Aug 2005 JP
A-2005-223328 Aug 2005 JP
A-2005-233979 Sep 2005 JP
A-2005-234359 Sep 2005 JP
A-2005-236088 Sep 2005 JP
A-2005-243770 Sep 2005 JP
A-2005-243870 Sep 2005 JP
A-2005-243904 Sep 2005 JP
A-2005-251549 Sep 2005 JP
A-2005-257740 Sep 2005 JP
A-2005-259789 Sep 2005 JP
A-2005-259830 Sep 2005 JP
A-2005-268700 Sep 2005 JP
A-2005-268741 Sep 2005 JP
A-2005-268742 Sep 2005 JP
A-2005-276932 Oct 2005 JP
A-2005-302825 Oct 2005 JP
A-2005-303167 Oct 2005 JP
A-2005-311020 Nov 2005 JP
A-2005-315918 Nov 2005 JP
A-2005-340605 Dec 2005 JP
A-2005-366813 Dec 2005 JP
A-2005-537658 Dec 2005 JP
A-2006-1821 Jan 2006 JP
A-2006-5197 Jan 2006 JP
A-2006-013518 Jan 2006 JP
A-2006-17895 Jan 2006 JP
A-2006-19702 Jan 2006 JP
A-2006-24706 Jan 2006 JP
A-2006-24819 Jan 2006 JP
A-2006-32750 Feb 2006 JP
A-2006-032963 Feb 2006 JP
A-2006-41302 Feb 2006 JP
A-2006-054328 Feb 2006 JP
A-2006-54364 Feb 2006 JP
A-2006-73584 Mar 2006 JP
A-2006-73951 Mar 2006 JP
A-2006-80281 Mar 2006 JP
A-2006-86141 Mar 2006 JP
A-2006-86442 Mar 2006 JP
A-2006-508369 Mar 2006 JP
2006-113437 Apr 2006 JP
A-2006-100363 Apr 2006 JP
A-2006-100686 Apr 2006 JP
A-2006-513442 Apr 2006 JP
A-2006-120985 May 2006 JP
A-2006-128192 May 2006 JP
A-2006-135165 May 2006 JP
A-2006-135312 May 2006 JP
2006-171426 Jun 2006 JP
A-2006-140366 Jun 2006 JP
A-2006-170811 Jun 2006 JP
A-2006-170899 Jun 2006 JP
A-2006-177865 Jul 2006 JP
A-2006-184414 Jul 2006 JP
A-2006-194665 Jul 2006 JP
A-2006-516724 Jul 2006 JP
A-2006-216917 Aug 2006 JP
A-2006-228718 Aug 2006 JP
A-2006-519494 Aug 2006 JP
A-2006-250587 Sep 2006 JP
A-2006-253572 Sep 2006 JP
A-2006-269762 Oct 2006 JP
A-2006-278820 Oct 2006 JP
A-2006-284740 Oct 2006 JP
A-2006-289684 Oct 2006 JP
A-2006-309243 Nov 2006 JP
2006-343023 Dec 2006 JP
A-2006-344747 Dec 2006 JP
A-2006-349946 Dec 2006 JP
A-2006-351586 Dec 2006 JP
A-2007-5830 Jan 2007 JP
A-2007-019079 Jan 2007 JP
A-2007-43980 Feb 2007 JP
A-2007-48819 Feb 2007 JP
A-2007-51300 Mar 2007 JP
A-2007-505488 Mar 2007 JP
A-2007-87306 Apr 2007 JP
A-2007-93546 Apr 2007 JP
A-2007-103153 Apr 2007 JP
A-2007-113939 May 2007 JP
A-2007-119851 May 2007 JP
A-2007-120333 May 2007 JP
A-2007-120334 May 2007 JP
A-2007-142313 Jun 2007 JP
A-2007-144864 Jun 2007 JP
A-2007-150295 Jun 2007 JP
A-2007-170938 Jul 2007 JP
A-2007-187649 Jul 2007 JP
A-2007-207821 Aug 2007 JP
A-2007-227637 Sep 2007 JP
A-2007-227918 Sep 2007 JP
A-2007-235041 Sep 2007 JP
A-2007-258691 Oct 2007 JP
A-2007-274881 Oct 2007 JP
A-2007-280623 Oct 2007 JP
A-2007-295702 Nov 2007 JP
A-2008-3740 Jan 2008 JP
A-2008-047744 Feb 2008 JP
A-2008-58580 Mar 2008 JP
A-2008-64924 Mar 2008 JP
A-2008-102134 May 2008 JP
A-2008-103737 May 2008 JP
A-2008-180492 Aug 2008 JP
A-2008-258605 Oct 2008 JP
A-2009-17540 Jan 2009 JP
A-2009-60339 Mar 2009 JP
A-2009-105396 May 2009 JP
A-2009-111369 May 2009 JP
A-2009-117801 May 2009 JP
A-2009-117812 May 2009 JP
A-2010-034486 Feb 2010 JP
2002-0092207 Dec 2002 KR
WO 9711411 Mar 1997 WO
WO 9824115 Jun 1998 WO
WO 9859364 Dec 1998 WO
WO 9923692 May 1999 WO
WO 9927568 Jun 1999 WO
WO 9931716 Jun 1999 WO
WO 9934255 Jul 1999 WO
WO 9949366 Sep 1999 WO
WO 9949504 Sep 1999 WO
WO 9949504 Sep 1999 WO
WO 9950712 Oct 1999 WO
WO 9966370 Dec 1999 WO
WO 0011706 Mar 2000 WO
WO 0067303 Apr 2000 WO
WO 0067303 Nov 2000 WO
WO 0103170 Jan 2001 WO
WO 0110137 Feb 2001 WO
WO 0122480 Mar 2001 WO
WO 0127978 Apr 2001 WO
WO 0159502 Aug 2001 WO
WO 0165296 Sep 2001 WO
WO 0216993 Feb 2002 WO
WO 02063664 Aug 2002 WO
WO 02069049 Sep 2002 WO
WO 02080185 Oct 2002 WO
WO 02084720 Oct 2002 WO
WO 02084850 Oct 2002 WO
WO 02101804 Dec 2002 WO
WO 02103766 Dec 2002 WO
WO 03023832 Mar 2003 WO
WO 03023833 Mar 2003 WO
WO 03063212 Jul 2003 WO
WO 03077036 Sep 2003 WO
WO 03085708 Oct 2003 WO
WO 2004051220 Jun 2004 WO
WO 2004051717 Jun 2004 WO
WO 2004053596 Jun 2004 WO
WO 2004053950 Jun 2004 WO
WO 2004053951 Jun 2004 WO
WO 2004053952 Jun 2004 WO
WO 2004053953 Jun 2004 WO
WO 2004053954 Jun 2004 WO
WO 2004053955 Jun 2004 WO
WO 2004053956 Jun 2004 WO
WO 2004053957 Jun 2004 WO
WO 2004053958 Jun 2004 WO
WO 2004053959 Jun 2004 WO
WO 2004061488 Jul 2004 WO
WO 2004071070 Aug 2004 WO
WO 2004077164 Sep 2004 WO
WO 2004086468 Oct 2004 WO
WO 2004086470 Oct 2004 WO
WO 2004090956 Oct 2004 WO
WO 2004091079 Oct 2004 WO
WO 2004094940 Nov 2004 WO
WO 2004104654 Dec 2004 WO
WO 2004105106 Dec 2004 WO
WO 2004105107 Dec 2004 WO
WO 2004107048 Dec 2004 WO
WO 2004107417 Dec 2004 WO
WO 2004109780 Dec 2004 WO
WO 2004114380 Dec 2004 WO
WO 2005006415 Jan 2005 WO
WO 2005006418 Jan 2005 WO
WO 2005008754 Jan 2005 WO
WO 2005022615 Mar 2005 WO
WO 2005026843 Mar 2005 WO
WO 2005026843 Mar 2005 WO
WO 2005029559 Mar 2005 WO
WO 2005036619 Apr 2005 WO
WO 2005036620 Apr 2005 WO
WO 2005-036622 Apr 2005 WO
WO 2005-036623 Apr 2005 WO
WO 2005041276 May 2005 WO
WO 2005048325 May 2005 WO
WO 2005048326 May 2005 WO
WO 2005057636 Jun 2005 WO
WO 2005067013 Jul 2005 WO
WO 2005071717 Aug 2005 WO
WO 2005076321 Aug 2005 WO
WO 2005076323 Aug 2005 WO
WO 2005081291 Sep 2005 WO
WO 2005081292 Sep 2005 WO
WO 2005104195 Nov 2005 WO
WO 2006-006730 Jan 2006 WO
WO 2006-016551 Feb 2006 WO
WO 2006019124 Feb 2006 WO
WO 2006-025341 Mar 2006 WO
WO 2006-028188 Mar 2006 WO
WO 2006-030727 Mar 2006 WO
WO 2006030910 Mar 2006 WO
WO 2006035775 Apr 2006 WO
WO 2006-049134 May 2006 WO
WO 2006051909 May 2006 WO
WO 2006-064851 Jun 2006 WO
WO 2006-068233 Jun 2006 WO
WO 2006-077958 Jul 2006 WO
WO 2006085524 Aug 2006 WO
WO 2006085626 Aug 2006 WO
WO 2006097135 Sep 2006 WO
WO 2006100889 Sep 2006 WO
WO 2006-118108 Nov 2006 WO
WO 2007003563 Jan 2007 WO
WO 2007004567 Jan 2007 WO
WO 2007-018127 Feb 2007 WO
WO 2007055237 May 2007 WO
WO 2007055373 May 2007 WO
WO 2007058188 May 2007 WO
WO 2007066692 Jun 2007 WO
WO 2007066758 Jun 2007 WO
WO 2007100081 Jul 2007 WO
WO 2007097198 Aug 2007 WO
WO 2007132862 Nov 2007 WO
WO 2007141997 Dec 2007 WO
WO 2008015973 Feb 2008 WO
WO 2008041575 Apr 2008 WO
WO 2008059748 May 2008 WO
WO 2008061681 May 2008 WO
WO 2008065977 Jun 2008 WO
WO 2008075613 Jun 2008 WO
WO 2008078688 Jul 2008 WO
WO 2008090975 Jul 2008 WO
WO 2008131928 Nov 2008 WO
WO 2008139848 Nov 2008 WO
WO 2009153925 Dec 2009 WO
WO 2009157154 Dec 2009 WO
WO 2010001537 Jan 2010 WO
Non-Patent Literature Citations (90)
Entry
Office Action dated Jul. 12, 2011 in Chinese Patent Application No. 200880018312.8.
Office Action dated Jul. 5, 2011 in Chinese Patent Application No. 200880100940.0.
Office Action dated Jun. 30, 2011 in Chinese Patent Application No. 200880021453.5.
Office Action dated Jul. 28, 2011 in U.S. Appl. No. 12/252,283.
Office Action dated Jul. 19, 2011 in U.S. Appl. No. 12/191,821.
Office Action dated Jul. 26, 2011 in Chinese Application No. 200880020867.6.
Notice of Allowance dated Nov. 28, 2011 in U.S. Appl. No. 12/952,197.
Dec. 15, 2011 Notice of Allowance issued in U.S. Appl. No. 12/245,021.
Dec. 20, 2011 Office Action issued in CN Application No. 200980101546.3 (with English translation).
Feb. 7, 2012 Notice of Allowance issued in U.S. Appl. No. 12/191,821.
Office Action dated Nov. 15, 2011 in U.S. Appl. No. 12/252,274.
Office Action dated Dec. 8, 2011 in U.S. Appl. No. 12/256,055.
Office Action dated Nov. 3, 2011 in Chinese Patent Application No. 200880015567.9.
Office Action dated Dec. 12, 2011 in European Patent Application No. 08 837 064.8.
Office Action dated Nov. 17, 2011 in Chinese Patent Application No. 200880024375.4.
Jan. 15, 2009 International Search Report issued in International Application No. PCT/JP2008/068319.
Mar. 25, 2009 International Search Report issued in International Application No. PCT/JP2008/066803.
Jan. 16, 2009 Invitation to Pay Additional Fees Relating to the results of the Partial International Search Report issued in International Application No. PCT/JP2008/066803.
May 25, 2009 International Search Report issued in International Application No. PCT/JP2008/069704.
Mar. 6, 2009 Invitation to Pay Additional Fees Relating to the results of the Partial International Search Report issued in International Application No. PCT/JP2008/069704.
Jan. 26, 2009 International Search Report issued in International Application No. PCT/JP2008/068909.
Apr. 6, 2009 International Search Report issued in International Application No. PCT/JP2008/070253.
Mar. 2, 2009 International Search Report issued in International Application No. PCT/JP2008/069701.
Dec. 9, 2010 European Search Report issued in European Application No. 09015719.9.
Dec. 9, 2010 European Search Report issued in European Application No. 09015716.5.
Dec. 9, 2010 Partial European Search Report issued in European Application No. 09015718.1.
Oct. 15, 2010 Office Action issued in European Application No. 08 835 135.8.
Feb. 22, 2011 Office Action issued in European Application No. 08 830 323.5.
Dec. 8, 2010 Office Action issued in European Application No. 08 841 021.2.
Jun. 25, 2010 Office Action issued in European Application No. 08 837 064.8.
Mar. 24, 2011 Office Action issued in Chinese Application No. 200880024806.7 (with translation).
Feb. 20, 2012 Second Office Action issued in Chinese Patent Application No. 200880018312.8 (with translation).
May 18, 2011 Office Action issued in U.S. Appl. No. 12/208,155.
Jul. 27, 2011 Office Action issued in U.S. Appl. No. 12/208,155.
Mar. 24, 2011 Office Action issued in U.S. Appl. No. 12/191,821.
Jan. 3, 2011 Office Action issued in U.S. Appl. No. 12/262,930.
May 13, 2011 Office Action issued in U.S. Appl. No. 12/952,197.
Mar. 31, 2011 Notice of Allowance issued in U.S. Appl. No. 12/252,274.
Sep. 1, 2010 Office Action issued in U.S. Appl. No. 12/252,274.
Feb. 24, 2012 Notice of Allowance issued in U.S. Appl. No. 12/252,283.
Gao, et al., “Research on High-Quality Projecting Reduction Lithography System Based on Digital Mask Technique,” Elsevier GmbH, Optik (Jan. 2005), vol. 116, pp. 303-310.
Aug. 26, 2011 Office Action issued in U.S. Appl. No. 12/245,021.
May 29, 2012 Office Action issued in U.S. Appl. No. 13/417,602.
May 9, 2012 Office Action issued in European Patent Application No. 08 830 323.5.
May 23, 2012 Office Action issued in U.S. Appl. No. 12/191,821.
Jun. 20, 2012 Office Action issued in Chinese Patent Application No. 200880100940.0 (with translation).
Jul. 27, 2012 Search Report issued in European Patent Application No. 12171299.6.
Jun. 18, 2012 Office Action issued in Chinese Patent Application No. 200880021453.5 (with translation).
Aug. 14, 2012 Notice of Allowance issued in U.S. Appl. No. 12/252,274.
Aug. 24, 2012 Office Action issued in U.S. Appl. No. 12/245,021.
Aug. 27, 2012 Office Action issued in U.S. Appl. No. 12/256,055.
Jul. 26, 2012 Office Action issued in Chinese Application No. 200880020867.6.
Sep. 14, 2012 Office Action issued in U.S. Appl. No. 13/484,051.
Oct. 2, 2012 Search Report issued in European Application No. 12173803.3.
Sep. 28, 2012 Notice of Allowance issued in U.S. Appl. No. 12/252,283.
Oct. 17, 2012 Office Action issued in European Patent Application No. 08841021.2.
Oct. 18, 2012 Search Report issued in European Application No. 09015718.1.
Oct. 30, 2012 Search Report issued in European Application No. 12173802.5.
Oct. 17, 2012 Office Action issued in European Application No. 09015716.5.
Oct. 10, 2012 Office Action issued in Chinese Application No. 200880015567.9 (w/ translation).
Feb. 22, 2012 Office Action issued in Chinese Application No. 200880020867.6 (w/ translation).
Nov. 20, 2012 Office Action issued in Japanese Application No. P2008-261214 (w/ translation).
Nov. 20, 2012 Office Action issued in Japanese Application No. P2008-261215 (w/ translation).
Nov. 27, 2012 Office Action issued in U.S. Appl. No. 12/252,274.
Dec. 26, 2012 Office Action in Chinese Patent Application No. 200980101546.3 (with translation).
Jan. 15, 2013 Notice of Allowance issued in U.S. Appl. No. 12/191,821.
Jan. 16, 2013 Notice of Allowance issued in U.S. Appl. No. 13/417,602.
Jan. 23, 2013 Notice of Allowance issued in U.S. Appl. No. 12/952,197.
Jan. 23, 2013 Notice of Allowance issued in U.S. Appl. No. 12/252,283.
Jan. 15, 2013 Office Action issued in Japanese Patent Application No. P2008-259522 (with translation).
Jan. 31, 2013 Office Action issued in Chinese Patent Application No. 200880021453.5 (with translation).
Feb. 19, 2013 Office Action issued in Japanese Patent Application No. 2010-514429 (with translation).
Mar. 11, 2013 Office Action issued in European Patent Application No. 08847031.5.
Mar. 19, 2013 Office Action issued in European Patent Application No. 08830323.5.
Mar. 12, 2013 Office Action issued in Chinese Patent Application No. 200880024806.7 (with translation).
Apr. 5, 2013 Notice of Allowance issued in U.S. Appl. No. 13/484,051.
Apr. 29, 2013 Notice of Allowance issued in U.S. Appl. No. 12/252,274.
May 10, 2013 Office Action issued in European Patent Application No. 12171299.6.
Apr. 3, 2013 Office Action issued in Chinese Patent Application No. 200880100940.0 (with translation).
May 14, 2013 Office Action issued in Japanese Patent Application No. P2010-506474 (with translation).
Sep. 21, 2012 Search Report issued in European Application No. 12173801.7.
Oct. 23, 2012 Notice of Allowance issued in Japanese Application No. P2008-263405 (w/ translation).
Jun. 17, 2013 Office Action issued in European Patent Application No. 12173802.5.
Apr. 30, 2014 Office Action issued in Japanese Patent Application No. P2013-055204 (with English Translation).
Aug. 27, 2014 Office Action issued in Korean Patent Application No. 10-2010-7005948 (with English translation).
Jul. 2, 2014 Office Action issued in Chinese Patent Application No. 201310052891.0.
Jul. 2, 2014 Office Action issued in Chinese Patent Application No. 201310052720.8.
May 5, 2015 Office Action issued in Chinese Application No. 201310052720.8.
May 6, 2015 Office Action issued in Chinese Application No. 201310052891.0.
May 22, 2015 Office Action issued in Korean Application No. 10-2015-7005375.
Related Publications (1)
Number Date Country
20090128886 A1 May 2009 US
Provisional Applications (1)
Number Date Country
60996035 Oct 2007 US