Image alignment method for binocular eyewear displays

Abstract
A method is provided for aligning, without user interaction, the two images of a binocular eyewear display (100) with respect to their vertical, horizontal, and rotational orientation, and with respect to magnification. The method for aligning images comprise generating a signal from a display modification system (108) based on stored values indicative of misalignment of the binocular eyewear display (100); and adjusting, in accordance with the signal, an image or images to be displayed by an optics system (106). The stored values may include values for a plurality of temperatures and humidity.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and



FIG. 1 is a top schematic view of an exemplary embodiment of a binocular display device;



FIG. 2 is a projected image free from misalignment;



FIG. 3 is a projected image having horizontal misalignment;



FIG. 4 is a projected image having vertical misalignment;



FIG. 5 is a projected image having rotational misalignment;



FIG. 6 is a projected image having magnification misalignment; and



FIG. 7 is a flow chart of steps of the exemplary embodiment.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.


Commercial binocular eyewear are aligned mechanically at manufacture and some misalignment is common. By measuring the optical misalignment, e.g., at the factory or subsequently at a sales or repair facility, and storing misalignment parameters such as vertical, horizontal, rotation, and magnification, in memory integral to the eyewear, correction may be made automatically without user interaction to bring the alignment within desired limits. A first image is presented to a first eye and a second image is presented to a second eye. A microcomputer may adjust at least one of the first and second images, e.g., by shifting or rotating pixels, in accordance with the stored parameters. Additionally, the optical misalignment may be measured at a plurality of temperatures and humidity with the misalignment at each temperature and humidity stored. Subsequently, the misalignment at a current temperature and/or humidity may be adjusted in accordance with the stored values.


Referring to FIG. 1, a binocular display device 100 in accordance with an exemplary embodiment comprises a housing 102 including an image receiving device 104, optics system 106, and display modification system 108. The image receiving device 104 may, for example, comprise an input (not shown) for wired or wireless coupling or an electronic device for receiving and reading video data from a DVD or the like. The optics system 106 includes a first microdisplay 112 and a first lens 114 for displaying an image for an eye, and a second microdisplay 116 and a second lens 118 for displaying the image to the other eye. The optical system 106 may also include backlights 122 and 124 for lighting the microdisplays 112 and 116. It should be understood that there are many types of optical systems that may include, for example, mirrors and/or waveguides. It should be understood the present invention should not be limited by the type of image receiving device 104 or the type of optics system 106 described herein. The display modification system 108 includes a microcomputer 126 and memory 128 coupled to the image receiving device 104, and a display driver 130 coupled between the microcomputer 126 and the microdisplays 112 and 116. The display modification system 108 may further include an environmental sensor 120 for sensing, for example, the temperature and/or humidity. The microcomputer 126 and/or the memory 128 may be integrated into the binocular display device 100 or may reside elsewhere and be coupled electronically to the binocular display device 100.


When an image, which typically would comprise a video stream, is received by the image receiving device 104, it is transmitted to the microcomputer 126 via first connector 132. The image is then transmitted to the display driver 130 via second connector 134, and to first and second microdrivers 112 and 116 via third connector 136 and fourth connector 138, respectively, for viewing.


When the binocular display device 100 is fabricated, misalignment parameters are stored in the memory 128. When an image is to be displayed, the microcomputer 126 retrieves these misalignment parameters from the memory 128 and instructs the display driver 130 as appropriate to modify the image for display by the first microdisplay 112 and/or the second microdisplay 116 to compensate for the misalignment of the binocular display device 100.


The illustration shown in FIG. 2 is representative of an aligned image. Types of image misalignment that may be encountered by the binocular display device 100 included horizontal misalignment (FIG. 3), vertical misalignment (FIG. 4), rotational misalignment (FIG. 5), and magnification misalignment (FIG. 6). The image misalignment can be corrected either by mechanical or electronic means.


Mechanical means of alignment may involve mechanical adjustment of either the image source, for example a microdisplay, or by adjustment of optical components between the image source and the eye, for example a lens. Because of the very small image alignment tolerances, the required mechanical adjustment may be prohibitively expensive to execute during or after manufacture of the device. The mechanical precision required may be on the order of 1 micron to 1 mm depending on the mechanism used to make the adjustment. Utilizing only mechanical alignment has limitations. One limitation is that it can be difficult or expensive to realign the images after the device is manufactured because it may require disassembly and of the eyewear display and for some components to be debonded. Also, it is not possible to correct for misalignment that may result from changes in temperature at which the device operates.


Electronic image alignment can overcome some of the limitations of mechanical image alignment. Horizontal or vertical image alignment of the image presented to both eyes is accomplished by shifting pixels in one or both of the images presented by the display drivers 130. In the chart below, it is shown that by shifting an image by one pixel shifts results in an angular change of 1.5 to 3.75 minutes of arc for the selected resolutions. This enables the very tight vertical and horizontal image alignment tolerances to be met simply through the electronic image adjustment. This chart uses values for a typical eyewear display with a 25 degree diagonal field of view with a 4:3 aspect ratio for the image.

















One pixel shift



Field of view
Resolution
corresponds to:
Alignment tolerance



















15 degrees
QVGA (240 vertical pixels)
 3.75 minutes
3
minutes (see-through)


vertical
VGA (480 vertical pixels)
1.875 minutes
5
minutes (immersive)



SVGA (600 vertical pixels)
 1.5 minutes


20 degrees
QVGA (320 horizontal pixels)
 3.75 minutes
3 to 8
minutes (see


horizontal
VGA (640 horizontal pixels)
1.875 minutes

through



SVGA (800 horizontal pixels)
 1.5 minutes










Although adjustments for vertical and horizontal image alignment can be accomplished by shifting the image on a microdisplay, obtaining proper alignment with respect to rotation and magnification may be more complex manipulation of the initial image. A microcomputer may be required to calculate the corrected image.


A flow chart of the steps implemented by the microcomputer 126 is shown in FIG. 7. First, the misalignment of a test image viewed from the display driver 130 of the binocular device 100 is measured 142. The measured misalignment is stored 144 in memory 128. Optionally, misalignment of the viewed test image is measured 146 for a plurality of temperatures and/or humidity and stored 148. The temperature and humidity is sensed by the environmental sensor 120. When the user turns on the binocular display device 100 and an actual image is received for display by the microdisplays 112, 116, the microcomputer 126 generates 150 a signal to the display driver 130. The actual image to be displayed by the microdisplays 112 and 116 is adjusted 152 to improve any misalignment between the images presented to each eye.


While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.

Claims
  • 1. A method for aligning images displayed by a binocular device having an optics system and a display modification system, wherein values indicative of misalignment of the optics system are stored in the display modification system, comprising: generating a signal from the display modification system based on the stored values; andadjusting, in accordance with the signal, an image to be displayed by the optics system.
  • 2. The method of claim 1 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising shifting the array in at least one direction.
  • 3. The method of claim 1 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising rotating the array.
  • 4. The method of claim 1 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising modifying the magnification of the image.
  • 5. The method of claim 1 wherein the values indicative of misalignment are for a plurality of temperatures, the method further comprising determining the current temperature, and wherein the adjusting step comprises adjusting the image in accordance with the stored misalignment for the current temperature.
  • 6. The method of claim 1 wherein the values indicative of misalignment are for a plurality of humidity, the method further comprising determining the current humidity, and wherein the adjusting step comprises adjusting the image in accordance with the stored misalignment for the current humidity.
  • 7. A method for aligning images displayed by a binocular device having an image receiving device, an optics system, and a display modification system, comprising: receiving a test image by the image receiving device;measuring misalignment of the test image viewed from the optics system;storing the misalignment in the display modification system;receiving an actual image by the image receiving device;generating a signal from the display modification system based on the stored misalignment; andadjusting, in accordance with the signal, the actual image to be displayed by the optics system to reduce the misalignment of the actual image being viewed.
  • 8. The method of claim 7 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising shifting the array in at least one direction.
  • 9. The method of claim 7 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising rotating the array.
  • 10. The method of claim 7 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising modifying the magnification of the image.
  • 11. The method of claim 7 wherein the measuring step comprises: measuring the misalignment at a plurality of temperatures; andwherein the adjusting step comprises:determining the current temperature; andadjusting the image in accordance with the stored misalignment for the current temperature.
  • 12. The method of claim 7 wherein the measuring step comprises: measuring the misalignment at a plurality of humidity; andwherein the adjusting step comprises:determining the current humidity; andadjusting the image in accordance with the stored misalignment for the current humidity.
  • 13. A method for aligning a binocular device having a first microdisplay for displaying an image to an eye and a second microdisplay for displaying the image to another eye, the image comprising an array of pixels, a memory device, and a microcomputer, wherein values indicative of misalignment of the binocular device are stored in the memory device, comprising: generating a signal from the microcomputer based on the stored values; andadjusting, in accordance with the signal, the array of pixels to be displayed by at least one of the first and second microdisplays.
  • 14. The method of claim 13 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising shifting the array in at least one direction.
  • 15. The method of claim 13 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising rotating the array.
  • 16. The method of claim 13 wherein the actual image comprises a plurality of pixels configured in an array, the adjusting step comprising modifying the magnification of the image.
  • 17. The method of claim 13 wherein the values indicative of misalignment are for a plurality of environmental parameters, the method further comprising determining the current environmental parameter, and wherein the adjusting step comprises adjusting the array of pixels in accordance with the stored misalignment for the current environmental parameter.
  • 18. The method of claim 13 wherein the values indicative of misalignment are for a plurality of temperatures, the method further comprising determining the current temperature, and wherein the adjusting step comprises adjusting the array of pixels in accordance with the stored misalignment for the current temperature.
  • 19. The method of claim 13 wherein the values indicative of misalignment are for a plurality of humidity, the method further comprising determining the current humidity, and wherein the adjusting step comprises adjusting the array of pixels in accordance with the stored misalignment for the current humidity.