Image display apparatus

Abstract
An image display apparatus has a synchronizing signal decimation circuit for performing decimation of vertical synchronizing signals, an image decimation circuit for performing decimation of image data, an image scale-up circuit for scaling up the decimated image data, a display panel for displaying an image, a driving circuit for causing the display panel to sequentially display individual frames of image according to the scaled-up image data in synchronization with the decimated vertical synchronizing signals, and a controller having information of a scaling factor of the image scale-up circuit, vertical synchronizing signals to be discarded by the synchronizing signal decimation circuit, and image data to be discarded by the image decimation circuit. The controller controls operation of the synchronizing signal decimation circuit, the image decimation circuit, the image scale-up circuit, and the driving circuit according to the information.
Description




BACKGROUND OF THE INVENTION




The present invention relates to an image display apparatus such as a monitor or a data projector having a matrix display device (hereinafter referred to as a display panel) such as a liquid crystal display panel, a digital micromirror device (DMD), a field emission display (FED), a plasma display panel (PDP), or an LED panel. More specifically, the present invention relates to an image display apparatus that displays a scaled-up image if an image size of an input image signal is smaller than a size of an effective display area of the display panel.





FIG. 7

is a diagram showing configuration of a prior art image display apparatus, which is disclosed in Japanese Patent Kokai Publication No. 10-334227 published on Dec. 18, 1998. In the image display apparatus


100


shown in

FIG. 7

, an image signal is supplied from a terminal


101


, and a dot clock SCLK for the image signal is supplied from a terminal


102


. The image signal supplied from the terminal


101


is input to a control unit


103


and a time-base converter


104


. The dot clock SCLK supplied from the terminal


102


is input to the time-base converter


104


. The control unit


103


outputs an output clock DCLK so that a scaled-up image is generated at a frame rate matching a rate at which the input image signal is received. The clock DCLK output by the control unit


103


is supplied to the time-base converter


104


, an interpolation circuit


105


, and a panel controller


106


. Then, the control unit


103


outputs a buffer control signal BANK for controlling a line buffer in the time-base converter


104


. The buffer control signal BANK output by the control unit


103


is supplied to the time-base converter


104


. Moreover, the control unit


103


outputs a modifier signal Q for determining pixel data used for interpolation and a phase value signal PHASE for determining an interpolation coefficient. The modifier signal Q output from the control unit


103


is input to the time-base converter


104


and the interpolation circuit


105


, and the phase value signal PHASE is supplied to the interpolation circuit


105


.




The time-base converter


104


receives the pixel data for the input image in synchronization with the dot clock SCLK, and outputs the received pixel data in synchronization with the output clock DCLK on a different time base according to the buffer control signal BANK supplied from the control unit


103


. The pixel data output from the time-base converter


104


is image data scaled up by copying (or repeating) the pixel data. The scaled-up pixel data output from the time-base converter


104


is supplied to the interpolation circuit


105


. The interpolation circuit


105


performs predetermined interpolation of the pixel data of the scaled-up image, according to the modifier signal Q and the phase value signal PHASE, and outputs the results of interpolation. The pixel data of the scaled-up image subjected to interpolation and output by the interpolation circuit


105


is supplied to the panel controller


106


. The panel controller


106


outputs the scaled-up image subjected to interpolation to the display panel


107


in a signal format compatible with the input interface of the display panel


107


. The display panel


107


therefore displays the scaled-up image subjected to interpolation according to the output of the panel controller


106


.





FIG. 8

is a block diagram showing configuration of a prior art image display apparatus, which is disclosed in Japanese Patent Kokai Publication No. 08-129356 published on May 21, 1996. In the image display apparatus


200


shown in

FIG. 8

, an image signal is input from a terminal


201


. The input image signal is supplied to a first arithmetic circuit


202


and a control unit


203


. The control unit


203


detects resolution of the image data from a synchronizing signal of the image signal and outputs a scaling factor CZ calculated from a ratio of the detected result to the resolution of the display panel


206


. The control unit


203


also outputs a horizontal interpolation control signal CH and a vertical interpolation control signal CV, according to a calculated scaling factor CZ. Moreover, the control unit


203


outputs a memory control signal CM for controlling a write timing and a read timing of the frame memory


204


. The control unit


203


further outputs the display control signal CP for the display panel


206


. The scaling factor CZ output by the control unit


203


is supplied to the first arithmetic circuit


202


and the second arithmetic circuit


205


. The horizontal interpolation control signal CH output by the control unit


203


is supplied to the first arithmetic circuit


202


, and the vertical interpolation control signal CV is supplied to the second arithmetic circuit


205


. The memory control signal CM output by the control unit


203


is supplied to the frame memory


204


. The display control signal CP output by the control unit


203


is supplied to the display panel


206


.




The first arithmetic circuit


202


performs interpolation of the input image data in consecutive dot units, according to the scaling factor CZ and the horizontal interpolation control signal CH, and outputs the image data scaled up in the horizontal direction. The horizontally scaled-up image data output by the first arithmetic circuit


202


is supplied to the frame memory


204


. The frame memory


204


stores the horizontally scaled-up image data of one screen according to the memory control signal CM, and the stored image data is read out. The horizontally scaled-up image data read from the frame memory


204


is input to the second arithmetic circuit


205


. The second arithmetic circuit


205


performs interpolation of the image data of consecutive two lines of the horizontally scaled-up image according to the scaling factor CZ and the vertical interpolation control signal CV. If the scaled-up image data has a lower resolution than the display panel


206


, a display area that has no image data on the display panel


206


is replaced with monochromatic image data. The scaled-up image data output by the second arithmetic circuit


205


is supplied to the display panel


206


. The display panel


206


displays the scaled-up image data according to the display control signal CP and displays monochromatic data in areas without image data.




Owing to the configurations as described above, the above-mentioned prior art image display apparatuses have problems as described below.





FIGS. 9A and 9B

are diagrams for explaining the image display method of the prior art image display apparatus


100


shown in FIG.


7


.

FIG. 9A

shows the numbers (720 pixels wide by 400 pixels high) of horizontal and vertical pixels of the input image signal, and

FIG. 9B

shows the numbers (1024 pixels wide by 768 pixels high) of horizontal and vertical pixels of the displayed image. In this example, a horizontal scaling factor is 1.42 (=1024 pixels/720 pixels), and a vertical scaling factor is 1.92 (=768 pixels/400 pixels). Accordingly, as shown in

FIG. 9B

, vertically distorted (vertically elongated) image is displayed. If the display panel


107


and the input image have different aspect ratios, the prior art image display apparatus


100


shown in

FIG. 7

cannot display a correct scaled-up image with the same aspect ratio as that of the input image.




Unlike the image display apparatus


100


shown in

FIG. 7

, the prior art image display apparatus


200


shown in

FIG. 8

is freed from the impossibility of maintaining the aspect ratio of the input image. However, a frame memory for one screen is needed, which results in very high cost and high difficulty in integrating the signal processing circuit other than display panel into an LSI chip.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide a low-cost image display apparatus that can display a scaled-up image maintaining the aspect ratio of the input image even if the display panel and the input image have different aspect ratios.




According to the present invention, the image display apparatus comprises: a synchronizing signal decimation circuit for performing decimation of input vertical synchronizing signals to output decimated vertical synchronizing signals; an image decimation circuit for performing decimation of input image data to output decimated image data; an image scale-up circuit for scaling up the decimated image data to output scaled-up image data; a display panel for displaying an image; a driving circuit for causing the display panel to sequentially display individual frames of image according to the scaled-up image data in synchronization with the decimated vertical synchronizing signals; and a controller having information of a scaling factor of the image scale-up circuit, vertical synchronizing signals to be discarded by the synchronizing signal decimation circuit, and image data to be discarded by the image decimation circuit, the controller controlling operation of the synchronizing signal decimation circuit, the image decimation circuit, the image scale-up circuit, and the driving circuit according to the information.




Further, the image display apparatus may further comprise a delay circuit for performing delay processing on the vertical synchronizing signals to output delayed vertical synchronizing signals to the driving circuit.




Furthermore, the controller may determine the scaling factor of the image scale-up circuit according to a size of the input image data for a single frame and a size of an effective display area of the display panel.




The controller may also determine vertical synchronizing signals to be discarded by the synchronizing signal decimation circuit and image data to be discarded by the image decimation circuit according to a size of the input image data for a single frame, a size of an effective display area of the display panel, and a frequency of the input vertical synchronizing signals.




Moreover, the controller may determine vertical synchronizing signals to be discarded by the synchronizing signal decimation circuit, a delay time by the delay circuit, and image data to be discarded by the image decimation circuit according to a size of the input image data for a single frame, a size of an effective display area of the display panel, a frequency of the input vertical synchronizing signals, and an image display position in the effective display area of the display panel.




In addition, in the decimation by the image decimation circuit, the image decimation circuit selects a predetermined frame among first to N-th frames of sequentially input image data, N representing a frame number which is a certain integer not smaller than 2, outputs the selected frame of image data, and discards image data other than the selected frame of image data, in the decimation by the synchronizing signal decimation circuit, the synchronizing signal decimation circuit selects a predetermined frame among first to N-th frames of sequentially input vertical synchronization signals, outputs the selected frame of vertical synchronizing signal, and discards vertical synchronizing signals other than the selected frame of vertical synchronizing signal, and a frame number of the selected frame of image data is different from a frame number of the selected frame of vertical synchronizing signal.




The image display apparatus may further comprise an image data adding circuit for displaying a certain color at an area other than the image based on the image data in the effective display area of the display panel.




Further, the image display apparatus may further comprise an image data adding circuit for displaying a message indicating that a displayed image is based on the decimated vertical synchronizing signals and the decimated image data when the image decimation circuit performs decimation of the image data.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:





FIG. 1

is a block diagram showing configuration of an image display apparatus according to a first embodiment of the present invention;





FIG. 2

is a block diagram showing configuration of a synchronizing signal processing circuit shown in

FIG. 1

;





FIG. 3

is a timing chart showing decimation, delay processing, and scale-up processing in the image display apparatus of the first embodiment;





FIGS. 4A and 4B

are diagrams for explaining an image display method of the image display apparatus of the first embodiment, wherein

FIG. 4A

shows numbers of horizontal and vertical pixels of the input image signal, and

FIG. 4B

shows numbers of vertical and horizontal pixels of the display panel, displayed image, and margins;





FIG. 5

is a block diagram showing configuration of an image display apparatus according to a second embodiment of the present invention;





FIG. 6

is a diagram illustrating the image display method of the image display apparatus of the second embodiment;





FIG. 7

is a block diagram showing configuration of the prior art image display apparatus;





FIG. 8

is a block diagram showing configuration of another prior art image display apparatus; and





FIGS. 9A and 9B

are diagrams for explaining the image display method of the prior art image display apparatus shown in

FIG. 7

, wherein

FIG. 9A

shows the numbers of horizontal and vertical pixels of the input image signal, and

FIG. 9B

shows the numbers of horizontal and vertical pixels of the displayed image.











DETAILED DESCRIPTION OF THE INVENTION




Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications will become apparent to those skilled in the art from the detailed description.




First Embodiment





FIG. 1

is a block diagram showing configuration of an image display apparatus according to a first embodiment of the present invention. As shown in

FIG. 1

, the image display apparatus of the first embodiment comprises terminals


1


,


2


, and


3


, an input signal measurement circuit


4


, a synchronizing signal processing circuit


5


, a controller


6


, an image decimation circuit


7


, a driving circuit


8


, an image scale-up circuit


9


, and a display panel


10


. In

FIG. 1

, DI represents an input image signal, HI represents an input horizontal synchronizing signal, and VI represents an input vertical synchronizing signal. Further, HS represents a horizontal synchronizing signal processed by the synchronizing signal processing circuit


5


, VS represents a vertical synchronizing signal processed by the synchronizing signal processing circuit


5


, DP represents an image signal processed by the image decimation circuit


7


, DZ represents an image signal processed by the image scale-up circuit


9


, SP represents a drive signal for the display panel


10


, and TD represents a control signal. Furthermore, RD represents data such as input signal measurement results generated by the input signal measurement circuit


4


.





FIG. 2

is a block diagram showing configuration of the synchronizing signal processing circuit


5


shown in FIG.


1


. As shown in

FIG. 2

, the synchronizing signal processing circuit


5


has a synchronizing signal decimation circuit


11


and a delay circuit


12


. In

FIG. 2

, VM represents a vertical synchronizing signal processed by the synchronizing signal decimation circuit


11


.

FIG. 3

is a timing chart for explaining decimation, delay processing, and scale-up processing in the image display apparatus of the first embodiment. In

FIG. 3

, n to n+8 (n is a positive integer) represent frame numbers of the input image signals.

FIGS. 4A and 4B

are diagrams for explaining an image display method of the image display apparatus of the first embodiment.

FIG. 4A

shows the numbers of vertical and horizontal pixels of the input image signal while

FIG. 4B

shows the numbers of vertical and horizontal pixels of the display panel, displayed image, and margin.




The operation of the image display apparatus of the first embodiment will next be described. As shown in

FIG. 1

, the vertical synchronizing signal VI is input to the terminal


3


. The horizontal synchronizing signal HI is input to the terminal


2


. To the terminal


1


, the image signal DI sampled at preset intervals is input. The image signal DI is, for instance, an image signal consisting of three primary colors R, G, and B. The image signal DI may be the result of A/D conversion of an analog signal or received data of a digital signal. The image signal DI is synchronized with the horizontal synchronizing signal HI and the vertical synchronizing signal VI.




The horizontal synchronizing signal HI and the vertical synchronizing signal VI are input to the input signal measurement circuit


4


and the synchronizing signal processing circuit


5


. The image signal DI is input to the input signal measurement circuit


4


and the image decimation circuit


7


.




The input signal measurement circuit


4


measures frequencies, pulse widths, and polarities of the horizontal synchronizing signal HI and the vertical synchronizing signal VI, and the positions of the upper, lower, right, and left ends of the image signal, and outputs measurement results RD. The measurement results RD produced by the input signal measurement circuit


4


are input to the controller


6


.




The controller


6


identifies the type of the input image signal according to the measurement results RD and judges whether decimation of the vertical synchronizing signal VI is needed, according to the type of the input image signal, display size of the display panel


10


, and the frequency of the input vertical synchronizing signal VI. The controller


6


generates the control signal TD, which includes the judgment result and the control information for displaying a scaled-up image in a preset position of the display panel


10


. The control signal TD produced by the controller


6


is input to the synchronizing signal processing circuit


5


, the image decimation circuit


7


, and the driving circuit


8


.




The synchronizing signal processing circuit


5


will next be described with reference to FIG.


2


. As shown in

FIG. 2

, the vertical synchronizing signal VI is input to the synchronizing signal decimation circuit


11


. The horizontal synchronizing signal HI is input to the delay circuit


12


. The control signal TD is input to the synchronizing signal decimation circuit


11


and the delay circuit


12


.




The synchronizing signal decimation circuit


11


performs decimation of the input vertical synchronizing signal VI according to the input control signal TD and produces the decimated vertical synchronizing signal VM. The decimated vertical synchronizing signal VM produced by the synchronizing signal decimation circuit


11


is input to the delay circuit


12


.




The delay circuit


12


performs delay processing of the decimated vertical synchronizing signal VM according to the input control signal TD and the horizontal synchronizing signal HI, and produces the result as the delayed vertical synchronizing signal VS. The delay circuit


12


also generates the horizontal synchronizing signal HS which has a certain positional relationship with the delayed vertical synchronizing signal VS, according to the horizontal synchronizing signal HI. The vertical synchronizing signal VS and the horizontal synchronizing signal HS generated by the synchronizing signal processing circuit


5


are input to the image decimation circuit


7


and the driving circuit


8


.




The image decimation circuit


7


performs decimation of the input image signal DI according to the control signal TD, based on the vertical synchronizing signal VS and the horizontal synchronizing signal HS subjected to the delay processing, and produces the decimated image signal DP. The image signal DP generated by the image decimation circuit


7


is input to the image scale-up circuit


9


. The driving circuit


8


generates the drive signal SP for the display panel


4


corresponding to the scale-up display of the image, according to the horizontal synchronizing signal HS, the vertical synchronizing signal VS decimated by the synchronizing signal processing circuit


5


, and the control signal TD output by the controller


6


. The drive signal SP generated by the driving circuit


8


is input to the image scale-up circuit


9


and the display panel


10


. The image scale-up circuit


9


scales up the image according to the drive signal SP and inputs the scaled-up image signal DZ to the display panel


10


. The display panel


10


displays the image signal DZ output by the image scale-up circuit


9


according to the drive signal SP output by the driving circuit


8


.




The operation of the controller


6


will next be explained in further details. In the example used for the explanation, the input image signal DI pertains to an image portion of


720


pixels wide by 400 lines high, as shown in

FIG. 4A

, and a frame of 900 pixels wide by 449 lines high, including non-image area, and the display panel is 1024 pixels wide by 768 lines high, as shown in FIG.


4


B.




The controller


6


first calculates the scaling factor of the image. The scaling factor can be specified in many ways. Described here is a way of displaying the input image signal DI as large as possible on the display panel


10


with no missing part of the image, maintaining the aspect ratio. In this case, the smaller of the vertical scaling factor of 1.92 (=768 pixels/400 pixels) and the horizontal scaling factor of 1.42 (=1024 lines/720 lines), which are calculated to scale up the input image signal DI to the whole display panel


10


, should be used as both vertical and horizontal scaling factors. That is, 1.42 is used as the vertical and horizontal scaling factors. The scaled-up image is 1024 pixels wide by 568 lines (=400 lines×1.42) high.




Next, the controller


6


judges whether the decimation of the vertical synchronizing signal VI and the image signal DI is required. With the image scaling factor of 1.42 calculated above, the number of lines for the image signal DI in a single frame including non-image area is 637.58 lines (=449 lines×1.42). The fractional portion is a height smaller than the preset line width. Accordingly, a total of 637 lines are included in the period of a single frame in real terms. Because the total number of lines is smaller than the height of the display panel


10


, which is 768 lines, the image is not appropriately displayed on the display panel


10


. The controller


6


compares the total number of lines of a single frame after image scale-up with the number of lines of the display panel


10


. If the former is smaller, the controller generates the control signal TD that includes information providing instructions to perform decimation of the vertical synchronizing signal VI and image signal.




The controller


6


generates the control signal TD which includes information of an instruction for delaying decimated vertical synchronizing signal VM for a preset period so that the scaled-up image can be partly displayed in a desired position of the display panel


10


. To display the image area in the center of the display panel


10


, for instance, a non-image area of 100 lines must be displayed each in the upper end and lower end of the display panel


10


. To enable this, the delay circuit


12


is controlled through the control signal TD in search of such a delay value that a period of at least 100 lines can be maintained between the delayed vertical synchronizing signal VS and the top of the image of the image signal DP and that a period of 100 lines or more can be maintained between the end of the image of the image signal DP and the vertical synchronizing signal VM. The control signal TD for starting the image area from the 101st line of the whole display area of the display panel is also generated to control the driving circuit


9


.




Since a width of a margin (non-image area) can be calculated from a size of the input image and a size of the display panel


10


, the image can always be displayed in the center of the display panel


10


even if the operation described above causes the type of the input image signal to be changed. The image can also be displayed in the upper end, lower end, or any other desired position on the display panel


10


.




Next, the operation of the synchronizing signal decimation circuit


11


, the synchronizing signal delay circuit


12


, and the image decimation circuit


7


will be described with reference to FIG.


3


. In the decimation by the image decimation circuit


7


, the image decimation circuit


7


selects a predetermined frame among first to N-th frames of sequentially input image data (N represents a frame number which is a certain integer not smaller than 2) outputs the selected frame of image data, and discards image data other than the selected frame of image data. In the decimation by the synchronizing signal decimation circuit


11


, the synchronizing signal decimation circuit


11


selects a predetermined frame among first to N-th frames of sequentially input vertical synchronization signals, outputs the selected frame of vertical synchronizing signal, and discards vertical synchronizing signals other than the selected frame of vertical synchronizing signal. A frame number of the selected frame of image data is different from a frame number of the selected frame of vertical synchronizing signal. N is 2, for instance. According to the control signal TD output from the controller


6


, the synchronizing signal decimation circuit


11


decimates the input vertical synchronizing signal VI at a ratio of one frame to two frames and produces the decimated vertical synchronizing signal VM. The vertical synchronizing signals VI of frames n+1, n+3, n+5, n+7, and so on are discarded. The delay circuit


12


delays the input vertical synchronizing signal VM for a certain period of time, according to the control signal TD output by the controller


6


, and generates the delayed vertical synchronizing signal VS.




The image decimation circuit


7


decimates the image signals, frames of the decimated image signals being different from the frames of which vertical synchronizing signal VI were decimated, according to the control signal TD output by the controller


6


, on the basis of the vertical synchronizing signal VS and the horizontal synchronizing signal HS. As shown in

FIG. 3

, the image signals DI of frames n, n+2, n+4, n+6, n+8, . . . are discarded, and the decimated image signals DP (frames n+1, n+3, n+5, n+7, . . . ) are output.




The operation of the image scale-up circuit


9


and the display panel


10


will next be described with reference to FIG.


3


. The image scale-up circuit


9


scales up the image according to the drive signal SP generated by the driving circuit


8


and outputs the scaled-up image signal DZ. In

FIG. 3

, the shaded boxes


14


of DZ correspond to non-image areas displayed on the display panel


10


, wherein preset monochromatic data is displayed.




In the image display apparatus of the first embodiment, the input image signal DI of 720 pixels wide by 400 lines high as shown in

FIG. 4A

, for instance, is displayed on the display panel


10


of 1024 pixels wide by 768 lines high as shown in FIG.


4


B. The input image is scaled up to an image of 1024 pixels wide by 568 lines high with the same aspect ratio maintained. By providing a non-image area of


100


lines each in the upper and lower ends of the display panel


10


, the scaled-up image is displayed in the center of the display panel


10


. Decimation degrades the image quality, but if the input image is a still image, the quality of the decimated image can be similar to that of a non-decimated image.




If the image scaling factor is set to 1.0, the image of the input image signal DI is not scaled up, and an image according to the image signal DI can be displayed in the center or another preset position of the display panel


10


.




In the explanation given above, the vertical synchronizing signals VI of the frames n+1, n+3, n+5, n+7, . . . and the image signals DI of frames n, n+2, n+4, n+6, n+8, . . . are discarded. However, the frames to be discarded are not limited to the examples given above. For instance, decimation may be performed in such a way that the vertical synchronizing signals VI of frames n+1, n+4, n+7, n+10, . . . and the image signals DI of frames n, n+3, n+6, n+9, n+12, . . . are output. It is advisable that the frames from which the vertical synchronizing signals VI are discarded and the frames from which the image data is discarded be determined according to the intervals of the decimated and delayed vertical synchronizing signal VS, width of the image signal DZ of a single frame output from the image scale-up circuit


9


(width WDZ in FIG.


3


), and other factors.




As has been described above, a correct scaled-up image having the same aspect ratio as the input image can be displayed on the display panel


10


, using no expensive frame memory even if the image size of the display panel


10


is larger than the image size of the input image signal and even if the input image and display panel


10


have different aspect ratios.




Second Embodiment





FIG. 5

is a block diagram showing configuration of an image display apparatus according to a second embodiment of the present invention. As shown in

FIG. 5

, the image display apparatus of the second embodiment is different from the image display apparatus of the first embodiment described above only in that an image data adding circuit


13


is added. In

FIG. 5

, DC represents the image signal processed by the image data adding circuit


13


.




The operation of the image data adding circuit


13


will next be described. As shown in

FIG. 5

, the image data adding circuit


13


is supplied with the drive signal SP output by the driving circuit


8


and the image signal DZ output by the image scale-up circuit


9


. The image data adding circuit


13


puts a preset color on the non-image area of the image signal DZ displayed on the display panel


10


according to the drive signal SP. The image data adding circuit


13


further puts on the information display image data, notably the OSD (on-screen display) function, and outputs the image signal DC with superimposed coloring and information display image data. The image signal DC is input to the display panel


10


, and the display panel


10


displays the image signal DC according to the drive signal SP output by the driving circuit


8


.




The image display apparatus of the second embodiment can put a preset color on the margins (non-image areas) of the display panel


10


. The color of margins of the display panel


10


can be changed to any color desired by the user in the partial image display.





FIG. 6

illustrates an image display method of the image display apparatus of the second embodiment. As shown in

FIG. 6

, the image display apparatus displays a scaled-up image of the input image signal DI in the area


15


of the display panel


10


. A reference numeral


16


denotes a margin (non-image area) of the display panel


10


. Moreover, the image display apparatus can display a message


17


warning that a decimated image is displayed in a part of the display panel


10


or a note telling that the aspect ratio of the input image signal DI is different from that of the display panel


10


, persuading the user to change the type of the input image signal.




The second embodiment is the same as the first embodiment except for the points described above.




The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of following claims.



Claims
  • 1. An image display apparatus comprising:a synchronizing signal decimation circuit for performing decimation of input vertical synchronizing signals to output decimated vertical synchronizing signals; an image decimation circuit for performing decimation of input image data to output decimated image data; an image scale-up circuit for scaling up the decimated image data to output scaled-up image data; a display panel for displaying an image; a driving circuit for causing said display panel to sequentially display individual frames of image according to the scaled-up image data in synchronization with the decimated vertical synchronizing signals; and a controller having information of a scaling factor of said image scale-up circuit, vertical synchronizing signals to be discarded by said synchronizing signal decimation circuit, and image data to be discarded by said image decimation circuit, said controller controlling operation of said synchronizing signal decimation circuit, said image decimation circuit, said image scale-up circuit, and said driving circuit according to the information.
  • 2. The image display apparatus of claim 1, further comprising a delay circuit for performing delay processing on the vertical synchronizing signals to output delayed vertical synchronizing signals to said driving circuit.
  • 3. The image display apparatus of claim 1, wherein said controller determines the scaling factor of said image scale-up circuit according to a size of the input image data for a single frame and a size of an effective display area of said display panel.
  • 4. The image display apparatus of claim 1, wherein said controller determines vertical synchronizing signals to be discarded by said synchronizing signal decimation circuit and image data to be discarded by said image decimation circuit according to a size of the input image data for a single frame, a size of an effective display area of said display panel, and a frequency of the input vertical synchronizing signals.
  • 5. The image display apparatus of claim 2, wherein said controller determines vertical synchronizing signals to be discarded by said synchronizing signal decimation circuit, a delay time by said delay circuit, and image data to be discarded by said image decimation circuit according to a size of the input image data for a single frame, a size of an effective display area of said display panel, a frequency of the input vertical synchronizing signals, and an image display position in the effective display area of said display panel.
  • 6. The image display apparatus of claim 1, whereinin the decimation by said image decimation circuit, said image decimation circuit selects a predetermined frame among first to N-th frames of sequentially input image data, N representing a frame number which is a certain integer not smaller than 2, outputs the selected frame of image data, and discards image data other than the selected frame of image data, in the decimation by said synchronizing signal decimation circuit, said synchronizing signal decimation circuit selects a predetermined frame among first to N-th frames of sequentially input vertical synchronization signals, outputs the selected frame of vertical synchronizing signal, and discards vertical synchronizing signals other than the selected frame of vertical synchronizing signal, and a frame number of the selected frame of image data is different from a frame number of the selected frame of vertical synchronizing signal.
  • 7. The image display apparatus of claim 1, further comprising an image data adding circuit for displaying a certain color at an area other than the image based on the image data in the effective display area of said display panel.
  • 8. The image display apparatus of claim 1, further comprising an image data adding circuit for displaying a message indicating that a displayed image is based on the decimated vertical synchronizing signals and the decimated image data when said image decimation circuit performs decimation of the image data.
Priority Claims (1)
Number Date Country Kind
11-355553 Dec 1999 JP
US Referenced Citations (6)
Number Name Date Kind
5517612 Dwin et al. May 1996 A
5710573 Hung et al. Jan 1998 A
5990860 Takeuchi Nov 1999 A
6014125 Herbert Jan 2000 A
6252576 Nottingham Jun 2001 B1
6330002 Yamada Dec 2001 B1
Foreign Referenced Citations (2)
Number Date Country
8-129356 May 1996 JP
10-334227 Dec 1998 JP