The present application is based on and claims priority to Japanese Priority Application No. 2019-050379 filed on Mar. 18, 2019, the entire contents of which are hereby incorporated herein by reference.
The present invention relates to an image forming apparatus and a signal control method in an image forming apparatus.
Conventionally, an image forming apparatus is known in which multiple heads including one or two rows of nozzle (nozzle rows) for discharging ink for each color of ink used for image forming are arranged in a direction perpendicular to a conveying direction in a staggered manner.
In such an image forming apparatus, discharge timing control is known that uses a timing depending on a constant conveying distance and position information in the conveying direction of a nozzle row, for example, as disclosed in Japanese Examined Patent Application Publication No. 7-123276 and Japanese Unexamined Patent Application Publication No. 2002-192712.
In recent years, various types of heads have been used in the above-described image forming apparatus. For example, there is a superimposed head having two heads in the conveying direction and a head having four rows of nozzles, for example, as disclosed in Japanese Unexamined Patent Application Publication No. 2003-136728.
Some superimposed heads are shifted in a direction perpendicular to the conveying direction in order to increase the resolution, while others are shifted in a direction in which the nozzle rows of overlapping heads intersect the conveying direction.
Thus, because various types of heads have been used, control of a timing of discharging ink from the nozzle becomes complicated.
Moreover, when a variety of heads is introduced, such as heads including three or more heads overlapped in the conveying direction or heads including overlapped five or six rows of nozzles, in the conventional discharge timing control using information only about a timing corresponding to a certain conveying distance and a position in the conveying direction of the nozzle rows, the accuracy of the discharge position of the image formed on a recording medium is decreased.
Accordingly, embodiments of the present disclosure may provide an image forming apparatus and a signal control method in an image, forming apparatus reducing one or more of the above-described problems.
More specifically, the embodiments of the present invention may provide an image forming apparatus that can increase accuracy of a discharge position and prevent a deterioration of the quality of an image even in a configuration including some nozzle rows each extending in an axial direction and disposed in a conveying direction in a head unit.
According to an embodiment of the present disclosure, there is provided an image forming apparatus that includes a rotational conveying unit including a gripping member configured to grip a recording medium, the rotational conveying unit being configured to convey the recording medium by rotating about a rotational axis while gripping the recording medium by the gripping member. At least one head unit includes n nozzle rows in a conveying direction perpendicular to an axial direction parallel to the rotational axis. Here, n is a natural number. Each of the n nozzle rows includes a plurality of nozzles each aligned as a nozzle row in the axial direction. Each of the nozzles is configured to discharge an ink drop onto the recording medium. Each of the n nozzle rows is arranged at a distance of d1 to d(n−1) from a predetermined reference nozzle row. A circuit is configured to detect a rotational amount of the rotational conveying unit and to output a rotational amount detection signal, to detect a conveying amount of the recording medium by the rotational conveying unit and to output a conveying amount detection signal, to generate a discharge synchronization signal based on the detected rotational amount detection signal and the detected conveying amount detection signal, to generate a nozzle row timing signal indicating a discharge timing from each of the n nozzle rows at a different timing for each of then nozzle rows based on the distance of the d1 to d (n−1) and the discharge synchronization signal, the distance of the d1 to d(n−1) being arrangement information of the n nozzle rows in the at least one head unit, and to generate discharge data for each of the n nozzle rows based on the discharge synchronization signal and the nozzle row timing signal.
Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
Hereinafter, an embodiment for carrying out the present disclosure with reference to the drawings will be described. In each drawing, the same components are indicated by the same reference numerals and overlapping descriptions may be omitted.
<Printing Device>
The carry-in section 10 includes a carry-in tray 11 on which a plurality of sheet materials P is stacked, a feeder 12 to separate each sheet material P from the carry-in tray 11 and to send out each sheet material P, and a pair of resist rollers 13 to send the sheet materials P to the printing section 20.
The feeder 12 may be any feeder, such as a device using a roller or a device utilizing air suction. The sheet material P fed from the carry-in tray 11 by the feeder 12 is fed to the printing section 20 by driving the pair of resist rollers 13 at a predetermined timing after the leading end thereof reaches the pair of resist rollers 13.
The printing section 20 includes a conveying drum 21 as a conveying unit for conveying the sheet material P while holding the sheet material P on the outer circumferential surface, and a liquid discharge section 22 for discharging ink (liquid) toward the sheet material P held by the conveying drum 21.
The printing section 20 includes a transfer drum 24 for receiving the sent sheet material P and delivering the sheet material P to the conveying drum 21 and a transfer drum 25 for delivering the sheet material P conveyed by the conveying drum 21 to the drying section 30.
The sheet material P, which has been conveyed from the carry-in section 10 to the printing section 20, is supported at the front end by a gripping member provided on the surface of the transfer drum 24 and conveyed as the transfer drum 24 rotates. The sheet material P conveyed by the transfer drum 24 is fed to the conveying drum 21 at a position facing the conveying drum 21. A gripping member 214—such as a sheet gripper, is also provided on the surface of the conveying drum 21, and the leading end of the sheet material P is gripped by the gripping member 214. On the surface of the conveying drum 21, a plurality of suction holes is dispersedly formed. A suction apparatus 26, which is a suction means, generates a suction air stream inwardly from the suction hole of the conveying drum 21.
The sheet material P received from the transfer drum 24 to the conveying drum 21 is gripped by the gripping member 214, adsorbed on the conveying drum 21 by the suction airflow by the suction device 26, and conveyed as the conveying drum 21 rotates.
The liquid discharge section 22 includes a discharge unit 23 (23A to 23F) that is a liquid discharging means. For example, the discharge unit 23A discharges cyan (C); the discharge unit 23B discharges magenta (M) ink; the discharge unit 23C discharges yellow (Y) ink; and the discharge unit 23D discharges black (K) ink. The discharge units 23E and 23F are used to discharge any of YMCK or special ink such as white, gold and silver. Further, the discharge unit for discharging the treatment liquid, such as the surface coating liquid, can be provided. The details of the discharge unit 23 are described later with reference to
The drying section 30 includes a drying mechanism section 31 for drying the ink adhering to the sheet material P at the printing section 20 and a suction and conveying mechanism section 32 for conveying the sheet material P conveyed from the printing section 20 while suction the sheet material P (conveyed while suctioning).
The sheet material P, which has been conveyed from the printing section 20, is received by the suction and conveying mechanism section 32, conveyed to pass through the drying mechanism section 31, and is transferred to the carry-out section 40.
When the sheet material P passes through the drying mechanism 31, the ink on the sheet material P is dried. As a result, the liquid such as moisture in the ink evaporates, the coloring agent contained in the ink fixes on the sheet material P, and a curl of the sheet material P is inhibited.
The carry-out section 40 includes a carry-out tray 41 on which a plurality of sheet materials P is stacked. The sheet material P conveyed from the drying section 30 is sequentially stacked and retained on the carry-out tray 41.
In the printing device 1, for example, a pre-processing section that performs a pretreatment on the sheet material P can be disposed upstream of the printing section 20, or a post-processing section that performs a posttreatment on the sheet material P to which ink adheres can be disposed between the drying section 30 and the carry-out section 40.
As a pretreatment section, for example, a pre-coating treatment is cited as an example in which a treatment liquid to reduce blistering by reacting with ink is applied to the sheet material P. Further, the posttreatment section includes, for example, a sheet reverse transfer treatment to print one side of the sheet material P at the printing section 20 and then to print the other side of the sheet material by reversing the one-side printed sheet material P and sending the sheet material P back to the printing section 20 again, and a process for binding a plurality of sheets.
<Discharge Unit>
Next, the bottom surface configuration of the discharge unit (head unit) will be described with reference to
For example, as illustrated in
In the present example, two rows of heads are provided in the discharge unit 23 in the conveying direction. Specifically, the head 100, the head 110, and the head 120, and the head 102, the head 112, and the head 122 are arranged in rows in the axial direction of the discharge unit 23. The head 100 (110,120) and the head 102 (112,122) are arranged axially in a zigzag array of two rows of heads.
The discharge operation of each discharge unit 23 of the liquid discharge unit 22 is controlled by a drive signal corresponding to the print information. When the sheet material P supported on the conveying drum 21 passes through a region facing the liquid discharge unit 22, ink of each color is discharged from the discharge unit 23, and an image corresponding to the printing information is printed.
<Detector>
Next, a detection portion for performing the discharge timing control according to the present embodiment will be described with reference to
An encoder wheel 202 is provided on a shaft 21a of the conveying drum 21, and an encoder sensor 203 for reading an encoder wheel 202 is disposed. The encoder wheel 202 and the encoder sensor 203 constitute a first encoder 201 that is a first signal output unit (a first detection unit). The first encoder 201 is a rotary encoder and outputs a first signal (a rotational amount detection signal) that is an output pulse according to a rotational amount (a rotational driving amount) of the conveying drum 21.
An encoder scale 212 is provided to a circumferential surface of the conveying drum 21, and an encoder sensor 213 for reading the encoder scale 212 is disposed. The encoder scale 212 and the encoder sensor 213 constitute the second encoder 211 that is a second signal output unit (a second detection unit). The second encoder 211 is a linear encoder and outputs a second signal (conveying amount detection signal) that is an output pulse according to the movement amount of the circumferential surface of the conveying drum 21, and the second signal is a signal that is correlated with the conveying amount of the sheet material P conveyed by the conveying drum 21.
Here, the encoder sensor 213 constituting the second encoder 211 is disposed in the vicinity of each of the plurality of discharge units 23. In the present embodiment, the encoder sensor 213 is attached to the base member 52 of the discharge unit 23. Accordingly, the encoder sensor 213 of each discharge unit 23 and the encoder scale 212 of the conveying drum 21 constitute each second encoder 211.
Specifically, encoder sensors 213A to 213F (which are, hereinafter, generally, referred to as encoder sensors 213) are provided in the discharge units 23 of respective colors, and form detection devices indicating the positions of the respective discharge units 23A to 23F. When the position information of the first encoder 201 actually detects the sheet material P and the information of the second encoder 211 representing the positions at which the discharge units 23A to 23F are facing each other on the outer circumferential surface of the conveying drum 21 are combined with each other, the timing of the period during which the sheet material P faces each of the discharge units 23A to 23F can be detected.
Further, a sheet material position sensor 220, which is a sheet material position detecting unit that detects the leading end of the sheet material P, is disposed upstream of the discharge unit 23A having the most upstream position in the conveying direction of the sheet material P.
In the present embodiment, the sheet material position sensor 220 detects the leading end of the sheet material P, but may be configured to read resist marks used for aligning the sheet material P. By using a structure that reads the resist marks, it is possible to handle not only the cut sheet material but also the case of using continuous media such as continuous-feed paper.
<Hardware Block>
Referring to
The image forming apparatus 1 includes an image converter 500, a discharge unit 23, and a conveying drum 21 as a part related to signal generation of the present disclosure. The discharge unit 23 is a generic term for a plurality of discharge units 23A to 23F.
The image converter 500 includes an ASIC (Application Specific Integrated Circuit) 61, a CPU (Central Processing Unit) 62, and a DRAM (Dynamic Random Access Memory) 63. The ASIC 61 primarily converts the image to generate discharge data; the DRAM 63 temporarily stores the image data; and the CPU 62 controls the ASIC 61.
The image converter 500 receives the image data from the DFE 2, generates the discharge data using the gate signal from the conveying drum 21 and the discharge timing, and outputs the discharge data to the discharge unit 23.
<Signal Generation and Discharge Control Block>
Next, the portion related to the discharge timing control will be described with reference to a block explanatory diagram in
The image converter 500 includes a head sub-scanning gate signal generator 501, a reference discharge timing generator 502, a line synchronization signal generator 503, a nozzle row sub-scanning gate generator 504, and a head drive controller 505. These functions are performed in the ASIC 61 or the CPU 62 illustrated in
The head sub-scanning gate signal generator 501 counts the output pulses that are the first signal (an example of the rotational amount detection signal) from the first encoder 201 from a state in which the sheet material position sensor 220 detects the leading end position of the sheet material P and determines the discharge start timing. The head sub-scanning gate signal generator 501 generates the sub-scanning gate signal for each unit as the discharge start timing for each color, that is, for each discharge unit 23. The determination and generation of the discharge start timing are described in detail with reference to
The reference discharge timing generator 502 generates the discharge timing after discharge at the discharge start timing determined by the head sub-scanning gate signal generator 501 based on the output pulse that is the second signal (an example of the conveying amount detection signal) of the second encoder 211. The generated signal is used as a reference discharge timing signal and is generated for each color, that is, for each discharge unit 23.
The line synchronization signal generator 503 (an example of a synchronization signal generator) generates a line synchronization signal (an example of a discharge synchronization signal) that defines the discharge timing for each nozzle row provided in the heads of each discharge unit 23. The generation of the discharge synchronization signal will be described later with reference to
The nozzle row sub-scanning gate generator 504 (an example of the discharge timing generator) generates a nozzle row sub-scanning gate generating signal (an example of the nozzle row timing signal) that is a gate corresponding to the discharge start timing and the number of lines of the effective image for each nozzle row 101 provided in each head 100 of the discharge unit 23. The nozzle row sub-scanning gate generator 504 generates a nozzle row timing signal, which is a timing signal for each nozzle row, using a per-unit discharge timing signal, which is an output of the head sub-scanning gate signal generator 501, a line synchronization signal, which is an output of the line synchronization signal generator 503 (an example of a discharge synchronization signal), and information about a nozzle row arrangement and an adjustment line stored in the nozzle row arrangement information/adjustment line storage unit 506. The generation of nozzle row timing signals is described in detail below with reference to
The head drive controller 505 (an example of the drive controller) inputs image data transmitted from the DFE 2. The head drive controller 505 generates and outputs the discharge data at a timing based on the nozzle row sub-scanning gate signal (nozzle row timing signal) that is the output of the nozzle row sub-scanning gate generator 504 and the line synchronization signal that is the output of the line synchronization signal generator 503.
Each discharge unit 23 includes a head driver 231 and a pressure generator 232. The head driver 231 generates a drive waveform based on the discharge data and applies the drive waveform to the pressure generator 232. The pressure generator 232 applies pressure to the ink in the nozzle depending on the driving waveform and discharges the ink.
Specifically, the head drive controller 505 generates discharge data at a timing when the line synchronization signal generated by the line synchronization signal generator 503 is H during a period of time when the nozzle row sub-scanning gate from the nozzle row sub-scanning gate generator 504 is H.
Thus, the discharge accuracy between the same colors, which requires high accuracy, can be defined by the position of the actual sheet material P on the conveying drum 21 obtained by the second encoder 211. On this occasion, the second encoder 211 detects the conveying amount of the sheet material P conveyed by the conveying drum 21, and can reduce errors due to the rotation accuracy of the conveying drum 21 and the component accuracy of the conveying drum 21. Therefore, even if a highly precise encoder is not used for the first encoder 201 for directly detecting the rotational amount of the conveying drum 21, a highly precise landing position accuracy can be obtained, and print quality is improved.
<Generation of Per-Unit Discharge Timing>
Next, the determination (generation) of the discharge start timing in any one color of the discharge unit 23 (head unit) after the timing signal from the sheet material position sensor 220 is generated will be described. The same timing generation method applies to the heads of the other colors.
Here, the determination of the discharge start timing for each color in the head sub-scanning gate signal generator 501 using the first signal (rotational amount detection signal) of the first encoder 201 will be described with reference to the timing chart of
When the sheet material P is transferred to the conveying drum 21 by the transfer drum 24, the suction device 26 starts suctioning the sheet material P, and the conveying drum 21 conveys the sheet material P by the rotation. Then, when the sheet material position sensor 220 detects the leading end of the sheet material P and then the drop of the output (L), the count of the count signal obtained by multiplying the output of the first encoder 201 is started.
When the count reaches a predetermined value corresponding to the physical distance of the discharge units 23A to 23F of each color, the head sub-scanning gate signal generator 501 outputs a print signal (head sub-scanning gate signal, per-unit discharge timing signal) of each color. In
As described above, after the discharge start timing signal for each color is output, ink is discharged from the head 100 of the discharge unit 23 corresponding to each color. On this occasion, discharge is performed at the timing of the discharge timing signal generated based on the second signal (conveying amount detection signal) of the second encoder 211.
Next, the timing of discharge by the head of one color after the timing signal for each color is generated will be described. The same timing generation method applies to the heads of the other colors.
<Generation of Line Synchronization Signal (Discharge Synchronization Signal)>
Here, the frequency of the internal clock is required to be sufficiently higher than the frequency of the second signal (the conveying amount detection signal).
In the present configuration, each cycle of the reference discharge timing signal generated based on the conveying amount detection signal is counted by an internal clock. The count value is stored and a 1/1 cycle pulse is generated simultaneously. In addition, 1/2, 1/4, and 1/8 of the saved count values are calculated; a down counter is provided from each value; and a pulse is generated when the counter is 0. Each down count starts at the previous timing, that is, 1/1 cycle pulse for 1/2 down counts and 1/4 cycle pulse for 1/8 down counts.
The 1/1, 1/2, 1/4 and 1/8 cycle pulses generated in this manner are synthesized, and a line synchronization signal, which is a discharge synchronization signal, is generated.
As described in
Accordingly, the line synchronization signal (discharge synchronization signal) generated based on the reference discharge timing signal is a signal that reflects the conveying amount of the sheet material P conveyed by the conveying drum 21 and its varying components.
<Arrangement of Nozzle Rows>
The sheet material P is conveyed from the top to the bottom in
The distances in the Y direction with respect to the respective nozzle rows are illustrated from d1 to d15 for each nozzle row with reference to the nozzle row positioned closest to the top surface (in the drawing, side surface physically) of the head 100 of
In this example, because 16 nozzle rows are present in the head unit in the conveying direction, the nozzle rows are N1 to N16, and the nozzle spacing is d1 to d15. However, when n (n is a natural number) nozzle rows are provided in the head unit, the distance from the reference position of the nozzle rows N2 to Nn (nozzle row distance) when the nozzle row N1 is used as the reference for the head unit is d1 to d(n−1).
The above-described line synchronization signal becomes a discharge timing for each nozzle disposed in the X direction of the same nozzle row illustrated in
<Generation of Nozzle Row Sub-Scanning Gate Signal (Nozzle Row Timing Signal)>
In
<Set of Delay Depending on Nozzle Row>
As illustrated in
The number of adjustment lines is a value that considers the manufacturing error of the nozzle row position of each head (head unit), and is determined by setting the measured value after manufacture and then regularly correcting the measured value.
Specifically, as illustrated in
In addition, the signal generated to keep enabled (see the gray period in
The ink is discharged during this enabling period. The image is formed on the sheet by timing control with each head delay line for each nozzle row.
Further, when the head illustrated in
In
In addition, each nozzle row discharges ink at the timing of the line synchronization signal H during the H period of each nozzle row sub-scanning gate. As described above, by considering the conveying period to each nozzle row and creating the discharge start timing for each nozzle row, the image formed by the eight nozzle rows can be positioned at the same position in the sub-scanning direction (the axial direction of the drum). Here, as previously described, the gate signal in this example becomes H for a period of a sum of a period corresponding to the length of the sheet material P in the sub-scanning direction, a period corresponding to the length of the head, and a period during which the adjustment portion is conveyed. The H-period corresponds to the size of the sheet material P such as B1 and B2.
Also, in a multi-page job, the gate signal is repeated each time the sheet material is conveyed and the printing is performed. A continuous roll of sheet material may be also applied, in which case the gate remains H until the printing job is completed, that is, during the discharge period.
<Flow Chart>
First, when the instruction to start printing is issued from the DFE 2 in S1, the feeding device 12 delivers and conveys the sheet material P in S2, and the conveying drum 21 starts to rotate.
In S3, when the sheet material P is transferred to the conveying drum 21 by the transfer drum 24, the suction device 26 starts suctioning the sheet material P, and the conveying drum 21 conveys the sheet material P by rotating.
From when the sheet material position sensor 220 detects the leading end of the sheet material P (S4), the head sub-scanning gate signal generator 501 counts the output pulse (rotational amount detection signal) of the first encoder 201 in S5.
When the count reaches a predetermined count value, the head sub-scanning gate signal generator 501 determines the discharge start timing (the start timing of the head sub-scanning gate) for each color from each discharge unit 23 (S5), and the head sub-scanning gate signal generator 501 generates a head sub-scanning timing signal (the head sub-scanning gate signal) (S6).
Then, the head sub-scanning gate signal H is detected (S7), and the nozzle row sub-scanning gate generation unit 504 counts a delay line with the line synchronization signal (S8).
The count of S8 continues until reaching the number of leading delay lines, and when the count value equals the number of leading delay lines (S9), the nozzle row sub-scanning gate is turned to H (S10).
On this occasion, the head drive controller 505 transmits the discharge data to the discharge unit 23 at a time when the nozzle row sub-scanning gate is H and the line synchronization signal is H, and the discharge unit 23 starts the printing operation for forming an image on the sheet by discharging ink from the nozzle row based on the discharge data.
At the same time, the nozzle row sub-scanning gate generator 504 counts the effective image at the timing of the line synchronization signal H (S11).
In S11, the discharge operation and the count of the number of effective pixels continue until the count value equals the number of effective image lines. Then, the count value equals the number of effective image lines (S12); the nozzle row sub-scanning gate is set to L (S13); the printing operation ends; and the flow ends.
As described above, in the present disclosure, by individually controlling the discharge timing of each nozzle row, the arrangement distance between the nozzles can be obtained, which is likely to facilitate manufacture of the head and to improve a yield of the head manufacturing. It also has the effect of forming a dense image with a fine pitch.
As described above, the image forming apparatus of the present disclosure generates a nozzle row timing signal indicating the timing of the discharge of ink for each nozzle row based on information on a distance between nozzle rows, a conveying speed (conveying amount), and a discharge position. Therefore, it is possible to prevent the deterioration of image quality in various head configurations.
<Modification Example of Head Unit>
More specifically, as illustrated in
However, errors may occur in the positions of the nozzle rows of heads 100 and 108, and head 106 depending on the manufacturing location. Thus, for example, the positions of the nozzle rows at the top end of
The number of nozzle rows in the head is optional and can be 10 rows or 2 rows in addition to 8 rows. That is, in the head unit (the discharge unit 23), a plurality of heads including x nozzle rows in the conveying direction is arranged in a row in the conveying direction, and is arranged intermittently in the axial direction, which causes n nozzle rows to be present in the head unit in the conveying direction. Then, the ends of the nozzle rows between adjacent heads in the axial direction of the plurality of heads overlap with each other in the axial direction and are arranged in a staggered shape so as to be at different positions in the conveying direction.
In this manner, the present embodiment can be applied to various head arrangements and various numbers of nozzle rows, and can be applied to flexible head arrangement and nozzle row arrangement.
Thus, in the image forming apparatus, even in a configuration in which several nozzle rows extending in the axial direction are disposed in the head unit in the conveying direction, the discharge position accuracy can be increased and the deterioration of the image quality can be prevented.
Further, as illustrated in
Next, an image forming apparatus according to a second embodiment including a liquid discharge groove disposed in a conveying drum will be described with reference to
As illustrated in
The head sub-scanning empty discharge gate signal generator 511 counts the output pulses that are the first signal (rotational amount detection signal) from the first encoder 201 and determines the discharge start timing for empty discharge when the detection result of the sheet material position sensor 220 is in a state of detecting the leading end position of the sheet material P. The timing is determined for each color. The head sub-scanning empty discharge gate signal generator 511 generates a discharge start timing signal for empty discharge for each color, that is, for each discharge unit 23.
The discharge start timing signal for empty discharge becomes H when the respective discharge unit 23 reaches a position facing the liquid discharge groove 230, and the discharge start timing is determined. This discharge start timing signal for empty discharge is generated for each color, that is, generated for each discharge unit 23 so as to become H at a timing when each discharge unit 23 reaches the liquid discharge groove 230.
The second reference discharge timing generator 512 generates a discharge timing after the discharge is performed at the discharge start timing determined by the head sub-scanning empty discharge gate signal generator 511 based on the output pulse (conveying amount detection signal) that is the second signal of the second encoder 211. The discharge timing is generated for each color.
The second line synchronization signal generator 513 is a second synchronization signal generator that generates a line synchronization signal (an empty discharge synchronization signal) for defining the discharge timing for empty discharge for each nozzle row provided in the head of each discharge unit 23.
The nozzle row sub-scanning empty discharge gate generator 514 is a nozzle row timing generator that generates a nozzle row sub-scanning empty discharge gate signal (an example of a nozzle row timing signal for empty discharge) that is a gate signal for empty discharge depending on the discharge start timing and the number of lines of the effective image for each nozzle row disposed in the head. The nozzle row sub-scanning empty discharge gate signal generated by the nozzle row sub-scanning empty discharge gate generator 514 is a signal indicating a period for executing discharge for preventing clogging.
Discharge from each discharge unit 23 starts at the discharge start timing for empty discharge determined by the head sub-scanning empty discharge gate signal generator 511, counts at the discharge timing (empty discharge synchronization signal) generated by the second reference discharge timing generator 512 after starting the discharge, and causes ink to be discharged from the discharge unit 23 through the head drive controller 505A.
The head drive controller 505A includes an image data generator 5051 and an empty discharge data generator 5052. Similar to
The empty discharge data generator 5052 outputs the empty discharge data for discharge to the liquid discharge groove 230 to the discharge unit 23 during a period when the nozzle row sub-scanning empty discharge gate signal is H.
Thus, by providing the respective sub-scanning gate signals of the image formation and the empty discharge for respective colors and controlling the timing, the discharge unit 23 is caused to perform the discharge for the image formation and the discharge to the next liquid discharge groove 230 by instructing the timing.
As illustrated in
The signal generation method that receives the rise of the head sub-scanning empty discharge gate and that generates the sub-scanning empty discharge gate for each nozzle row in the nozzle row empty discharge gate generator 514 is the same as the signal generation method in the nozzle row sub-scanning gate generator 504 illustrated in
As described above, by generating the nozzle row sub-scanning gate and the nozzle row sub-scanning empty discharge gate, the image formation on the sheet material P and the empty discharge other than the printing period for preventing clogging of the nozzle can be compatible with each other.
In the present embodiment, by performing the empty discharge of the ink to the liquid discharge groove, clogging of the nozzle can be prevented.
The third reference discharge timing generator 516 generates a discharge timing at the discharge start timing determined by the head sub-scanning empty discharge gate signal generator 511, and generates a subsequent discharge timing by counting the internal clock output at any period and using a pulse signal that equals the desired count value. The timing is generated for each color.
The internal clock is input to each block although not illustrated, and is a clock that serves as a reference for logic circuits.
In the image converter 500B according to the present embodiment, by generating the discharge timing using the internal clock, the third reference discharge timing generator 516 does not need a sensor that receives the conveying amount detection signal to detect the start position of the head sub-scanning empty discharge gate, thereby reducing the cost.
The third line synchronization signal generator (the third synchronization signal generator) 517 generates a line synchronization signal (an empty discharge synchronization signal) for empty discharge based on a third reference timing signal having any cycle starting from the detected rotational amount detection signal.
Accordingly, in the present configuration example, because the conveying amount detection signal is not used as the detection information for discharging ink to the liquid discharging groove 230 (empty discharge), it is possible to prevent clogging of the nozzle by discharging the ink to the liquid discharging groove 230 while reducing the cost caused from the configuration.
Thus, according to the embodiments, in an image forming apparatus, even in a configuration including a nozzle row extending in the axial direction disposed in a head unit in the conveying direction, the discharge position accuracy can be increased, and deterioration of the quality of the image can be prevented.
Although the preferred embodiments have been described in detail above, various modifications and substitutions can be made to the embodiments described above without departing from the scope of the appended claims.
For example, although the embodiments described above illustrate an example of using the conveying drum 21 as a rotating conveying unit, the rotating conveying unit may be a circular or elliptical rotating belt that is rolled around a plurality of rollers.
For example, in the above-described embodiments, an image forming apparatus including a conveying apparatus according to the present disclosure has been described. However, the conveying apparatus according to the present disclosure can be broadly applied to an apparatus for discharging ink (liquid) including an image forming apparatus.
Here, the “image forming apparatus” includes a liquid discharge head or a liquid discharge unit that is a liquid discharge portion and drives the liquid discharge section to discharge the liquid. The devices for discharging liquids may include not only devices capable of discharging liquids to media to which liquids can be attached, but also units for feeding, conveying, and discharging media to which liquids can be attached, and other pre-treatment and post-treatment devices.
The aforementioned “recording medium” means a medium that liquids can at least temporarily adhere to, adhere to and then fix to, and adhere to and then permeate into. Examples of the recording medium include a medium to be recorded such as paper, recording paper, recording paper, film, cloth and the like, electronic components such as electronic boards, piezoelectric elements and the like, a medium such as a powder layer, an organ model, a test cell and the like, and include all media to which liquid adheres, as long as the medium is not specifically limited.
The material “that liquid can adhere to” may be a material that liquid can adhere to even temporarily such as paper, yarn, fiber, fabric, leather, metal, plastic, glass, wood, and ceramics.
Also, the “liquid” includes an ink, a processing liquid, a DNA sample, resist, a patterning material, a binder, a shaping liquid, or a solution and a dispersion liquid containing an amino acid, a protein, calcium, and the like.
In addition, the pressure generator used for each head of the “discharge head” is not limited. For example, a piezoelectric actuator (a laminated piezoelectric device may be used), a thermal actuator using an electrothermal conversion device such as an exothermic resistor, an electrostatic actuator consisting of a diaphragm and a counter-electrode and the like may be used.
In addition, the terms of the present application, such as image formation, recording, letter printing, image printing, printing, and molding, are all synonymous.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-050379 | Mar 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6883898 | Sato | Apr 2005 | B2 |
7914099 | Loh | Mar 2011 | B2 |
9688071 | Saito | Jun 2017 | B2 |
20050035998 | Ando et al. | Feb 2005 | A1 |
20120098879 | Mandel | Apr 2012 | A1 |
20180272758 | Hori | Sep 2018 | A1 |
20190283398 | Maeyama | Sep 2019 | A1 |
20200282749 | Imamura | Sep 2020 | A1 |
20200290342 | Yoda | Sep 2020 | A1 |
20200307278 | Yamada | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
1547771 | Jun 2005 | EP |
3705303 | Sep 2020 | EP |
H07-123276 | May 1995 | JP |
2002-192712 | Jul 2002 | JP |
2003-136728 | May 2003 | JP |
2017-001385 | Jan 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20200298561 A1 | Sep 2020 | US |