1. Field of the Invention
One disclosed aspect of the embodiments relates to an image forming apparatus that includes a plurality of light emitting elements arrayed so as to expose different positions in a longitudinal direction of a photosensitive member.
2. Description of the Related Art
An electrophotographic image forming apparatus that uses a light-emitting diode (LED) as a light source to expose a photosensitive member has been known. Such an image forming apparatus includes an exposure head that includes a plurality of LEDs arrayed in a longitudinal direction of the photosensitive member, so that one pixel is formed by each LED. The number of arrayed light emitting elements is determined based on the width and the resolution of the image forming area in the longitudinal direction of the photosensitive member. For example, for a 1,200 dpi printer, since the interval between pixels is about 21.1 μm (truncated to one decimal place), the light emitting elements are arranged so that the interval between adjacent light emitting elements forming pixels is 21.1 μm. Since such an LED exposure type image forming apparatus does not require a polygon mirror, reducing the size of the apparatus and reducing costs is easier, compared with a light beam scanning type image forming apparatus that uses a polygon mirror.
On the other hand, an LED exposure system suffers from the problem that when there is unevenness in the light amount of the respective LEDs, image defects such as streaks are produced in the rotation direction of the photosensitive member. To suppress such unevenness in the light amount of the LEDs, light amount adjustment is performed for each LED before shipment.
Further, LEDs also suffer from light amount deterioration, in which the amount of emitted light deteriorates over time. Consequently, if the usage frequency (cumulative number of times of light emission and cumulative duration of light emission) is different among the LEDs, a difference occurs in the level of deterioration among the LEDs, which results in unevenness in the amount of emitted light. For example, when the user prints a large quantity of the same image for a long period, or when a formulaic image of a line (ruled line etc.) along the rotation direction of the photosensitive member is included in the print image, a difference in the usage frequency of the LEDs occurs based on the output image, which results in a difference in the amount of emitted light of the LEDs.
To suppress the unevenness in the amount of emitted light that occurs due to differences in the usage frequency of each LED, Japanese Patent Application Laid-Open No. 2007-62020 discusses an image forming apparatus that stores data relating to the usage frequency of each LED (cumulative number of times of light emission or cumulative duration of light emission), and controls the light amount of each LED based on that data.
However, in Japanese Patent Application Laid-Open No. 2007-62020, a memory for storing the data relating to the usage frequency of the LEDs needs to be provided for all the LEDs. Specifically, Japanese Patent Application Laid-Open No. 2007-62020 suffers from the drawback that a large-capacity memory has to be provided.
According to an aspect of the embodiments, an image forming apparatus configured to form an image on a recording medium by forming an electrostatic latent image on a rotating photosensitive member, developing the electrostatic latent image with toner, and transferring a toner image developed with toner from the photosensitive member onto the recording medium, includes a light source that includes a plurality of light emitting elements configured to emit a light beam for exposing the photosensitive member, wherein the plurality of light emitting elements are arranged so as to respectively correspond to one pixel of the image in a direction of a rotational axis of the photosensitive member, an output unit configured to output pixel data for driving each of the plurality of light emitting elements, a drive unit configured to drive the plurality of light emitting elements based on the pixel data output from the output unit, a storage unit configured to store a cumulative number of times of light emission of a target light emitting element included in the plurality of light emitting elements, and a light amount control unit configured to control a light amount of a light beam emitted by the target light emitting element and the light emitting elements other than the target light emitting element based on the stored cumulative number of times of light emission of the target light emitting element.
According to another aspect of the embodiments, an image forming apparatus configured to form an image on a recording medium by forming an electrostatic latent image on a rotating photosensitive member, developing the electrostatic latent image with toner, and transferring a toner image developed with toner from the photosensitive member onto the recording medium, includes a light source that includes a plurality of light emitting elements configured to emit a light beam for exposing the photosensitive member, wherein the plurality of light emitting elements are arranged so as to respectively correspond to one pixel of the image in a direction of a rotational axis of the photosensitive member, an output unit configured to output pixel data for driving each of the plurality of light emitting elements, a drive unit configured to drive the plurality of light emitting elements based on the pixel data output from the output unit, a storage unit configured to store a cumulative duration of light emission of a target light emitting element included in the plurality of light emitting elements, and a light amount control unit configured to control a light amount of a light beam emitted by the target light emitting element and the light emitting elements other than the target light emitting element based on the cumulative duration of light emission of the target light emitting element stored in the storage unit.
Further features of the disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
An exemplary embodiment of the disclosure will now be described based on a color image forming apparatus that forms images using a plurality of toner colors as an example. However, the exemplary embodiment is not limited to a color image forming apparatus. For example, the present exemplary embodiment may be applied to an image forming apparatus that forms images using only a single toner color (e.g., black). One disclosed feature of the embodiments may be described as a process which is usually depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations may be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed. A process may correspond to a method, a program, a procedure, a method of manufacturing or fabrication, etc. One embodiment may be described by a schematic drawing depicting a physical structure. It is understood that the schematic drawing illustrates the basic concept and may not be scaled or depict the structure in exact proportions.
(Overall Configuration of the Image Forming Apparatus)
The image forming apparatus 100 includes photosensitive drums 102a, 102b, 102c, and 102d, which are photosensitive members. Photosensitive drum 102a is charged by a charging roller 103a. Photosensitive drum 102b is charged by a charging roller 103b. Photosensitive drum 102c is charged by a charging roller 103c. Photosensitive drum 102d is charged by a charging roller 103d.
The image forming apparatus 100 includes exposure heads 104a, 104b, 104c, and 104d, which are exposure light sources that include a plurality of light emitting elements that output light beams for exposing the photosensitive drums 102a, 102b, 102c, and 102d, respectively, based on the image data. The photosensitive drums charged by the respective charging rollers are exposed by the light beams emitted from the respective exposure heads, thereby forming an electrostatic latent image based on the image data.
The electrostatic latent image formed on the photosensitive drum 102a is developed by a development device 105a using a yellow toner image, the electrostatic latent image formed on the photosensitive drum 102b is developed by a development device 105b using a magenta toner image, the electrostatic latent image formed on the photosensitive drum 102c is developed by a development device 105c using a cyan toner image, and the electrostatic latent image formed on the photosensitive drum 102d is developed by a development device 105d using a black toner image.
The image forming apparatus 100 includes a sheet cassette 106 that contains a recording medium, such as recording paper. The recording paper contained in the sheet cassette 106 is conveyed sheet by sheet to a pair of conveyance rollers 108 by a feeding roller 107, and conveyed onto a conveyance belt 109 by the pair of conveyance rollers 108. The recording paper conveyed onto the conveyance belt 109 is conveyed to a transfer nip portion T1 (transfer portion T1) formed by the photosensitive drum 102a and a transfer roller 110a. The yellow toner image on the photosensitive drum 102a at the transfer nip portion T1 is transferred onto the recording paper. Then, the recording paper on which the yellow toner image has been transferred is successively conveyed to a transfer nip portion T2 formed by the photosensitive drum 102b and a transfer roller 110b, a transfer nip portion T3 formed by the photosensitive drum 102c and a transfer roller 110c, and a transfer nip portion T4 formed by the photosensitive drum 102d and a transfer roller 110d, so that the respective toner images on the photosensitive drums at the transfer nip portions are transferred onto the recording paper.
The recording paper on which the respective color toner images have been transferred is conveyed to a fixing device 111, and the toner images on the recording paper are fixed. The recording paper that has passed through the fixing device 111 is conveyed to a discharge tray 112.
(Exposure Head Configuration)
Next, exposure heads 104a, 104b, 104c, and 104d will be described. Since the exposure heads each have the same configuration, the following description will use the abbreviated terms “exposure head 104” and “photosensitive drum 102” exposed by the exposure head 104.
The plurality of LEDs are respectively arranged in an array in the X axis direction so as to expose different positions in the direction of the rotational axis of the photosensitive drum 102. An interval D1 between adjacent LEDs corresponds to the resolution of the image forming apparatus. For example, since the interval between adjacent pixels in an image formed by an image forming apparatus having a resolution of 1,200 dpi is about 21.1 μm, the plurality of LEDs is arranged so that the interval D1 between adjacent LEDs is about 21.1 μm.
As illustrated in
The exposure head that has been subjected to focus adjustment and initial light amount adjustment is installed in the image forming apparatus 100. The exposure head 104 is installed in the image forming apparatus 100 so that the distance between the photosensitive drum 102 and the rod-lens array 204 is the same as the distance between the rod-lens array 204 and the plurality of LEDs 201. Consequently, the focus adjustment is performed by adjusting the installation position with respect to the frame 205 of the rod-lens array 204 so that the distance between the rod-lens array 204 and the plurality of LEDs 201 is to be a desired value. Further, the initial light amount adjustment is performed by adjusting the drive current supplied to each LED. Specifically, each LED is successively made to emit light, and the drive current (initial drive current I) initially supplied to each LED is adjusted for each LED so that the light amount of the light beam that passes through the rod-lens array 204 and is collected at a position corresponding to the photosensitive drum 102 surface is to be a target light amount (initial light amount).
(LED Light Amount Control)
Next, the light amount control of the light beam emitted by the LEDs will be described with reference to
A plurality of LEDs belong to each group, and the number of LEDs belonging to each group is the same. In the present exemplary embodiment, nine LEDs belong to each group. In each group, a target light emitting element (target LED) is set. In the image forming apparatus according to the present exemplary embodiment, the LED positioned in the center of the nine LEDs belonging to each group is set as the target LED.
The image forming apparatus 100 according to the present exemplary embodiment includes a central processing unit (CPU) 401, a data generation unit 402, a data output adjustment unit 403 (output control unit), a memory 404, and a drive unit 405.
The drive unit 405, which is individually provided for each of the plurality of LEDs, drives the corresponding LED based on the input pixel data.
The data generation unit 402 generates binary pixel data for driving each LED based on the image data input by the reading apparatus 101 or an external information terminal, such as a personal computer (PC). Specifically, based on the image data, the data generation unit 402 generates either pixel data (pixel data “1”) that makes an LED emit light or pixel data (pixel data “0”) that does not make an LED emit light. The data generation unit 402 outputs the generated pixel data to the data output adjustment unit 403. The data output adjustment unit 403 performs adjustment to determine which of the plurality of the drive units 405 each of the plurality of pixel data input from the data generation unit 402 is to be output to, based on an instruction from the CPU 401.
The memory 404 stores data relating to a cumulative number of times of light emission by the target LED belonging to each group and a lookup table in which data relating to a cumulative number of times of light emission by the target LED belonging to each group is associated with a drive current value supplied to the LED. Alternatively, the memory 404 stores a correction calculation formula. Further, the memory 404 stores data relating to a below-described data shift amount and data shift direction.
The CPU 401 reads data from the memory 404 and updates the data stored in the memory 404. Further, the CPU 401 includes a number of internal counters (not illustrated) equal to the number of below-described target LEDs, and increases the count value based on the output of pixel data from the data output adjustment unit 403 to the drive units 405 driving each of the target LEDs.
As described above, when installing the LEDs in the image forming apparatus, an initial value (the above-described initial drive current I) for the drive current supplied to the LEDs is set so that the light beam that is emitted from the LEDs is to be a target light amount (initial light amount). However, as illustrated in
To solve this problem, the memory 404 according to the present exemplary embodiment includes the lookup table illustrated in
For nine LEDs belonging to group 1, the CPU 401 reads the data relating to the cumulative number of times of light emission of the target LED belonging to group 1 and the above-described lookup table, and determines the drive current value corresponding to the cumulative number of times of light emission of the target LED from the lookup table. Then, the CPU 401 outputs the determined drive current value to the drive unit, which drives each of the LEDs in group 1, as light amount control data. Each drive unit 405 driving the LEDs in group 1 supplies a drive current with a value that is based on the light amount control data output from the CPU 401 when pixel data that causes the LEDs to emit light is supplied from the data output adjustment unit 403. A light beam with a light amount based on the cumulative number of times of light emission of the target LED belonging to group 1 is emitted from the nine LEDs belonging to group 1. Since the light emission control of the LEDs belong to the other groups is the same, a description thereof will be omitted here.
When pixel data “1” is output from the data output adjustment unit 403 to the target LED, the CPU 401 adds 1 to the cumulative number of times of light emission read from the memory 404 so that the cumulative number of times of light emission of the target LED is increased by one.
(Image Data Shift)
Next, a configuration (image data shift) will be described for ensuring the accuracy of the light amount control of the light beams emitted by the LEDs other than the target LED that is performed as described above based on the cumulative number of times of light emission of the target LED of each group.
For example,
To suppress the increase in the difference in the cumulative number of times of light emission between the target LED and the other LEDs that is caused by continuous formation of images, such as a ruled line, in the rotation direction of the photosensitive drum, the image forming apparatus according to the present exemplary embodiment executes a control like that described below.
Specifically, the image forming apparatus shifts the output destination of the pixel data of the whole image by one pixel in the main scanning direction each time an image is formed on one sheet of recording paper. For example, focusing on line image A, as illustrated in
Although in the first exemplary embodiment an example is illustrated in which the image is shifted in units of one pixel, the shift amount of the image may be a predetermined number of two or more pixels. Further, although in the first exemplary embodiment an example is illustrated in which image shift is executed each time an image is formed on one sheet of recording paper, image shift can be executed each time an image is formed on a plurality of sheets of recording paper. In addition, while the position of image formation is different from the previous recording medium and the following recording medium when image shift is executed, by keeping the image shift amount to a level that cannot be visually perceived by a person, the mismatch in the position of image formation from the previous recording medium and the following recording medium can be visually suppressed.
Since the usage frequency among the plurality of light emitting elements can thus be brought closer, the occurrence of a large difference in the cumulative number of times of light emission of the target LED in the group and the cumulative number of times of light emission of the other light emitting elements can be reduced. By thus suppressing the light amount of each light emitting element in the group based on the cumulative number of times of light emission of the target LED in the group, the occurrence of a difference in the light amount of the light beam emitted from each light emitting element can be suppressed.
In step S703, the CPU 401 increases a count value of an internal counter based on the pixel data output by the data output adjustment unit 403 to the drive unit 405 corresponding to the target pixel in each area. In the present exemplary embodiment, the CPU 401 internal counter increases the count value based on the fact that the data output adjustment unit 403 has output pixel data that makes each target pixel emit light.
Next, in step S704, the CPU 401 adds the count value obtained in step S703 to the cumulative number of times of light emission of each of the plurality of target LEDs stored in the memory 404, namely, the cumulative number of times of light emission of each of the plurality of target LEDs until the present control started. In step S705, the CPU 401 stores the cumulative number of times of light emission to which the count value was added in step S704 in the memory 404. Specifically, in step S705, the data relating to the cumulative number of times of light emission stored in the memory 404 is updated. Next, in step S706, the CPU 401 controls the light amount of the light emitting elements included in each group (the target light emitting pixel and the pixels other than the target light emitting pixel) based on the cumulative number of times of light emission of the target LED of each group that was stored (updated) in the memory 404 in step S705, and executes image formation.
Then, in step S707, the CPU 401 determines whether image formation on one recording sheet of recording paper has been completed. If it is determined in step S707 that image formation on one recording sheet of recording paper has not been completed (NO in step S707), the processing returns to step S702 to control formation of the next line in the sub-scanning direction.
On the other hand, if it is determined in step S707 that image formation on one recording sheet of recording paper has been completed (YES in step S707), the processing proceeds to step S708. In step S708, the CPU 401 determines whether to form an image on the next sheet of recording paper. If it is determined in step S708 to form an image on the next sheet of recording paper (YES in step S708), the processing proceeds to step S709. In step S709, the CPU 401 instructs the data output adjustment unit 403 to shift the position of image formation on the next sheet of recording paper by a predetermined number of pixels (in the present exemplary embodiment, one pixel) in the main scanning direction with respect to the position of image formation on the sheet of recording paper immediately before, and the processing returns to step S702. Then, the data output adjustment unit 403 adjusts (controls) the output of the pixel data to the drive unit 405 so that in step S709 the image will be formed at the instructed position.
If it is determined in step S708 not to form an image on the next sheet of recording paper (NO in step S708), the CPU 401 finishes the processing.
Thus, the image forming apparatus according to the present exemplary embodiment controls an increase in the difference between the cumulative number of times of light emission of the target LED and the cumulative number of times of light emission of the light emitting elements other than the target LED by shifting the position of image formation in the main scanning direction each time an image is formed on a predetermined number of sheets of recording paper. Since the occurrence of a difference in the cumulative number of times of light emission is suppressed, the light amount of the light emitting elements other than the target LED can be controlled based on the cumulative number of times of light emission of the target LED.
In the present exemplary embodiment, although data relating to the cumulative number of times of light emission of the target LED is illustrated as an example, the data stored by the memory 404 may be data relating to the cumulative duration of light emission of the target LED. In this case, the CPU 401 adds the duration of light emission based on the pixel data to the cumulative duration of light emission stored in the memory 404, and controls the light amount of each light emitting element based on the updated cumulative duration of light emission.
According to the exemplary embodiments of the disclosure, unevenness in the emitted light amount among a plurality of light emitting elements can be suppressed while cutting back on memory capacity.
While the disclosure has been described with reference to exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2012-143142 filed Jun. 26, 2012, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2012-143142 | Jun 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7485886 | Nakajima | Feb 2009 | B2 |
20050263718 | Tsujino et al. | Dec 2005 | A1 |
20070040775 | Horisaki et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
04267276 | Sep 1992 | JP |
2007-62020 | Mar 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20130342627 A1 | Dec 2013 | US |