1. Field of the Invention
The present invention relates to an image forming device, an ink sheet cartridge for use in the image forming device, and an exchangeable ink-sheet set available for the ink sheet cartridge.
2. Related Art
Usually, a thermal printer uses an ink ribbon cartridge for printing an image on a recording sheet in terms of ease of exchange and handling. When the thermal printer is a line printer, an ink ribbon cartridge including a wide ink sheet is used. As disclosed in Japanese Utility Model Application Publication No. HEI-6-81749 and Japanese Patent Application Publication No. HEI-10-193732, this type of conventional ink sheet cartridges include a cartridge body, a supply-side member, a takeup-side member, and an ink sheet wound around the supply-side and takeup-side members. The supply-side and takeup-side members are rotatably supported on the cartridge body and detached from the cartridge body when replacing the ink sheet.
The cartridge body includes a pair of covering portions for covering over the upper and lower sides of the outer peripheral surfaces of the supply-side and takeup-side members. The covering portions have a semi-circular cross-sectional shape. Also, the cartridge body is formed in a frame-like shape so as to define a center space where the ink sheet is exposed. Providing the covering portions to the cartridge body increases rigidity of the cartridge body. However, this arrangement increases production cost.
According to Japanese Patent Application Publication No. HEI-10-193732, when the above-described ink sheet cartridge is accommodated in the image forming device, a thermal head provided to the image forming device is positioned below the center space so as to slidingly contact the lower surface of the ink sheet exposed therefrom. On the other hand, a recording sheet is brought into contact with the upper surface of the exposed portion of the ink sheet. After printing is performed on the recording sheet by the thermal head, the recording sheet is transported along a U-shaped sheet passage extending upwardly. This configuration requires a transport chute at the main body or a cover of the image forming device for separating the recording sheet from the ink sheet, and the attachment position of the transport chute is severely restricted to prevent the transport chute from being an obstacle against exchange of the ink sheet cartridge.
On the other hand, according to Japanese Utility Model Application Publication No. HEI-6-81749, the thermal head is provided in sliding contact with the upper surface of the ink sheet, and the recording sheet is transported into abutment with the lower surface of the ink sheet. After printing is performed, the recording sheet is discharged out of the image forming device at a position below the ink sheet cartridge. A front side of the main body case is provided with a door, through which the ink sheet cartridge is inserted into the main body case. Also, a sheet cassette for accommodating the recording sheets is provided next to a side of the main body case close to the door at a position lower than the ink sheet cartridge. The sheet cassette is detachable from the front portion of the main body case.
However, with this configuration, an additional working space is required in front of the main body case for exchanging the recording sheets and the ink sheet cartridge. Because a space for disposing a control board, which controls operation of the image forming device, is also required in the main body case, the main body case has undesirably a large size. Moreover, when recording sheet jamming occurs, the ink sheet cartridge must be removed from the main body case in order to remove the jammed recording sheet from the lower side of the ink sheet cartridge.
Incidentally, each of the supply-side member and the takeup-side member has a core tube for winding thereon the ink sheet and a pair of spools attached to right and left ends of the core tube. One of the pair of spools is provided with a gear. When assembling the ink sheet cartridge into the image forming device, first the spools are engaged with the corresponding ends of the core tubes, and the core tubes are mounted on the cartridge body case via the spools. Then, the ink sheet cartridge is mounted to the main body of the image forming device such that the gears of the spools are meshed with corresponding gears provided to the main body case. With this configuration, the driving power is transmitted from the main body of the image forming device to the spools via the gears, thereby rotating the core tubes for feeding the ink sheet.
However, there has been a danger that a user may erroneously attach the supply-side and takeup-side members on the cartridge body. For example, the left and the right of the members may be opposite. If the members are erroneously attached to the cartridge body, upper and lower surfaces of an ink sheet will be reversed, so that printing operation becomes inoperative. Also, if the gear is set at erroneous side of the cartridge body, supply of the ink sheet becomes impossible. However, attachment work for attaching the members and spools at correct positions and orientations is bothering and troublesome for a user.
Moreover, an ink sheet having an ink quality different from a regular ink sheet, such as those of different manufacturer, may be accidentally used. When an ink sheet having a width, a dimension, a sheet material, and an ink material different from those of a regular ink sheet is incorporated into the ink sheet cartridge and used in the image forming device, normal printing will be prevented. This will undesirably degrade a quality of recorded images, which should have an excellent image quality otherwise.
The conventional image forming device is also provided with a torque limiter at the power transmission portion of the main body case. The torque limiter enables taking up of the ink sheet with a proper tension, and also prevents excessive tension from being applied to the ink sheet by providing slippage at the power transmitting region when a torque value is exceeded a maximum torque value so as to reduce power transmission from the main body to the takeup-side member.
The maximum torque value required for taking-up the ink sheet differs in accordance with a thickness, a width, and a material of the ink sheet. However, because the torque limiter is provided to the main body case of the image forming device, it is difficult and troublesome to change the maximum torque value each time and every time a different ink sheet is used.
There has been also provided a torque transmission mechanism where one end of each core tube is formed with a notched groove open to the one end, and one of the pair of spools is provided with an engagement projection engageable with the notched groove. With this configuration, torque is transmitted to the core tubes for taking up the ink sheet with a proper tension, and the torque limiter provided to the main body case of the image forming device can be dispensed with.
However, because the maximum torque value differs in accordance with the ink sheet as described above, a dimension of inner and outer diameters of the core tube where the ink sheet is wound around also differs. Accordingly, each time when a different type of ink sheet is used, spools having a corresponding diameter are needed. This causes increase in production cost.
It is therefore an objective of the present invention to overcome the above-described drawbacks, and to provide a compact-sized ink sheet cartridge having a sufficient rigidity and also an image forming device including a sheet transporting path extending above a takeup-side core tube of the ink sheet cartridge and enabling a user to exchange the ink sheet cartridge in a simple and easy manner.
It is another objective of the present invention to provide a compact-sized image forming device with a reduced working space required for exchange of recording sheets and the ink sheet cartridge.
In order to achieve the above and other objectives, there is provided an ink sheet cartridge mountable on an image forming device formed with a transport path through which a recording medium is transported and including a recording member that forms images on the recording medium. The ink sheet cartridge includes a cartridge body having a supply side and a takeup side opposite to the supply side, a supply-side member rotatably supported on the cartridge body at the supply side, a takeup-side member rotatably supported on the cartridge body at the takeup side, and an ink sheet wound around and extending between the supply-side member and the takeup-side member along a sheet path. The cartridge body further includes a partitioning plate. When the cartridge body is mounted on the image forming device, the partitioning plate is positioned where the transport path diverges from the sheet path to direct the recording medium along the transport path.
There is also provided an ink sheet cartridge mountable on an image forming device formed with a transport path through which a recording medium is transported. The ink sheet cartridge includes a cartridge body, a supply-side member rotatably supported on the cartridge body at its supply side, a takeup-side member rotatably supported on the cartridge body at its takeup side, and an ink sheet wound around and extending between the supply-side member and the takeup-side member along a sheet path. The cartridge body includes a first-side plate, a second-side plate, and a partitioning plate connecting the first-side plate to the second-side plate. At least one of the first-side plate, the second-side plate, and the partitioning plate is formed with a pair of gripping protrusions for providing a user with gripping portions. When the cartridge body is mounted on the image forming device, the recording medium is transported on the partitioning plate while being guided by the pair of gripping protrusions.
There is also provided an image forming device including a main case formed with an accommodating portion that detachably accommodates an ink sheet cartridge and having an upper portion, a sheet feed mechanism that feeds a recording medium, a recording member that forms images on the recording medium, an upper cover that covers over the upper portion of the main case and is movable between an open condition and a closing condition, the upper cover having an inner surface, and an upper chute plate provided to the inner surface of the upper cover. The upper chute defines a transport path along which the sheet feed mechanism feeds the recording medium.
There is also provided an image forming device including a sheet supply member that supplies a recording medium, a transporting member that transports the recording medium in a transport direction along a transport path, a recording member that forms images on the recording medium and is positioned below and downstream side of the sheet supply member in the transport direction, a case formed with an accommodating portion accommodating an ink-sheet cartridge. The ink-sheet cartridge includes a supply-side member, a takeup-side member, and an ink sheet wound around and expanding between the supply-side member and the takeup-side member. The supply-side member and the takeup-side member together define an open portion therebetween where the recording member exposes, and supply the ink sheet from the upstream side of the recording member to the downstream side of the recording member in the transport direction. The ink sheet-cartridge is accommodated in the accommodating portion such that the supply-side member is positioned above the takeup-side member, and the transporting member transports the recording medium along an upper surface of the ink sheet.
Next, a facsimile device and ink sheet cartridges according to preferred embodiments of the present invention will be described in detail with reference to drawings.
First, a facsimile device 1 shown in
As shown in
In the main body case 2, there are provided below the operation panel 3 a pair of feed rollers 9, a contact type image scanner portion (CIS) 10, an original holder 11, and a pair of original discharge rollers 12. The feed rollers 9 transfer the original 8 from the original stand 7. The original holder 11 is positioned above a reading portion of the CIS 10.
In the main body case 2, there are also provided a sheet feed portion 14 at a position below the sheet feed stand 5. The sheet feed portion 14 includes a sheet supply roller 15 and a separation pad 16. The sheet supply roller 15 transports each one of the recording sheets 4 from the sheet feed stand 5. The separation pad 16 is urged against an upper peripheral surface of the sheet feed roller 15.
Below the sheet feed portion 14, there are provided a roller shaped platen 17, a spring 18, a print stand 19, a thermal head 22, an accommodating portion 13, and a tension member 23. The thermal head 22 is a line printer having a heat generating register that generates heat when applied with electric current in accordance with image data. The thermal head 22 is positioned, while facing its recording surface upward, on the print stand 19. The print stand 19 is urged toward a lower surface of the platen 17 by the spring 18. Accordingly, the thermal head 22 is urged to contact the recording surface of the platen 17, thereby defining a print portion 17a between the thermal head 22 and the platen 17. The accommodating portion 13 accommodates therein an ink sheet cartridge 20 in such a manner that the cartridge 20 exceeds the front and rear ends of the print stand 19. The tension member 23 is made of a spring like plate segment.
Incidentally, the upper cover 6 is formed with a plurality of rib like upper chute portions 27 extending from rear to front over the platen 17 and downwardly protruding from the lower surface of the upper cover 6.
Next, the ink sheet cartridge 20 will be described. As shown in FIGS. 3 to 5, the ink sheet cartridge 20 includes a cartridge body 30, a supply side member 25, a takeup side member 26, and an ink sheet 21. The cartridge body 30 includes a partitioning plate 24. The ink sheet 21 is wound around and extending between the supply side member 25 and the takeup side member 26. The ink sheet 21 has an ink surface on which an ink layer is formed.
When the ink sheet cartridge 20 is assembled in the accommodating portion 13 of the main body case 2, the supply side member 25 is positioned at the rear side of the main body case 2, and the takeup side member 26 is positioned at the front side thereof at a position lower than the supply side member 25, thereby providing a front-low rear-high orientation (hip-up orientation) of the ink sheet cartridge 20. With this configuration, a relatively large space is defined at the lower rear portion of the main body case 2 below the accommodating portion 13. In this large space, a control baseboard 29 for executing various operations of the facsimile device 1 is positioned. As shown in
For printing, the recording sheet 4 is brought overlapped with the ink surface of the ink sheet 21. Then, both the recording sheet 4 and the ink sheet 21 are nipped at the print portion 17a, and an image is formed on the recording sheet 4 by the thermal head 22. Then, the recording sheet 4 is fed alone between the upper chute portions 27 and an upper surface of the partitioning plate 24. Then, the recording sheet 4 is discharged out of the main body case 2 via a pair of sheet discharge rollers 28.
On the other hand, the ink sheet 21 is bent downwardly at the top 23a of the tension member 23 and separated from the recording sheet 4. Then, the ink sheet 21 passes below the partitioning plate 24 and reaches the lower peripheral surface of the takeup side member 26 for being winding thereover.
Details of the ink sheet cartridge 20 will be described further with reference to
The spools 36, 37, 39 are formed from a synthetic resin by injection molding technique. As shown in
As shown in, FIGS. 3 to 5, the cartridge body 30 includes a pair of left and right side plates 31a, 31b, an upper cover segment 32, and the partitioning plate 24, all integrally formed with each other from a synthetic resin by injection molding. The left and right side plates 31a, 31b extend from the supply side to the takeup side, and are positioned beside the left and right edges of the ink sheet 21. The upper cover segment 32 is bridged between the left and right side plates 31a and 31b, and covers over an upper area of the supply-side sheet roll. The partitioning plate 24 is bridged between the left and right side plates 31a and 31b, and covers an upper area of the takeup-side sheet roll. The upper surface of the partitioning plate 24 is formed with a plurality of rib-like projections 24a protruding upwardly. With this configuration, the upper cover segment 32, the partitioning plate 24, and the left and right side plates 31a, 31b define an open area among them where the ink sheet 21 is exposed. Although the cartridge body 30 has the above-described simple configuration, because the partitioning plate 24 has a function to connect together the left and right side plates 31a, 31b, the partitioning plate 24 maintains the rigidity of the cartridge body 30.
With this configuration, as shown in
As shown in FIGS. 3 to 5, fin like knob portions 35, 35 protrude upwardly from left and right sides of the partitioning plate 24 so that the user can hold the ink sheet cartridge 20 by the knob protrusions 35, 35. That is, when removing the ink sheet cartridge 20 from the accommodating portion 13, a user can easily lift up the ink sheet cartridge 20 from the main body case 2 by holding the knob portions 35, 35 with his or her fingers. Therefore, the user can easily exchange the ink sheet 21. Also, because the user can hold the knob portions 35, 35 without directly touching the ink sheet 21, user's hands will not be dirtied by the ink. It should be noted that these fin like knob portions 35, 35 can protrude upwardly from the left and right side plates 31a, 31b instead.
As shown in
Also, each shaft support groove 33 is in communication with a slit like relief groove 34 extending radially outwardly from each shaft support groove 33. When the shafts 44, 42b are pushed into the respective shaft support grooves 33, the open portions of the shaft support grooves 33 resiliently expand because of the relief grooves 34. Upon complete insertion of the shafts 44, 42b into the shaft support grooves 33, the open portions restore their original shape to prevent the shafts 44, 42b from being disengaged from the shaft support grooves 33.
As shown in
The supply-side left spool 36 includes an inner sleeve 42, the shaft 42b, the large diameter flange 43, and a gear wheel 45. The inner sleeve 42 is engageable with a left-side inner-peripheral surface of the supply-side core tube 40. The inner sleeve 42 has an engaging pawl 42a for engaging a notched groove (not shown) formed in the core tube 40. The shaft 42b is positioned outwardly of the flange 43, and the gear wheel 45 is positioned outwardly of the shaft 42b. The shaft 42b is positioned between the flange 43 and the gear wheel 45.
As shown in
As shown in FIGS. 10(a) through 10(d), the first rotation member 46 includes a transmission gear 47. The transmission gear 47 has an inner peripheral surface formed with an inner sleeve 46a extending from the inner peripheral surface in an axial direction of the transmission gear 47. The inner sleeve 46a is formed with a slot 46c and a rod-like resilient member 51 provided integrally with the inner sleeve 46a. Both the slot 46c and the resilient member 51 extend in the axial direction. The resilient member 51 has a free end integrally provided with an engagement pawl 51a, which projects radially outwardly. A base portion 46b is provided at a radially outer side of the inner sleeve 46a. As shown in FIGS. 10(a) and 10(b), the base portion 46b includes three sector pieces equally subdivided in a circumferential direction, thereby defining generally-rectangular-shaped fitting holes 53 between neighboring sector pieces of the base portion 46b. Stepped portions 53a are provided at radially outer side of the fitting holes 53. As shown in
Next, detailed description for the shaft member 48 will be provided while referring to FIGS. 11(a) through 11(c). The shaft member 48 has a sleeve base 48b. The sleeve base 48b has one end provided with a disk-like flange, 48a protruding radially outwardly, and another end provided with a guide portion 48c extending in an axial direction. The guide portion 48c is formed with a cutout guide groove 48d at its free end, and has a radius smaller than that of the sleeve base 48b. The above-described resilient member 51 and the engagement pawl 51a of the first rotation member 46 penetrate through the inner peripheral space of the sleeve base 48b and the guide portion 48c. Three engaging members 52 extend from a radially intermediate portion of the flange 48a in a direction opposite to the sleeve base 48b. An engagement pawl 52a is formed to end portion of each engaging member 52 for locking engagement with each stepped portion 53a in a manner described later. Positioning holes 55 and locking holes 71 are formed in alternation at a base end portion of the sleeve base 48b and the flange 48a. The positioning holes 55 are for engagement with the positioning projections 54 of the first rotation member 46. The locking holes 71 are positioned radially outwardly of the positioning holes 55.
With this arrangement, the first rotation member 46 and the shaft member 48 are fit to the shaft hole 50 of the cartridge body 30 in the following manner. First, the resilient member 51 of the first rotation member 46 is inserted into the shaft hole 50 from outside to inside as shown in
At this time, the positioning projections 54 of the first rotation member 46 also engage respective positioning holes 55 of the shaft member 48. Also, the resilient member 51 engages the cutout guide groove 48d of the guide portion 48c. As shown in
Further, when the first rotation member 46 and the shaft member 48 are in engagement with each other, the sleeve base 48b of the shaft member 48 and the base portion 46b of the first rotation member 46 together define a cylindrical member. As shown in FIGS. 14(a) and 14(b), the cylindrical member serves as a positioning portion for defining a rotation axis of the transmission gear 47, i.e., that of the takeup-side spool 38, with respect to the shaft hole 50.
FIGS. 34(a) to 34(f) and 34(h) shows the resultant cartridge body 30 with the spool 38 supported within the shaft hole 50 in the above-described manner as viewed from different aspects. Also,
Next, the intermediate connector 56 will be described while referring to FIGS. 12(a) through 12(e) and FIGS. 13(a) to 13(d). The intermediate connector 56 is interposed between the end of the core tube 41 and the shaft member 48 of the spool 38. The intermediate connector 56 includes a sleeve base 57. The sleeve base 57 has at its base-end side an inner peripheral surface 57a with a uniform inner diameter D1. As shown in
On the other hand, a free end of the sleeve base 57 is subdivided into three segments in its circumferential direction, thereby providing cam segments 58. As shown in FIGS. 13(a) to 13(d), each cam segment 58 has an uneven inner peripheral surface including a long surface 58a and a short surface 58b. The inner peripheral surfaces of the cam segments 58 provide an inner diameter where the guide portion 48c of the shaft member 48 is rotatably fitted.
As described above, the engagement pawl 51a of the resilient member 51 is urged outwardly in the radial direction and protrudes from the guide portion 48c. Therefore, when the shaft member 48 rotates in an unwinding direction indicated by an arrow A in
On the other hand, when the resilient member 51 rotates in a winding direction indicated by an arrow B in
That is, the engagement pawl 51a can rotate the intermediate connector 56 in the winding direction B, but is prevented from rotating the intermediate connector 56 in the unwinding direction A.
The sleeve base 57 of the intermediate connector 56 has an outermost sleeve portion 57b having an outer diameter equal to an outer diameter of the core tube 41. As shown in FIGS. 12(b), 12(c), and 12(d), a pair of rib-like projections 61 extend from the outermost sleeve portion 57b in the axial direction thereof, and as shown in
Further, as shown in FIGS. 12(b) to 12(e) and FIGS. 33(a) to 33(i), a pair of resilient pawls 59, 59 are formed extending in the axial direction from the outermost sleeve portion 57b of the intermediate connector 56, and a pair of mating grooves 60 are formed at the left end of the core tube 41. The mating grooves 60 are used for preventing rotation and have an L-shape in a plan view. When the sleeve base 57 of the intermediate connector 56 is inserted into the left end of the core tube 41, each resilient pawl 59 engages the corresponding mating groove 60. This arrangement prevents an ink-sheet set (described later) having no mating groove at its takeup-side core tube from being installed into the ink sheet cartridge 20 of the present invention because it is unable to insert the spool 38 to the core tube. This prevents mistaking installation of an ink sheet having a quality different from that of the regular ink sheet 21, such as those of different manufacturer, and accordingly prevents troubles in printing, such as degradation of printing quality, caused by mistaking installation of an ink sheet. It should be noted that only one resilient pawl 59 and one mating groove 60 can be formed instead.
Next, installation of an exchangeable ink-sheet set onto the cartridge body 30 will be described. The exchangeable ink-sheet set is a set of the supply-side core tube 40, a new ink sheet 21 wound thereover, and the takeup-side core tube 41. A leading end of the new ink sheet 21 is attached to the outer peripheral surface of the core tube 41 by an adhesive tape. It is preferable that the ink sheet 21 has a width equal to a distance from an end of the outermost sleeve portion 57b of the intermediate connector 56 fitted with the core tube 41 to right end of the core tube 41.
The intermediate connector 56 can be fitted with the left end of the core tube 41 beforehand if desired. In this case, any assembly error with respect to the takeup-side spool 38 can be avoided in case of exchange of the ink-sheet set, thereby facilitating the exchanging work.
The first rotation member 46 and the shaft member 48 has already been unreleasably installed to the shaft hole 50 of the cartridge body 30 in a manner described above and shown in
First, the takeup-side right spool 39 is inserted into the right end of the core tube 41, and the supply-side spools 36 and 37 are inserted into the respective ends of the supply-side core tube 40 as shown in
Because one spool, i.e., the takeup-side left spool 38, is unreleasably held on the cartridge body 30 as described above, a user can easily recognize the position of the transmission gear 47 with respect to the cartridge body 30. Consequently, the user can easily attach the spools 36, 37, 39 to respective ends of the core tubes 40, 41 with proper orientations. Thus, replacement of ink-sheet sets can be performed promptly and easily.
Next, the spools 36, 37, 39 are fitted with the corresponding shaft support grooves 33, 33, 33 of the cartridge body 30. Then, the core tube 41 is manually rotated in the winding direction B to remove a slack of the ink sheet 21.
When the ink sheet cartridge 20 is accommodated to the accommodating portion 13 of the facsimile device 1, the left and right side plates 31a, 31b of the cartridge body 30 are held at their predetermined postures. At this time, inner peripheral surfaces of the shafts 44, 44 of the spools 37, 39 engage respective shafts (not shown) protruding from one side of the main body case 2 of the facsimile device 1. At the same time, the gear wheel 45 of the spool 36 and the transmission gear 47 of the spool 38 are respectively in meshing engagement with power transmission gears (not shown) provided to the main body case 2. Further, inner surfaces of an outer sleeve portion 36a of the spool 36 shown in
Printing is started upon operation of the control baseboard 29 based on either a printing command inputted from the operation panel 3, a printing command received from an external computer (not shown), or facsimile data transmitted from other facsimile device via a public line. Once the printing is started, first the sheet supply roller 15 rotates to start supply of the recording sheet 4. After a sheet sensor (not shown) has detected the leading end of the recording sheet 4, the recording sheet 4 is further transported by a predetermined distance. When the leading end approaches the platen 17, a driving force is transmitted to the platen 17 and also to the gear wheel 45 and the transmission gear 47 of the ink sheet cartridge 20. Because the engagement pawl 51a of the resilient member 51 has already brought into engagement with the space between the neighboring cam segments 58 of the intermediate connector 56 as shown in
Specifically, the heat generating resistor of the thermal head 22 generates heat in accordance with the print data, while both the ink sheet 21 and the recording sheet 4 are nipped at the printing portion 17a between the platen 17 and the thermal head 22. The heat from the thermal head 22 selectively melts the ink on the ink sheet 21, and the melted ink is transferred onto a bottom surface of the recording sheet 4, thereby forming an ink image thereon at every one line basis. It should be noted that the ink on the recording sheet 4 is cooled off meanwhile and keeps clinging on the recording sheet 4.
After the printing, the ink sheet 21 alone is largely bent downwardly at the top 23a of the tension member 23 and separated from the recording sheet 4. Then, the ink sheet 21 is fed toward the lower outer peripheral portion of the takeup-side member 26 as body 30 are held at their predetermined postures. At this time, inner peripheral surfaces of the shafts 44, 44 of the spools 37, 39 engage respective shafts (not shown) protruding from one side of the main body case 2 of the facsimile device 1. At the same time, the gear wheel 45 of the spool 36 and the transmission gear 47 of the spool 38 are respectively in meshing engagement with power transmission gears (not shown) provided to the main body case 2. Further, inner surfaces of an outer sleeve portion 36a of the spool 36 shown in
Printing is started upon operation of the control baseboard 29 based on either a printing command inputted from the operation panel 3, a printing command received from an external computer (not shown), or facsimile data transmitted from other facsimile device via a public line. Once the printing is started, first the sheet supply roller 15 rotates to start supply of the recording sheet 4. After a sheet sensor (not shown) has detected the leading end of the recording sheet 4, the recording sheet 4 is further transported by a predetermined distance. When the leading end approaches the platen 17, a driving force is transmitted to the platen 17 and also to the gear wheel 45 and the transmission gear 47 of the ink sheet cartridge 20. Because the engagement pawl 51a of the resilient member 51 has already brought into engagement with the space between the neighboring cam segments 58 of the intermediate connector 56 as shown in
Specifically, the heat generating resistor of the thermal head 22 generates heat in accordance with the print data, while both the ink sheet 21 and the recording sheet 4 are nipped at the printing portion 17a between the platen 17 and the thermal head 22. The heat from the thermal head 22 selectively melts the ink on the ink sheet 21, and the melted ink is transferred onto a bottom surface of the recording sheet 4, thereby forming an ink image thereon at every one line basis. It should be noted that the ink on the recording sheet 4 is cooled off meanwhile and keeps clinging on the recording sheet 4.
After the printing, the ink sheet 21 alone is largely bent downwardly at the top 23a of the tension member 23 and separated from the recording sheet 4. Then, the ink sheet 21 is fed toward the lower outer peripheral portion of the takeup-side member 26 as shown in
Incidentally, one end of the partitioning plate 24 close to the tension member 23 functions to bend the leading portion of the recording sheet 4 downwardly. This surely allows the leading end of the recording sheet 4 to ride over the upper surface of the partitioning plate 24, thereby reliably preventing the recording sheet 4 from being transported downwardly along with the ink sheet 21. In this way, the ink sheet 21 is easily and surely separated from the recording sheet 4 by the tension member 23 and the partitioning plate 24.
Also, because the center space of the ink sheet cartridge 20 is defined between the supply-side member 25 and the partitioning plate 24, the recording sheet 4 is promptly separated from the ink sheet 21 immediately after the printing by simply traveling the recording sheet 4 along the upper surface of the partitioning plate 24. This results in a simple and compact structure of the ink sheet cartridge 20 and the facsimile device 1, and reduces production costs.
The plurality of rib-like projections 24a of the partitioning plate 24 extend in the sheet transporting direction. Therefore, the printed surface, i.e., the bottom surface, of the recording sheet 4 is subject to less friction from the partitioning plate 24 when the recording sheet 4 passes along the partitioning plate 24. This configuration reduces contamination of the recording sheet 4 with an ink, which has accidentally been deposited on the partitioning plate 24.
As described above, according to the first embodiment, because the partitioning plate 24 serves as the lower transporting chute, the recording sheet 4 can be reliably introduced into the space between the upper chute portion 27 and the partitioning plate 24. When the upper cover 6 is pivotally lifted up about the pivot point 6a, the upper chute portion 27 is also lifted up. Further, because the ink sheet cartridge 20 is set in the hip-up orientation, and because the recording sheet 4 is transported from the upper rear portion to the lower front end of the main body case 2 along the upper side of the ink sheet cartridge 20, when sheet jamming occurs, a large open space can be provided between the upper chute portion 27 and the partitioning plate 24 by simply lifting up the upper cover 6. Accordingly, a jammed recording sheet 4 can be easily removed, and the transporting chute defined by the partitioning plate 24 and the upper chute portion 27 will not obstruct exchange of the ink sheet cartridge 20.
If a pair of upper and lower parts of transporting chute are formed as components separated from the ink sheet cartridge, there is a need to remove the transporting chute from the main body case of the facsimile device every time the user replaces the ink sheet. However, according to the configuration of the present invention, there is no need for the user to remove the transporting chute when replacing the ink sheet.
Next, an ink sheet cartridge 120 according to a second embodiment of the present invention will be described while referring to FIGS. 16 to 18(c). The ink sheet cartridge 120 has the similar configuration as the ink sheet cartridge 20 of the first embodiment. However, the ink sheet cartridge 120 has a takeup-side core tube 141 different from the core tube 41, and does not include the intermediate connector 56. Other components are the same as that of the first embodiment, so these components are assigned with the same numberings, and detailed explanations for these components will be omitted.
As shown in
Incidentally, the attachment hole 65 shown in
Next, installation of an exchangeable ink-sheet set onto the cartridge body 30 will be described. The exchangeable ink-sheet set is a set of the supply-side core tube 40, a new ink sheet 21 wound thereover, and the takeup-side core tube 141. The engagement projecting member 66 is provisionally fixed to the attachment hole 65 of the core tube 141. The ink sheet 21 has a width preferably equal to a distance between the right and left ends of the core tube 141. A leading end of the ink sheet 21 is provisionally attached to the outer peripheral surface of the core tube 141 by an adhesive tape. Further, the shaft member 48 and the first rotation member 46 are unreleasably assembled into the shaft hole 50 of the cartridge body 30 in the same manner as in the above-describe first embodiment. That is, the resilient member 51 is inserted in the cutout guide groove 48d, and the engagement pawl 51a is outwardly urged to protrude in the radial direction from the guide portion 48c.
First, the supply-side left and right spools 36 and 37 are respectively inserted into the left and right ends of the supply-side core tube 40 in the same manner as in the first embodiment.
Then, the guide portion 48c of the shaft member 48 is directly inserted into the left end of the core tube 141. At this time, because the free end of the resilient member 51 is urged radially outwardly, the resilient member 51 will be deformingly bent as shown in
Because only one spool, i.e., the takeup-side left spool 38, is unreleasably held on the cartridge body 30 as described above, a user can easily recognize the position of the transmission gear 47 with respect to the cartridge body 30. Consequently, the user can easily attach the spools 36, 37, 39 to respective ends of the core tubes 40, 141 with proper orientations when the user replaces the ink-sheet set. Thus, replacement of ink-sheet sets can be performed promptly and easily.
Also, the above configuration prevents the ink sheet cartridge 120 of the present embodiment from accommodating an ink-sheet set having a takeup-side core tube provided with no engagement portion 66a, and therefore reliably prevents misuse of an ink sheet having a quality different from that of the ink sheet 21 of the present invention in the facsimile device 1. Consequently, degradation of printing quality and any printing deficiency caused by the misuse can be obviated.
When the resultant ink sheet cartridge 120 assembled with the ink-sheet set is mounted on the accommodating portion 13, the inner peripheral surface of the core tube 141 is supported concentrically by the sleeve base 48b of the spool 38. Because the first rotation member 46 and the shaft member 48 of the spool 38 are integrally fitted with each other, and because the engagement pawl 51a is in abutment with the engagement portion 66a, the rotation force from the transmission gear 47 in the winding direction B can be transmitted to the core tube 141. In this way, feeding of the ink sheet 21 is performed.
Next, a first modification of the second embodiment will be described while referring to FIGS. 19(a) and 19(b). According to the present modification, as shown in FIGS. 19(a) and 19(b), a takeup-side core tube 141a is formed with an engagement hole 67 instead of the attachment hole 65. The engagement hole 67 has a rectangular shape extending in the axial direction. When the spool 38 is inserted into the core tube 141 a, the resilient member 51 is deformed while the engagement pawl 51a is in sliding contact with the inner peripheral surface of the core tube 141a. Then, the engagement pawl 51a is brought into engagement with the engagement hole 67. In this modification also, an inner diameter of the core tube 141a is set equal to an outer diameter of the sleeve base 48b of the shaft member 48.
Accordingly, a driving force from the main body of the facsimile device 1 is transmitted to the core tube 141a via the transmission gear 47 and the resilient member 51. Function and effect is the same as those of the second embodiment.
It should be noted that in case of the second modification, the resilient member 51 can be dispensed with, and a cross-sectional shape of the sleeve base 48b of the spool 38 can be made in conformance with the engagement groove 68 of the core tube 141b. Also, only a single engagement groove can be formed.
According to a further alternative, an engagement projection 66 can be provided at one end of the core tube 40, and the small diameter inner sleeve 42 of the supply side spool 36 can be provided with an engagement pawl (not shown) engageable with the engagement projection 66. In the latter case, the resilient member 51 at the first rotation member 46 can be dispensed with, and instead, the above described engagement portion 66a can be engaged with the cutout guide groove 48d at the guide portion 48c of the shaft member 48.
Next, an ink sheet cartridge 220 according to a third embodiment of the present invention will be described while referring to FIGS. 21 to 25. The ink sheet cartridge 220 is similar to the ink sheet cartridge 20 of the first embodiment except that the ink sheet cartridge 220 includes a takeup-side core tube 241 and the intermediate connector 70 different from the takeup-side core tube 41 and the intermediate connector 56. Details will be described below.
As shown in
The intermediate connector 70 is a sleeve like member produced from a synthetic resin by an injection molding, and has a size in conformance with the inner diameter of the core tube 241. The intermediate connector 70 includes a sleeve portion 70a, a flange portion 70b, first locking projections 72, and a second locking projection 73, all integrally formed one another.
The sleeve portion 70a is tightly fitted into the inner peripheral surface of the core tube 241. As shown in
The flange portion 70b is slidable on the periferal surface of the sleeve base 48b of the shaft member 48. The first locking projections 72 protrude from one side surface of the flange portion 70b for engagement with the locking holes 71 of the flange 48a. The second locking projection 73 protrudes radially outwardly from the outer peripheral surface of the sleeve portion 70a. As shown in
Next, installation of an exchangeable ink-sheet set onto the cartridge body 30 of the ink sheet cartridge 220 will be described. The exchangeable ink-sheet set is a set of the supply-side core tube 40, a new ink sheet 21 wound therearound, the takeup-side core tube 241, and the intermediate connector 70. The intermediate connector 70 can be fitted with the left end of the core tube 241 beforehand. Alternatively, the intermediate connector 70 can be prepared as an optional piece.
The ink sheet 21 has a width preferably equal to a distance between the right and left ends of the core tube 241. A leading end of the ink sheet 21 is provisionally attached to the outer peripheral surface of the core tube 241 by an adhesive tape. Also, the first rotation member 46 and the shaft member 48 are unreleaseably assembled together to the shaft hole 50 so as to provide the takeup-side left spool 38 as shown in
First, the intermediate connector 70 is interposed between the left end of the take-up side core tube 241 and shaft portion 48 of the take-up side left spool 38. Then, the shaft portion 48 is inserted into the core tube 241 such that the sleeve portion 70a of the intermediate connector 70 is tightly fitted between the outer peripheral surface of the sleeve base 48b and the inner peripheral surface of the core tube 241. At this time, the first locking projections 72 are engaged with the first locking holes 71, and the second locking projection 73 is engaged with the mating groove 60.
It should be noted that the intermediate connector 70 can be provisionally mounted over the sleeve base 48b such that the first locking projections 72 are engaged with the locking holes 71 of the flange 48a.
Then, the takeup-side right spool 39 is inserted into the right end of the core tube 241, and the supply side left and right spools 36 and 37 are respectively inserted into the left and right ends of the supply-side core tube 40.
Because the first rotation member 46 and the shaft member 48 are integrally fitted with each other, and because the intermediate connector 70 having the first and second locking projections 72, 73 is interposed between the spool 38 and the core tube 241, the rotation force of the transmission gear 47 in the winding direction can be transmitted to the core tube 241.
According to the above-described third embodiment, the intermediate connector 70 can be inserted into only the left end of the core tube 241. Therefore, an ink-sheet set having a takeup-side core tube whose inner diameter is not matched with the intermediate connector 70 of the present embodiment, such as an ink-sheet set of other manufacturers, cannot be assembled into the ink sheet cartridge 220. This prevents misuse of an ink sheet having a quality different from the regular ink sheet 21. Consequently, degradation of printing quality and any printing deficiency caused by the misuse can be obviated.
Because various intermediate connectors 70 can be prepared in conformance with the inner diameter of the core tube 241, an optimum one of the intermediate connectors 70 can be replaceably used in accordance with the kind of the ink sheet 21 to be used. Accordingly, a user can simply use an exchangeable ink-sheet set, which includes the ink sheet 21, the core tubes 40, 241, and the corresponding intermediate connector 70 without preparing different left spools 38 for different ink sheets.
Further, because the first locking projections 72 are engaged with the corresponding locking holes 71, the locking position can be sufficiently far from the rotation center of the spool 38. As a result, force of transmission torque from the shaft member 48 to the intermediate connector 70 can be less. Consequently, thickness of the flange portion 70b can be reduced, and so the intermediate connector 70 can be made in a compact size.
It should be noted that in the present third embodiment the resilient member 51 and the engagement pawl 51a can be dispensed with. Alternatively, the engagement pawl 51a can engage an engagement hole (not shown) formed to the core tube 241 having a relatively small inner diameter.
Next, an ink sheet cartridge 320 according to a forth embodiment of the present invention will be described while referring to FIGS. 26 to 28.
As shown in
The takeup-side core tube 341 has a left-side inner peripheral surface formed with no protrusion, and has a left-side inner diameter with a relatively small size.
As shown in
Both the sleeve portion 80a and the flange portion 80b have an inner diameter corresponding the sleeve base 48b of the left spool 38, so that the sleeve base 48b is inserted into and fits the sleeve portion 80a and the flange portion 80b. The flange portion 80b is slidable on the surface of the flange 48a protruding from the sleeve base 48b.
Next, installation of an exchangeable ink-sheet set onto the cartridge body 30 of the ink sheet cartridge 320 will be described. The exchangeable ink-sheet set is a set of the supply-side core tube 40, a new ink sheet 21 wound thereover, the takeup-side core tube 341, and the torque limiter 80. If desired, the torque limiter 80 can be provisionally attached to the left end of the core tube 341. A width of the ink sheet 21 is preferably equal to a distance between the right end of the core tube 341 and the outer side end of the flange portion 80b of the torque limiter 80 attached to the left end of the core tube 341. A leading end of the new ink sheet 21 is provisionally attached to the outer peripheral surface of the core tube 341 by an adhesive tape.
The first rotation member 46 and the shaft member 48 are provisionally undetachably assembled together to the shaft hole 50 of the cartridge body 30 to provide the takeup-side left spool 38.
First, the takeup-side right spool 39 is inserted into the right end of the core tube 341, and the supply-side left and right spools 36 and 37 are respectively inserted into the left and right ends of the supply-side core tube 40 in a manner shown in
Next, the sleeve base 48b of the spool 38 is inserted into the sleeve portion 80a of the torque limiter 80. As a result, the core tube 341 and the sleeve base 48b are tightly fitted together because of the resilient force of the sleeve portion 80a of the torque limiter 80 such that the sleeve portion 80a is tightly fitted into a space between the outer peripheral surface of the sleeve base 48b and the inner peripheral surface of the core tube 341 as shown in
However, when a torque value exceeds a maximum torque value of the torque limiter 80, slippage occurs at the torque limiter 80. Therefore, excessive tension will not be imparted on the ink sheet 21, and forcible takeup of the ink sheet 21 is prevented. Accordingly, accidental breakage of the ink sheet 21 is prevented. It should be noted that the maximum torque value of the torque limiter 80 is defined as a torque value at which the torque limiter 80 can transmit a maximum rotation force.
Also, the maximum torque value of the torque limiter 80 can be selectively set in accordance with a thickness, a width, and a material of the ink sheet 21 to be used. Therefore, a preferable one of the torque limiters 80 can be selectively attached to the end of the core tube 341. Consequently, it is unnecessary for the user to re-set the maximum torque value at the main body side of the facsimile device 1 in accordance of the ink sheet 21 to use. Mere installation of the ink-sheet set completes the adjustment of the maximum torque value because the torque limiter 80 appropriate for the ink sheet 21 is included in the ink-sheet set.
As described above, the left end of the takeup-side core tube 341 can be inserted with only the torque limiter 80. Therefore, an ink-sheet set having a takeup-side core tube with different inner diameter, such as ink-sheet sets produced by different manufactures, cannot be used in the ink sheet cartridge 320 of the present invention. This prevents misuse of an ink sheet of other company having a quality different from that of the regular ink sheet 21 in the facsimile device 1.
Further, only the core tube 341 having left end fitted with the torque limiter 80 can be complementarily fitted with the spool 38. In other words, a core tube of different manufacture provided with no torque limiter cannot be fitted with the spool 38 of the present invention. Therefore, misuse of the ink sheet of other manufactures having a quality different from the regular ink sheet 21 can be reliably prevented.
Consequently, degradation of printing quality and any printing deficiency caused by the misuse can be obviated.
It should be noted that the resilient member 51 and the engagement pawl 51a can be dispensed with in this embodiment.
While some exemplary embodiments of this invention have been described in detail, those skilled in the art will recognize that there are many possible modifications and variations which may be made in these exemplary embodiments while yet retaining many of the novel features and advantages of the invention.
For example, although the facsimile device 1 is described in the above embodiments, the present invention is available for various image forming device, such as a printer, a copying machine, and a multi-function device incorporating these functions.
Also, the above-described facsimile device 1 defines the transport path for the recording sheet 4 extending in a substantially straight direction from the rear to the front of the main body case 2. However, the present invention can be also applied to a facsimile device defining a transport path extending in a U shape so that a transport direction of a recording medium is reversed. In this case, as shown in
Also, as shown
Moreover, in the above-described embodiments, the takeup-side left spool 38 is undetachable from the cartridge body 30. However, any one of the spools 36, 37, 39 can be undetachably supported by the cartridge body 30 instead of the spool 38 as long as the user can easily recognize the positions and orientations of the spools with respect to the cartridge body 30 and core tubes when replacing the ink sheet 21.
In the above-described embodiments and modifications the supply-side left spool 36 and the supply-side right spool 37 are formed as separate components. However, a supply-side spool member 400 shown in
The supply-side spool member 400 is inserted into and penetrates through the supply-side core tube 40 from its left end so that the right spool member 437 protrudes from the right end of the core tube 40. Then, the flange 443 is mounted on the right spool member 437.
Similarly, a takeup-side spool member 500 shown in
The takeup-side spool member 500 is inserted into and penetrates through the supply-side core tube 141 (141a) from its left end so that the right spool member 539 protrudes from the right end of the core tube 141 (141a). Then, the flange 543 is mounted on the right spool member 539.
It should be noted that although the right spool member 539 is unreleasably mounted to the left side plate 31a of the cartridge body 30, the takeup-side spool member 500 is able to slightly pivot with respect to the left side plate 31a, so that a user can replace the ink sheet without detaching the takeup-side spool member 500 from the cartridge body 30.
Although the supply-side spool member 400 and the takeup-side spool member 500 shown in
Moreover, the supply-side spool member 400 and the takeup-side spool member 500 or the connection rods 450, 550 can have a hollow inside throughout their longitudinal length.
Any combinations of ones of the supply-side left and right spools 36, 37, the takeup-side left and right spools 38, 39, the supply-side spool member 400, and the takeup-side spool member 500 can be used. That is, when the supply-side left and right spools 36, 37 and the takeup-side spool member 500 are used, three separate components are supported on the cartridge body 30. When the supply-side spool member 400 and the takeup-side left and right spools 38, 39 are used, three separate components are supported on the cartridge body 30. When the supply-side spool member 400 and the takeup-side spool member 500 are used, only two separate members are supported on the cartridge body 30.
Although in the above-described embodiments and modifications, the spool 38 is engaged with the takeup-side core tube, the ink sheet cartridge can be configured so that the spool 38 engages the supply-side core tube.
Number | Date | Country | Kind |
---|---|---|---|
2000-096817 | Mar 2000 | JP | national |
2000-096818 | Mar 2000 | JP | national |
2000-096819 | Mar 2000 | JP | national |
2000-096820 | Mar 2000 | JP | national |
2000-096821 | Mar 2000 | JP | national |
2000-096822 | Mar 2000 | JP | national |
2000-096823 | Mar 2000 | JP | national |
2001-047772 | Feb 2001 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10206334 | Jul 2002 | US |
Child | 10961208 | Oct 2004 | US |
Parent | 09820700 | Mar 2001 | US |
Child | 10206334 | Jul 2002 | US |