The present invention relates to an image identification method, and more particularly, to an image identification method of eliminating accumulated error of a joystick.
A conventional mechanical joystick includes a sensor, a trackball, a lever arm and a handle. A user presses the handle to move the lever arm, the lever arm can be inclined and rotated via the trackball, and the sensor detects motion of the trackball to control a cursor signal output by the mechanical joystick. The handle is made by solid material and can be pushed and pulled to recline the lever arm for generating the cursor signal. While the mechanical joystick is reclined, the lever arm can be rotated or slanted towards specially designated directions, and the trackball recovers the lever arm via a spring. Therefore, the conventional mechanical joystick is operated by limited gestures due to the designated directions, and may easily result in mechanical fatigue by long-term usage. If the mechanical joystick is designed as a thin joystick, a movable structural component in the thin joystick is easily damaged after a long-term operation, and an accuracy of the thin joystick is decreased.
The present invention provides an image identification method of eliminating accumulated error of a joystick for solving above drawbacks.
According to the claimed invention, an image identification method is used to eliminate accumulated error of operation of a joystick. The joystick has an optical sensor adapted to analyze a movement of a plurality of identification dots disposed on a stick body. The image identification method includes receiving a series of detection images, setting a first identification dot of the plurality of identification dots as being a reference identification dot, and setting a second identification dot of the plurality of identification dos as being the reference identification dot and cancelling the first identification dot as being the reference identification dot when the first identification dot is near a border of the detection image. A position change of the reference identification dot in the series of detection images is used for identifying a control status of the joystick.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
As shown in
The optical sensor 16 can be disposed on the circuit board 30 inside the casing 12, and faces toward the sunken structure 28. The light source 20 can be disposed on the circuit board 30, and adjacent to the optical sensor 16 for emitting an optical illumination signal toward the identification pattern 26 inside the sunken structure 28. The light source 20 is an optional element in the present invention. The optical sensor 16 can acquire an image of the identification pattern 26. The captured image of the identification pattern 26 can be analyzed by the optical sensor 16 directly or the raw data of the captured image could be sent to an operation processor (not shown in the figures) electrically connected to the optical sensor 16 for the image analyzation. When the image about the identification pattern 26 is analyzed, the joystick 10 can determine a movement of the identification pattern 26, so as to estimate a moving direction and/or a moving rotation of the indication portion 24, and to identify a control status of the stick body 14.
The resilient component 18 can be disposed between the indication portion 24 and the bottom (such as the circuit board 30) of the casing 12. As an external force is applied to the stick body 14 for operating the joystick 10, the indication portion 24 can be shifted or rotated according to motion of the stick body 14, and the resilient component 18 is compressed to store a resilient recovering force. As the external force applied to the stick body 14 is removed, the resilient recovering force of the resilient component 18 can recover the stick body 14 to an initial position; for example, the pressing portion 22 may be moved back to a center of the casing 12. Generally, the indication portion 24 can be disposed inside the casing 12 in a detachable manner, so that the resilient component 18 can push the indication portion 24 from down to up, for abutting the indication portion 24 against an upper surface inside the casing 12.
Please refer to
As shown in
It should be mentioned that the blocking portion 32 further can be used to constrain a rotation angle of the stick body 14 relative to the casing 12. For example, if the casing 12 does not dispose the blocking portion 32 on the bore wall of the hole 123, the hole 123 has the larger dimension, and the stick body 14 can be swayed or rotated relative to the casing 12 widely; if the blocking portion 32 is disposed on the bore wall of the hole 123, a swaying range or a rotating range of the stick body 14 relative to the casing 12 can be reduced accordingly. Structural dimensions (such as a depth and a width) of the blocking portion 32 are not limited to the embodiment shown in the figures, and depend on the design demand.
In addition, the indication portion 24 further can include a supporting member 34 surrounding an edge of the indication portion 24, and the casing further can include a constraining portion 36 disposed on the inner surface of the casing 12. A dimension of the supporting member 34 preferably can be greater than the dimensions of the first section R1 and the second section R2. The supporting member 34 can abut against the inner surface of the casing 12 in a detachable manner, and can be moved relative to the inner surface of the casing 12 in accordance with the external force applied to the pressing portion 22. The supporting member 34 stops moving when abutting against the constraining portion 36. The constraining portion 36 can constrain a movement of the supporting member 34 relative to the casing 12.
Please refer to
Please refer to
If the identification pattern 26 has the single identification dot 261, a movement of the single identification dot 261 is limited to the field of view of the optical sensor 16 when the stick body 14 is swayed and/or rotated. And when the identification pattern 26 has the plurality of identification dots 261, the movement range of the identification dots 261 are broaden and even allow some of the identification dots 261 been moved out of the field of view of the optical sensor 16 when the stick body 14 is swayed and/or rotated. For example, the optical sensor 16 may capture a series of detection images; a center can be defined within a first detection image of the series of detection images, and one of the plurality of identification dots 261, which is mostly close to the defined center, within the first detection image can be set as a first identification dot, and the first identification dot can be represented as a reference identification dot between the first detection image and a second detection image of the series of detection images. As the stick body 14 moved, the second detection image of the series of detection images is analyzed to trace a position changed of the first identification dot (which is used as the reference identification dot) between the first detection image and the second detection image and further determining a range and an angle of the movement, sway or rotation of the joystick 10.
In some possible situation, a third detection image of the series of detection images is analyzed to find out that a position of the first identification dot (which is used as the reference identification dot) in the third detection image is near to a border of the detection image but still located inside the field of view of the optical sensor 16; meanwhile, a fourth detection image may be unable to trace the changed position of the first identification dot. Thus, the present invention can redefine a new center within the third detection image, and set one of the plurality of identification dots 261, which is mostly close to the redefined new center, within the third detection image as a second identification dot, and the second identification dot can be represented as a new reference identification dot. When a fourth detection image of the series of detection images is analyzed, positions of the second identification dot (which is used as the reference identification dot) in the third detection image and the forth detection image can be traced to determine the range and the angle of the movement, sway or rotation of the joystick 10.
Moreover, the identification pattern 26 may include several identification dots 261, such as one large identification dot and one small identification dot, and a connection line between the large identification dot and the small identification dot can be stretched to draw an elliptic icon. The optical sensor 16 can detect the elliptic icon containing the identification dots with different sizes to determine the range and the angle of the movement, sway or rotation of the joystick 10. It should be mentioned that if the elliptic icon is in a center of the field of view of the optical sensor 16, other detection conditions may be optionally applied to detect the rotary direction of the joystick 10; if a center of the elliptic icon is not overlapped with the center of the field of view of the optical sensor 16, the optical sensor 16 can accurately determine the range and the angle of the movement, sway or rotation of the joystick 10 without additional detection conditions.
Please refer to
In conclusion, the present invention can utilize optical detection technology to detect absolute motion and relative motion of the joystick in near real-time or real-time, to prevent a cursor output by the joystick from unexpected drifting due to mechanical wear or elastic fatigue resulted from frequent operation. The joystick of the present invention can form the sunken structure on the bottom of the indication portion of the stick body, and the identification pattern can be disposed inside the inner surface of the sunken structure to be captured by the optical sensor for analysis; therefore, a structural dimension of the joystick can be minimized and a length of the optical path still can be sufficient for the optical sensor, so the optical sensor can provide preferred identification accuracy. Moreover, design of disposing the identification pattern inside the sunken structure of the indication portion can further avoid the identification pattern from leaving the field of view of the optical sensor due to small motion, so as to provide preferred identification efficiency.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application is a continuation application of U.S. patent application Ser. No. 17/069,824, filed on 2020 Oct. 13, which claims the benefit of U.S. provisional application No. 62/940,911, filed on 2019 Nov. 27. The disclosures of the prior applications are incorporated herein by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5491462 | Cecchi | Feb 1996 | A |
6244959 | Miyamoto | Jun 2001 | B1 |
11544883 | Charlton | Jan 2023 | B1 |
20140256443 | Joynes | Sep 2014 | A1 |
20160077543 | Conro | Mar 2016 | A1 |
20170319959 | Lavache | Nov 2017 | A1 |
20200012311 | Li | Jan 2020 | A1 |
20200117228 | Wang | Apr 2020 | A1 |
20200211508 | Clarke | Jul 2020 | A1 |
20200246690 | Weitzman | Aug 2020 | A1 |
20210146265 | Lamm | May 2021 | A1 |
20210191533 | Chen | Jun 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20220066497 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62940911 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17069824 | Oct 2020 | US |
Child | 17521883 | US |