This U.S. non-provisional patent application claims priority to, and the benefit of, Korean Patent Application No. 10-2015-0119076, filed on Aug. 24, 2015, with the Korean Intellectual Property Office (KIPO), the entire content of which is hereby incorporated by reference.
The present disclosure herein relates to an image processing circuit and a display device including the same.
In general, a display device expresses colors by using the three primary colors (e.g., red, green, and blue). The display panel, e.g., includes sub pixels that respectively correspond to red, green, and blue. Recently, in order to increase the brightness of a displayed image, a technique of further including a white sub pixel is being investigated. That is, a PenTile technique for using a two-pixels-with-four-sub-pixels design instead of the conventional two-pixels-with-six-sub-pixels design has been developed.
A display device employing PenTile technique includes a rendering module for compensating resolution deterioration due to the reduction of the number of sub pixels. The rendering module converts red, green, and blue image signals provided from the outside (e.g., from external to the rendering module or the display device) into red, green, blue, and white data signals and adjusts the brightness of a backlight unit, thereby improving (e.g., increasing) the brightness of an image.
Aspects of embodiments of the present disclosure are directed toward an image processing circuit for reducing or minimizing the size of a memory utilized (e.g., necessary) for an operation of a rendering module (e.g., a renderer).
Aspects of embodiments of the present disclosure are directed toward a display device including an image processing circuit for reducing or minimizing the size of a memory necessary for an operation of a rendering module.
According to an embodiment of the inventive concept, there is provided an image processing circuit including: a mapper configured to convert an image signal into an intermediate data signal; and a renderer configured to convert the intermediate data signal into a data signal, wherein the renderer includes: a memory configured to store the intermediate data signal and a flag signal; and a rendering circuit configured to output a data signal corresponding to a current line in response to a next intermediate data signal corresponding to a next line, to output a current intermediate data signal corresponding to the current line from the memory, and to output a previous flag signal corresponding to a previous line from the memory.
In an embodiment, the memory includes: a line buffer configured to store the current intermediate data signal; and a flag buffer configured to store the previous flag signal.
In an embodiment, the rendering circuit is configured to calculate a next flag signal corresponding to the next line in response to the current intermediate data signal, to calculate the next intermediate data signal, and to calculate a previous flag signal corresponding to a previous line from the flag buffer, and to store the next flag signal in the flag buffer.
In an embodiment, the rendering circuit includes: a filtering circuit configured to output a plurality of filtering data signals by calculating the current intermediate data signal and each of a plurality of filter coefficients; and a selection circuit configured to output one of the plurality of filtering data signals as the data signal in response to the current intermediate data signal, the next intermediate data signal, and the previous flag signal corresponding to the previous line from the flag buffer.
In an embodiment, the filtering circuit includes: a first filter configured to provide a first filter coefficient; a brightness calculator configured to calculate a brightness of the current intermediate data signal; a first calculator configured to calculate the first filter coefficient and an output of the brightness calculator; a second filter configured to provide a second filter coefficient; a second calculator configured to calculate the current intermediate data signal and the second filter coefficient; a third calculator configured to calculate an output of the first calculator and an output of the second calculator; a third filter configured to provide a third filter coefficient; a fourth calculator configured to calculate the current intermediate data signal and the third filter coefficient; a fifth calculator configured to calculate an output of the second calculator and an output of the third calculator; a fourth filter configured to provide a fourth filter coefficient; and a six calculator configured to calculate the current intermediate data signal and the fourth filter coefficient.
In an embodiment, the first filter is a sharpening filter; the second filter is a re-sampling filter; the third filter is a self-sharpening filter; and the fourth filter is a box filter.
In an embodiment, the selection circuit includes: a first filter circuit configured to output a first selection signal in response to the current intermediate data signal, to output the next intermediate data signal, and to output the previous flag signal corresponding to the previous line from the flag buffer; a first multiplexer configured to output one of an output signal of the fifth calculator and an output signal of the sixth calculator in response to the first selection signal; a second filter circuit configured to output a second selection signal in response to the current intermediate data signal, to output the next intermediate data signal, and to output the previous flag signal corresponding to the previous line from the flag buffer; and a second multiplexer configured to output one of an output signal from the third calculator and an output signal from the first multiplexer as the data signal in response to the second selection signal.
In an embodiment, the image signal includes a first color signal, a second color signal, and a third color signal, and the intermediate data signal includes the first color signal, the second color signal, the third color signal, and a fourth color signal.
In an embodiment, the first filter circuit is further configured to output a color flag signal representing whether each of the first color signal, the second color signal, the third color signal, and the fourth color signal of the current intermediate data signal is greater than a reference value; wherein the second filter circuit is further configured to output a saturation flag signal according to a pattern of the current intermediate data signal; and wherein the flag buffer is configured to store a current flag signal including the color flag signal and the saturation flag signal.
According to an embodiment of the inventive concept, there is provided a display device including: a display panel including a plurality of pixels displaying an image corresponding data signals; and an image processing circuit configured to receive an image signal, to convert the image signal into a data signal of the data signals, and to provide the data signal to the display panel, wherein the image processing circuit includes: a mapper configured to convert the image signal into an intermediate data signal; and a renderer configured to convert the intermediate data signal into the data signal, the renderer including: a memory configured to store the intermediate data signal and a flag signal; and a rendering circuit configured to output the data signal corresponding to a current line in response to a next intermediate data signal corresponding to a (k+1)th line among a plurality of lines of the display panel, to output a current intermediate data signal corresponding to a kth line from the memory, and to output a previous flag signal corresponding to a (k−1)th line from the memory.
In an embodiment, the memory includes: a line buffer configured to store the current intermediate data signal; and a flag buffer configured to store the previous flag signal.
In an embodiment, the rendering circuit is configured to calculate a current flag signal in response to the current intermediate data signal, to calculate the next intermediate data signal, to calculate the previous flag signal corresponding to the (k−1)th line from the flag buffer, and to store the current flag signal in the flag buffer.
In an embodiment, the rendering circuit includes: a filtering circuit configured to output a plurality of filtering data signals by calculating the current intermediate data signal and each of a plurality of filter coefficients; and a selection circuit configured to output one of the plurality of filtering data signals as the data signal in response to the current intermediate data signal, the next intermediate data signal, and the previous flag signal corresponding to a previous line from the flag buffer.
In an embodiment, the filtering circuit includes: a first filter configured to provide a first filter coefficient; a brightness calculator configured to calculate a brightness of the current intermediate data signal; a first calculator configured to calculate the first filter coefficient and an output of the brightness calculator; a second filter configured to provide a second filter coefficient; a second calculator configured to calculate the current intermediate data signal and the second filter coefficient; a third calculator configured to calculate an output of the first calculator and an output of the second calculator; a third filter configured to provide a third filter coefficient; a fourth calculator configured to calculate the current intermediate data signal and the third filter coefficient; a fifth calculator configured to calculate an output of the second calculator and an output of the third calculator; a fourth filter configured to provide a fourth filter coefficient; and a six calculator configured to calculate the current intermediate data signal and the fourth filter coefficient.
In an embodiment, the first filter is a sharpening filter; the second filter is a re-sampling filter; the third filter is a self-sharpening filter; and the fourth filter is a box filter.
In an embodiment, the selection circuit includes: a first filter circuit configured to output a first selection signal in response to the current intermediate data signal, to output the next intermediate data signal, and to output the previous flag signal corresponding to the previous line from the flag buffer; a first multiplexer configured to output one of an output signal of the fifth calculator and an output signal of the sixth calculator in response to the first selection signal; a second filter circuit configured to output a second selection signal in response to the current intermediate data signal, to output the next intermediate data signal, and to output the previous flag signal corresponding to the previous line from the flag buffer; and a second multiplexer configured to output one of an output signal from the third calculator and an output signal from the first multiplexer as the data signal in response to the second selection signal.
In an embodiment, the image signal includes a first color signal, a second color signal, and a third color signal, and the intermediate data signal includes the first color signal, the second color signal, the third color signal, and a fourth color signal.
In an embodiment, the first filter circuit is further configured to output a color flag signal representing whether each of the first color signal, the second color signal, the third color signal, and the fourth color signal of the current intermediate data signal is greater than a reference value; the second filter circuit is further configured to output a saturation flag signal according to a pattern of the current intermediate data signal; and the flag buffer is configured to store a current flag signal including the color flag signal and the saturation flag signal.
In an embodiment, the flag buffer is configured to store previous flag signals corresponding to a plurality of pixels in one line, the plurality of pixels being sequentially arranged along a first direction of the display panel, and the previous flag signals including the previous flag signal.
In an embodiment, the line buffer is configured to store the intermediate data signal corresponding to a plurality of pixels in one line, the plurality of pixels being sequentially arranged along the first direction of the display panel.
The accompanying drawings are included to provide a further understanding of the inventive concept, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the inventive concept and, together with the description, serve to explain principles of the inventive concept.
In the drawings:
Hereinafter, embodiments of the inventive concept are described in more detail with reference to the accompanying drawings.
Referring to
The display panel 110 displays an image. In this embodiment, although it is described as one example that the display panel 110 is a liquid crystal display panel, the display panel 110 may be a different type (kind) of display panel that utilizes the backlight unit 150.
The display panel 110 includes a plurality of gate lines GL1 to GLn extending in a first direction DR1, a plurality of data lines DL1 to DLm extending in a second direction DR2, and a plurality of sub pixels SPX arranged in a crossing region where the plurality of gate lines GL1 to GLn and the plurality of data lines DL1 to DLm cross. The plurality of data lines DL1 to DLm and the plurality of gate lines GL1 to GLn are insulated from each other. Each of the sub pixels SPX includes a thin film transistor TR, a liquid crystal capacitor CLC, and a storage capacitor CST.
Each of the plurality of sub pixels PX is formed of the same structure. Accordingly, as a configuration of one sub pixel is described, description of other sub pixels SPX may be omitted. The thin film transistor TR of the sub pixel SPX includes a gate electrode connected to the first gate line GL1 among the plurality of gate lines GL1 to GLn, a source electrode connected to the first data line DL1 among the plurality of data lines DL1 to DLm, and a drain electrode connected to the liquid crystal capacitor CLC and the storage capacitor CST. One end of each of the liquid crystal capacitor CLC and the storage capacitor CST is connected in parallel to the drain electrode of the thin film transistor TR. The other end of each of the liquid crystal capacitor CLC and the storage capacitor CST is connected to a common voltage source (for providing a common voltage).
The image processing circuit 120 receives an image signal RGB and a control signal CTRL from the outside (e.g., from a source external to the display device). The control signals CTRL, for example, include a vertical sync signal, a horizontal sync signal, a main clock signal, and a data enable signal. The image processing circuit 120 converts an image signal DATA into a data signal DATA processed to correspond to an operating condition of the display panel 110. The image processing circuit 120 outputs a first control signal CONT1 and a second control signal CONT2 on the basis of a control signal CTRL. The image processing circuit 120 provides a data signal DATA and a first control signal CONT1 to the data driver 140 and provides a second control signal CONT2 to the gate driver 130. The first control signal CONT1 includes a horizontal sync start signal, a clock signal, and a line latch signal, and the second control signal CONT2 includes a vertical sync start signal, an output enable signal, and a gate pulse signal. The image processing circuit 120 may change a data signal DATA diversely (e.g., in a variety of ways) according to the arrangement of the sub pixels SPX in the display panel 110 and a display frequency, and then output the changed data signal DATA. The image processing circuit 120 outputs a backlight control signal BLC for controlling the backlight unit 150.
The gate driver 130 drives the gate lines GL1 to GLn in response to the second control signal CONT2 from the image processing circuit 120. The gate driver 130 includes a gate driving integrated circuit (IC). The gate driver 130 may be implemented with a circuit using an oxide semiconductor, an amorphous semiconductor, a crystalline semiconductor, and/or a polycrystalline semiconductor, and may be formed in a set or predetermined area of the display panel 110.
The data driver 140 provides a driving voltage to the data lines DL1 to DLm in response to the data signal DATA and the first control signal CONT1 from the image processing circuit 120.
The backlight unit 150 may be arranged at a lower part of the display panel 110 to face the sub pixels SPX or may be arranged at one side of the display panel 110. The backlight unit 150 operates in response to the backlight control signal BLC from the image processing circuit 120.
Referring to
In this specification, although the first to fourth sub pixels Rx, Gx, Bx, and Wx are described on the basis of the display panel 110 where RGBW displaying red, green, blue, and white colors are applied, the inventive concept is also applied to a display panel with other suitable multi-primary colors (e.g., RGBY, RGBC, CMYW, and so on).
Referring to
The input gamma adjustment unit 211 receives an image signal RGB from the outside (e.g., from a source external to the display device). The input gamma adjustment unit 211 outputs a gamma data signal RGB′ that is linearized to allow gamma characteristics of the image signal RGB to be proportional to brightness. The gamma data signal RGB′ includes a first color signal, a second color signal, and a third color signal. In this embodiment, the first color signal, the second color signal, and the third color signal include a red signal R, a green signal G, and a blue signal B, respectively. The mapping unit 212 maps the gamma data signal RGB′ into a first intermediate data signal RGBW including a white signal W in addition to the red signal R, the green signal G, and the blue signal B.
The backlight control unit 220 generates a histogram corresponding to image characteristics of the first intermediate data signal RGBW and generates a backlight control signal BLC on the basis of the generated histogram. The backlight control signal BLC is provided to the backlight unit 150 shown in
The postscaler 213 outputs a second intermediate data signal RGBW′ for adjusting a brightness value of the first intermediate data signal RGBW in consideration of the scaling signal SV.
The sub pixel rendering unit 214 outputs a rendering signal RG/BW in response to the second intermediate data signal RGBW′. The output gamma adjustment unit 215 outputs a non-linear data signal DATA by applying an inverse gamma function to the rendering signal RG/BW. The output data signal DATA is provided to the data driver 140 shown in
The control signal generation unit 230 outputs a first control signal CONT1 for controlling the data driver 140 of
Referring to
Referring to
As shown in
Referring to
The line buffer 312 stores the second intermediate data signal RGBW′ provided from the postscaler 213 of
The rendering circuit 320 receives the second intermediate data signal RGBW′ provided from the postscaler 213 as the next intermediate data signal RGBW′(k+1) and receives the current intermediate data signal RGBW(k) from the line buffer 312 and a previous flag signal FLAG(k−1) from the flag buffer 314 to output a rendering signal RG/BW. The rendering signal RG is provided to the first pixel PX1 of
Referring to
When receiving the next intermediate data signal RGBW(k+1) corresponding to the next line (k+1 corresponding to y3) from the postscaler 213 of
For example, the red signal R corresponding to the coordinates (2, 2) may be converted into the red signal R corresponding to a red sub pixel of the coordinates (2, 2) in a PenTile pixel structure on the basis of, for example, I) the next intermediate data signal RGBW(k+1) corresponding to an adjacent position on the same line y2, that is, the pixel of the coordinates (1, 2) and the pixel of the coordinates (3, 2); II) the next intermediate data signal RGBW(k+1) corresponding to the pixels of the coordinates (1, 3), (2, 3), and (3, 3) disposed at the next line y3; and III) a previous flag signal FLAG(k−1) corresponding to the pixels of the coordinates (1, 1), (2, 1), and (3, 1) disposed at a previous line y1.
Referring to
The filtering circuit 322 includes a meta-sharpening filter 411, a brightness calculation unit (e.g., a brightness calculator) 412, a re-sampling filter 413, a self-sharpening filter 414, a box filter 415, and operators 421 to 425.
The meta-sharpening filter 411 is a filter for emphasizing (e.g., making more prominent) a small portion including a high frequency component such as an edge. The meta-sharpening filter 411 provides a sharpening filter coefficient for providing a clear image by brightening a bright pixel to be brighter and darkening a dark pixel to be darker. As shown in
The brightness calculation unit 412 calculates the brightness of the current intermediate data signal RGBW(k). The operator 421 multiplies a brightness value outputted from the brightness calculation unit 412 and a filter coefficient of the meta-sharpening filter 411.
The re-sampling filter 413 provides a filter coefficient for energy sharing. As shown in
The self-sharpening filter 414 provides a filter coefficient for vertical and horizontal sharpening of color. The self-sharpening filter 414 may include a filter coefficient of a 1*3 size. The operator 424 multiples the current intermediate data signal RGBW(k) and the filter coefficient of the self-sharpening filter 414.
The box filter 415 is a filter for representing the point and diagonal of color. As shown in
The operator 423 adds the outputs from the operators 421 and 422 to output a filtering data signal. The operator 425 adds the outputs of the operators 422 and 424 to output a filtering data signal.
The selection circuit 324 includes multiplexers 431 and 432, a Point and Diagonal (PD) filter circuit 433, and an orthogonal filter circuit 434.
The PD filter circuit 433 detects a point or a diagonal in a rendering area of a 3*3 size. The PD filter circuit 433 outputs a first selection signal SEL1 in response to the current intermediate data signal RGBW(k), the next intermediate data signal RGBW(k+1), and a previous flag signal FLAG(k−1). The PD filter circuit 433 determines whether or not a signal level of each of red, green, blue, and white color signals included in the current intermediate data signal RGBW(k) is higher than a reference level, and outputs flag signals RF, GF, BF, and WF corresponding to a determination result. The flag signals RF, GF, BF, and WF may be a total of 4 bits.
The orthogonal filter circuit 434, as shown in
The flag signals RF, GF, BF, and WF outputted from the PD filter circuit 433, and the flag signal SF outputted from the orthogonal filter circuit 434 are stored as the current flag signal FLAG(k) in the flag buffer 314 shown in
Again, referring to
Referring to
The flag buffer 512 provides a previous flag signal FLAG(k−1) to the rendering circuit 320 and stores a current flag signal FLAG(k) provided from the rendering circuit 320.
The rendering circuit 520 receives the second intermediate data signal RGBW′ provided from the postscaler 213 of
Referring to
When receiving the current intermediate data signal RGBW(k) corresponding to the current line (k corresponding to y2) from the postscaler 213 of
For example, the red signal R corresponding to the coordinates (2, 2) may be converted into the red signal R corresponding to a red sub pixel of the coordinates (2, 2) in a PenTile pixel structure on the basis of the current intermediate data signal RGBW(k) corresponding to an adjacent position on the same line y2; that is, on the basis of the pixel of the coordinates (1, 2) and the pixel of the coordinates (3, 2) and the previous flag signal FLAG(k−1) corresponding to the pixels of the coordinates (1, 1), (2, 1), and (3, 1) disposed at a previous line y1.
The rendering circuit 520 may have a circuit configuration similar to that of
Referring to
In embodiments as described above, an image processing circuit having such a configuration may determine whether or not a data signal is saturated by using a previous flag signal instead of a previous data signal corresponding to a previous line. Accordingly, as only a data signal corresponding to the current line and a flag signal corresponding to a previous line are needed to be stored in a memory, the size of a memory necessary for operations of a rendering module may be reduced or minimized.
It will be understood that, although the terms “first”, “second”, “third”, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section, without departing from the spirit and scope of the inventive concept.
The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of the inventive concept. As used herein, the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “include,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of “may” when describing embodiments of the inventive concept refers to “one or more embodiments of the inventive concept.” Also, the term “exemplary” is intended to refer to an example or illustration.
It will be understood that when an element or layer is referred to as being “connected to” another element, it can be directly connected to the other element, or one or more intervening elements may be present. When an element or layer is referred to as being “directly connected to” another element or layer, there are no intervening elements present.
As used herein, the term “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent variations in measured or calculated values that would be recognized by those of ordinary skill in the art.
As used herein, the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively.
The image processing circuit and/or any other relevant devices or components according to embodiments of the present invention described herein may be implemented utilizing any suitable hardware, firmware (e.g. an application-specific integrated circuit), software, or a suitable combination of software, firmware, and hardware. For example, the various components of the image processing circuit may be formed on one integrated circuit (IC) chip or on separate IC chips. Further, the various components of the image processing circuit may be implemented on a flexible printed circuit film, a tape carrier package (TCP), a printed circuit board (PCB), or formed on a same substrate. Further, the various components of the image processing circuit may be a process or thread, running on one or more processors, in one or more computing devices, executing computer program instructions and interacting with other system components for performing the various functionalities described herein. The computer program instructions are stored in a memory which may be implemented in a computing device using a standard memory device, such as, for example, a random access memory (RAM). The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, or the like. Also, a person of skill in the art should recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed across one or more other computing devices without departing from the scope of the exemplary embodiments of the present invention.
The above-disclosed subject matter is to be considered illustrative and not restrictive, and the appended claims and equivalents thereof are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the inventive concept. Thus, to the maximum extent allowed by law, the scope of the inventive concept is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0119076 | Aug 2015 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7123277 | Brown Elliott et al. | Oct 2006 | B2 |
8704847 | Higgins | Apr 2014 | B2 |
8933959 | Brown Elliott et al. | Jan 2015 | B2 |
20070279372 | Brown Elliott | Dec 2007 | A1 |
20110043553 | Brown Elliott | Feb 2011 | A1 |
20110057950 | Kim | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20170061847 A1 | Mar 2017 | US |