The present invention pertains to an image generating device and method for a vehicle that displays images of the vehicle surroundings to facilitate the driver's perception of driving conditions.
In an image generating device for a vehicle of the prior art, such at that shown in Japanese Kokai Patent Application No. 2004-155395, an image is input from a camera (image pickup device) into the input frame buffer of an image processing device, and the data are rearranged in the input frame buffer. The output image is generated in the output frame buffer for displaying to the driver. In this system, depending on the display purpose, the image data in the input frame buffer needed for generating the output image are only part of the image data input to the input frame buffer. That is, in this case, part of the image data in the input frame buffer is extracted for use as the output image.
In such image generating devices of the prior art, when part of the image data in the input frame buffer is cut out as the output image the quality of the usable information is low. Consequently, the output image lacks sufficient resolution, which is undesirable. In order to solve this problem, one may increase the resolution of the camera and the resolution of the input frame buffer so as to increase the data quality of the input frame buffer. However, due to restrictions in the means for connecting the camera and the image processing device (video cable or other image transfer means), no matter how much the resolution of the camera and the resolution of the input frame buffer are increased, the resolution cannot become higher than that determined by the restrictions of the connecting means. As a result, it is not possible to improve the image quality of the output image.
The present invention provides an image generating device for a vehicle and a method that improves the image quality of the output image so that it can provide images that can be better perceived by the driver.
An image generating device for a vehicle can include an image pickup device operable to capture images around the vehicle and to allow adjustment of an image output range to output the captured images, an image processing device operable to receive and to process portions of the captured images corresponding to the image output range, and a display device operable to display an image processed by the image processing device.
An image generating device for a vehicle can also include image pickup means for capturing images surrounding the vehicle and outputting the images with an adjustable image output range, image processing means for receiving the output images and for image processing of the output images corresponding to the output range, and display means for displaying the processed images.
A method for generating an image for a vehicle can include capturing images surrounding the vehicle, outputting each of the captured images with an adjustable image output range, processing the output images corresponding to the image output range, and displaying at least one processed image.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
In the following, an explanation will be given regarding the various embodiments of the present invention with reference to the attached figures. An image generating device and method can incorporate generally an image pickup device in which the image output range is adjusted by manipulation from the outside, an image processing device that performs the manipulation of the image pickup device and performs image processing of the image acquired from the image pickup device, and a display device that displays the image processed by the image processing device. The image output range from the image pickup device can be adjusted corresponding to a signal from the image processing device as described in more detail hereinafter.
One embodiment is now described with initial reference to
The camera 1 is connected via image transfer means 12 to image processing device 2. The image (image signal) acquired by camera 1 is transferred by image transfer means 12 to image processing device 2. The image processed by image processing device 2 is transferred to image display device 3 for display to the driver of the vehicle.
In the present embodiment, camera 1 is not only connected to image transfer means 12, but also via information communication means 21 to image processing device 2. Image processing device 2 uses information communication means 21 to assign the image transfer scheme to camera 1 as discussed below.
Image range selecting part 6 selects the part of the surroundings of the vehicle to inform the driver of driving conditions on the front side, left/right sides and the rear side of the vehicle. The image range selecting part 6 may include a touch coordinate detection mechanism. Such a mechanism incorporates, for example, electrodes arranged in a matrix in the display screen of display device 3. The resistance varies corresponding to the touched location with respect to the electrodes in a known fashion, so that the display coordinates of the display screen of display device 3 are detected. Although not shown, a dedicated selection switch for each of the peripheral areas of the vehicle could be used either alternatively or in conjunction with the touch coordinate detection mechanism. By manipulation from the driver, image range selecting part 6 outputs to the processing part 23 the selected area information regarding the part of the surroundings of the vehicle desired by the driver.
As shown in
Here, for example, the left-side camera images taken by left-side camera 1L become images of the left side of the vehicle 10 body and the areas around the tires, and the rear camera images taken by rear camera 1B become the images containing the rear of the vehicle 10 body, white parking lines, and a neighboring vehicle parked next to the driver's vehicle. The front camera, rear camera, right-side camera, and left-side camera images are output to processing part 23. For simplicity, camera 1 will be used hereinafter to reflect the image pickup devices of the present invention, regardless of the number of such devices.
Image display device 2 displays the processed images taken by camera 1, and in accordance with the manipulations from the driver the state of detected obstacles, etc., a bird's-eye view showing all of the vehicle's surroundings or an image that includes part of the surroundings is displayed.
Processing part 23 can include, for example, a microprocessor coupled to a memory or a standard microcontroller with on-board memory as is known in the art. Processing part 23 acquires plural camera images captured by camera 1. By performing prescribed image processing, a bird's-eye view showing the entire surroundings of the vehicle is formed. Processing part 23 contains a look-up table that records the corresponding relationship between the plurality of input camera images and the output bird's-eye view pre-stored in it. For processing part 24, since the plurality of camera images are input from camera 1, the camera images are stored in the prescribed input memories. By means of processing part 23, the stored camera images are read in units of pixels according to the look-up table, and are stored in the output memory. As a result, in the output memory, the required image regions are cut out from the front camera, rear camera, right-side camera, and left-side camera images to form a panoramic bird's-eye view. Then, after processing part 23 finishes forming the bird's-eye view according to the look-up table, the bird's-eye view is output to output frame buffer 25.
The bird's-eye view formed by the processing part 23 contains the four types of the camera images, that is, the images obtained by extracting portions near the left front tire from the left-side camera image, the image obtained by cutting at an angle of about 120° from the rear camera image, etc., which are combined at a single point above the vehicle. Such a bird's-eye view can be used by the driver to observe his surroundings as though it were possible to view from a point above vehicle 10.
Next, additional details of the operation of camera 1 are discussed. Camera 1 can obtain images with a resolution higher than that of the image that can be transferred by image transfer means 12. Here, in order to simplify the explanation, it is assumed that an image comprising 1280 pixels in the horizontal direction and 960 pixels in the vertical direction can be acquired. The image buffer inside camera 1 is called acquired image plane.
Camera 1 outputs the image via image transfer means 12. As explained above, image transfer means 12 handles images with a resolution of 640 pixels in the horizontal direction and 480 pixels in the vertical direction. Thus, camera 1 processes the acquired images to the resolution of image transfer means 12 and then outputs the images.
Camera 1 includes image processing means. In
In
Here, consider the case when the coordinates of acquired image plane 201 (x_cam, y_cam) on acquired image plane 201 and the coordinates after normalization (x_trans, y_trans) in rectangular region 204 are set. The normalization function fr(u) with (x_trans, y_trans)=fr(x_cam, y_cam) is defined where u is an independent variable. The normalization function fr(u) can be determined from the resolution of camera 1, the resolution of image transfer means 12 and the coordinates of the four points on acquired image plane 201 that define image transfer object region 202. Also, inverse function fri(v) of normalization function fr(u) is defined where v=fr(u) with (x_cam, y_cam)=fri (x_trans, y_trans).
Camera 1 takes the image acquired by normalizing image transfer object region 202 in acquired image plane 201 to match the resolution of image transfer means 12 as the image output of camera 1, and outputs it using image transfer means 12.
Camera 1 uses information communication means 21 from the peripheral device (image processing device 2 in this embodiment) to specify the resolution of camera 1, the resolution of image transfer means 12 and the coordinates of the four points on acquired image plane 201 that define image transfer object region 202 so as to adjust the output image region (image output range, image transmission range). As a practical matter, because the resolution of camera 1 and the resolution of image transfer means 12 are usually fixed and cannot be adjusted, the values assigned from the peripheral device may be only the coordinates of the four points on acquired image plane 201 that define image transfer object region 202. Also, although the normalization function is complicated, even when image transfer object region 202 has four or more apexes, the same method can be adopted to perform treatment. In this embodiment, the explanation concerns the method that assigns the four points. However, other assignment schemes may also be adopted. This will be explained below.
For image transfer object region 202 or the like, the function for normalizing a non-rectangular region to a shape (e.g., a rectangular shape 204) that can be transferred by image transfer means 12 is more complicated than the function that normalizes one rectangular region to another rectangular region. In order to perform the normalization process with a simpler and less expensive circuit or central processing unit (CPU), the minimum rectangular region 203 that will contain image transfer object region 202 is set as the transfer region when image transfer object region 202 is assigned, and it is normalized for transfer. As a result, the number of computations required for normalizing the region can be reduced.
Also, between camera 1 and the peripheral device, certain types of the patterns of image transfer object region 202 are defined beforehand, and the pattern number is assigned. This scheme is effective for increasing the operation speed and reducing costs because the fixed normalization treatment circuits are preset in camera 1 and image processing device 2. Also, because only the pattern number is assigned, it is possible to reduce the information quality received by camera 1 through information communication means 21 and to reduce the cost.
No matter what scheme is adopted for camera 1 and the peripheral device, it is important to know image transfer object region 202 and the accompanying normalization function. As long as the normalization function is known, it is possible to use the normalized image to access the data in image transfer object region 202 on acquired image plane 201 of camera 1.
The data sent via image transfer means 12 is next defined. The image transfer means 12 includes the concepts of a data transfer format and a transfer means, such as a cable, wireless means or the like for realizing the transfer. Here, the transmission format and transfer means allow the transmission of images each with resolution of 640 pixels in the horizontal direction and 480 pixels in the vertical direction and having 24 bits of color at a rate of 30 images/sec. Also, in order to simplify the explanation, only a simple example is presented. However, when it is used in an actual system, the NTSC system or another standard format may be used. The image taken by camera 1 is output in a format that allows transfer by image transfer means 12.
Next, a description is given regarding the operation of image processing device 2. The image processing device 2 has input frame buffer 22, output frame buffer 25, resetting table storage part 24 and image processing part 23. The input frame buffer 22 is of sufficient size for obtaining the image data sent through image transfer means 12. In this embodiment, it is matched to the resolution of image transfer means 12 and is of such size that it can hold 24-bit color data with 640 pixels in the horizontal direction and 480 pixels in the vertical direction. Output frame buffer 25 depends on the specific system. However, in the present embodiment, it is of the type that can hold 24-bit color data with 640 pixels in the horizontal direction and 480 pixels in the vertical direction. For both input and output, the data in input frame buffer 22 and output frame buffer 25 use x, y coordinates as an index. In this manner, it is possible to access any of the pixel data where the pixel data denote color information.
According to the contents of resetting table storage part 24, image processing part 23 copies the data in input frame buffer 22 and generates the data for output frame buffer 25. The resetting table storage part 24 holds the data corresponding to the pixels in output frame buffer 25. In this embodiment, the data comprise 640 pixels in the horizontal direction and 480 pixels in the vertical direction, and it is possible to access any of the pixel data. Specifically, x, y coordinates are used as an index so that the data are identical to the data in input frame buffer 22 and output frame buffer 25. The pixels represented by (x, y) in output frame buffer 25 correspond to the (x, y) data in resetting table storage part 24. All of the data in resetting table storage part 24 have the coordinates of acquired image plane 201 of camera 1 (in the case of the present embodiment, 1280 pixels in the horizontal direction and 960 pixels in the vertical direction).
Here, by surveying resetting table storage part 24, image processing device 2 can know the range of acquired image plane 201 of camera 1 that is registered in resetting table storage part 24. The image processing device 2 sets the four points on acquired image plane 201 such that the registered range is contained. The coordinates of the four points are transmitted to camera 1 to assign the image output range using information communication means 21. Also, the normalization function fr(u) explained with reference to the operation of camera 1 discussed previously is computed. As far as setting the image output range and computing the normalization function are concerned, processing is not required for each cycle. Instead, computations are performed at the time that resetting table storage part 24 is set, and the results are stored in the memory of resetting table storage part 24.
The procedure for the generation of data for output frame buffer 25 by image processing part 23 will be explained below.
When image processing part 23 sets the color information of the (x1, y1) pixels in output frame buffer 25, first the (x1, y1) data in resetting table storage part 24 is accessed to obtain their values. Because the coordinates of acquired image plane 201 of camera 1 are held in the data in resetting table storage part 24, image processing part 23 can obtain the coordinates (x_cam1, y_cam1) of acquired image plane 201 of camera 1. From these coordinates, the normalization function fr(u) (where u represents the independent variable) is used to obtain the normalized coordinates (x_reg1, y_reg1). Thus, (x_reg1, y_reg1)=fr (x_cam1, y_cam1). The normalized image is acquired in input frame buffer 22, and the pixel data of the coordinates (x_cam1, y_cam1) of acquired image plane 201 can be acquired by accessing (x_reg1, y_reg1) in input frame buffer 22. The image processing part 23 acquires the color information stored in (x_reg1, y_reg1) in input frame buffer 22, and the acquired color information is the (x1, y1) data of output frame buffer 25.
Once this process is performed on all of the pixels in output frame buffer 25, the generation of the data of output frame buffer 25 comes to an end.
The image processing device 2 sends the contents of input frame buffer 22 generated by the aforementioned process to image display device 3 for display to the driver. This process is performed at a rate of 30 cycles per second according to the present embodiment. The images acquired by camera 1 are processed by image processing device 2 and are consecutively displayed as moving pictures on image display device 3.
With the scheme described above, image processing device 2 can use camera 1 with a resolution higher than that of image transfer means 12, and it can acquire only the range required for processing by means of image transfer means 12. Consequently, it can present the images with higher a resolution and better visibility than those realized with a device of the prior art.
Image transformation using the scheme of the present embodiment shown in
The camera images are pictures that contain blank portions. For the transformed image (E), the required parts are parts of the camera image (part of the ground). The explanation will refer to rear camera image (D) as an example. Of the rear camera image (D), the range required for transformation to form the transformed image (E) is image transfer region 308. As a result, it is possible to use the bandwidth that transfers all of the camera images (such as (D)) in the prior art to transfer only the range required for transformation (image transfer region 308), so that it is possible to transmit the image at a higher resolution to image processing device 2. As the image before processing is finer, the resolution of the image generated by image processing device 2 is higher, and the obtained image can be more easily viewed.
The camera images (D) are conventional rear view pictures, so that when the rear view images are provided to the driver, all of the camera images are used as the transfer range as they are transferred to image processing device 2 to be shown to the driver. As shown in this case, when only two types of processing are performed, two modes are used as camera image transfer modes, that is, the mode of complete transfer and the mode of transferring image transfer region 308 as the range required for transformation. As needed, switching can be performed between them, so that the image quality of the displayed image can be improved with a simple constitution. For additional details of generating the bird's-eye view according to one method, the reader is referred to co-pending application Ser. No. 11/366,091, filed Mar. 2, 2006.
As explained above, the image generating device for a vehicle in this embodiment comprises the following parts that can be used in a method for generating images. First, camera 1 (one or more image pickup devices) allows adjustment of the image output range by manipulation from the outside, such as a signal from image processing device 2. Image processing device 2 manipulates camera 1 and processing of the image acquired by camera 1, and image display device 3 displays the image processed by image processing device 2. More specifically, corresponding to a signal from image processing device 2, the image output range from camera 1 is adjusted. Camera 1 acquires and outputs images, image processing device 2 adjusts the image output range of camera 1 and processes the images acquired by camera 1, and image display device 3 displays the images processed by image processing device 2.
Because the image output range of camera 1 can be adjusted corresponding to the contents of the image processing, the bandwidth of image transfer means 12 that connects image processing device 2 and camera 1 can be used effectively, the image quality of the output image is improved, and the image can be better perceived by the driver.
Also, image processing device 2 defines the image output range of camera 1 by assigning the coordinates of four or more points. As a result, it is possible to assign the camera image output range matched to the contents of the image processing, to improve the image quality of the output image, and to provide an image that can be better perceived by the driver.
Image processing device 2 can assign the image output range of camera 1 with a rectangular shape. As a result, the amount of internal processing by camera 1 can be reduced, and the cost can be reduced.
Also, image processing device 2 normalizes the image output range of camera 1 to a rectangular shape for output to camera 1. As a result, it is possible to make effective use of conventional image transfer means 12, to improve the image quality of the presented image, and to provide images that can be better perceived by the driver.
Also, the image output range is defined beforehand in camera 1, and image processing device 2 outputs to camera 1 the signal corresponding to the image output range of camera 1. As a result, the image output range is defined as a certain type beforehand, and, by appropriate selection from the possible types, it is possible to improve the communication information quality from image processing device 2 to camera 1, it is possible to perform processing with a simpler constitution, and it is possible to reduce the cost.
The image output range of camera 1 can be changed by image processing device 2 switching between part of the image and the entirety of the image. In this way, by switching the image output range of camera 1 between the range of the view of the ground and the entire image, a device appropriate for monitoring devices for automobiles can be obtained at lower cost.
There is preferably a plurality of cameras 1, and the image processing device 2 can adjust the signals to be sent to the plurality of cameras 1 corresponding to the image displayed on image display device 3. As a result, in a system having a plurality of cameras 1, it is possible to improve the image quality of the output image and to provide images that can be better perceived by the driver.
The resolution of camera 1 is higher than the resolution (frequency characteristics) restricted by image transfer means 12 that connects camera 1 and image processing device 2. As a result, it is possible to select a less expensive image transfer means, so that it is possible to reduce the cost.
Other embodiments are, of course, possible. In the following, an explanation will be given regarding an embodiment in which the image output range cut from the wide-angle camera corresponds to the displayed image.
When the bird's-eye view (E) of
When the front side view (F) of
When the front lower view (G) of
When the rear side view (H) of
When the rear lower view (I) of
As a result, by adjusting the cutting range corresponding to the displayed image, it is possible to send the necessary information with a reduced number of pixels to image processing device 2.
Here, the image output range for cutting out the output image from the camera is defined inside the camera beforehand. The signal assigning the type of the image output range is transmitted, so that the image output range is adjusted. In this way, it is possible to simplify the signal from image processing part 23.
The shape of the cut image can be any of the following shapes. For example, as described with reference to
In this embodiment, camera 1 includes wide-angle cameras for acquiring the front view, left/right views and rear view of the vehicle. The image displayed on image display device 3 is at least one of the following views: bird's-eye view, front side view, front lower view, rear side view and rear view. In this system having plural wide-angle cameras, it is possible to improve the image quality of the output image, and it is possible to provide images that can be better perceived by the driver.
As also shown in (B) of
According to the present invention, the image output range of the image pickup device can be adjusted corresponding to the contents of the image processing. Consequently, the bandwidth of the image transfer means that connects the image processing device and the image pickup device can be used effectively.
This application is based on Japanese Patent Application No. 2005-108159, filed Apr. 5, 2005, in the Japanese Patent Office, the entire contents of which are hereby incorporated by reference.
The above-described embodiments have been described in order to allow easy understanding of the present invention and do not limit the present invention. On the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structure as is permitted under the law.
Number | Date | Country | Kind |
---|---|---|---|
JP2005-108159 | Apr 2005 | JP | national |