The present invention relates to near-eye displays and, in particular, it concerns an image projector with a polarizing catadioptric collimator for injecting images into a lightguide of an augmented reality display.
Near-eye augmented reality displays typically employ an image projector to inject a collimated image into a lightguide which conveys the image to the user's eyes while allowing simultaneously a view of the real world through the lightguide. In order to provide a uniform image, it is preferable that the injected image should fill the thickness of the lightguide. This requirement, together with the angular field of view (FOV) of the image dictates the minimum size of the collimating optics which is required for collimating the image prior to injection into the lightguide. Two such examples are illustrated schematically in
Specifically, in
It can be seen that the required minimum size of the prism is determined by tracing the outer limits of the required field of view (FOV) backwards from the entrance aperture and ensuring that the entirety of that FOV is provided by collimating optics 106. Since the distance from entrance aperture to the collimating optics is the sum of the dimensions of the coupling prism 108 and the PBS prism 102, the minimum size of the optics for a given field of view is relatively large.
The present invention is an image projector for injecting a collimated image into an entrance aperture of a lightguide.
According to the teachings of an embodiment of the present invention there is provided, an image projector for injecting a collimated image into an entrance aperture of a lightguide, the image projector comprising: (a) a polarization-modifying spatial light modulator (SLM) deployed for modifying a polarization of illumination according to image data supplied to the SLM; (b) an illumination arrangement for illuminating the SLM with polarized illumination; (c) a polarization-selective element deployed to select light from the SLM corresponding to an image; and (d) collimating optics for collimating the light corresponding to the image so as to provide the collimated image at the entrance aperture of the lightguide, wherein the collimating optics includes a polarizing catadioptric arrangement comprising, sequentially: (i) a first quarter-wave plate; (ii) a first optical surface implemented as a partial reflector; (iii) a second quarter-wave plate; and (iv) a second optical surface implemented as a polarization-selective reflector, wherein at least one of the first and second optical surfaces is implemented as a non-planar surface with optical power which acts twice on the light, once as a refractive lens surface and once as a reflective lens.
According to a further feature of an embodiment of the present invention, the polarization-selective element is a polarizing beam splitter (PBS) integrated into a prism, and wherein the illumination arrangement directs illumination so as to reflect from the PBS towards the SLM.
According to a further feature of an embodiment of the present invention, the PBS is inclined at an angle of 30 degrees to a surface of the SLM, the image projector further comprising an angularly-selective reflector deployed parallel to the SLM between the SLM and the PBS, the illumination arrangement directing illumination so as to reflect from the angularly-selective reflector towards the PBS, and to reflect from the PBS towards the SLM, the angularly-selective reflector being reflective for visible light incident at an angle of incidence of 60 degrees and substantially transparent to visible light incident at an angle of incidence less than 30 degrees.
According to a further feature of an embodiment of the present invention, the PBS is inclined at an angle of 45 degrees to a surface of the SLM, the image projector further comprising a quarter-wave plate and an illumination-optics reflective lens associated with a face of the prism for directing illumination that has passed through the PBS back towards the PBS to be reflected at the PBS towards the SLM.
According to a further feature of an embodiment of the present invention, the illumination arrangement further comprises a light source associated with an illumination aperture from which light propagates through the prism towards the illumination-optics reflective lens, and wherein the illumination-optics reflective lens and the collimating optics are configured to image the illumination aperture to the entrance aperture of the lightguide.
According to a further feature of an embodiment of the present invention, the illumination arrangement further comprises a scanning mirror for scanning a beam of illumination through a range of angles about at least one tilt axis, the scanning mirror being deployed to direct the beam of illumination through the prism towards the illumination-optics reflective lens, and wherein the illumination-optics reflective lens and the collimating optics are configured to image the scanning mirror to the entrance aperture of the lightguide.
According to a further feature of an embodiment of the present invention, the second optical surface is a planar surface that is bonded to an image input surface of the lightguide.
According to a further feature of an embodiment of the present invention, the first optical surface is a planar surface that is bonded to an output surface of the prism.
According to a further feature of an embodiment of the present invention, the first optical surface is a non-planar surface that is bonded to a corresponding non-planar output surface of the prism.
According to a further feature of an embodiment of the present invention, the illumination arrangement comprises a lightguide having a pair of mutually-parallel major surfaces for supporting propagation of illumination by internal reflection at the major surfaces, and a plurality of mutually-parallel partially-reflecting coupling-out surfaces internal to the lightguide and oriented obliquely to the major surfaces so as to couple out illumination towards the SLM.
There is also provided according to the teachings of an embodiment of the present invention, an image projector for injecting a collimated image into an entrance aperture of a lightguide, the image projector comprising: (a) a beam splitter integrated into a prism; (b) an image generator configured for generating an image at an image plane associated with a third face of the prism; and (c) collimating optics for collimating light of the image so as to provide a collimated image at the entrance aperture of the lightguide, wherein the collimating optics includes a polarizing catadioptric arrangement comprising, sequentially: (a) a first quarter-wave plate; (b) a first optical surface implemented as a partial reflector; (c) a second quarter-wave plate; and (d) a second optical surface implemented as a polarization-selective reflector, wherein at least one of the first and second optical surfaces is implemented as a non-planar surface with optical power which acts twice on the light, once as a refractive lens surface and once as a reflective lens.
According to a further feature of an embodiment of the present invention, the beam splitter is a polarizing beam splitter (PBS), the image projector further comprising: (a) an illumination arrangement comprising at least one light source for generating a modulated intensity beam of light and a scanning mirror for scanning the beam of light through a range of angles about at least one tilt axis, the scanning mirror being deployed to direct the beam of light into a first face of the prism; (b) an illumination-optics reflective lens and a first quarter-wave plate associated with a second face of the prism for directing light that has passed through the prism back towards the PBS; (c) a beam-spreading reflector and a second quarter-wave plate associated with the third face of the prism; and (d) a controller for synchronously modulating an intensity of the light source and controlling the scanning mirror so as to generate a time-averaged intensity distribution of light at the beam-spreading reflector corresponding to an image.
According to a further feature of an embodiment of the present invention, the beam splitter is a dichroic mirror, and wherein the image generator is a first active-matrix image generator generating an image emitted as light of at least a first wavelength that is reflected by the dichroic mirror, the image projector further comprising a second active-matrix image generator associated with a second face of the prism, the second active-matrix image generator generating an image emitted as light of at least a second wavelength that is transmitted by the dichroic mirror so as to be combined with the light of the first wavelength on reaching the collimating optics.
According to a further feature of an embodiment of the present invention, there is also provided a second dichroic mirror deployed within the prism non-parallel to the dichroic mirror, the second dichroic mirror being transparent to light of the first and second wavelengths and reflective to light of a third wavelength, the image projector further comprising a third active-matrix image generator associated with a first face of the prism, the third active-matrix image generator generating an image emitted as light of at least the third wavelength that is reflected by the second dichroic mirror so as to be combined with the light of the first and second wavelengths on reaching the collimating optics.
According to a further feature of an embodiment of the present invention, the second optical surface is a planar surface that is bonded to an image input surface of the lightguide.
According to a further feature of an embodiment of the present invention, the first optical surface is a planar surface that is bonded to an output surface of the prism.
According to a further feature of an embodiment of the present invention, the first optical surface is a non-planar surface that is bonded to a corresponding non-planar output surface of the prism.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The present invention is an image projector for injecting a collimated image into an entrance aperture of a lightguide.
The principles and operation of image projectors according to the present invention may be better understood with reference to the drawings and the accompanying description.
Referring now to the drawings,
It is a particular feature of an aspect of the present invention that the collimating optics includes a polarizing catadioptric arrangement which has, sequentially, as best seen in
The projectors of the present invention are primarily applicable to display structures where the collimated image is introduced into a lightguide 27 by a geometrical-optics coupling, i.e., that does not involve diffraction. The primary examples of geometrical-optics coupling in this context are the use of a coupling prism 24 that provides an appropriately-angled coupling-in surface 22, as illustrated in
In a first subset of particularly preferred implementations of the present invention, the polarization-selective element is a polarizing beam splitter (PBS) 16 or 50 integrated into a corresponding prism 15. The illumination arrangement directs illumination via the PBS (by reflection or transmission, depending on the geometry) towards the SLM 10.
The aforementioned small diameter and short focal length of the catadioptric optics, and the proximity of the optics to the entrance aperture of the lightguide, facilitate the use of various particularly compact PBS prism arrangements, further detailed below. Comparing
As mentioned, at least one of the first and second optical surfaces 18 and 20 is implemented as a non-planar surface with optical power which acts twice on the light, once as a refractive lens surface and once as a reflective lens. Although, in some embodiments, both optical surfaces are implemented with optical power, in certain particularly preferred embodiments, it has been found advantageous to implement one of the surfaces as a planar surface, which may facilitate manufacture and assembly of the projector. In the example illustrated in
Further details of the structure and operation of the implementation of
The configuration described here has particular advantages of compactness and simplicity due to one or more of the following features:
All the surfaces having optical power can advantageously be implemented as aspheric surfaces designed to reduce aberrations, as is known in the art. The pancake lens can be produced as a doublet designed to reduce chromatic aberrations, as is also known in the art.
Not all implementations necessarily implement all of the features described above. For example, in some cases, a field lens may not be used. This may allow implementation of a design with even shorter focal length and thereby a smaller projector size.
Coupling-in surface 22, or the external surface beyond second optical surface 20, may be provided with a polarization rotator or any other depolarizer element, depending on the design and properties of the lightguide and any associated aperture expansion and/or coupling-out arrangement, where a depolarized image is preferred. The invention is applicable to a wide range of lightguide structures, whether employing reflectors or diffractive optical elements for internal redirection of light within the lightguide and for coupling of the image out of the lightguide towards the eye of the user. Details of the lightguide design are not per se part of the present invention, and will not be described here.
Turning now to
In this configuration, the planar end surface of the projector (second optical surface 20) facilitates attachment of the projector to the coupling prism (surface 22) without any airgap and the correspondingly complicated supporting mechanics. Implementation of polarization-selective reflector 20 on a planar surface also facilitates manufacture. In all other respects, the structure and operation of this implementation are similar to that described above with reference to
The airgap between the field lens 12 and the LCOS 10 can also be incorporated as glass with a spacer inserted so as to define the gap. In this case, fine tuning of focus is performed by selecting an appropriate spacer from a set of spacers of different sizes. This way another airgap is eliminated.
Turning now to
In the examples of
The angularly-selective reflector 14 is preferably deployed parallel to the SLM 10 between the SLM and the PBS 16. In order to support the above functionality, the angularly-selective reflector should be reflective for visible light incident at an angle of incidence in the region of 60 degrees (from a normal to the surface) and substantially transparent to visible light incident at an angle of incidence of less than 30 degrees to the normal to the surface. Such properties can conveniently be provided by leaving an airgap, or by including a layer of low refractive-index material, which provide properties of total internal reflection (TIR) at angles of incidence greater than a critical angle. Alternatively, similar properties may be provided by multilayer dielectric coatings implemented so as to provide the required angularly-selective reflection.
The pancake lens arrangement illustrated here is equivalent to
According to the particularly preferred but non-limiting implementation illustrated here, the light from source 42 propagates along a light-pipe 44, which is preferably an expanding light-pipe. The light is reflected by reflector 45 onto aperture 46. As mentioned above, the subsequent optics preferably image plane 46 onto exit aperture 26 thereby achieving minimal power loss. Improved uniformity can be achieved by implementing a diffuser in the light-pipe or at plane 46. Preferably, a polarizing filter should be placed in plane 46, transmitting P polarization.
The P-polarized transmitted light passes though PBS 50 and propagates onto reflecting lens 52. This lens incorporates a quarter-wave waveplate so that the reflective light is now S polarized, so as to be reflected by PBS 50 onto the LCOS 10.
Throughout this document, it will be understood that the optical arrangements illustrated here are supplemented by various control components, which provide power and input data to update the SLM and to synchronously operate the illumination arrangement in order to generate the required output images. These components are represented schematically in
Turning now to
In the non-limiting implementation illustrated in
This configuration therefore provides scanning laser illumination over the SLM, so that the selective illumination of the SLM and the modulation of the SLM both contribute to image formation. The beam from laser 56 is collimated by optics 58 onto scanning mirror 60. The plane of scanner 60 is imaged by the subsequent optics onto output aperture 26 (displayed in
Although
Turning now to
Specifically, the illumination arrangement here includes a lightguide 156 having a pair of mutually-parallel major surfaces for supporting propagation of illumination by internal reflection at the major surfaces, and a plurality of mutually-parallel partially-reflecting coupling-out surfaces 158 internal to the lightguide and oriented obliquely to the major surfaces so as to couple out illumination towards the SLM 10.
Polarized illumination is coupled through a prism 154 into lightguide 156 to propagate by total-internal-reflection (TIR). The guided light impinges on polarization-selective partial reflectors 158 to be coupled out onto the spatial light modulator (LCOS) 10. The reflected light is spatially modulated (for example by polarization rotation) and reflected. This reflected light passes through partial reflectors 158 and through waveguide 156. This light also passes through a polarizer 160. This polarizer preferably provides some or all of the following functions:
The beam continues to pass through a quarter-wave 162A and imping on partial reflector 164 (corresponding to first optical surface 18, above). Lenses 166A and 166B perform collimation as the beam propagates back and forth, passing also through quarter-wave plate 162B and reflective polarizer 168, corresponding to second optical surface 20, above (the optical path being shown schematically for one beam).
The above system has small dimension, can support large field while using short focal length and at same time couple light into waveguide aperture 26 that is also located at a short distance from the collimating optics.
Turning now to
In the particularly preferred but non-limiting example illustrated here, images of each color (e.g., RGB) are generated by a different active-matrix image generators (170R, 170G and 170B, respectively), and the surfaces 172a and 172b are dichroic combiners (dichroic mirrors) that combine the color beams within the dichroic prism (shown by solid and dashed arrows, rays shown only from 170G for clarity). Since the illumination from the sources 170 may be unpolarized, an additional polarizer may be introduced directly adjacent to every source or as a first element on surface 17. The form of the catadioptric collimating arrangement and its association with the prism is illustrated here in a form analogous to
In the embodiment illustrated here, a first active-matrix image generator 170R generates an image emitted as light of at least a first wavelength (red) that is reflected by dichroic mirror 172a, while a second active-matrix image generator 170G associated with a second face of the prism generates an image emitted as light of at least a second wavelength (green) that is transmitted by dichroic mirror 172a, thereby being combined with the red light on reaching the collimating optics. Second dichroic mirror 172b is non-parallel to dichroic mirror 172a, and is transparent to red and green light while being reflective to light of a third wavelength, blue. A third active-matrix image generator 170B, associated with a further face of the prism, generates an image emitted as light of at least the third wavelength (blue) that is reflected by the second dichroic mirror 170b so as to be combined with the red and green light on reaching the collimating optics. By generating images corresponding to RGB separations of the overall image to be displayed, the separate images are all combined and delivered to the collimating optics, for display to the eye of the user.
It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2023/050873 | 8/17/2023 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2024/038458 | 2/22/2024 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2748659 | Geffcken et al. | Jun 1956 | A |
2795069 | Hardesty | Jun 1957 | A |
2886911 | Hardesty | May 1959 | A |
3491245 | Hardesty | Jan 1970 | A |
3667621 | Barlow | Jun 1972 | A |
3677621 | Smith | Jul 1972 | A |
3737212 | Antonson et al. | Jun 1973 | A |
3802763 | Cook et al. | Apr 1974 | A |
3829197 | Thelen | Aug 1974 | A |
3857109 | Pilloff | Dec 1974 | A |
3940204 | Withrington | Feb 1976 | A |
3969023 | Brandt et al. | Jul 1976 | A |
4084883 | Eastman et al. | Apr 1978 | A |
4191446 | Arditty et al. | Mar 1980 | A |
4309070 | St Leger Searle | Jan 1982 | A |
4331387 | Wentz | May 1982 | A |
4516828 | Steele | May 1985 | A |
4613216 | Herbec et al. | Sep 1986 | A |
4662717 | Yamada et al. | May 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4715684 | Gagnon | Dec 1987 | A |
4775217 | Ellis | Oct 1988 | A |
4798448 | Van Raalte | Jan 1989 | A |
4805988 | Dones | Feb 1989 | A |
4932743 | Isobe et al. | Jun 1990 | A |
4978952 | Irwin | Dec 1990 | A |
5033828 | Haruta | Jul 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5096520 | Faris | Mar 1992 | A |
5157526 | Kondo et al. | Oct 1992 | A |
5208800 | Isobe et al. | May 1993 | A |
5231642 | Scifres et al. | Jul 1993 | A |
5235589 | Yokomori et al. | Aug 1993 | A |
5301067 | Bleier et al. | Apr 1994 | A |
5353134 | Michel et al. | Oct 1994 | A |
5367399 | Kramer | Nov 1994 | A |
5369415 | Richard et al. | Nov 1994 | A |
5453877 | Gerbe et al. | Sep 1995 | A |
5543877 | Takashi et al. | Aug 1996 | A |
5619601 | Akashi et al. | Apr 1997 | A |
5650873 | Gal et al. | Jul 1997 | A |
5680209 | Meinrad | Oct 1997 | A |
5712694 | Taira et al. | Jan 1998 | A |
5724163 | David | Mar 1998 | A |
5745199 | Suzuki et al. | Apr 1998 | A |
5751480 | Kitagishi | May 1998 | A |
5764412 | Suzuki et al. | Jun 1998 | A |
5829854 | Jones | Nov 1998 | A |
5883684 | Millikan et al. | Mar 1999 | A |
5896232 | Budd et al. | Apr 1999 | A |
5919601 | Nguyen et al. | Jul 1999 | A |
5966223 | Yaakov et al. | Oct 1999 | A |
5982536 | Swan | Nov 1999 | A |
6021239 | Minami et al. | Feb 2000 | A |
6052500 | Takano et al. | Apr 2000 | A |
6091548 | Chen | Jul 2000 | A |
6144347 | Mizoguchi et al. | Nov 2000 | A |
6222676 | Togino et al. | Apr 2001 | B1 |
6222677 | Budd et al. | Apr 2001 | B1 |
6239092 | Papasso et al. | May 2001 | B1 |
6322256 | Inada et al. | Nov 2001 | B1 |
6324330 | Stites | Nov 2001 | B1 |
6349001 | Spitzer | Feb 2002 | B1 |
6362861 | Hertz et al. | Mar 2002 | B1 |
6384982 | Spitzer | May 2002 | B1 |
6388814 | Tanaka | May 2002 | B2 |
6404550 | Yajima | Jun 2002 | B1 |
6404947 | Matsuda | Jun 2002 | B1 |
6483113 | Sealy et al. | Nov 2002 | B1 |
6509982 | Steiner | Jan 2003 | B2 |
6542307 | Gleckman | Apr 2003 | B2 |
6556282 | Jamieson et al. | Apr 2003 | B2 |
6577411 | David | Jun 2003 | B1 |
6671100 | McRuer | Dec 2003 | B1 |
6690513 | Hulse et al. | Feb 2004 | B2 |
6710902 | Takeyama | Mar 2004 | B2 |
6799859 | Ida et al. | May 2004 | B1 |
6762801 | Weiss et al. | Jul 2004 | B2 |
6775432 | Basu | Aug 2004 | B2 |
6791760 | Janeczko et al. | Sep 2004 | B2 |
6798579 | Robinson et al. | Sep 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6880931 | Moliton et al. | Apr 2005 | B2 |
6942925 | Lazarev et al. | Sep 2005 | B1 |
7016113 | Choi et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7088664 | Kim et al. | Aug 2006 | B2 |
7175304 | Wadia et al. | Feb 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7339742 | Amitai et al. | Apr 2008 | B2 |
7355795 | Yamazaki et al. | Apr 2008 | B1 |
7384159 | Takeda | Jun 2008 | B2 |
7391573 | Amitai | Jun 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7430355 | Heikenfeld et al. | Sep 2008 | B2 |
7448170 | Milovan et al. | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7612879 | Stumpe et al. | Nov 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7672055 | Amitai | Mar 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7751122 | Amitai | Jul 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7808625 | Nakamura et al. | Oct 2010 | B2 |
7949214 | Dejong | May 2011 | B2 |
7995275 | Maeda et al. | Aug 2011 | B2 |
8000020 | Amitai | Aug 2011 | B2 |
8035872 | Ouchi | Oct 2011 | B2 |
8098439 | Amitai et al. | Jan 2012 | B2 |
8187481 | Hobbs | May 2012 | B1 |
8405573 | Lapidot et al. | Mar 2013 | B2 |
8432614 | Amitai | Apr 2013 | B2 |
8433172 | Pascal et al. | Apr 2013 | B2 |
8643948 | Amitai et al. | Feb 2014 | B2 |
8666208 | Amirparviz et al. | Mar 2014 | B1 |
8718437 | Coe-Sullivan | May 2014 | B2 |
8870384 | Imai et al. | Oct 2014 | B2 |
8913865 | Bennett | Dec 2014 | B1 |
9025253 | Hadad et al. | May 2015 | B2 |
9523852 | Brown et al. | Dec 2016 | B1 |
9541762 | Mukawa et al. | Jan 2017 | B2 |
9551880 | Amitai | Jan 2017 | B2 |
9709809 | Miyawaki et al. | Jul 2017 | B2 |
10222535 | Remhof et al. | Mar 2019 | B2 |
10302957 | Sissom | May 2019 | B2 |
10437068 | Weng | Oct 2019 | B2 |
10466479 | Shih et al. | Nov 2019 | B2 |
10571636 | Gelberg | Feb 2020 | B2 |
10739598 | Ofir | Aug 2020 | B2 |
10809528 | Amitai | Aug 2020 | B2 |
10795156 | Marshall | Oct 2020 | B2 |
10830938 | Ronen et al. | Nov 2020 | B2 |
10908426 | Amitai | Feb 2021 | B2 |
10951867 | Pappas et al. | Mar 2021 | B2 |
10969590 | Danziger et al. | Apr 2021 | B1 |
11262564 | Tanaka | Mar 2022 | B2 |
11523092 | Greenstein et al. | Dec 2022 | B2 |
20010000124 | Kollin et al. | Apr 2001 | A1 |
20010030860 | Kimura et al. | Oct 2001 | A1 |
20020015233 | Park | Feb 2002 | A1 |
20020097762 | Yoshimura et al. | Jul 2002 | A1 |
20020176173 | Song | Nov 2002 | A1 |
20020191297 | Gleckman et al. | Dec 2002 | A1 |
20030007157 | Hulse et al. | Jan 2003 | A1 |
20030020006 | Janeczko et al. | Jan 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030072160 | Kuepper et al. | Apr 2003 | A1 |
20030090439 | Spitzer et al. | May 2003 | A1 |
20030165017 | Amitai | Sep 2003 | A1 |
20030169504 | Kaminsky et al. | Sep 2003 | A1 |
20030197938 | Schmidt et al. | Oct 2003 | A1 |
20030218718 | Moliton et al. | Nov 2003 | A1 |
20030235768 | Fincher et al. | Dec 2003 | A1 |
20040013068 | Aastuen et al. | Jan 2004 | A1 |
20040085649 | Repetto et al. | May 2004 | A1 |
20040137189 | Tellini et al. | Jul 2004 | A1 |
20040233534 | Nakanishi et al. | Nov 2004 | A1 |
20050012842 | Miyagawa et al. | Jan 2005 | A1 |
20050018308 | Cassarly et al. | Jan 2005 | A1 |
20050024849 | Parker et al. | Feb 2005 | A1 |
20050084210 | Cha | Apr 2005 | A1 |
20050174641 | Greenberg | Aug 2005 | A1 |
20050174658 | Long et al. | Aug 2005 | A1 |
20050180687 | Amitai et al. | Aug 2005 | A1 |
20050265044 | Chen et al. | Dec 2005 | A1 |
20060126182 | Levola | Jun 2006 | A1 |
20060171046 | Recco et al. | Aug 2006 | A1 |
20060268421 | Shimizu et al. | Nov 2006 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070070859 | Hirayama | Mar 2007 | A1 |
20070159673 | Freeman et al. | Jul 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20080025667 | Amitai | Jan 2008 | A1 |
20080094586 | Hirayama | Apr 2008 | A1 |
20080151375 | Lin | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080192239 | Otosaka | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080247150 | Itoh et al. | Oct 2008 | A1 |
20080259429 | Kamm et al. | Oct 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20090010023 | Kanade et al. | Jan 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20100053148 | Khazeni et al. | Mar 2010 | A1 |
20100067110 | Yaakov et al. | Mar 2010 | A1 |
20100111472 | DeJong | May 2010 | A1 |
20100201128 | Saccomammo | Aug 2010 | A1 |
20100202048 | Amitai et al. | Aug 2010 | A1 |
20100202128 | Saccomanno | Aug 2010 | A1 |
20100214635 | Sasaki et al. | Aug 2010 | A1 |
20100278480 | Vasylyev et al. | Nov 2010 | A1 |
20100291489 | Moskovits et al. | Nov 2010 | A1 |
20110096566 | Tsai et al. | Apr 2011 | A1 |
20110176218 | Noui | Jul 2011 | A1 |
20110227661 | Numata et al. | Sep 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20120039576 | Dangel et al. | Feb 2012 | A1 |
20120062998 | Schultz et al. | Mar 2012 | A1 |
20120147361 | Mochizuki et al. | Jun 2012 | A1 |
20120194781 | Agurok | Aug 2012 | A1 |
20120206817 | Totani et al. | Aug 2012 | A1 |
20120274751 | Smith et al. | Nov 2012 | A1 |
20120306940 | Machida | Dec 2012 | A1 |
20130007833 | Kitazato et al. | Jan 2013 | A1 |
20130016292 | Mlao et al. | Jan 2013 | A1 |
20130022316 | Pelletier et al. | Jan 2013 | A1 |
20130027655 | Blum et al. | Jan 2013 | A1 |
20130135749 | Akutsu et al. | May 2013 | A1 |
20130321432 | Burns et al. | Dec 2013 | A1 |
20130334504 | Thompson et al. | Dec 2013 | A1 |
20140003762 | Macnamara | Jan 2014 | A1 |
20140043688 | Schrader et al. | Feb 2014 | A1 |
20140160577 | Dominici et al. | Jun 2014 | A1 |
20140185142 | Gupta et al. | Jul 2014 | A1 |
20140226215 | Komatsu et al. | Aug 2014 | A1 |
20140226361 | Vasylyev | Aug 2014 | A1 |
20140334777 | Dubroca et al. | Nov 2014 | A1 |
20140374377 | Schulz et al. | Dec 2014 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150081313 | Boross et al. | Mar 2015 | A1 |
20150138646 | Tatsugi | May 2015 | A1 |
20150153569 | Yonekubo | Jun 2015 | A1 |
20150160529 | Popovich et al. | Jun 2015 | A1 |
20150182348 | Siegal et al. | Jul 2015 | A1 |
20150219834 | Nichol et al. | Aug 2015 | A1 |
20150241619 | Richards et al. | Aug 2015 | A1 |
20150331546 | Craven-Bartle et al. | Nov 2015 | A1 |
20160062119 | Fitch et al. | Mar 2016 | A1 |
20160202048 | Meng | Jul 2016 | A1 |
20160234485 | Robbins et al. | Aug 2016 | A1 |
20160238844 | Dobschal | Aug 2016 | A1 |
20160370693 | Watanabe | Dec 2016 | A1 |
20170004574 | Deats et al. | Jan 2017 | A1 |
20170045743 | Dobschal et al. | Feb 2017 | A1 |
20170045744 | Amitai | Feb 2017 | A1 |
20170075119 | Schultz et al. | Mar 2017 | A1 |
20170097506 | Schowengerdt et al. | Apr 2017 | A1 |
20170242249 | Wall | Aug 2017 | A1 |
20170285346 | Pan | Oct 2017 | A1 |
20170293140 | Cai et al. | Oct 2017 | A1 |
20170336636 | Amitai et al. | Nov 2017 | A1 |
20170343822 | Border et al. | Nov 2017 | A1 |
20170357095 | Amitai | Dec 2017 | A1 |
20170357100 | Ouderkirk et al. | Dec 2017 | A1 |
20170363799 | Ofir | Dec 2017 | A1 |
20180039082 | Amitai | Feb 2018 | A1 |
20180067315 | Amitai et al. | Mar 2018 | A1 |
20180157057 | Gelberg et al. | Jun 2018 | A1 |
20180210202 | Danziger | Jul 2018 | A1 |
20180267295 | Dalrymple et al. | Sep 2018 | A1 |
20180292599 | Ofir et al. | Oct 2018 | A1 |
20180335629 | Cheng et al. | Nov 2018 | A1 |
20190170327 | Eisenfeld et al. | Jun 2019 | A1 |
20190187482 | Lanman | Jun 2019 | A1 |
20190212487 | Danziger et al. | Jul 2019 | A1 |
20190227215 | Danziger et al. | Jul 2019 | A1 |
20190293856 | Danziger | Sep 2019 | A1 |
20190377187 | Sharlin et al. | Dec 2019 | A1 |
20190378044 | Jeffery et al. | Dec 2019 | A1 |
20190391408 | Mansharof | Dec 2019 | A1 |
20200026072 | Brown et al. | Jan 2020 | A1 |
20200089001 | Amitai et al. | Mar 2020 | A1 |
20200183170 | Amitai et al. | Jun 2020 | A1 |
20200192101 | Ayres et al. | Jun 2020 | A1 |
20200225484 | Takagi et al. | Jul 2020 | A1 |
20200278557 | Greenstein et al. | Sep 2020 | A1 |
20200292819 | Danziger et al. | Sep 2020 | A1 |
20200360879 | Arnold et al. | Nov 2020 | A1 |
20200371311 | Lobachinsky et al. | Nov 2020 | A1 |
20200371354 | Ouderkirk et al. | Nov 2020 | A1 |
20210018755 | Amitai | Jan 2021 | A1 |
20210033872 | Rubin et al. | Feb 2021 | A1 |
20210072553 | Danziger et al. | Mar 2021 | A1 |
20210149199 | Guan et al. | May 2021 | A1 |
20220004014 | Ronen et al. | Jan 2022 | A1 |
20220030205 | Danziger | Jan 2022 | A1 |
20220113549 | Danziger et al. | Apr 2022 | A1 |
20220269098 | Danziger et al. | Aug 2022 | A1 |
20220342216 | Danziger et al. | Oct 2022 | A1 |
20230296899 | Ronen et al. | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
2011-028141 | Feb 2011 | JP |
Entry |
---|
Salter, P. S. and Booth, M. J. et al. “Designing and aligning optical systems incorporating Liquid crystal spatial light modulators (SLMs)”, Department of Engineering, University of Oxford, vr1.0, doi: 10.5281/zenodo.4518992 (published online Feb. 12, 2020) Salter, P. S. and Booth, M. J. Feb. 12, 2020 (Feb. 12, 2020). |
R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti-reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24, 10172-10187 (2016). |
Qiao, DY., Wang, SJ. & Yuan, Wz. A continuous-membrane micro deformable mirror based on anodic bonding of SOI to glass wafer. Microsyst Technol 16, 1765-1769 (2010). https://doi.org/10.1007/s00542-010-1102-0. |
J. Wei, S.M.L. Nai, C.K. Wong, L.C. Lee, “Glass-to-glass anodic bonding process and electrostatic force” Thin Solid Films, vols. 462-463, 2004, pp. 487-491, ISSN 0040-6090, https://doi.org/10.1016/j.tsf.2004.05.067. (https://www.sciencedirect.com/science/article/pii/S0040609004006613). |
Halifoux B.D. et al., “Compensating film stress in thin silicon substrates using ion implantation,” Opt. Express 27, 11182-11195 (Jan. 21, 2019) Chalifoux B.D et al. Jan. 21, 2019 (Jan. 21, 2019). |
Jinying Li et al “Improvement of pointing accuracy for Risley prisms by parameter identification”, Sep. 2017Applied Optics 56(26):7358; DOI:10.1364/AO.56.007358. |
Klaus Ehrmann et al “Optical power mapping using paraxial laser scanning”, Proceedings vol. 7163, Ophthalmic Technologies XIX; 71631E (2009) https://doi.org/10.1117/12.806765 Event: SPIE BiOS, 2009, San Jose, California, United States. |
Erhui Qi et al “The Application of Pentaprism Scanning Technology on the Manufacturing of M3MP”,Proc. of SPIE vol. 9682 96821A-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on Dec. 8, 2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx. |
Wei Chen et al“An Image Quality Evaluation Method of near-eye display” , First published: May 25, 2016 https://doi.org/10.1002/sdtp.10935. |
Da-Yong et al., “A Continuous Membrance Micro Deformable Mirror Based on Anodic Bonding of SOI to Glass Water”, Microsystem Technologies, Micro and Nanosystems Information Storage and Processing Systems, vol. 16, No. 10, May 20, 2010 pp. 1765-1769. |
Amotchkina T. et al; “Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice,” Opt. Express 22, 30387-30393 (2014) Amotchkina T. et al. Dec. 31, 2014 (Dec. 31, 2014). |
Mori H. et al., “Reflective coatings for the future x-ray mirror substrates”, Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 1069941 (Jul. 6, 2018); available at URL <http://doi.org/10.1117/12.2313469> Mori H. et al. Jul. 6, 2018 (Jul. 6, 2018). |
Chalifoux B.D. et al., “Compensating film stress in thin silicon substrates using ion implantation,” Opt. Express 27, 11182-11195 (Jan. 21, 2019) Chalifoux B.D. et al. Jan. 21, 2019 (Jan. 21, 2019). |
Petros I. Stavroulakis, Stuart A. Boden, Thomas Johnson, and Darren M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21, 1-11 (2013). |
Qiaoyin Yang et al. “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference” 2013 Nanotechnology, vol. 24, No. 23 May 15, 2013. |
S. Chattopadhyay et al. “Anti-reflecting and photonic nanostructures,” Materials Science and Engineering: R: Reports, vol. 69, Issues 1-3, 2010, pp. 1-35, ISSN 0927-796X, https://doi.org/10.1016/j.mser.2010.04.001. |
Number | Date | Country | |
---|---|---|---|
63405945 | Sep 2022 | US | |
63398921 | Aug 2022 | US |